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Abstract

Diffusion-based methods have been successfully applied to molecule conformer1

generation using implicit physical modeling. In contrast, conventional, rules-2

based approaches employ an explicit physical model such as a classical force3

field parameterization. In order to combine the advantages of both approaches, we4

present a diffusion-based, physics-informed denoising model (PIDM) for conformer5

generation that is constructed from molecule subgraph patterns borrowed from6

classical force fields. The result is a model that is resistant to overfitting and7

explainable. Using recent advances in denoising score matching, we naturally8

separate the task of training and generation while providing a smooth transition9

between deterministic and stochastic generative schemes that adapt to any number10

of denoising steps. We demonstrate conformer generation quality that outperforms11

the current state-of-the-art while employing a fraction of parameters.112

1 Introduction13

Conformer generation is the process of identifying a valid and useful set of atomic coordinates for14

a given molecule. Because it plays a crucial role in structure-based drug-discovery [1], over four15

decades of effort has been invested in conventional rules-based approaches [2, 3, 4, 5, 6, 7, 8, 9].16

Recent advances in generative techniques in deep learning, particularly in diffusion-based models17

of image generation [10, 11, 12, 13] and point-cloud generation [14, 15], suggest that generative18

techniques could lead to a renaissance in this field.19

We describe in this work is a method of conformer generation using a physics-informed, denoising20

model (PIDM). By taking advantage of established methods employed in classical force fields, we21

have constructed a diffusion-based model that is explainable, transferable, and robust. Building22

upon recent theoretical advancements [16], we employ a flexible method of generation that smoothly23

adapts to either deterministic or stochastic modes and naturally scales to any number of denoising24

steps. This is the first time that a physics-informed approach has been applied in a denoising model25

of this type, the first that is explainable, and the first to feature deterministic generation. The result26

outperforms the current state-of-the-art while using ten times fewer steps. In addition, we demonstrate27

a proof-of-concept guided technique that permits targeted generation.28

To build a useful tool, we need to generate molecule conformers that are physically meaningful. The29

naive approach is to directly train a generic, implicit model of physical viability. A drawback is that30

the number of possible drug-like compounds is too large (by some estimates, as large as 1033 [17])31

to cover in a dataset. Another issue is that the number of viable conformations for each drug-like32

molecule is intractable in many cases [7]. Therefore, we are forced to limit ourselves to a suitable33

approach that can readily transfer to molecules and conformations outside a training set.34

1Code is available at [TBA]
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The first step is to define what constitutes a viable conformer. We use physics as a guide. To appreciate35

what constitutes a local minima in molecular energy, consider classic force field parameterizations,36

an established methodology [18]. Force fields are commonly formulated as the sum of “bonded”37

and “nonbonded” contributions [19, 20, 21]. The former include contributions associated with38

intramolecular bonds and the latter captures longer-distance interactions. The bonded contributions39

in a classical force field are conventionally divided into four terms: bonds, bends, proper torsions and40

improper torsions [19, 20, 21]. Each term is identified with a subgraph of a specific topology and one41

characteristic scalar parameter (Fig 1). These terms will become important in the construction of our42

model.43
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Figure 1: Force fields typically include bonded terms associated with (a) bond lengths, (b) bend
angles, (c) proper torsions, and (d) improper torsions.

In the context of classical force fields, the set of viable molecule conformers are commonly defined44

in terms of fixed bond lengths, bond angles, and improper torsions. The constraint on proper torsions45

is cyclic in the angle ϕ such that energy is commonly parameterized as a function of nϕ− ϕ0, where46

n is an integer and ϕ0 is a reference angle. The freedom to select one of n torsion angles is one way47

a molecule can exhibit multiple conformations. We will refer to such freedom as torsional space.48

