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Abstract

General purpose Large Language Models
(LLMs) are frequently fine-tuned to improve
performance in niche domains. Although fine-
tuning is a standard practice, we still lack a
deep understanding of how to aggregate data
for better results. In this work, we show that
the entropy-based output estimation provides a
meaningful guideline for fine-tuning data prepa-
ration. Specifically, across two small open mod-
els (= 3B) we find that a single token answer
entropy shows ROC AUC score of ~ 0.73
and allows us to split the training data into
three complexity categories to apply different
tuning mechanisms. As result, we propose a
novel blueprint for efficient fine-tuning that
outperforms the standard approach (0.5/0.6 vs.
0.4/0.46 accuracies). We also provide an in-
depth analysis of alternative complexity estima-
tion techniques based on expert assessment via
model-as-judge (MASJ) and chain-of-thought
entropy aggregation with ROC AUC scores of
0.57 and 0.7 accordingly. Our findings show
immediate enhancements in fine-tuning perfor-
mance. We publish our coda' and data” to fa-
cilitate further investigation and immersion of
the numerical complexity analysis.

1 Introduction

General-purpose LLMs demonstrate impressive
performance across a vast variety of domains. At
the same time, they show subpar results on niche
tasks and in niche domains compared to specialized
models. Properly tuned smaller models beat large
open models in mathematics (Yang et al., 2024b),
medicine (Wu et al., 2025), chemistry (Yu et al.,
2024), and other fields. While in some areas, the
difference is negligible or at least not as important,
in others, such as medicine, it becomes crucial due
to the high cost of error.
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Figure 1: Complexity-aware fine-tuning scheme: for
easy and medium complex questions we apply direct
SFT, while for hard questions we include reasoning
results during SFT.

S

A standard approach to get a domain-specific
model is to fine-tune a general-purpose base LLM
on carefully selected data (Parthasarathy et al.,
2024). While there is a lot of focus on perfect-
ing the training mechanics, fewer attempts have
been made to enhance the performance by pursuing
meaningful data separation and ordering. The de-
fault approach is fine-tuning a model on the whole
data set without particular ordering. There have
been experiments with curriculum-based learning
(Kim and Lee, 2024; Shi et al., 2025), but they
struggle to split the dataset by difficulty in an auto-
mated fashion meaningfully.

To address this gap, we propose a fully auto-
mated pipeline, given in Figure 1, that consists
of two steps: (1) to split fine-tuning data by the
tasks’ complexity via a response entropy and (2) to
train the model for via either supervised fine-tuning
(SFT) followed by the reasoning-promoting tech-
niques (such as Group Relative Policy Optimiza-
tion and others (Zhihong Shao, 2024; Face, 2025))
for easy and hard data entries accordingly. We
confirm the effectiveness of the framework by fine-
tuning two open models: Qwen2.5-3B (Yang et al.,
2024a) and Phi-4-Mini (Microsoft et al., 2025),
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on the multiple choice question answering dataset
MMLU-Pro (Wang et al., 2024).

In step one, we consider different options for
complexity estimation based on a model’s con-
fidence in its answer. Our study considers a
wide range of methods: model-as-judge (MAS]J),
entropy-based aggregation and calculation meth-
ods, as well as other numerical methods. We pro-
vide the obtained dataset, which includes the gen-
eration results accompanied by token distribution
at each step, for further research.

Our contributions:

* The automated pipeline to split a multiple-
choice question answering dataset by com-
plexity based on the token-wise entropy of the
response and apply different fine-tuning strate-
gies based on the group. The code is available
at anonymized Github repository .

* An training procedure that achieves accura-
cies 0.5048 and 0.6005 over two LLMs for
MMLU-Pro c.t. 0.4048 and 0.4619 baselines.

* An analysis of complexity estimation based
rooted in uncertainty estimation, including
MAS]J, entropy-based and entropy-based aug-
mented with reasoning results with aggrega-
tion on top. Aggregated entropy-based com-
plexity provides the best results with ROC
AUC0.7.

* Open-source standardized datasets* to facil-
itate further development of uncertainty es-
timation and calibration methods: with and
without chain-of-thoughts, with token prob-
ability distribution at each step provided, as
well as additional scores.

