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Abstract001

General purpose Large Language Models002
(LLMs) are frequently fine-tuned to improve003
performance in niche domains. Although fine-004
tuning is a standard practice, we still lack a005
deep understanding of how to aggregate data006
for better results. In this work, we show that007
the entropy-based output estimation provides a008
meaningful guideline for fine-tuning data prepa-009
ration. Specifically, across two small open mod-010
els (≈ 3B) we find that a single token answer011
entropy shows ROC AUC score of ≈ 0.73012
and allows us to split the training data into013
three complexity categories to apply different014
tuning mechanisms. As result, we propose a015
novel blueprint for efficient fine-tuning that016
outperforms the standard approach (0.5/0.6 vs.017
0.4/0.46 accuracies). We also provide an in-018
depth analysis of alternative complexity estima-019
tion techniques based on expert assessment via020
model-as-judge (MASJ) and chain-of-thought021
entropy aggregation with ROC AUC scores of022
0.57 and 0.7 accordingly. Our findings show023
immediate enhancements in fine-tuning perfor-024
mance. We publish our coda1 and data2 to fa-025
cilitate further investigation and immersion of026
the numerical complexity analysis.027

1 Introduction028

General-purpose LLMs demonstrate impressive029

performance across a vast variety of domains. At030

the same time, they show subpar results on niche031

tasks and in niche domains compared to specialized032

models. Properly tuned smaller models beat large033

open models in mathematics (Yang et al., 2024b),034

medicine (Wu et al., 2025), chemistry (Yu et al.,035

2024), and other fields. While in some areas, the036

difference is negligible or at least not as important,037

in others, such as medicine, it becomes crucial due038

to the high cost of error.039

1https://github.com/sdjng3q897aeiufnad/
complexity-aware-fine-tuning

2anonymized

Figure 1: Complexity-aware fine-tuning scheme: for
easy and medium complex questions we apply direct
SFT, while for hard questions we include reasoning
results during SFT.

A standard approach to get a domain-specific 040

model is to fine-tune a general-purpose base LLM 041

on carefully selected data (Parthasarathy et al., 042

2024). While there is a lot of focus on perfect- 043

ing the training mechanics, fewer attempts have 044

been made to enhance the performance by pursuing 045

meaningful data separation and ordering. The de- 046

fault approach is fine-tuning a model on the whole 047

data set without particular ordering. There have 048

been experiments with curriculum-based learning 049

(Kim and Lee, 2024; Shi et al., 2025), but they 050

struggle to split the dataset by difficulty in an auto- 051

mated fashion meaningfully. 052

To address this gap, we propose a fully auto- 053

mated pipeline, given in Figure 1, that consists 054

of two steps: (1) to split fine-tuning data by the 055

tasks’ complexity via a response entropy and (2) to 056

train the model for via either supervised fine-tuning 057

(SFT) followed by the reasoning-promoting tech- 058

niques (such as Group Relative Policy Optimiza- 059

tion and others (Zhihong Shao, 2024; Face, 2025)) 060

for easy and hard data entries accordingly. We 061

confirm the effectiveness of the framework by fine- 062

tuning two open models: Qwen2.5-3B (Yang et al., 063

2024a) and Phi-4-Mini (Microsoft et al., 2025), 064
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on the multiple choice question answering dataset065

MMLU-Pro (Wang et al., 2024).066

In step one, we consider different options for067

complexity estimation based on a model’s con-068

fidence in its answer. Our study considers a069

wide range of methods: model-as-judge (MASJ),070

entropy-based aggregation and calculation meth-071

ods, as well as other numerical methods. We pro-072

vide the obtained dataset, which includes the gen-073

eration results accompanied by token distribution074

at each step, for further research.075

Our contributions:076

• The automated pipeline to split a multiple-077

choice question answering dataset by com-078

plexity based on the token-wise entropy of the079

response and apply different fine-tuning strate-080

gies based on the group. The code is available081

at anonymized Github repository 3.082

• An training procedure that achieves accura-083

cies 0.5048 and 0.6005 over two LLMs for084

MMLU-Pro c.t. 0.4048 and 0.4619 baselines.085

• An analysis of complexity estimation based086

rooted in uncertainty estimation, including087

MASJ, entropy-based and entropy-based aug-088

mented with reasoning results with aggrega-089

tion on top. Aggregated entropy-based com-090

plexity provides the best results with ROC091

AUC 0.7.092

• Open-source standardized datasets4 to facil-093

itate further development of uncertainty es-094

timation and calibration methods: with and095

without chain-of-thoughts, with token prob-096

ability distribution at each step provided, as097

well as additional scores.098

2 Related works099

Curriculum learning has been explored to improve100

LLM fine-tuning by ordering training examples101

from easier to harder. Kim and Lee (2024) pro-102

pose sorting fine-tuning data by difficulty metrics103

(e.g. prompt length, model attention scores, and104

initial loss) so that the model learns on simpler105

prompts before complex ones. They found that this106

curriculum strategy yielded slightly higher accu-107

racy than random shuffling, with ordering by an108

3https://github.com/sdjng3q897aeiufnad/
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attention-based criterion performing best. This ap- 109