Nonbonded contributions to energies depend on external conditions, such as whether the molecule is49

solvated or bound to a protein [22]. As such, in many applications, nonbonded energies are ignored or50

attenuated during the process of conformer generation, to avoid biases [23]. We employ this strategy51

in this work. It can be considered adequate for tools that perform their own search in torsional space,52

such as flexible ligand docking [24, 25, 26, 27, 28].53

In addition to locating energy minima, a useful conformer generator must respect stable stereochem-54

istry, specifically chirality [29] and cis-trans isomerism [30].55

1.1 Related Works56

Conventional approaches use a variety of schemes [4, 5, 6, 7, 8, 9, 24]. Balloon [5] is a conformer57

generator based on a multiobjective genetic algorithm. ETKDGv3 [9] is a knowledge-based generator58

provided by RDKit [31] based on distance geometry. The OMEGA toolkit [7, 32] employs a fragment59

library combined with rules-based sampling. Although widely adopted, conventional methods rely60

on hand-tuned algorithms and are typically limited in accuracy due to an overdependence on classical61

force fields parameterization.62

Several strategies have been employed for learned models, such as energy gradients [33, 34, 35], Gibbs63

sampling [36], and conditional variational encoders [37, 38]. The drawback of these approaches is64

that the energy of disordered molecule systems is difficult to characterize directly due to singularities65

and large energy barriers. GeoMol [39] learns local structure and applies incremental construction.66

Since incremental construction is poorly suited to cycles, it fails to reproduce all but the simplest ring67

systems. GeoDiff [40] is a state-of-the-art stochastic diffusion model. It follows conventions most68

closely related to “denoising diffusion probabilistic models” (DDPM) [10], employs 793,858 weights69

and uses 5,000 steps for generation. GeoDiff attempts to model nonbonded distances which requires70

it to sample torsional space during training. This is not only undesirable (since torsional space is71

physically ambiguous) but is also likely the reason for a high level of computational complexity.72

Others have proposed methods that generate novel molecules in 3D space [41, 42, 43, 44, 45, 46],73

which is a related but different task than reported here.74
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2 Model Design75

Our goal is to construct a model that can generate acceptable conformers for any drug-like molecule76

when provided with just the atom composition, connectivity, and stereochemistry. Recent work [16]77

has demonstrated that the design of diffusion-based models for images can be generalized around78

the concept of denoising score matching [47]. We apply this approach to conformer generation by79

representing our model as a denoising function D that provides an estimate of the true coordinates x80

of a molecule when provided with coordinates that have been smeared by a centered, uncorrelated81

Gaussian of width σ82

x ≈ D(N (x; 0, σ2I), σ;a) , (1)
where a is a suitable embedding that represents the composition of the molecule (i.e. its atom types83

and connectivity).84

The overall structure of the model is shown in Fig 2 and consists of two major components: a graph85

transformer network to build a useful atom embedding and a series of bonded subcomponents whose86

outputs are summed together for coordinate prediction.87

atom types

bonds

ring code

proper
torsionbendbond chirality cis-trans

Addition

Concatenation⧺
+

+ + + + +

graph
attention

embedding

embedding

embedding

×N

⧺

+

feed
forward

NO

O

HN

input
coordinates

isomer
flags

solution

Figure 2: A schematic of the denoising model.

The purpose of the graph transformer network is to place the atoms of each molecule into a suitably88

descriptive embedding space that can be employed by the bonded components. It starts with a89

embedding in which atoms are distinguished by their element, formal charge, and hybridization. The90

latter is taken from the algorithm built into the RDKit cheminformatics library [31]. All hydrogens91

are treated as explicit. Atoms that are associated with explicit chirality or cis-trans isomerisms are92

flagged by the addition of a global vector reserved for this purpose.93

The initial atom embedding is refined by multiple layers of a graph transformer network, based on94

GATv2 [48], and configured to use bonds as graph edges. No edge labeling (such as bond order) is95

employed, since connectivity along with atom identity is sufficient to describe relevant chemistry [49].96