2 Related works

Curriculum learning has been explored to improve
LLM fine-tuning by ordering training examples
from easier to harder. Kim and Lee (2024) pro-
pose sorting fine-tuning data by difficulty metrics
(e.g. prompt length, model attention scores, and
initial loss) so that the model learns on simpler
prompts before complex ones. They found that this
curriculum strategy yielded slightly higher accu-
racy than random shuffling, with ordering by an
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attention-based criterion performing best. This ap-
proach is attractive because it boosts performance
without adding more data or parameters. However,
the gains were modest, and defining difficulty au-
tomatically can be tricky - their method requires
measuring things like loss or attention per example.
Another strategy is filtering training data for
quality. A notable example is LIMA (Zhou et al.,
2023a), which shows that a large pre-trained model
can be fine-tuned on just a small, high-quality sub-
set of data. They fine-tuned a 65B LLAMA model
on only 1000 carefully curated prompt-response
pairs (chosen for diversity and clarity) without any
reinforcement learning. Despite the tiny dataset,
the resulting model performed remarkably well,
learning to handle complex queries and even gen-
eralizing to tasks not seen in training. In a human
evaluation, LIMA’s answers were preferred over
GPT-4’s in 0.43 of cases. This "less is more" result
suggests that much of an LLM’s ability comes from
pre-training, and fine-tuning needs only a small
amount of exemplary data to unlock it. However,
LIMA relied on a large base model and manual
data curation. The approach may not scale down to
smaller models and requires human intervention.
Another notable example of curated data selec-
tion is the SmallToLarge (S2L) method by Yang
et al. (2024c), which leverages training trajectories
from small models to guide the data selection for
larger models. This way, the large LLM is trained
on a diverse yet compact dataset covering different
difficulty levels. S2L showed impressive results:
for a math word problem dataset, they achieved the
same accuracy using only 11% of the data, and even
outperformed other selection methods by 4.7% on
average across several benchmarks. The strength
of this approach is that it makes complexity-based
data filtering automated and cheap. One caveat
is the extra step of training a smaller model and
clustering. The approach is mostly tested on spe-
cialized domains (math problems, clinical text sum-
marization), so its generality to all types of tasks
needs further validation. Additionally, it requires a
large amount of data to make a filtered subset.
Sychev et al. (2025) focus on measuring exam-
ple difficulty via model uncertainty. They investi-
gate how an LLM’s token-level entropy in its an-
swers relates to question difficulty. They find that a
model’s response entropy correlates strongly with
question difficulty, especially in knowledge-based
domains. They also introduce MASJ reasoning
score to estimate the question complexity. How-
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ever, the authors use these metrics only to analyze
model behavior. They do not integrate it into a
practical data aggregation or fine-tuning workflow.
Additionally, their work does not cover analysis of
the chain-of-thought kind of responses.

3 Methods
3.1 Training pipeline

We propose the complexity-aware fine-tuning
pipeline (Figure 1) with the following major stages:
complexity estimation, data aggregation, fine-
tuning.

Complexity estimation. We adopt the entropy
of the answer token in the response as our primary
complexity metric. We prompt the model to pick
the correct option directly, without producing a
chain-of-thought. See Section 3.2.3 for details.

Data aggregation. To aggregate the data into
groups by complexity (easy, medium, hard) we
evenly divide the dataset into three parts ordering
the entries by entropy of the response. Group with
the lowest entropy values is categorized as easy and
with the highest values - as hard, see Figure 2.
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Figure 2: Data aggregation

Fine-tuning. We propose to apply different fine-
tuning strategies according to the complexity of the
data. Vanilla SFT is applied to easy- and medium-
complexity groups, while for hard questions we
augment this procedure with a chain-of-thought.
For easy and medium groups, we suggest to use
SFT (Howard and Ruder, 2018; Raffel et al., 2023)
as an established practice to enhance the model per-
formance. It involves fine-tuning a pretrained LM
on labeled examples using standard supervised ob-
jectives. Here, we prompt (see Table 6 for system
prompts and Table 1 for user prompt) the model
with the question and options. Then, we apply the

cross-entropy loss to the question answers used as
labels.

Question: ...
Options:

1. ...

2. ..

n. ...
Choose one of the answers. Write down ONLY the NUMBER
of the correct answer and nothing else.

Table 1: User prompt

As to the hard group, we hypothesize that as
hard questions require multiple logical steps the
model can not effectively learn with standard SFT
and answering the question directly. Instead, we
propose to elicit a chain-of-thought and allow the
model to incrementally build the answer step-by-
step as suggested by Wei et al. (2023).

In this work, we apply the distillation technique

—- train a smaller model on the chain-of-thought of

a larger LLM. It is well-known practice supported
by (Hsieh et al., 2023). To create the distillation
training samples, we prompt a large LLM to an-
swer the multiple choice question and produce a
chain-of-though in the process. Next, the whole
response is attached to the dataset and used to train
the smaller model. Hypothetically, other reasoning-
eliciting techniques might show good performance
at this stage as well.