proach is attractive because it boosts performance 110

without adding more data or parameters. However, 111

the gains were modest, and defining difficulty au- 112

tomatically can be tricky - their method requires 113

measuring things like loss or attention per example. 114

Another strategy is filtering training data for 115

quality. A notable example is LIMA (Zhou et al., 116

2023a), which shows that a large pre-trained model 117

can be fine-tuned on just a small, high-quality sub- 118

set of data. They fine-tuned a 65B LLAMA model 119

on only 1000 carefully curated prompt-response 120

pairs (chosen for diversity and clarity) without any 121

reinforcement learning. Despite the tiny dataset, 122

the resulting model performed remarkably well, 123

learning to handle complex queries and even gen- 124

eralizing to tasks not seen in training. In a human 125

evaluation, LIMA’s answers were preferred over 126

GPT-4’s in 0.43 of cases. This "less is more" result 127

suggests that much of an LLM’s ability comes from 128

pre-training, and fine-tuning needs only a small 129

amount of exemplary data to unlock it. However, 130

LIMA relied on a large base model and manual 131

data curation. The approach may not scale down to 132

smaller models and requires human intervention. 133

Another notable example of curated data selec- 134

tion is the SmallToLarge (S2L) method by Yang 135

et al. (2024c), which leverages training trajectories 136

from small models to guide the data selection for 137

larger models. This way, the large LLM is trained 138

on a diverse yet compact dataset covering different 139

difficulty levels. S2L showed impressive results: 140

for a math word problem dataset, they achieved the 141

same accuracy using only 11% of the data, and even 142

outperformed other selection methods by 4.7% on 143

average across several benchmarks. The strength 144

of this approach is that it makes complexity-based 145

data filtering automated and cheap. One caveat 146

is the extra step of training a smaller model and 147

clustering. The approach is mostly tested on spe- 148

cialized domains (math problems, clinical text sum- 149

marization), so its generality to all types of tasks 150

needs further validation. Additionally, it requires a 151

large amount of data to make a filtered subset. 152

Sychev et al. (2025) focus on measuring exam- 153

ple difficulty via model uncertainty. They investi- 154

gate how an LLM’s token-level entropy in its an- 155

swers relates to question difficulty. They find that a 156

model’s response entropy correlates strongly with 157

question difficulty, especially in knowledge-based 158

domains. They also introduce MASJ reasoning 159

score to estimate the question complexity. How- 160
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ever, the authors use these metrics only to analyze161

model behavior. They do not integrate it into a162

practical data aggregation or fine-tuning workflow.163

Additionally, their work does not cover analysis of164

the chain-of-thought kind of responses.165

3 Methods166

3.1 Training pipeline167

We propose the complexity-aware fine-tuning168

pipeline (Figure 1) with the following major stages:169

complexity estimation, data aggregation, fine-170

tuning.171

Complexity estimation. We adopt the entropy172

of the answer token in the response as our primary173

complexity metric. We prompt the model to pick174

the correct option directly, without producing a175

chain-of-thought. See Section 3.2.3 for details.176

Data aggregation. To aggregate the data into177

groups by complexity (easy, medium, hard) we178

evenly divide the dataset into three parts ordering179

the entries by entropy of the response. Group with180

the lowest entropy values is categorized as easy and181

with the highest values - as hard, see Figure 2.182

Figure 2: Data aggregation

Fine-tuning. We propose to apply different fine-183

tuning strategies according to the complexity of the184

data. Vanilla SFT is applied to easy- and medium-185

complexity groups, while for hard questions we186

augment this procedure with a chain-of-thought.187

For easy and medium groups, we suggest to use188

SFT (Howard and Ruder, 2018; Raffel et al., 2023)189

as an established practice to enhance the model per-190

formance. It involves fine-tuning a pretrained LM191

on labeled examples using standard supervised ob-192

jectives. Here, we prompt (see Table 6 for system193

prompts and Table 1 for user prompt) the model194

with the question and options. Then, we apply the195

cross-entropy loss to the question answers used as 196

labels. 197

Question: ...
Options:
1. ...
2. ...
...
n. ...
Choose one of the answers. Write down ONLY the NUMBER
of the correct answer and nothing else.