To preserve a form of atom self-identity, rather than use self edges (a poor physical analog), the input97

to the graph attention network is concatenated to the output.98

Each of the bonded components have a similar structure in which a multilayer perceptron (MLP)99

is used to calculate a correction to atom positions as a displacement along a vector. The details,100

outlined in the supplemental materials, are summarized here. For the bond component, the vector101

is the difference δij of the two atom positions. The input to the MLP is the concatenation after a102

suitable normalization of {|δij |, σ,ai,aj}, where a are the atom embeddings.103

For the bend component, the vector δik is between the two outer atoms. The MLP is fed104

{|δik|, σ,ai,aj ,ak, cijk}, where cijk is a embedding capturing the size of the rings (if any) to105

which the bend belongs. The latter is important because the GATv2 graph network, like all message106

passing networks, is incapable of detecting cycles [50].107

For the proper torsion component, the vector δil is between the two outer atoms. The MLP is fed108

{|δil|, σ,ai,aj ,ak,al, sinϕ, cosϕ}. The torsional angle ϕ is needed to account for torsional space.109
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The chirality component is constructed out of the improper torsions associated with each chiral110

atom. The vector is the normal of the plane defined by three of the four atoms. The MLP is fed111

{d⊥, d∥, σ,ai,aj ,ak,al}, where d⊥ (d∥) is the distance of the fourth atom out of (along) the plane.112

The cis-trans component is constructed out of the proper torsions associated with each constrained113

bond. The vector is the difference δijkl between the average positions of the outer and inner atoms.114

The MLP is fed {|δijkl|, χijkl, σ,ai,aj ,ak,al}, where χijkl is the requested cis-trans state.115

For the models reported here, an atom embedding of dimension 50 is used throughout. Four graph116

transformer layers are employed. The MLP for each component uses two hidden layers. The result is117

a model with a total of 135,080 weights, with 63,480 reserved for the molecule graph and 71,240118

in the geometry components. Experiments in increasing the atom embedding dimension or adding119

additional transformer layers produced only marginal improvement in loss.120

3 Datasets121

We are interested in high-quality conformers of drug-like molecules. Two synthetic, publicly available122

datasets fit this role: QMugs [51] and GEOM-drugs [52]. Each contain several hundred thousand123

drug-like molecules with conformers optimized (in vacuum) using the GFN2-xTB semiempirical124

quantum mechanical method [53, 54]. We discard about 2% of the GEOM-drugs molecules due to125

conformer inconsistency at the graph level. Otherwise, we accept all conformers in both data sets.126

Both are randomly divided into their own training (80%), validation (10%), and test (10%) subsets.127

To measure molecule similarity, we use the Tanimoto measure applied to an ECFP6 fingerprint [55]128

folded to 1024 bits. At a threshold of 0.9 (0.8), we find 5.6% (6.4%) of the compounds in QMugs129

overlap with those in GEOM-drugs. Although the two datasets contain mostly different molecules,130

the underlying physics will be the same. To test dataset independence, we have chosen to train two131

versions of our model on the two corresponding training subsets, which we will label PIDM[Qmugs]132

and PIDM[GEOM-drugs]. Both models and others will be compared to a single benchmark dataset,133

whose preparation is described below.134

For the benchmark dataset, we started from the QMugs test subset. To ensure independence and135

guard against data leakage, we filter each molecule against the contents of the QMugs training subset,136

the entire GEOM-drugs dataset, and internally using a Tanimoto threshold of 0.7. The annotated137

chirality and cis-trans isomerism are then validated against the public PubChem database [56]. We138

also queried PubChem for a copy of the first ten of their generated conformers [23] for comparison.139

Molecules that could not be validated or did not have a PubChem conformer were discarded. The140

final result is 15,763 fully annotated, independent molecules reserved for benchmarks.141