3.2 Complexity estimation approaches

To find the most suitable metric for the training
pipeline we analyze the performance of the follow-
ing techniques, MASJ reasoning score, MASJ edu-
cation level, Single token answer entropy, Chain-
of-thought answer entropy, Chain-of-thought ag-
gregated response entropy, Thinking and answer
statistics of reasoning model.
Used prompts are available in Appendix A.1.

3.2.1

As one of the expert-like metrics, we ask a large
LLM to estimate the number of logical steps re-
quired to answer the question. The hypothesis
is that the questions that require more reasoning
should be harder for the model to answer.

To collect the MASJ-based reasoning score, we
go over the multiple choice question answering
dataset and query a large auxiliary LLM for the
estimate. We prompt the model to provide the num-
ber of logical steps required to answer the question:
low, medium, high. Next, we query the large LLM

MAS]J reasoning score



again to estimate the quality of the previous assess-
ment from 1 to 10 following the practice introduced
in MT-Bench by Zheng et al. (2023). It allows us
to filter out low quality scores by keeping only the
ones rates above or equal to 9.

3.2.2 MASJ education level

As the other expert-like metrics, we ask a large
LLM to estimate the required level of education to
answer the question correctly. It is a natural human-
like value used in other datasets (Rein et al., 2023;
Lu et al., 2022).

We follow the same procedure as for MAS]J rea-
soning score, but use a different prompt.

3.2.3 Single token answer entropy

In similar fashion as proposed by (Kadavath et al.,
2022), we calculate the entropy of the answer token
in the response. The assumption is that the response
uncertainty is a natural predictor of the question
complexity. We prompt the model to answer the
question directly (as a single token) and calculate
tokenwise entropy of the response as follows:

n
h=-Ypilogpi,
=1

where p; is the probability of a single token and n
is the vocabulary size.

Additionally, similarly to (Zhou et al., 2023b),
we examine the performance when we allow the
model to explicitly say "I do not know" (IDK).

3.2.4 Chain-of-thought answer entropy

With the same assumption as for the single token
entropy, we analyze the entropy of the answer to-
ken, but change the prompt to elicit a chain-of
thought type of response. The assumption is that
via the chain-of-thought the LLM can incremen-
tally accumulate the entropy resulting in a better
separation of certain and uncertain answers.

3.2.5 Chain-of-thought aggregated response
entropy

Building upon the single-token entropy approach,
we investigate more sophisticated methods for com-
plexity estimation by analyzing the entire chain-of-
thought (CoT) response. While the answer token
entropy provides a localized measure of uncertainty,
aggregating entropy across the complete reasoning
process potentially offers a more comprehensive
complexity assessment.

We evaluate 10 distinct aggregation methods ap-
plied to CoT responses and last answer token, com-
paring their effectiveness through ROC AUC and
Gini metrics across multiple models (Qwen 3B and
Phi4-mini, both with and without "I don’t know"
option). Our analysis consider the following meth-
ods:

1. COT word-aggregation methods

* Single Token Answer Entropy
* COT Mean
* COT Max

 Difference between COT Max and Sin-
gle Token Answer Entropy

2. COT sequence-aggregation methods

* Sequence Mean of Words Mean
* Sequence Max of Words Mean

* Sequence Mean of Words Max

3. Probability-based methods

* Mean of Marginal Difference - mean of
difference between top-2 probabilities
for each token of response

* Top-2 Entropy Difference - difference of
top-2 highest entropies for response

4. Hybrid method

* Mix of COT word-aggregation methods
- linear combination of the best perform
methods

More details can be found in Appendix B.

3.2.6 Thinking and answer statistics of
reasoning model

To further investigate how numerical estimates can
be applied for uncertainty quantification, we ana-
lyze the entropy and length of the reasoning chain
for the current state-of-the-art (SOTA) reasoning
model.

During inference, for each newly generated to-
ken, we store the probability distribution over the
vocabulary of tokens with non-zero probabilities.
To find the importance of the features, we train a
logistic regression classifier using the scikit-learn
(Pedregosa et al., 2011) to predict the correctness
of the model answer.



4 Results

4.1 Experimental setup

MMLU-Pro dataset We conduct all experiments
on the multiple choice question answering dataset
MMLU-Pro (Wang et al., 2024), widely adopted by
the community as one of the golden performance
benchmarks. It spans across 14 domains with a
broad selection of questions with different com-
plexity. Each question has approximately 10 op-
tions with a single correct one, which removes the
ambiguity in evaluation.

