Boosting Offline Reinforcement Learning via Data Rebalancing

Yang Yue 2 * Bingyi Kang' T Xiao Ma! Zhongwen Xu

Abstract

Offline reinforcement learning (RL) is challenged
by the distributional shift between learning poli-
cies and datasets. To address this problem, ex-
isting works mainly focus on designing sophisti-
cated algorithms to explicitly or implicitly con-
strain the learned policy to be close to the be-
havior policy. The constraint applies not only to
well-performing actions but also to inferior ones,
which limits the performance upper bound of the
learned policy. Instead of aligning the densities
of two distributions, aligning the supports gives a
relaxed constraint while still being able to avoid
out-of-distribution actions. Therefore, we pro-
pose a simple yet effective method to boost offline
RL algorithms based on the observation that re-
sampling a dataset keeps the distribution support
unchanged. More specifically, we construct a bet-
ter behavior policy by resampling each transition
in an old dataset according to its episodic return.
We dub our method ReD (Return-based Data Re-
balance), which can be implemented with less
than 10 lines of code change and adds negligible
running time. Extensive experiments demonstrate
that ReD is effective at boosting offline RL per-
formance and orthogonal to decoupling strategies
in long-tailed classification. New state-of-the-arts
are achieved on the D4RL benchmark.

1. Introduction

Recent advances in Deep Reinforcement Learning (DRL)
have achieved great success in various challenging decision-
making applications, such as board games (Schrittwieser
et al., 2020) and strategy games (Vinyals et al., 2019). How-
ever, DRL naturally works in an online paradigm where
agents need to actively interact with environments for ex-
perience collection. This hinders DRL from applications in

'Sea AI Lab 2Department of Automation, BNRist,
Tsinghua University. Correspondence to: Yang Yue <le-
y22@mails.tsinghua.edu.cn>. “This work was done when Yang
Yue was an intern at Sea Al Lab. "Corresponding Author.

! Gao Huang’? Shuicheng Yan'

the real-world scenarios where interactions are prohibitively
expensive and dangerous. Offline Reinforcement learning
attempts to address the problem by learning from previously
collected data, which allows utilizing large datasets to train
agents (Lange et al., 2012). Vanilla off-policy RL algorithms
suffer poor performance in the offline setting due to the
distributional shift problem (Fujimoto et al., 2019). Specif-
ically, performing policy evaluation, i.e., updating value
function with Bellman’s equations, involves querying the
value of out-of-distribution (OOD) state-action pairs, which
potentially leads to accumulative extrapolation error. The
main class of existing methods alleviates the above problem
via constraining the learned policy not to deviate far from
the behavior policy by directly restricting their probability
densities. The constraint can be KL divergence (Jaques
et al., 2019; Peng et al., 2019), Wasserstein distance (Wu
et al., 2019), maximum mean discrepancy (MMD) (Kumar
et al., 2019), or behavior cloning regularization (Fujimoto
& Gu, 2021).

However, such constraints might be too restrictive as the
learned policy is forced to mimic both bad and good actions
of the behavior policy. For instance, consider a dataset D
for state space S and action space A = {aj,as, a3} col-
lected with behavior policy . At one specific state s*, the
policy g assign probability 0.2 to action aq, 0.8 to as and
zero density to as. However, a; would lead to much higher
expected return than ay. Minimizing the density distance
of two policies can avoid ag, but forces the learned policy
to choose a9 over aj, resulting in much worse performance.
Therefore, a more reasonable condition is to constrain two
policy distributions to have the same support of action, i.e.,
the learned policy has positive density only on actions that
give non-zero probability in the behavior policy (Kumar
et al., 2019). In this case, it regularizes the learning pol-
icy to sample in-distribution state-action pairs and gives
a higher performance upper bound. We term it support
alignment as a more flexible relaxation of the behavior
regularization. Nevertheless, explicit support alignment is
intractable in practice (Kumar et al., 2019), especially for
high-dimensional continuous action spaces.

We make one important observation that reweighting the
data distribution density does not change the support of
the data distribution, i.e., zero density is still zero density
after reweighting. In the context of offline RL, instead of

sampling uniformly from the offline dataset, varying the
sampling rate of offline samples to focus on trajectories
with higher accumulative returns, i.e., changing the action
density, does not change the support and produces a better
behavior policy. Matching the learned policy with a resam-
pled policy is approximately performing support alignment.

