
An Epsilon-Frontier for Faster Optimization in Nonlinear Manifold Learning

Arthur R. Drake, Qiuyi Chen, and Mark D. Fuge
Informatics for Design, Engineering And Learning (IDEAL) Lab

Department of Mechanical Engineering
University of Maryland, College Park, MD, USA

adrake17@umd.edu, qchen88@umd.edu, fuge@umd.edu

Abstract
Complex engineering problems such as compressor blade
optimization often require large amounts of data and com-
putational resources to produce optimal designs because
traditional approaches only operate in the original high-
dimensional design space. To mitigate this issue, we de-
velop a simple yet effective autoencoder architecture that
operates on a prior ϵ-frontier from examples of past opti-
mization trajectories. This paper focuses on using such non-
linear methods to maximize dimensionality reduction on an
easily verifiable synthetic dataset, providing a faster alter-
native to high-fidelity simulation techniques. We test a va-
riety of component reduction models on the ϵ-frontier of a
synthetic 2-dimensional dataset of K trajectories, for which
we can easily verify the accuracy of alterations to the la-
tent space. We find that our autoencoder generally converges
more quickly than other simple architectures such as PCA in
the resulting 1-dimensional space.

Introduction
In order to address the problem of growing complexity in
problems within engineering and other fields, it is helpful to
produce a new low-dimensional representation of some sub-
set of the original data. One important reason for this is that
the amount of data required to find an optimum increases ex-
ponentially with the number of dimensions (Bittner 1962),
part of the so-called curse of dimensionality. With this in
mind, the resulting low-dimensional space should also ex-
hibit sufficient continuity and accuracy so that it can be eas-
ily explored, producing consistent outputs when converted
back to the original space. For example, this may assist in
predicting design variables that would otherwise need to be
calculated by multi-physics simulators, which often take or-
ders of magnitude longer to run as compared to data-based
approaches. Popular categories of methods to address the
high dimensionality of data have included vector quantiza-
tion, various forms of Principal Component Analysis (PCA),
and Generative Topological Mapping (GTM), among others
(Sorzano, Vargas, and Montano 2014).

Building on these techniques, Manifold Learning aims
to find a continuous distribution along a low-dimensional

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

space, or manifold, which retains nearly all characteristics
of the original data. This allows for much quicker process-
ing and training with a minimal loss in overall design vari-
ance. However, most existing algorithms assume that exam-
ples on this manifold are readily available, which is often
not the case in real-world problems. Our work addresses
this issue by proposing a method of incorporating prior op-
timization runs to learn a low dimensional representation.
We explore this method’s effectiveness for simple and eas-
ily replicable test models derived from synthetic data. This
paper contributes the following:

1. We first present a new algorithm that leverages an ϵ-
frontier envelope on a database of K trajectories to learn
a low-dimensional subspace wherein an optimal subset
of points may lie, with the benefit of a continuous set of
near-optimal points along the resulting manifold.

2. We demonstrate the effect of ϵ on the convergence rates
of a Bayesian optimization algorithm, in terms of finding
a new optimal point along the manifold, for two synthetic
test functions. We measure this via a decrease the number
of iterations needed to reach equivalent performance in
the Bayesian optimizer. This directly compares the prop-
erties of each low-dimensional representation produced
by the corresponding test model.

3. We show that a nonlinear autoencoder is capable of faster
convergence and better overall performance compared to
linear PCA for most cases, as well as KPCA when the
input frontier features a discontinuity.

Related Work
Traditionally, manifold learning algorithms have relied on
constructing a nearest neighbor graph on a given set of in-
put points, linearly approximating the local manifold ge-
ometry for each point, and minimizing a global error func-
tion to obtain the overall embedding by solving an eigen-
value problem (Zhang, Wang, and Zha 2012). An analysis by
Anowar, Sadaoui, and Selim (2021) compared several popu-
lar manifold-based dimensionality reduction algorithms in-
cluding ISOMAP, LLE, and t-SNE, all of which are non-
linear and unsupervised. It found that such methods gener-
ally outperform random projection-based feature extraction
methods, despite some present flaws such as topological in-
stability in ISOMAP. Several augmentations of these base-