Table 1: User prompt

As to the hard group, we hypothesize that as 198

hard questions require multiple logical steps the 199

model can not effectively learn with standard SFT 200

and answering the question directly. Instead, we 201

propose to elicit a chain-of-thought and allow the 202

model to incrementally build the answer step-by- 203

step as suggested by Wei et al. (2023). 204

In this work, we apply the distillation technique 205

—- train a smaller model on the chain-of-thought of 206

a larger LLM. It is well-known practice supported 207

by (Hsieh et al., 2023). To create the distillation 208

training samples, we prompt a large LLM to an- 209

swer the multiple choice question and produce a 210

chain-of-though in the process. Next, the whole 211

response is attached to the dataset and used to train 212

the smaller model. Hypothetically, other reasoning- 213

eliciting techniques might show good performance 214

at this stage as well. 215

3.2 Complexity estimation approaches 216

To find the most suitable metric for the training 217

pipeline we analyze the performance of the follow- 218

ing techniques, MASJ reasoning score, MASJ edu- 219

cation level, Single token answer entropy, Chain- 220

of-thought answer entropy, Chain-of-thought ag- 221

gregated response entropy, Thinking and answer 222

statistics of reasoning model. 223

Used prompts are available in Appendix A.1. 224

3.2.1 MASJ reasoning score 225

As one of the expert-like metrics, we ask a large 226

LLM to estimate the number of logical steps re- 227

quired to answer the question. The hypothesis 228

is that the questions that require more reasoning 229

should be harder for the model to answer. 230

To collect the MASJ-based reasoning score, we 231

go over the multiple choice question answering 232

dataset and query a large auxiliary LLM for the 233

estimate. We prompt the model to provide the num- 234

ber of logical steps required to answer the question: 235

low, medium, high. Next, we query the large LLM 236
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again to estimate the quality of the previous assess-237

ment from 1 to 10 following the practice introduced238

in MT-Bench by Zheng et al. (2023). It allows us239

to filter out low quality scores by keeping only the240

ones rates above or equal to 9.241

3.2.2 MASJ education level242

As the other expert-like metrics, we ask a large243

LLM to estimate the required level of education to244

answer the question correctly. It is a natural human-245

like value used in other datasets (Rein et al., 2023;246

Lu et al., 2022).247

We follow the same procedure as for MASJ rea-248

soning score, but use a different prompt.249

3.2.3 Single token answer entropy250

In similar fashion as proposed by (Kadavath et al.,251

2022), we calculate the entropy of the answer token252

in the response. The assumption is that the response253

uncertainty is a natural predictor of the question254

complexity. We prompt the model to answer the255

question directly (as a single token) and calculate256

tokenwise entropy of the response as follows:257

h = −
n∑

i=1

pi log pi,

where pi is the probability of a single token and n258

is the vocabulary size.259

Additionally, similarly to (Zhou et al., 2023b),260

we examine the performance when we allow the261

model to explicitly say "I do not know" (IDK).262

3.2.4 Chain-of-thought answer entropy263

With the same assumption as for the single token264

entropy, we analyze the entropy of the answer to-265

ken, but change the prompt to elicit a chain-of266

thought type of response. The assumption is that267

via the chain-of-thought the LLM can incremen-268

tally accumulate the entropy resulting in a better269

separation of certain and uncertain answers.270

3.2.5 Chain-of-thought aggregated response271

entropy272

Building upon the single-token entropy approach,273

we investigate more sophisticated methods for com-274

plexity estimation by analyzing the entire chain-of-275

thought (CoT) response. While the answer token276

entropy provides a localized measure of uncertainty,277

aggregating entropy across the complete reasoning278

process potentially offers a more comprehensive279

complexity assessment.280

We evaluate 10 distinct aggregation methods ap- 281

plied to CoT responses and last answer token, com- 282

paring their effectiveness through ROC AUC and 283

Gini metrics across multiple models (Qwen 3B and 284

Phi4-mini, both with and without "I don’t know" 285

option). Our analysis consider the following meth- 286

ods: 287

1. COT word-aggregation methods 288

• Single Token Answer Entropy 289

• COT Mean 290

• COT Max 291

• Difference between COT Max and Sin- 292

gle Token Answer Entropy 293

2. COT sequence-aggregation methods 294

• Sequence Mean of Words Mean 295

• Sequence Max of Words Mean 296

• Sequence Mean of Words Max 297

3. Probability-based methods 298

• Mean of Marginal Difference - mean of 299

difference between top-2 probabilities 300

for each token of response 301

• Top-2 Entropy Difference - difference of 302

top-2 highest entropies for response 303

4. Hybrid method 304

• Mix of COT word-aggregation methods 305

- linear combination of the best perform 306

methods 307

More details can be found in Appendix B. 308

3.2.6 Thinking and answer statistics of 309

reasoning model 310

To further investigate how numerical estimates can 311

be applied for uncertainty quantification, we ana- 312

lyze the entropy and length of the reasoning chain 313

for the current state-of-the-art (SOTA) reasoning 314

model. 315

During inference, for each newly generated to- 316

ken, we store the probability distribution over the 317

vocabulary of tokens with non-zero probabilities. 318

To find the importance of the features, we train a 319

logistic regression classifier using the scikit-learn 320

(Pedregosa et al., 2011) to predict the correctness 321

of the model answer. 322
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4 Results323