In this work, we boost offline RL by designing data rebalanc-
ing strategies to construct better behavior policies. We first
show that existing offline datasets are extremely imbalanced
in terms of episodic return (as shown in Fig. 1). In some
datasets, most actions lead to a low return, which renders
the possibility that current density-based constraints are too
restrictive. We thus propose to resample the dataset dur-
ing training based on episodic return, which assigns larger
weights to transitions with higher returns. The method is
thus dubbed Return-based Data Rebalance (ReD), and can
be easily implemented with less than 10 lines of code. With-
out any modification to prior hyperparameters, we find that
ReD effectively boosts the performance of various popular
offline RL algorithms by a large margin on diverse domains
in D4RL (Brockman et al., 2016; Fu et al., 2020). Then as
our minor contribution, we propose a more elaborated im-
plementation of data rebalance, Decoupled ReD (DeReD),
inspired by decoupling strategies for data rebalance train-
ing in long-tailed classification (Kang et al., 2020). The
proposed DeReD combined with IQL achieves the state-of-
the-art performance on D4RL. The effectiveness of return-
based data rebalance may imply that data dimension is as
important as algorithmic dimension in offline RL.

hopper-medium-replay-v2 walker2d-medium-replay-v2

50 1000 1500 2000 2500 3000 o 1000 2000 3000 4000

hopper-medium-expert-v2 walker2d-medium-expert-v2

o 2000 4000 6000 8000 10000 o 1000 2000 3000 4000 5000

Figure 1. Visualization of Trajectory Return Distributions.
Medium-replay datasets are likely to have a long-tailed distribu-
tion, and medium-expert are likely to have two peaks.

2. Related Work

Offline RL. To alleviate extrapolation error and address
the distributional shift problem, a general framework for

prior offline RL works is to constrain the learned policy
to stay close to the behavior policy. Considering KL-
divergence is easy to accurately compute under the Gaussian
distribution assumption, many works choose KL-divergence
as policy constraint. There are many concrete implemen-
tation choices, e.g., explicitly modeling behavior prior by
VAE, avoiding explicit modeling by the dual form (Wu
et al., 2019; Jaques et al., 2019). Exponentially advantage-
weighted regression, an implicit form of KL-divergence con-
straint, is derived by AWR (Peng et al., 2019), CRR (Wang
et al., 2020) and AWAC (Nair et al., 2020). IQL (Kostrikov
et al., 2021b) also extracts policy via advantage-weighted
regression from the expectile value function, enforcing a
KL constraint. Behavior cloning (BC) is another alternative
to implement constraint (Fujimoto & Gu, 2021). There also
exist other directions to realize the offline RL. One line is
to regularize Q-function by conservative estimate (Kumar
et al., 2020; Buckman et al., 2020). Surprisingly, our experi-
ments show that data rebalance also works with conservative
Q-learning (Kumar et al., 2020). Another line is to view
offline RL as the sequential modeling problem by masked
transformer (Chen et al., 2021; Janner et al., 2021), and then
the transformer outputs actions to attain the given return.

Some works attempt to approximately satisfy support align-
ment. BEAR (Kumar et al., 2019) utilizes maximum mean
discrepancy to approximately optimize support alignment.
However, the effectiveness that the sampled MMD has in
constraining two distributions to the same support is only
empirically shown in a low-dimension distribution with di-
agonal covariance matrices with no theoretical guarantee,
and MMD is extremely complex to implement. That’s a
possible reason why Wu et al. finds MMD has no gain
compared to KL. Another attempt to relax the restrictive
constraint is adaptively adjusting the weight of the constraint
term by dual gradient ascent. However, Wu et al. observes
that the adaptive weight has a modest disadvantage over a
fixed one.

Rebalance Data. Dataset rebalance is widely used in vi-
sual tasks when facing a long-tailed distribution (Zhang
et al., 2021). For decision making, imitation learning (IL)
aims to learn from demonstration, where rebalance is natu-
rally applied to filter out bad demonstrations. BAIL (Chen
et al., 2020) employs a neural network to approximate the
upper envelope (i.e., the optimal return from data) and select
good state-action pairs to imitate. Another rebalance in IL
is 10%BC where behavior cloning only uses the top 10%
of transitions ordered by episode return (Chen et al., 2021).
MARWIL (Wang et al., 2018) and AWR (Peng et al., 2019)
employ exponentially advantage-weighted behavior cloning,
equivalent to policy improvement step with KL constraint in
RL. Experiments show that our method can further improve
KL constraint methods.