Used LLMs As to the models, we use a variety
of open model sizes for data collection and aggre-
gation to analyze how the trend changes with the
model size. At the same time, we focus on smaller
models for fine-tuning to make our results repro-
ducible.

We apply our overall pipeline to two models:
Qwen2.5-3B and Phi-4-Mini. For them, we mea-
sured single token entropy, collected chain-of-
thought entropy, metadata, fine-tuned models and
evaluated overall pipeline.

Auxiliary models are used to extend our anal-
ysis and allow advanced reasoning: single token
response entropy for Mistral 24B and Phi-4; rea-
soning scores and education levels via MASJ with
Mistral 123B (Mistral, 2024); reasoning entropy
with metadata for Qwen3-8B; Chain-of-thought
distillation - DeepSeek-V3-0324 (DeepSeek-Al,
2024).

All models and datasets are published under per-
missive licenses that allow using them for research
purposes.

4.2 Complexity estimation evaluation

Following existing practices, we consider three
families of uncertainty estimation methods: MAS]J,
entropy-based and entropy-based augmented with
chain-of-thoughts. MASIJ results, as they are infe-
rior to other, are provided in Appendix C.1, for all
other methods we provide the results of analysis
below.

4.2.1 Single token and chain-of-thought
answer entropy

Tables 2 and 3 present ROC AUC and accuracy
for single token entropy and for the entropy of
the answer token in the chain-of-thought type of
response respectfully. Metrics are calculated for
the categories provided by MMLU-Pro as well as

education levels and reasoning scores estimated via
MASIJ.

IDK responses and results with invalid format-
ting are excluded from the calculations.

We can notice that the accuracy tends to be
slightly higher when we allow LLM to answer IDK.
At the same time, IDK responses do not consis-
tently affect ROC AUC for all models.

Chain-of-thought responses tend to provide
higher accuracy, but lower ROC AUC scores which
makes them less suitable for complexity estimation.

4.2.2 Chain-of-thought aggregated response
entropy

Table 4 provide results, which highlight our key
observations:

* Simple answer entropy often outperforms
more complex COT aggregation methods, par-
ticularly in models with strong baseline perfor-
mance (e.g., Qwen-3B achieving 0.68 ROC
AUC). Although the hybrid method outper-
forms the answer entropy, the main weights of
the hybrid linear combination were assigned
to the answer entropy.

* Maximum-based measures (COT Max, Seq
Mean Max) consistently outperform mean-
based approaches (COT Mean, Seq Max
Mean and Seq Mean Mean), suggesting peak
uncertainty moments may better indicate ques-
tion difficulty than average uncertainty.

* Sequence-based methods did not show good
improvements over basic aggregation, indi-
cating that modeling the reasoning structure
provides marginal benefits.

* The poor close-to-random performance of the
difference in top entropies suggests that mod-
ern LLMs maintain relatively stable reasoning
to outliers.

4.2.3 Thinking and answer statistics of
reasoning model

Our classifier achieves 0.721, 0.717 and 0.731 ac-
curacies by using thinking total entropy, length of
the reasoning chain or both features combined.

Table 12 shows that total entropy and number of
tokens of the reasoning chain are the most impor-
tant parameters influencing the correctness of the
model’s prediction.