4.1 Experimental setup324

MMLU-Pro dataset We conduct all experiments325

on the multiple choice question answering dataset326

MMLU-Pro (Wang et al., 2024), widely adopted by327

the community as one of the golden performance328

benchmarks. It spans across 14 domains with a329

broad selection of questions with different com-330

plexity. Each question has approximately 10 op-331

tions with a single correct one, which removes the332

ambiguity in evaluation.333

Used LLMs As to the models, we use a variety334

of open model sizes for data collection and aggre-335

gation to analyze how the trend changes with the336

model size. At the same time, we focus on smaller337

models for fine-tuning to make our results repro-338

ducible.339

We apply our overall pipeline to two models:340

Qwen2.5-3B and Phi-4-Mini. For them, we mea-341

sured single token entropy, collected chain-of-342

thought entropy, metadata, fine-tuned models and343

evaluated overall pipeline.344

Auxiliary models are used to extend our anal-345

ysis and allow advanced reasoning: single token346

response entropy for Mistral 24B and Phi-4; rea-347

soning scores and education levels via MASJ with348

Mistral 123B (Mistral, 2024); reasoning entropy349

with metadata for Qwen3-8B; Chain-of-thought350

distillation - DeepSeek-V3-0324 (DeepSeek-AI,351

2024).352

All models and datasets are published under per-353

missive licenses that allow using them for research354

purposes.355

4.2 Complexity estimation evaluation356

Following existing practices, we consider three357

families of uncertainty estimation methods: MASJ,358

entropy-based and entropy-based augmented with359

chain-of-thoughts. MASJ results, as they are infe-360

rior to other, are provided in Appendix C.1, for all361

other methods we provide the results of analysis362

below.363

4.2.1 Single token and chain-of-thought364

answer entropy365

Tables 2 and 3 present ROC AUC and accuracy366

for single token entropy and for the entropy of367

the answer token in the chain-of-thought type of368

response respectfully. Metrics are calculated for369

the categories provided by MMLU-Pro as well as370

education levels and reasoning scores estimated via 371

MASJ. 372

IDK responses and results with invalid format- 373

ting are excluded from the calculations. 374

We can notice that the accuracy tends to be 375

slightly higher when we allow LLM to answer IDK. 376

At the same time, IDK responses do not consis- 377

tently affect ROC AUC for all models. 378

Chain-of-thought responses tend to provide 379

higher accuracy, but lower ROC AUC scores which 380

makes them less suitable for complexity estimation. 381

4.2.2 Chain-of-thought aggregated response 382

entropy 383

Table 4 provide results, which highlight our key 384

observations: 385

• Simple answer entropy often outperforms 386

more complex COT aggregation methods, par- 387

ticularly in models with strong baseline perfor- 388

mance (e.g., Qwen-3B achieving 0.68 ROC 389

AUC). Although the hybrid method outper- 390

forms the answer entropy, the main weights of 391

the hybrid linear combination were assigned 392

to the answer entropy. 393

• Maximum-based measures (COT Max, Seq 394

Mean Max) consistently outperform mean- 395

based approaches (COT Mean, Seq Max 396

Mean and Seq Mean Mean), suggesting peak 397

uncertainty moments may better indicate ques- 398

tion difficulty than average uncertainty. 399

• Sequence-based methods did not show good 400

improvements over basic aggregation, indi- 401

cating that modeling the reasoning structure 402

provides marginal benefits. 403

• The poor close-to-random performance of the 404

difference in top entropies suggests that mod- 405

ern LLMs maintain relatively stable reasoning 406

to outliers. 407