4 Training142

In this work, we follow the modular scheme for diffusion-based models as proposed by Karras et143

al. [16] in which training and generation are separate tasks that need not share the same noising144

schedule. For the purposes of training, we chose to evenly sample from the set {σ1 . . . σN}:145

σi =

{(
σ
1/ρ
max +

i−1
N−1

(
σ
1/ρ
min − σ

1/ρ
max

))ρ

1 ≤ i < N

0 i = N
. (2)

The total loss L is calculated as the weighted sum of the contribution from each sample σi146

L =

N∑
i=1

1√
σ2
i + ϵ2

L(σi) (3)

with147

L(σ) = Ex∼data,n∼N (0,σ2I)∥D(x+ n, σ)− x∥22 . (4)

Standard parameter values are N = 100, σmax = 8Å, σmin = 10−5Å, ϵ = 10−5Å, and ρ = 6.148

PIDM[Qmugs] is trained using a fixed schedule of 100 epochs, taking approximately 50 hours on149

a single RTX 3090 (Fig. 3a). PIDM[GEOM-drugs] is trained using a fixed schedule of 25 epochs,150

taking approximately 170 hours (Fig. 3b).151
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Figure 3: Loss per conformer as calculated during model training for (a) QMugs and (b) GEOM-drugs.
Plotted are losses calculated for the training set and for an independent validation set of 1/8 the size.

Building the model with explicit components has the advantage of explainability. Once provided with152

an example molecule, each of the bonded compounds can be probed for specific atoms, a process that153

was invaluable during development. An example is shown in Fig 4. More examples are included in154

the supplemental materials.155

Figure 4: Example bend correction from (a) PIDM[QMugs] and (b) PIDM[GEOM-drugs] for an
atom involved in the ethanol group of adrenaline. Corrections for various values of σ are plotted. The
vertical gray line is the expected atom distance, obtained from a separate GFN2-xTB optimization. As
the distance deviates from expectations, the model applies larger corrections. As σ approaches zero,
the correction vanishes once the correct geometry is achieved. Despite being trained on independent
data sets, the two models learn a similar behavior.

5 Generation156

We adopt a score-based, probability-flow framework [13] in order to generate conformers from our157

denoising model. As is typical in this approach, we consider a multidimensional Wiener process158

applied to molecule coordinates x over a time interval t ∈ [0, 1]:159

pt(y(t)|x;σ(t)) = N (y(t);x, σ(t)2I) , (5)

where y(t) are the resulting random coordinates and σ(t) is a width schedule we are free to choose to160

suit our task, with the only requirement that limt→0 σ(t) = 0. For generation, we start by sampling161

from a random Gaussian distribution N (0, σ(1)2I) as an approximation for y(1) and solve for the162

corresponding reverse process (denoising) to obtain y(0) as a candidate solution for x.163

To construct a solution for the reverse process, we identify the marginal distribution p(y;σ) as164

p(y;σ) =

∫
pt(y|x;σ) p(x) dx , (6)

where the t dependence is implicit and p(x) represents the marginal distribution of the training data.165

We can use p(y;σ) to express the time dependence of y as a probability-flow ODE [16]:166

dy = −σ̇σ ∇y log p(y;σ) dt , (7)
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where∇y log p(y;σ) is the score function and σ̇ is the time derivative. In a score-based framework,167

there is a direct relationship between the score function and our denoising model D [16, 47]:168

∇y log pt(y;σ) ≈
1

σ2
(D(y, σ)− y) . (8)

This important result connects our denoising model to the conformer generation process.169

In our implementation, we have selected a linear function σ(t) = αt, where α is a scale parameter in170

units of Å. Applying this selection to Eq. 7 and 8 results in a simple form for the probability-flow171

ODE:172
dy

dt
= (y −D(y;αt)) /t . (9)