line methods have been researched to address topics such
as the adaptive selection of neighborhood sizes and accurate
fitting of local geometric structures, with fairly promising
results. Gu et al. (2017) devised a method utilizing the law
of cosines between each data point and a principal connec-
tion curve to create the lower-dimensional geometries. This
yielded improved performance in several pattern recogni-
tion applications with high-dimensional input data. Mean-
while, Wang et al. (2014) developed a generalized autoen-
coder with similar architecture to the one used in this paper,
which was also used to reconstruct a set of new points rather
than the existing ones. They further propose a deep version
of the model with additional hidden layers, and combine this
with Linear Discriminant Analysis (LDA) to produce highly
distinct clusters of digits from the MNIST dataset. Further-
more, some attempts have been made to apply a Pareto-
optimal set (PS) in the area of manifold learning. Li and
Kwong (2014) proposed a general framework for evolu-
tionary multi-objective optimization that uses the Laplacian
maps algorithm to find a manifold representation of a prede-
termined PS of points. They noted the regularity property of
an m− 1 dimensional PS, where m is the number of objec-
tives, allowing for a smooth manifold approximation along
the PS.

This paper proposes a more broadly applicable approach
to Pareto-based manifold learning: it uses several test mod-
els to encode a select portion the original test data deter-
mined by an ϵ-frontier, learn the resulting low-dimensional
space to construct a manifold, and finally traverse that man-
ifold to provide a set of target outputs when decoded back to
the design space. This yields a generalized method to predict
new optimal points along a given Pareto front.

Methods

The following section describes our approach to reducing
the complexity of a synthetic dataset. Our general approach
is as follows: we first train a model (which must be capa-
ble of encoding to and decoding from a latent space) on the
distribution of a previously determined ϵ-frontier to create
a low-dimensional manifold. This provides the advantage
of near-optimality for any points chosen close to the fron-
tier, which in this case lie on the continuous manifold. We
choose arbitrary points in this space and, when decoded, de-
termine how well they line up with the original distribution.
Each iteration of this allows for an intermediate optimizer
to converge towards a new desired optimum (which was not
present in the original dataset) along the manifold.

Creation of ϵ-Frontiers from a Synthetic
Trajectory Database

We design a 2D toy optimization problem of minimizing
a loss function L(x | t) to get x⋆(t), which simulates an
optimal point in some design space, subject to a changing
input condition t. The loss function is constructed by a
Gaussian-mixture-like model over t ∈ [0, 1] as plotted in
Figure 1, for which we first design two 1D manifolds in R2:

x1(t) =

[
t

2
3{10(t− 0.7)3 + 5(t− 0.7)2 + 0.1(t− 0.7) + 0.5}

]
(1)

x2(t) = x1(t) +

[
−0.5
0.5

]
(2)

and two weight functions

w1(t) = t, w2(t) = 1− t (3)

after which we construct L(x | t) via

L(x | t) = w1(t) · g(x | x1(t)) + w2(t) · g(x | x2(t)) (4)

where
g(x | y) = 1− exp(−20∥x− y∥22) (5)

To generate trajectories, the loss function L(x | t) is
then optimized via Bayesian optimization with upper con-
fidence bound as the acquisition function and five initializa-
tion points for the Gaussian process prior. The optimization
histories or trajectories are then stored and analyzed as per
below. For the “hard” trajectory dataset, we define the offset
as shown in x2(t) above, and for the “easy” dataset, we set
the offset to the zero vector, such that there is effectively a
single Gaussian. As one example, the trajectories of differ-
ent optimization methods for L(x | t = 0.5) are shown in
Figure 2.

The synthetic data described above was sampled from a
set of K trajectories with a specified ϵ value from 0 to 1, cor-
responding to the quantile of most optimal values extracted
from each trajectory. Also specified was the number of input
t points, of which there were 50 per trajectory. The sparsity
of input data was further controlled by the number of trajec-
tories included at each t point, ranging from 1 to 10. Three
test models were then assigned a certain latent space width,
which was set to 1 in this case given the input was only com-
prised of two dimensions.