4.2.3 Thinking and answer statistics of 408

reasoning model 409

Our classifier achieves 0.721, 0.717 and 0.731 ac- 410

curacies by using thinking total entropy, length of 411

the reasoning chain or both features combined. 412

Table 12 shows that total entropy and number of 413

tokens of the reasoning chain are the most impor- 414

tant parameters influencing the correctness of the 415

model’s prediction. 416
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Category Qwen 3B Qwen 3B* Phi4-mini Phi4-mini* Phi4 Phi4* Mistral 24B Mistral 24B*
All 0.72/0.33 0.70/0.33 0.72/0.40 0.74/0.46 0.80/0.51 0.80/0.58 0.75/0.49 0.74/0.60
Law 0.63/0.24 0.60/0.21 0.64/0.29 0.62/0.30 0.69/0.47 0.69/0.48 0.69/0.41 0.75/0.56
Business 0.67/0.28 0.71/0.26 0.67/0.31 0.64/0.38 0.73/0.36 0.75/0.44 0.69/0.40 0.68/0.43
Psychology 0.77/0.51 0.75/0.51 0.84/0.57 0.82/0.59 0.84/0.74 0.84/0.74 0.79/0.66 0.75/0.68
Chemistry 0.69/0.23 0.62/0.24 0.62/0.34 0.64/0.41 0.70/0.34 0.77/0.45 0.68/0.38 0.75/0.59
Biology 0.79/0.59 0.79/0.56 0.85/0.67 0.85/0.73 0.90/0.80 0.90/0.83 0.81/0.74 0.73/0.80
History 0.66/0.36 0.63/0.35 0.68/0.39 0.65/0.43 0.76/0.62 0.73/0.63 0.69/0.54 0.64/0.56
Other 0.70/0.33 0.67/0.34 0.72/0.39 0.74/0.43 0.81/0.57 0.82/0.58 0.79/0.52 0.75/0.59
Physics 0.65/0.27 0.64/0.28 0.65/0.32 0.66/0.40 0.75/0.39 0.78/0.46 0.74/0.38 0.71/0.63
Computer science 0.76/0.29 0.70/0.32 0.73/0.41 0.76/0.46 0.77/0.55 0.80/0.57 0.77/0.51 0.74/0.64
Health 0.69/0.39 0.66/0.39 0.71/0.43 0.71/0.47 0.78/0.64 0.77/0.65 0.75/0.61 0.71/0.63
Economics 0.77/0.44 0.74/0.43 0.79/0.55 0.80/0.59 0.85/0.68 0.83/0.72 0.77/0.62 0.75/0.66
Math 0.69/0.24 0.67/0.24 0.65/0.27 0.69/0.31 0.73/0.37 0.74/0.43 0.69/0.33 0.72/0.44
Philosophy 0.66/0.33 0.70/0.31 0.71/0.39 0.70/0.43 0.77/0.61 0.76/0.63 0.71/0.53 0.70/0.56
Engineering 0.67/0.34 0.66/0.32 0.62/0.39 0.64/0.45 0.74/0.43 0.67/0.53 0.70/0.46 0.77/0.60
Education level
High school and easier 0.73/0.35 0.72/0.34 0.76/0.38 0.75/0.51 0.81/0.50 0.82/0.54 0.75/0.48 0.70/0.52
Undergraduate 0.73/0.34 0.71/0.34 0.72/0.42 0.77/0.44 0.81/0.52 0.82/0.62 0.77/0.50 0.74/0.64
Graduate 0.66/0.28 0.65/0.26 0.64/0.35 0.68/0.37 0.74/0.50 0.73/0.54 0.71/0.46 0.76/0.58
Postgraduate 0.63/0.18 0.52/0.20 0.64/0.20 0.63/0.22 0.67/0.40 0.65/0.41 0.62/0.35 0.63/0.39
MASJ reasoning score
Low 0.72/0.42 0.71/0.42 0.78/0.48 0.79/0.51 0.82/0.64 0.83/0.65 0.79/0.59 0.73/0.59
Medium 0.72/0.32 0.70/0.31 0.70/0.39 0.72/0.44 0.79/0.50 0.79/0.59 0.74/0.47 0.76/0.63
High 0.64/0.27 0.62/0.27 0.59/0.33 0.58/0.36 0.69/0.41 0.64/0.29 0.64/0.39 0.62/0.45

Table 2: ROC AUC/accuracy for single token response entropy
* Alternative prompt to allow model answer "I do not know"

Category Qwen 3B Qwen 3B* Phi4-mini Phi4-mini*
All 0.68/0.41 0.67/0.41 0.61/0.43 0.58/0.55
Law 0.60/0.24 0.57/0.23 0.55/0.26 0.52/0.28
Business 0.68/0.45 0.67/0.47 0.66/0.55 0.56/0.65
Psychology 0.73/0.51 0.70/0.51 0.68/0.48 0.65/0.63
Chemistry 0.65/0.41 0.68/0.39 0.65/0.43 0.63/0.60
Biology 0.77/0.56 0.68/0.60 0.65/0.48 0.67/0.71
History 0.62/0.36 0.61/0.36 0.59/0.37 0.51/0.39
Other 0.63/0.38 0.63/0.36 0.60/0.42 0.58/0.52
Physics 0.68/0.42 0.67/0.41 0.62/0.39 0.61/0.57
Computer science 0.68/0.37 0.73/0.33 0.59/0.41 0.58/0.58
Health 0.63/0.37 0.61/0.40 0.62/0.33 0.56/0.50
Economics 0.70/0.48 0.68/0.50 0.61/0.47 0.65/0.63
Math 0.73/0.51 0.73/0.48 0.63/0.58 0.60/0.67
Philosophy 0.63/0.33 0.62/0.35 0.66/0.37 0.59/0.48
Engineering 0.63/0.31 0.64/0.33 0.60/0.37 0.55/0.45
Education level
High school and easier 0.72/0.56 0.70/0.53 0.66/0.57 0.60/0.73
Undergraduate 0.67/0.41 0.67/0.41 0.62/0.42 0.60/0.55
Graduate 0.61/0.27 0.60/0.28 0.58/0.30 0.57/0.38
Postgraduate 0.63/0.22 0.66/0.15 0.41/0.22 0.41/0.20
MASJ reasoning score
Low 0.69/0.49 0.67/0.49 0.64/0.46 0.61/0.62
Medium 0.67/0.41 0.66/0.41 0.60/0.43 0.57/0.55
High 0.65/0.26 0.60/0.26 0.53/0.32 0.54/0.36