Our conformer generation process is the numerical solution to this equation, calculated in steps of t173

in reverse, and using as initial conditions y(1) ∼ N (0, α2I).174

Inspired by work elsewhere [16], we solve Eq. 9 using Heun’s 2nd-order method, augmented by a175

form of backtracking (Algorithm 1). The backtracking provides an option to add additional noise to176

the generation process. We begin by dividing the interval [0, 1] into a fixed partition {ti} over which177

we iterate in order to calculate a set of intermediate solutions {yi}. Instead of relying on solving on178

the partition {ti}, we substitute modified values for the upper bound ti of each subinterval:179

t̃i = βti ỹi ∼ N (yi; 0, λ
2α2t2i (β

2 − 1)) , (10)

where β ≥ 1 and λ ≥ 0 are fixed parameters. This has the effect of introducing Gaussian noise180

at each step of the solution. For λ = 1, the amount of added noise compensates for the change in181

subinterval size.182

Algorithm 1 Conformer generation.

1: procedure GENERATE(D(y, σ), {ti}, α, β, λ)
2: y ← N (0, α2I) ▷ Prepare random initial state
3: for i← 1 to |t| do
4: t̃← βti ▷ Widen effective subinterval
5: ỹ ← N (y; 0, λ2α2t2i (β

2 − 1)I) ▷ Add noise
6: d1 ←

(
ỹ −D(ỹ, αt̃)

)
/t̃ ▷ Evaluate dy/dt

7: y ← ỹ +
(
ti+1 − t̃

)
d1 ▷ Solve

8: if ti+1 > 0 then
9: d2 ← (y −D(y, αti+1)) /ti+1 ▷ Apply 2nd-order correction

10: y ← ỹi +
1
2

(
ti+1 − t̃

)
(d1 + d2)

11: y ← y − ⟨y⟩ ▷ Remove center of mass
12: return y

For reasons of convenience, we remove an overall center-of-mass during each generation step. The183

correction is small and quality of output is not affected.184

If we generate using λ = 0, no noise is added during the intermediate steps, resulting in deterministic185

generation. Combined with β > 0, the algorithm is equivalent to pretending that each intermediate186

value yi belongs to a solution sampled from a larger value of σ. This has the effect of overcorrecting,187

which improves accuracy in our case.188

Alternatively, if we generate using λ > 0 and β > 0, we inject noise during each step for stochastic189

generation. Both stochastic and deterministic approaches have been used for image generation, with190

impressive results [10, 11, 12, 13, 16, 57, 58, 59].191

To apply our algorithm, we use the partition {t1 . . . tN} of a given size N and final step size tϵ:192

ti =

{
t
i/(N−1)
ϵ 1 ≤ i < N

0 i = N
. (11)

The quality of generated output is reasonably stable for a large range of parameter values. The results193

reported here use tϵ = 0.0006, α = 2.5 Å, and β = 5. Quality improves marginally if the solution is194

6



calculated using more steps at a proportional cost in processing time. To quantify this trade off, we195

report on results for N = 100, 200, and 500. We also report results for both deterministic (λ = 0)196

and stochastic (λ = 1) generation.197

Shown in Fig 5 are random examples of generated conformers, using PIDM[QMugs], deterministic198

generation, and 500 steps. More examples are available in the supplemental materials.199

Figure 5: Example conformer output for molecules randomly selected from the benchmark dataset.
Shown in the second column from the left (grey background) is the first conformer from QMugs.
Shown on the right are unfiltered output from PIDM[QMugs] using deterministic generation and 500
steps. All molecule renderings are oriented by principal component.