The models tested in this experiment were Principal Com-
ponent Analysis (PCA) and a kernel-based version referred
to as KPCA, both from the Python Scikit-learn library (Pe-
dregosa et al. 2011), as well as a nonlinear autoencoder (AE)
created in PyTorch (Paszke et al. 2019). This feed-forward
AE features a symmetric architecture that first passes the in-
put through two 8-dimensional linear hidden layers, each
followed by an ELU activation function. This leads to the
central latent space of interest, which has one dimension in
the synthetic data case. The decoder simply completes the
reverse of this process to translate the latent space back to
two dimensions.

Experimental Process and Results
In this section, we detail our exact process to test and visu-
alize the convergence rates for each synthetic data model.
We provide our reasoning for using various test parameters
and explain the overall significance of the resulting conver-
gence plots. Future work on this problem will also apply the
autoencoder within the context of a complex multi-fidelity
model, which will further validate its ability to produce ac-
curate and smooth manifolds.

Figure 1: L(x | t) at t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 from left to right.

Figure 2: Example Optimization trajectories of Bayesian op-
timization on L(x | t = 0.5).

Figure 3: The easy (left) and hard (right) synthetic datasets.
At t = 0.5, the hard dataset jumps from the left curve to the
right curve as the two modes of the Gaussian Mixture Model
shift.

Convergence Rates of Bayesian Optimization on
the Synthetic Frontier Manifolds

For each experiment run, a certain combination of ϵ quantile,
model type, number of t points, and number of trajectories
per t point was assessed. A frontier representing the ϵ quan-
tile of most optimal points was created, which the specified
model was trained on in order to create a manifold. In the
case of KPCA, we used the RBF kernel, as well as tuning the
hyperparameters α (regularization strength) and γ (kernel
bandwidth) via Cross Validation to better capture the fron-
tier characteristics. The AE was trained within the architec-

ture designed above, using an LBFGS optimizer. Combina-
tions of experiment parameters were tested for the following
ranges:

• ϵ = 0.25, 0.5, 1.0

• Model = PCA, KPCA, AE, 2D PCA
• Number of t points = 4, 6, 8, 10 for easy data; 10, 15, 20,

25 for hard data
• Number of Trajectories per t point = 1, 2

Note that the test was run with more t points for the hard
data, since a lower amount resulted in training data that was
too inconsistent to fit each model adequately. This is due
to the discontinuity which occurs at t = 0.5, which as a
result requires more examples to capture the two separate
curves. Once the above factors were determined for a given
run, we calculated the manifold search bounds for use in the
Bayesian Optimization. The resulting optimization conver-
gence test measured training loss after 30 epochs, and began
with a set of 5 randomly selected points on the manifold. As
mentioned previously, we constructed a Gaussian Process
with re-optimized kernel parameters on each iteration (with
respect to the MLL), sampling new points according to an
Upper Confidence Bound algorithm. Therefore the ability
of the given model to create a consistent, accurate manifold
from the frontier data was directly tested.

Figure 4 shows the convergence rates of each tested model
type for the easy data. 2D PCA was consistent in reaching
the lowest training error, which is justified by the lack of
reconstruction loss given its 2-dimensional latent space. As
a result, it is reasonable to conclude this model will always
converge to the optimum.

As the data becomes less sparse with increasing t points
and number of trajectories, the nonlinear 1-dimensional
models begin to converge to low loss values as well. In
fact, they converge at a much quicker rate than 2D PCA for
Nt = 10, Ntraj = 2. This can be explained by the ben-
efit of additional data points for the nonlinear models, as
they adapt to the increasingly clear 1D manifold. In turn, the
Bayesian Optimization only has to optimize along one di-
mension rather than two, providing an acceleration. We also
note that the required amount of t points and trajectories for
rapid convergence is still small in comparison to the size of
the entire dataset, showing that the creation of an ϵ frontier
as a preprocessing tool is greatly helpful to reduce data vol-
ume. Finally, 1D PCA is limited by its linear nature; it can
never converge to the true nonlinear optimum in this case.