Category Qwen 3B Qwen 3B* Phi4-mini Phi4-mini* Phi4 Phi4* Mistral 24B  Mistral 24B*
All 0.72/0.33  0.70/0.33  0.72/0.40  0.74/0.46  0.80/0.51 0.80/0.58  0.75/0.49 0.74/0.60
Law 0.63/0.24  0.60/0.21  0.64/0.29  0.62/0.30  0.69/0.47 0.69/0.48  0.69/0.41 0.75/0.56
Business 0.67/0.28  0.71/0.26  0.67/0.31  0.64/0.38  0.73/0.36  0.75/0.44  0.69/0.40 0.68/0.43
Psychology 0.77/0.51  0.75/0.51  0.84/0.57  0.82/0.59  0.84/0.74 0.84/0.74  0.79/0.66 0.75/0.68
Chemistry 0.69/0.23  0.62/0.24  0.62/0.34  0.64/0.41  0.70/0.34 0.77/0.45  0.68/0.38 0.75/0.59
Biology 0.79/0.59  0.79/0.56  0.85/0.67  0.85/0.73  0.90/0.80 0.90/0.83  0.81/0.74 0.73/0.80
History 0.66/0.36  0.63/0.35  0.68/0.39  0.65/0.43  0.76/0.62 0.73/0.63  0.69/0.54 0.64/0.56
Other 0.70/0.33  0.67/0.34  0.72/0.39  0.74/0.43  0.81/0.57 0.82/0.58  0.79/0.52 0.75/0.59
Physics 0.65/0.27 0.64/0.28  0.65/0.32  0.66/0.40  0.75/0.39 0.78/0.46  0.74/0.38 0.71/0.63
Computer science 0.76/0.29  0.70/0.32  0.73/0.41  0.76/0.46  0.77/0.55 0.80/0.57  0.77/0.51 0.74/0.64
Health 0.69/0.39  0.66/0.39  0.71/0.43  0.71/0.47  0.78/0.64 0.77/0.65  0.75/0.61 0.71/0.63
Economics 0.77/0.44  0.74/0.43  0.79/0.55 0.80/0.59  0.85/0.68 0.83/0.72  0.77/0.62 0.75/0.66
Math 0.69/0.24  0.67/0.24  0.65/0.27  0.69/0.31  0.73/0.37 0.74/0.43  0.69/0.33 0.72/0.44
Philosophy 0.66/0.33  0.70/0.31 0.71/0.39  0.70/0.43  0.77/0.61 0.76/0.63  0.71/0.53 0.70/0.56
Engineering 0.67/0.34  0.66/0.32  0.62/0.39  0.64/0.45 0.74/043 0.67/0.53  0.70/0.46 0.77/0.60
Education level
High school and easier 0.73/0.35  0.72/0.34  0.76/0.38  0.75/0.51  0.81/0.50 0.82/0.54  0.75/0.48 0.70/0.52
Undergraduate 0.73/0.34  0.71/0.34  0.72/0.42  0.77/0.44  0.81/0.52 0.82/0.62  0.77/0.50 0.74/0.64
Graduate 0.66/0.28  0.65/0.26  0.64/0.35  0.68/0.37  0.74/0.50 0.73/0.54  0.71/0.46 0.76/0.58
Postgraduate 0.63/0.18  0.52/0.20  0.64/0.20  0.63/0.22  0.67/0.40 0.65/0.41  0.62/0.35 0.63/0.39
MASI reasoning score
Low 0.72/042 0.71/0.42  0.78/0.48  0.79/0.51  0.82/0.64 0.83/0.65  0.79/0.59 0.73/0.59
Medium 0.72/0.32  0.70/0.31  0.70/0.39  0.72/0.44  0.79/0.50 0.79/0.59  0.74/0.47 0.76/0.63
High 0.64/0.27  0.62/0.27  0.59/0.33  0.58/0.36  0.69/0.41 0.64/0.29  0.64/0.39 0.62/0.45
Table 2: ROC AUC/accuracy for single token response entropy
* Alternative prompt to allow model answer "I do not know"

Category Qwen 3B Qwen 3B* Phi4-mini Phi4-mini*

All 0.68/0.41 0.67/0.41 0.61/0.43  0.58/0.55

Law 0.60/0.24  0.57/0.23  0.55/0.26  0.52/0.28

Business 0.68/0.45 0.67/0.47 0.66/0.55  0.56/0.65

Psychology 0.73/0.51 0.70/0.51  0.68/0.48  0.65/0.63

Chemistry 0.65/0.41 0.68/0.39  0.65/0.43  0.63/0.60

Biology 0.77/0.56  0.68/0.60  0.65/0.48  0.67/0.71

History 0.62/0.36  0.61/0.36  0.59/0.37  0.51/0.39

Other 0.63/0.38 0.63/0.36  0.60/0.42  0.58/0.52

Physics 0.68/0.42 0.67/0.41 0.62/0.39  0.61/0.57

Computer science 0.68/0.37  0.73/0.33  0.59/0.41  0.58/0.58

Health 0.63/0.37 0.61/0.40 0.62/0.33  0.56/0.50

Economics 0.70/0.48 0.68/0.50 0.61/0.47  0.65/0.63

Math 0.73/0.51 0.73/0.48 0.63/0.58  0.60/0.67

Philosophy 0.63/0.33  0.62/0.35  0.66/0.37  0.59/0.48

Engineering 0.63/0.31 0.64/0.33  0.60/0.37  0.55/0.45

Education level

High school and easier 0.72/0.56  0.70/0.53  0.66/0.57  0.60/0.73

Undergraduate 0.67/0.41 0.67/0.41  0.62/0.42  0.60/0.55

Graduate 0.61/0.27 0.60/0.28  0.58/0.30  0.57/0.38

Postgraduate 0.63/0.22 0.66/0.15 0.41/0.22  0.41/0.20

MASI reasoning score

Low 0.69/0.49 0.67/0.49 0.64/0.46  0.61/0.62

Medium 0.67/0.41 0.66/0.41 0.60/0.43  0.57/0.55

High 0.65/0.26  0.60/0.26  0.53/0.32  0.54/0.36

Table 3: ROC AUC/accuracy for single token response entropy
* Alternative prompt to allow model answer "I do not know"