6 Experiments200

Our objective is to generate molecules with valid bonded geometry. To demonstrate accuracy, ten201

random conformers were generated by PIDM[QMugs] and PIDM[GEOM-drugs] for each of the202

molecules in the benchmark set. Each result was compared against the ground truth represented by203

the corresponding conformers in QMugs. Overall errors in bond length d and bend angle θ were204

measured using the mean absolute deviation (MAD). Because proper torsions have multiple favored205

values, the MAD for ϕ was limited to values generated with ±30° of the angle found in the reference206

conformer. Failures to reproduce the desired chirality or cis-trans isomerism were recorded as a207

fraction of total occurrence of associated improper or proper torsion.208

Results are shown in Table 1. Also shown are results obtained from other conformer generation209

solutions. In all cases, ten conformers were requested, although some conformer solutions provide210

less than the requested number under certain circumstances. The conformers provided by PubChem211

are calculated under the PubChem3D scheme [23] based on the OMEGA toolkit [32]. ETKDGv3212

has known deficiencies and is often followed by gradient optimization based on the MMFF94 force213

field [6, 21]. We used the GeoMol checkpoint (GEOM-drugs) provided by the authors.214

We tested the GeoDiff checkpoint trained on GEOM-drugs provided by the authors. This model215

performs well on d and θ, but struggles with ϕ. GeoDiff has no mechanism for enforcing chirality216
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Table 1: Performance data for PIDM[QMugs] and PIDM[GEOM-drugs] for 100, 200 and 500 steps,
using both deterministic and stochastic schemes, and with optional guided generation (η > 0, see
section 7). Also shown are other methods. All statistics are measured against a single, independent
benchmark dataset. Best values in each category are highlighted.

Mean absolute deviation Inconsistency rate
d (Å) θ (rad) ϕ (rad) chirality cis-trans

PIDM[Qmugs]
Deterministic 100 0.0042 0.015 0.036 0.031 0.033
Deterministic 200 0.0038 0.013 0.027 0.022 0.009
Deterministic 500 0.0036 0.012 0.023 0.013 0.002
Deterministic 500, η = 0.5 0.0035 0.012 0.025 0.028 0.001
Deterministic 500, η = 1 0.0036 0.012 0.026 0.057 0.001
Stochastic 100 0.0051 0.021 0.079 0.112 0.027
Stochastic 200 0.0047 0.019 0.069 0.081 0.013
Stochastic 500 0.0045 0.018 0.062 0.057 0.004

PIDM[GEOM-drugs]
Deterministic 100 0.0044 0.015 0.034 0.031 0.034
Deterministic 200 0.0040 0.013 0.027 0.023 0.015
Deterministic 500 0.0037 0.012 0.023 0.015 0.005
Deterministic 500, η = 0.5 0.0036 0.012 0.025 0.029 0.002
Deterministic 500, η = 1 0.0036 0.012 0.025 0.048 0.003

Pubchem3D (OMEGA) 0.0075 0.020 0.020 0.020 0.014
ETKDGv3 0.0183 0.039 0.019 0.049 0.017
ETKDGv3+MMFF94 0.0081 0.017 0.021 0.049 0.017
Balloon 0.0082 0.018 0.032 0.002 0.011
GeoMol 0.0125 0.030 0.042 0.032 0.087
GeoDiff 0.0051 0.017 0.170 0.500 0.263

nor cis-trans isomerism, an omission that appears to be an oversight rather than a limitation of the217

approach.218

7 Guided Generation219

Our model makes no attempt to predict distances between nonbonded atoms. This suggests that there220

are degrees of freedom available during generation that are being ignored. Addressing this deficiency221

could provide a valuable measure of control over the torsional space.222

Before experimenting, we require a control. The torsional space sampled in the synthetic QMugs and223

GEOM-drugs data sets were established by their authors based on explicit yet arbitrary criteria, which224

makes them uninteresting. Instead, we can refer to experimental data. The authors of the OMEGA225

toolkit selected two small experimental sets for this purpose [32]: 480 molecules from the Cambridge226