Table 3: ROC AUC/accuracy for single token response entropy
* Alternative prompt to allow model answer "I do not know"
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Method Qwen 3B Qwen 3B* Phi4-mini Phi4-mini*
Answer Entropy (AE) 0.68 0.67 0.61 0.58
COT Mean 0.59 0.58 0.59 0.63
COT Max 0.63 0.61 0.6 0.65
Sequence Mean Mean 0.6 0.59 0.6 0.62
Sequence Max Mean 0.59 0.58 0.59 0.61
Sequence Mean Max 0.62 0.6 0.59 0.62
Marginal Diff Mean 0.58 0.57 0.58 0.61
Top-2 Entropies Diff 0.51 0.5 0.5 0.51
COT Max minus AE 0.54 0.53 0.51 0.57
COT Max and AE 0.7 0.69 0.62 0.62
Number of Samples 11049 10724 9997 9973

Table 4: ROC AUC values for COT response
* Alternative prompt to allow model answer "I do not know"

Technical details. To avoid excessively long rea-417

soning chains, we set a maximum generation length418

of 5000 tokens. We also use normalized parame-419

ters to remove the mean and scale to unit variance.420

We take model coefficients of the corresponding421

parameters as their importance.422

4.3 Fine-tuning423

4.3.1 Data split by MASJ reasoning score424

We randomly split the data into train, validation,425

and test with ratio 70:10:20. Next, in each chunk,426

we balance the data so that the number of entries427

in each complexity group is equal using MASJ428

reasoning score as a complexity metric. Since there429

are fewer hard questions, we filter out medium and430

easy ones to match the size of the hard group.431

Figures 5a and 5b show the results of SFT for432

each group. We do not see a strong difference in433

performance between the groups. In combination434

with questionable ROC AUC scores, provided in435

Table 11, it makes MASJ reasoning score a less436

favorable metric for further experiments.437

4.3.2 Data split by single token entropy438

We follow the same logic to split the data, but use439

single token entropy as a metric.440

Figures 5c 5d show the results of SFT for each441

group. For Phi-4-mini, we see that medium and442

easy questions outperform hard ones for the first443

10 epochs. Shortly after, performance starts to444

decline for all groups. For Qwen 3B, we do not445

see a significant difference between the groups.446

Moreover, the performance plateaus after 5 epochs.447

4.3.3 Complexity-aware pipeline 448

Based on ROC AUC results and positive perfor- 449

mance of SFT for medium and easy questions on 450

Phi-4-mini, we take single token entropy as our 451

complexity metric for the pipeline described in Sec- 452

tion 3.1. The same logic as before applied to split 453

the data into train, validation and test, as well as 454

complexity groups. 455
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Figure 3: Accuracy for complexity-aware fine-tuning
pipelines after 10 epochs (Qwen 3B)
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For easy and medium groups we perform SFT456

for 5 epochs. For the hard group, we apply learning457

from a distilled chain-of-thought of a larger model458

for another 5 epochs.459

As the alternative approach, we perform SFT for460

5 epochs for the hard group. Next, for easy and461

medium groups, we apply learning from a distilled462

chain-of-thought of a larger model for another 5463

epochs.464

As our baseline, we train the model via SFT465

without the data split for 10 epochs.466

Figures 3 4 and table 5 show the results. We467

see, that the proposed training scheme results in468

significant improvement over the baselines and an469

alternative training scheme, that uses distillation470

for only easy and medium questions. Qwen 3B471

achieves accuracy of 0.5048 compared to 0.47 and472

0.48 (alternative and baseline), while Phi-4-mini473

gets to 0.6005 compared to 0.575 and 0.4619.474

Method Qwen 3B Phi4-mini
Baseline 0.4048 0.4619
Alternative 0.4700 0.5750
Ours 0.5048 0.6005