Method Qwen 3B Qwen 3B* Phi4-mini  Phi4-mini*
Answer Entropy (AE) 0.68 0.67 0.61 0.58
COT Mean 0.59 0.58 0.59 0.63
COT Max 0.63 0.61 0.6 0.65
Sequence Mean Mean 0.6 0.59 0.6 0.62
Sequence Max Mean 0.59 0.58 0.59 0.61
Sequence Mean Max 0.62 0.6 0.59 0.62
Marginal Diff Mean 0.58 0.57 0.58 0.61
Top-2 Entropies Diff 0.51 0.5 0.5 0.51
COT Max minus AE 0.54 0.53 0.51 0.57
COT Max and AE 0.7 0.69 0.62 0.62
Number of Samples 11049 10724 9997 9973

Table 4: ROC AUC values for COT response
* Alternative prompt to allow model answer "I do not know"

Technical details. To avoid excessively long rea-
soning chains, we set a maximum generation length
of 5000 tokens. We also use normalized parame-
ters to remove the mean and scale to unit variance.
We take model coefficients of the corresponding
parameters as their importance.

4.3 Fine-tuning
4.3.1 Data split by MAS]J reasoning score

We randomly split the data into train, validation,
and test with ratio 70:10:20. Next, in each chunk,
we balance the data so that the number of entries
in each complexity group is equal using MASJ
reasoning score as a complexity metric. Since there
are fewer hard questions, we filter out medium and
easy ones to match the size of the hard group.

Figures 5a and 5b show the results of SFT for
each group. We do not see a strong difference in
performance between the groups. In combination
with questionable ROC AUC scores, provided in
Table 11, it makes MASJ reasoning score a less
favorable metric for further experiments.

4.3.2 Data split by single token entropy

We follow the same logic to split the data, but use
single token entropy as a metric.

Figures 5c 5d show the results of SFT for each
group. For Phi-4-mini, we see that medium and
easy questions outperform hard ones for the first
10 epochs. Shortly after, performance starts to
decline for all groups. For Qwen 3B, we do not
see a significant difference between the groups.
Moreover, the performance plateaus after 5 epochs.

4.3.3 Complexity-aware pipeline

Based on ROC AUC results and positive perfor-
mance of SFT for medium and easy questions on
Phi-4-mini, we take single token entropy as our
complexity metric for the pipeline described in Sec-
tion 3.1. The same logic as before applied to split
the data into train, validation and test, as well as
complexity groups.
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Figure 3: Accuracy for complexity-aware fine-tuning
pipelines after 10 epochs (Qwen 3B)

Phi-d-mini

Figure 4: Accuracy for complexity-aware fine-tuning
pipelines after 10 epochs (Phi-4-mini)



For easy and medium groups we perform SFT
for 5 epochs. For the hard group, we apply learning
from a distilled chain-of-thought of a larger model
for another 5 epochs.

As the alternative approach, we perform SFT for
5 epochs for the hard group. Next, for easy and
medium groups, we apply learning from a distilled
chain-of-thought of a larger model for another 5
epochs.

As our baseline, we train the model via SFT
without the data split for 10 epochs.

Figures 3 4 and table 5 show the results. We
see, that the proposed training scheme results in
significant improvement over the baselines and an
alternative training scheme, that uses distillation
for only easy and medium questions. Qwen 3B
achieves accuracy of 0.5048 compared to 0.47 and
0.48 (alternative and baseline), while Phi-4-mini
gets to 0.6005 compared to 0.575 and 0.4619.

Method Qwen 3B Phi4-mini
Baseline 0.4048 0.4619
Alternative  0.4700 0.5750
Ours 0.5048 0.6005

Table 5: Accuracy for complexity-aware fine-tuning
pipelines after 10 epochs

5 Conclusion and discussion

This paper introduces a complexity-aware fine-
tuning pipeline that measures how uncertain a
model is about its response using the entropy of
its own predicted answer and then trains on the re-
sulting easy, medium, and hard splits with different
tactics.

We confirm that entropy works as a difficulty
estimation. Single-token answer entropy reaches
ROC AUC values up to 0.8, clearly beating MASJ-
based estimates of 0.57. This confirms that a
model’s own confidence is a reliable, automatic
proxy for question difficulty. We publish collected
data and code to support further research in the area
of numerical complexity estimation.