Structural Database (CSD) and 197 ligands from the PDB. As shown in Table 2, RMSD performance227

of our model lags that obtained from OMEGA and RDKit+MMFF94.228

Consider a modified, probability-flow ODE:229

dy

dt
= (y −D(y;αt)− F (y)) /t , (12)

where F (y) is introduced to guide generation in a desired fashion. Solving for Eq. 12 in place230

of Eq. 9 provides a mechanism for guided generation where F (y) serves as a form of conditional231

score [60].232

As a simple proof-of-concept, consider F (y) = η
∑

(b2 + δ2)−5, summed over all nonbonded atom233

pairs, where δ is the distance between atoms, b = 0.7Å, and η is an overall magnitude. This term is234

analogous to a repulsive force similar to what is found in the van der Waals interaction. The result is235

a modest improvement in RMSD statistics on the CSD and PDB experimental data sets, as shown in236

Table 2. Statistics on bond parameters (Table 1) are largely unaffected, with the notable exception of237

an increase in chirality failure rates.238
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Table 2: RMSD statistics (Å, heavy atoms only) on conformers generated by PIDM (deterministic
with 500 steps) and various other methods compared to experimental data from the CSD and PDB.
Mean and median are calculated on the closest conformer out of N generated.

CSD PDB
Model N Mean Median Mean Median
PIDM[QMugs] Undirected 1000 0.74 0.84 0.90 0.98
PIDM[QMugs] η = 0.5 1000 0.53 0.58 0.70 0.75
PIDM[QMugs] η = 1 1000 0.51 0.55 0.67 0.73
PIDM[GEOM-drugs] Undirected 1000 0.78 0.91 0.96 1.10
PIDM[GEOM-drugs] η = 0.5 1000 0.54 0.59 0.81 0.81
PIDM[GEOM-drugs] η = 1 1000 0.51 0.55 0.69 0.76
OMEGAa — 0.51 0.44 0.67 0.51
RDKit+MMFF94 1000 0.43 0.48 0.53 0.64
a Published statistics [32]

8 Discussion239

The PIDM[QMugs] and PIDM[GEOM-drugs] models, despite being trained on datasets with little240

overlap, perform similarly on all benchmarks. Probes indicate that both models have learned similar241

solutions. We contend that this level of robustness could only have been achieved by capturing the242

important, underlying physics. Unlike conventional approaches to conformer generation, which either243

rely on curated template libraries or manually-tabulated force field parameterizations, the physics in244

our model is entirely learned.245

PIDM is explainable. The advantage this provides cannot be overstated. The ability to probe the246

internal structure during development permitted a level of experimentation that would not have been247

possible in a black-box implementation.248

For generation, we numerically solve for the probability-flow ODE, using a form of oversampling.249

By separating the training and generation tasks, we were free to explore multiple approaches without250

retraining. Using deterministic generation, we were able to produce conformers of reasonable quality251

in as little as 100 steps. This is in stark contrast with GeoDiff [40], the current state-of-the-art252

diffusion model, which employs stochastic generation in 5,000 steps.253

For reproducing bonded parameters, PIDM with 500 steps has comparable performance on average254

to conventional methods (such as OMEGA and ETKDGv3). It outperforms GeoDiff with 1/6 the255

number of weights.256

8.1 Limitations257

Conformer generation for molecules with chemical groups or atom types outside the training set258

may perform poorly or fail. Molecules with certain challenging topologies, such as a central ring259

with several large branches, may perform poorly (an example is given in the supplemental materials).260

Conformer quality is expected to degrade as molecules grow in size beyond ∼200 heavy atoms.261

The atom embedding used in our model was generated using GATv2 [48]. We suspect that using262

a type of graph network that can capture the same quality of atom-type information while also263

recognizing cycles would improve performance.264

9 Conclusion265

Presented is PIDM, a diffusion-based model inspired by the bonded components of classical force266

fields. Parameters were trained on high-quality conformers from the QMugs and GEOM-drugs267

data sets. Learning appears robust, transferable, and explainable. Both deterministic and stochastic268

generation schemes are demonstrated. Average performance on the reproduction of bonded parameters269

is comparable to conventional conformer generation tools. A simple example of guided generation is270

successful at improving torsional sampling when compared to experimental data.271
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