Table 5: Accuracy for complexity-aware fine-tuning
pipelines after 10 epochs

5 Conclusion and discussion475

This paper introduces a complexity-aware fine-476

tuning pipeline that measures how uncertain a477

model is about its response using the entropy of478

its own predicted answer and then trains on the re-479

sulting easy, medium, and hard splits with different480

tactics.481

We confirm that entropy works as a difficulty482

estimation. Single-token answer entropy reaches483

ROC AUC values up to 0.8, clearly beating MASJ-484

based estimates of 0.57. This confirms that a485

model’s own confidence is a reliable, automatic486

proxy for question difficulty. We publish collected487

data and code to support further research in the area488

of numerical complexity estimation.489

Using the entropy-base data splits, we find that490

different complexity scores require different train-491

ing approaches. Standard supervised fine-tuning492

(SFT) is enough for the easy and medium bands,493

but lagged on the hard band. For the hard ques-494

tions, adding a distilled chain-of-thought from a495

large LLM unlocks further gains (accuracies of496

0.5/0.6 vs. 0.4/0.46 for Qwen 3B/Phi-4-mini).497

The pipeline is fully automated and can be in- 498

cluded in other fine-tuning workflows. It suggests 499

that curriculum ideas still matter for today’s LLMs: 500

letting the model focus on what it can already solve 501

directly, while giving extra guidance only where 502

it struggles, yields a better allocation of limited 503

model capacity. 504

Limitations 505

• Proposed pipeline is tested only on MMLU- 506

Pro and small models. Results may change 507

for other question answering datasets, open- 508

ended tasks, other domains, or larger LLMs. 509

• In low-resource settings teacher may be un- 510

available or imperfect, which reduces the 511

benefit of learning from a distilled chain-of- 512

thought. Additionally, we did not explore 513

how well the approach generalizes to other 514

reasoning-promoting techniques. 515

• Low entropy can still correspond to hallucina- 516

tions, which leads to imperfect identification 517

of the question complexity. 518

• We split data into 3 equal parts and did not 519

explore other possible boundaries. 520

• We did not conduct an extensive ablation study 521

which might reveal that our approach does not 522

suggest the best possible combination or se- 523

quence of training within the current frame- 524

work. It remains an area for further research. 525

• We did not run the pipeline for more epochs 526

due to resource limitations, so its behavior for 527

the longer runs stays unknown. 528
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A Prompts663

A.1 Prompts used for complexity estimation664

The used prompts are presented in Table 6.665

Prompt for a single token response

The following are multiple choice questions about subject.
Write down ONLY the NUMBER of the correct answer and
nothing else.
Prompt for a single token response with a fallback for unknown
answers

The following are multiple choice questions about subject.
If you are certain about the answer return the correct option
number, otherwise return 0. Write down ONLY the NUMBER
and nothing else.
Prompt for a chain-of-thought response

The following are multiple choice questions about subject.
Explain your thinking process step-by-step. At the end, write
down the number of the correct answer by strictly following
this format: [[number of correct answer]].
Prompt for a chain-of-thought response with a fallback for
unknown answers

The following are multiple choice questions about subject.
Explain your thinking process step-by-step. At the end,
if you are certain about the answer write down the num-
ber of the correct answer by strictly following this format:
[[number of correct answer]], otherwise return [[0]].

Table 6: Used prompts for complexity estimation

A.2 General prompts666

You are an expert in the topic of the question. Please act as an
impartial judge and evaluate the complexity of the multiple-
choice question with options below. Begin your evaluation
by providing a short explanation. Be as objective as possible.
After providing your explanation, you must not answer the
question. You must rate the question complexity by strictly
following the criteria: [[Number of reasoning steps]] - how
many reasoning steps do you need to answer this question?
Valid answers: low, medium, high. Your answer must strictly
follow this format: "[[Number of reasoning steps: answer]]".
Example 1: "Your explanation... [[Number of reasoning steps:
low]]". Example 2: "Your explanation... [[Number of reason-
ing steps: high]]". Example 3: "Your explanation... [[Number
of reasoning steps: medium]]".

Table 7: Prompt for MASJ reasoning

You are an expert in the topic of the question. Please act as an
impartial judge and evaluate the complexity of the multiple-
choice question with options below. Begin your evaluation
by providing a short explanation. Be as objective as possible.
After providing your explanation, you must not answer the
question. You must rate the question complexity by strictly
following the scale: "high school and easier", "undergraduate",
"graduate", "postgraduate". You must return the complexity by
strictly following this format: "[[complexity]]", for example:
"Your explanation... Complexity: [[undergraduate]]", which
corresponds to the undergraduate level.

Table 8: Prompt for MASJ education levels

The following are multiple choice questions about subject.
If you know the answer return the correct option number,
otherwise return 0. Write down ONLY the NUMBER and
nothing else.

Table 9: Prompt for a single token response with a
fallback for unknown answers (alternative)

The following are multiple choice questions about sub-
ject. Explain your thinking process step-by-step. At
the end, if you know the answer write down the num-
ber of the correct answer by strictly following this format:
[[number of correct answers]], otherwise return [[0]].

Table 10: Prompt for a chain-of-thought response with
a fallback for unknown answers (alternative)

B Aggregation Methods 667

B.1 Word-aggregation Methods 668

This COT aggregations have the same entropy val- 669

ues as in 3.2.3 for each COT token. 670

hj = −
n∑

i=1

pi log pi

where pi - probability of a single token, n - vo-
cabulary size, hj - entropy of the corresponded
token, hanswer - entropy of the answer token, and
N is the token amount in LLM response.