Using the entropy-base data splits, we find that
different complexity scores require different train-
ing approaches. Standard supervised fine-tuning
(SFT) is enough for the easy and medium bands,
but lagged on the hard band. For the hard ques-
tions, adding a distilled chain-of-thought from a
large LLM unlocks further gains (accuracies of
0.5/0.6 vs. 0.4/0.46 for Qwen 3B/Phi-4-mini).

The pipeline is fully automated and can be in-
cluded in other fine-tuning workflows. It suggests
that curriculum ideas still matter for today’s LLMs:
letting the model focus on what it can already solve
directly, while giving extra guidance only where
it struggles, yields a better allocation of limited
model capacity.

Limitations

* Proposed pipeline is tested only on MMLU-
Pro and small models. Results may change
for other question answering datasets, open-
ended tasks, other domains, or larger LLMs.

* In low-resource settings teacher may be un-
available or imperfect, which reduces the
benefit of learning from a distilled chain-of-
thought. Additionally, we did not explore
how well the approach generalizes to other
reasoning-promoting techniques.

* Low entropy can still correspond to hallucina-
tions, which leads to imperfect identification
of the question complexity.

* We split data into 3 equal parts and did not
explore other possible boundaries.

* We did not conduct an extensive ablation study
which might reveal that our approach does not
suggest the best possible combination or se-
quence of training within the current frame-
work. It remains an area for further research.

* We did not run the pipeline for more epochs
due to resource limitations, so its behavior for
the longer runs stays unknown.
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A Prompts

A.1 Prompts used for complexity estimation

The used prompts are presented in Table 6.

Prompt for a single token response

The following are multiple choice questions about subject.
Write down ONLY the NUMBER of the correct answer and
nothing else.

Prompt for a single token response with a fallback for unknown
answers

The following are multiple choice questions about subject.
If you are certain about the answer return the correct option
number, otherwise return 0. Write down ONLY the NUMBER
and nothing else.

Prompt for a chain-of-thought response

The following are multiple choice questions about subject.
Explain your thinking process step-by-step. At the end, write
down the number of the correct answer by strictly following
this format: [[number of correct answer]].

Prompt for a chain-of-thought response with a fallback for
unknown answers

The following are multiple choice questions about subject.
Explain your thinking process step-by-step. At the end,
if you are certain about the answer write down the num-
ber of the correct answer by strictly following this format:
[[number of correct answer]], otherwise return [[0]].

Table 6: Used prompts for complexity estimation

A.2  General prompts

You are an expert in the topic of the question. Please act as an
impartial judge and evaluate the complexity of the multiple-
choice question with options below. Begin your evaluation
by providing a short explanation. Be as objective as possible.
After providing your explanation, you must not answer the
question. You must rate the question complexity by strictly
following the criteria: [[Number of reasoning steps]] - how
many reasoning steps do you need to answer this question?
Valid answers: low, medium, high. Your answer must strictly
follow this format: "[[Number of reasoning steps: answer]]".
Example 1: "Your explanation... [[Number of reasoning steps:
low]]". Example 2: "Your explanation... [[Number of reason-
ing steps: high]]". Example 3: "Your explanation... [[Number
of reasoning steps: medium]]".

Table 7: Prompt for MASJ reasoning

You are an expert in the topic of the question. Please act as an
impartial judge and evaluate the complexity of the multiple-
choice question with options below. Begin your evaluation
by providing a short explanation. Be as objective as possible.
After providing your explanation, you must not answer the
question. You must rate the question complexity by strictly
followmg the scale: "high school and easier”, "undergraduate”,

"graduate”, "postgraduate”. You must return the complexity by
strictly following this format: "[[complexity]]", for example:
"Your explanation... Complexity: [[undergraduate]]", which
corresponds to the undergraduate level.

Table 8: Prompt for MASJ education levels
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The following are multiple choice questions about subject.
If you know the answer return the correct option number,
otherwise return 0. Write down ONLY the NUMBER and
nothing else.

Table 9: Prompt for a single token response with a
fallback for unknown answers (alternative)

The following are multiple choice questions about sub-
ject. Explain your thinking process step-by-step. At
the end, if you know the answer write down the num-
ber of the correct answer by strictly following this format:
[[number of correct answers]], otherwise return [[0]].

Table 10: Prompt for a chain-of-thought response with
a fallback for unknown answers (alternative)
B Aggregation Methods

B.1 Word-aggregation Methods

This COT aggregations have the same entropy val-
ues as in 3.2.3 for each COT token.

n
—> pilogpi
=1

where p; - probability of a single token, n - vo-
cabulary size, h; - entropy of the corresponded
token, hgnswer - €ntropy of the answer token, and
N is the token amount in LLM response.