A separate optimization gap analysis was also conducted

Figure 4: The convergence results for the four models tested
on the easy synthetic data across 30 epochs.

for each ϵ value tested. This allowed us to directly com-
pare the effect of including more suboptimal points found
at higher ϵ. We found that ϵ = 0.25 and ϵ = 0.5 performed
at roughly equal levels, while ϵ = 1.0 exhibited more er-
ror in addition to its heightened training time. Therefore, we
chose ϵ = 0.25 for continued testing and convergence visu-
alization.

Figure 5: The autoencoder optimization gap at each ϵ.

When shifting to the discontinuous hard data, it immedi-
ately becomes evident that none of the 1D models are capa-
ble of converging very well, even with a large amount of t
points. We note that 2D PCA, which is our control model,
still converges because it does not use any actual dimen-
sionality reduction. The discontinuity sufficiently disrupts
the manifold to the point that a 1D representation is simply
not sufficient for these models. However, the autoencoder
visibly separates from KPCA and PCA given more input ex-
amples with one trajectory, indicating that it performs sig-
nificantly better over a discontinuous frontier. Overall, how-

ever, a much more flexible architecture is needed to address
the discontinuity. For example, Khayatkhoei, Elgammal, and
Singh (2019) propose a multi-generator GAN method which
learns a prior over the generators rather than using a fixed
prior. We will explore the use of such advanced models in
future research.

Figure 6: The convergence results for the four models tested
on the hard synthetic data across 30 epochs.

Conclusion
This paper explores the performance of linear and nonlinear
models over the low-dimensional manifolds of an example
problem’s optimization results using various test cases and
parameters. The reduction of the design space to a mani-
fold allows for significantly quicker model convergence with
minimal loss of variance in the design context. We showed
that a fairly smooth and continuous manifold may be tra-
versed by a simple model such as an autoencoder, produc-
ing qualitatively successful results when translated back into
the design space. We also demonstrated the impact of data
sparsity on the tested models, showing that using even a rel-
atively small segment of the original samples can yield rapid
convergence on the resulting manifold. Future work will
include model design for discontinuous and other poorly-
behaving manifolds, as well as an expanded study of appli-
cations in high-dimensional problems. There will also be a
greater emphasis on both empirical and theoretical analysis
of manifold-based model results in the decoded design space
as compared to the outputs of physics-based models.

Acknowledgements
This research was supported in part by funding from the
U.S. Department of Energy’s Advanced Research Projects
Agency-Energy (ARPA-E) DIFFERENTIATE funding op-
portunity through award DE-AR0001201.

References
Anowar, F.; Sadaoui, S.; and Selim, B. 2021. Conceptual
and empirical comparison of dimensionality reduction algo-
rithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE,
ICA, t-SNE). Computer Science Review, 40: 100378.
Bittner, L. 1962. R. Bellman, Adaptive Control Processes.
A Guided Tour. XVI + 255 S. Princeton, N. J., 1961. Prince-
ton University Press. Preis geb. $ 6.50. ZAMM - Journal of
Applied Mathematics and Mechanics / Zeitschrift für Ange-
wandte Mathematik und Mechanik, 42(7-8): 364–365.
Gu, H.; Wang, X.; Chen, X.; Deng, S.; and Shi, J. 2017.
Manifold Learning by Curved Cosine Mapping. IEEE
Transactions on Knowledge and Data Engineering, 29(10):
2236–2248.
Khayatkhoei, M.; Elgammal, A.; and Singh, M. 2019. Dis-
connected Manifold Learning for Generative Adversarial
Networks. arXiv:1806.00880.
Li, K.; and Kwong, S. 2014. A general framework for evo-
lutionary multiobjective optimization via manifold learning.
Neurocomputing, 146: 65–74. Bridging Machine learning
and Evolutionary Computation (BMLEC) Computational
Collective Intelligence.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32, 8024–8035. Curran As-
sociates, Inc.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
Sorzano, C. O. S.; Vargas, J.; and Montano, A. P.
2014. A survey of dimensionality reduction techniques.
arXiv:1403.2877.
Wang, W.; Huang, Y.; Wang, Y.; and Wang, L. 2014. Gen-
eralized Autoencoder: A Neural Network Framework for
Dimensionality Reduction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops.
Zhang, Z.; Wang, J.; and Zha, H. 2012. Adaptive Manifold
Learning. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 34(2): 253–265.