COTmean =
N∑
j=1

hj
N

COTmax = max
j

hj

So, Chain-of-Thought maximum and answer en- 671

tropy difference is: 672

|COTmax − hanswer|

B.2 Sequence-aggregation Methods 673

For M logical claims, which were split by tokens
that corresponded to the end of the sequence, we
have tokens sets C1, C2 ... CM .

Seqmean =
1

M

M∑
j=1

[
1

|Cj |
∑
i∈Cj

hi]

Seqmean,max =
1

M

M∑
j=1

[max
i∈Cj

hi]

Seqmax,mean = max
j

[
1

|Cj |
∑
i∈Cj

hi]
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Model Education level Reasoning
Qwen 3B 0.53 0.55
Qwen 3B* 0.53 0.55
Phi4-mini 0.52 0.55
Phi4-mini* 0.52 0.54
Phi4 0.50 0.57
Phi4* 0.50 0.55
Mistral 24B 0.50 0.56
Mistral 24B* 0.52 0.53

Table 11: ROC AUC for MASJ
* Alternative prompt to allow model answer "I do not know"

Statistics Importance
Thinking total entropy 1.45
Thinking number of tokens 1.08
Answer total entropy 0.25
Answer length 0.20

Table 12: Absolute values of parameter weights

B.3 Probability-based Methods674

Assume that for each token in response, we have
the token probability distribution pi. So, the
marginal token difference is σi and mean marginal
difference is mean of all σi in LLM response.

σi = p1i − p2i

σ =
1

N

N∑
i=1

σi

Top-2 entropies difference in response δ.

δ = max
j

hj −max
i|i ̸=j

hi

B.4 Hybrid Method675

In this section we provide linear combination of
2 best-perform previous methods: hanswer and
COTmax. Also, we tried adding the third element
COTmean, but it has decreased the ROC-AUC, so
we made a decision to remove it.

hmix = (1− α) ∗ hanswer + α ∗ COTmax

where 0 ≤ α ≤ 1 is the hyperparameter (e.g. α =676

0.05 empirically for Qwen-3B).677

C Additional experiments678

C.1 MASJ education level and reasoning679

score680

Table 11 shows ROC AUC values for MASJ evalu-681

ations of education levels and reasoning scores.682

We can see that MASJ reasoning score has a 683

slightly higher ROC AUC of 0.55 on average com- 684

pared to education levels with ROC AUC of 0.52. 685

There is no significant difference between prompts 686

that allow IDK answers and the ones that do not. 687

The results indicate that MASJ scores divide the 688

data into complexity groups with moderate quality. 689

On the other hand, results depend on encoding of 690

nominal scores provided by MASJ, and a more 691

comprehensive study could improve this method. 692

Technical details. To calculate ROC AUC we 693

encode MASJ results on a scale from 0 to 1 and 694

prompt the model to answer questions directly, us- 695

ing prompts. For education levels, we take "High 696

school and easier" - 0.2, "Undergraduate" - 0.4, 697

"Graduate" - 0.6, "Postgraduate" - 0.8. For reason- 698

ing scores, "Low" - 0.25, "Medium" - 0.5, "High" 699

- 0.75. IDK responses and results with invalid for- 700

matting are excluded from the calculations. 701

C.2 Feature importances 702

We evaluated logistic regression weights, that re- 703

flect feature importance. The results are in Ta- 704

ble 12. 705

C.3 SFT using different scores 706

We evaluated the quality of different uncertainty 707

estimates in a plain way. Now, we compare the 708

usefulness of different scores at separating ques- 709

tions of different complexity with the following 710

supervised fine-tuning. 711

The results for MASJ reasoning scores, single 712

token entropy, are presented in Figures 5. We see, 713

that the model quality improves during SFT for all 714

models and set of questions. 715
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(a) MASJ reasoning score (Phi-4-mini) (b) MASJ reasoning score (Qwen 3B)

(c) Single token entropy (Phi-4-mini) (d) Single token entropy (Qwen 3B)

Figure 5: SFT quality dynamics during training with split by complexity estimates provided by the MASJ reasoning
score and the single token entropy across Phi-4-mini and Qwen 3B models.

13


	Introduction
	Related works
	Methods
	Training pipeline
	Complexity estimation approaches
	MASJ reasoning score
	MASJ education level
	Single token answer entropy
	Chain-of-thought answer entropy
	Chain-of-thought aggregated response entropy
	Thinking and answer statistics of reasoning model


	Results
	Experimental setup
	Complexity estimation evaluation
	Single token and chain-of-thought answer entropy
	Chain-of-thought aggregated response entropy
	Thinking and answer statistics of reasoning model

	Fine-tuning
	Data split by MASJ reasoning score
	Data split by single token entropy
	Complexity-aware pipeline


	Conclusion and discussion
	Prompts
	Prompts used for complexity estimation
	General prompts

	Aggregation Methods
	Word-aggregation Methods
	Sequence-aggregation Methods
	Probability-based Methods
	Hybrid Method

	Additional experiments
	MASJ education level and reasoning score
	Feature importances
	SFT using different scores