N B
OTmean = Z -
=N

COTnazr = maxh;
J

So, Chain-of-Thought maximum and answer en-
tropy difference is:

|COT oz —

hanswer ’

B.2 Sequence-aggregation Methods

For M logical claims, which were split by tokens
that corresponded to the end of the sequence, we
have tokens sets C, C5 ...

Cum.

M
SQQmean = Z 7 Z 1]
j=1 i€C;

Se%ﬂean,maz =

S€Qmam,mean =



Model Education level Reasoning
Qwen 3B 0.53 0.55
Qwen 3B* 0.53 0.55
Phi4-mini 0.52 0.55
Phi4-mini* 0.52 0.54
Phi4 0.50 0.57
Phi4* 0.50 0.55
Mistral 24B 0.50 0.56
Mistral 24B* 0.52 0.53

Table 11: ROC AUC for MASJ
* Alternative prompt to allow model answer "I do not know"

Statistics Importance
Thinking total entropy 145
Thinking number of tokens 1.08
Answer total entropy 0.25
Answer length 0.20

Table 12: Absolute values of parameter weights

B.3 Probability-based Methods

Assume that for each token in response, we have
the token probability distribution p;. So, the
marginal token difference is o; and mean marginal
difference is mean of all o; in LLM response.

1 2
0y =DP; —Dj

1
o= — O
N; !

Top-2 entropies difference in response J.
0 = max hj — maxh;
J ili#j
B.4 Hybrid Method
In this section we provide linear combination of
2 best-perform previous methods: hgpswer and
COTpaz- Also, we tried adding the third element

COTpean, but it has decreased the ROC-AUC, so
we made a decision to remove it.

hmix = (1 - a) * hanswer + o * COTma:c

where 0 < a < 1 is the hyperparameter (e.g. o =
0.05 empirically for Qwen-3B).

C Additional experiments

C.1 MASJ education level and reasoning

score

Table 11 shows ROC AUC values for MASJ evalu-
ations of education levels and reasoning scores.
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We can see that MASJ reasoning score has a
slightly higher ROC AUC of 0.55 on average com-
pared to education levels with ROC AUC of 0.52.
There is no significant difference between prompts
that allow IDK answers and the ones that do not.

The results indicate that MASJ scores divide the
data into complexity groups with moderate quality.
On the other hand, results depend on encoding of
nominal scores provided by MASJ, and a more
comprehensive study could improve this method.

Technical details. To calculate ROC AUC we
encode MASIJ results on a scale from 0 to 1 and
prompt the model to answer questions directly, us-
ing prompts. For education levels, we take "High
school and easier" - 0.2, "Undergraduate” - 0.4,
"Graduate" - 0.6, "Postgraduate” - 0.8. For reason-
ing scores, "Low" - 0.25, "Medium" - 0.5, "High"
- 0.75. IDK responses and results with invalid for-
matting are excluded from the calculations.

C.2 Feature importances

We evaluated logistic regression weights, that re-
flect feature importance. The results are in Ta-
ble 12.

C.3 SFT using different scores

We evaluated the quality of different uncertainty
estimates in a plain way. Now, we compare the
usefulness of different scores at separating ques-
tions of different complexity with the following
supervised fine-tuning.

The results for MASJ reasoning scores, single
token entropy, are presented in Figures 5. We see,
that the model quality improves during SFT for all
models and set of questions.
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Figure 5: SFT quality dynamics during training with split by complexity estimates provided by the MASJ reasoning
score and the single token entropy across Phi-4-mini and Qwen 3B models.

13



	Introduction
	Related works
	Methods
	Training pipeline
	Complexity estimation approaches
	MASJ reasoning score
	MASJ education level
	Single token answer entropy
	Chain-of-thought answer entropy
	Chain-of-thought aggregated response entropy
	Thinking and answer statistics of reasoning model


	Results
	Experimental setup
	Complexity estimation evaluation
	Single token and chain-of-thought answer entropy
	Chain-of-thought aggregated response entropy
	Thinking and answer statistics of reasoning model

	Fine-tuning
	Data split by MASJ reasoning score
	Data split by single token entropy
	Complexity-aware pipeline


	Conclusion and discussion
	Prompts
	Prompts used for complexity estimation
	General prompts

	Aggregation Methods
	Word-aggregation Methods
	Sequence-aggregation Methods
	Probability-based Methods
	Hybrid Method

	Additional experiments
	MASJ education level and reasoning score
	Feature importances
	SFT using different scores