Table 1. Averaged normalized scores on MuJoCo locomotion tasks. we report the average over the final 10 evaluations and 5 seeds. We
focus on discrepancy between “uniform” and "ReD”. The results that have significant advantage over another are printed in bold type.

CRR CQL IQL TD3+BC

uniform ReD uniform ReD uniform ReD uniform ReD
halfcheetah-medium-v2 42.2 43 48.1 48.2 47.6 47.6 48.2 48.5
hopper-medium-v2 49.6 51 71.8 69.4 64.3 66 58.8 59.3
walker2d-medium-v2 62.4 39 83.3 83.5 79.9 78.6 84.3 83.7
halfcheetah-medium-replay-v2 37.7 38 45.2 46.3 434 443 44.6 44.7
hopper-medium-replay-v2 21.5 66.4 95.3 98.6 89.1 101 58.1 77.4
walker2d-medium-replay-v2 11.6 30.6 82.3 86.7 69.6 79.5 73.6 82.3
halfcheetah-medium-expert-v2 79.5 55 66.2 81.6 83.5 92.6 93 93.2
hopper-medium-expert-v2 54.1 56.6 76.9 95 96.1 106.1 98.8 106.2
walker2d-medium-expert-v2 1 25.2 110 110 109.2 110.5 110.3 110
mujoco-v2 total 359.6 4048 679.1 7193 6827 7262 669.7 705.3

In online reinforcement learning, PER (Schaul et al., 2016)
dynamically prioritizes experiences with a larger temporal-
difference error. SIL (Oh et al., 2018) favors transitions
based on episode return. To the best of our knowledge, few
works apply data rebalance to offline RL (not including imi-
tation learning). One work is RBS (Shen et al., 2021), which
also focuses on data perspective. However, RBS designs
more sophisticated strategies like upper envelope to dy-
namically modify the sampling weights, while our method
adopts more simple and efficient static rebalance before
training. Moreover, RBS is only tested with toy examples
such as PyBullet Gymperium, while our work experiments
with broad algorithms and much more complicated environ-
ments. Yarats et al. also reveals data generation is important
for offline RL, but it focuses on how to collect exploratory
data with unsupervised RL.

3. Return-based Data Rebalance

We now describe an efficient and effective approach to re-
balancing the offline dataset and leading to a better behavior
policy. Considering most RL algorithms work with continu-
ous vector or pixel input and a state usually appears once in
the dataset, it’s inconvenient to rebalance dataset by directly
changing the frequency of actions for a state. Instead, We
rebalance the dataset by resampling as long-tailed training
does (Zhang et al., 2021). For the transition ¢ in offline
dataset D with size N, it should be uniformly sampled by
the probability P(i) = + in the prior offline RL paradigm,
corresponding to the behavior policy 3. After rebalance, the
probability of sampling transition ¢ should be

) j2
P(i) = Nl)
D k—1Ph

where p; is the normalized return of transition 7. The ex-
ponent « € [0, 00), deciding the rebalance extent. &« = 0

ey

corresponds to the uniform case, while &« — co means only
sampling transitions in the best trajectory. The normalized
return p; is computed by:

Ri - Rmzn

-)
Rmaac - Rmm

p (Z) = =+ Dbase;
where R; is the episode return of the trajectory which the
transition ¢ belongs to. R,,;, and R,,,, represents the
minimal and maximal value in all trajectory returns. ppqse i8
zero or a small positive constant that prevents the marginal
transitions not being visited. The definition ensures that
the probability of sampling transition is monotonic in its
trajectory return, roughly assigning larger probability to
better transitions. Such a resampling is corresponding to
a different behavior policy 8’ of the same support which
prefers actions that generate high returns. Intuitively, 5’ is
very likely to be better than /3.

implementation. Our rebalance method is very easy
to implement, just computing the trajectory returns and
generating the sampling probability distribution P be-
fore training begins. Then resample can be done by
numpy.random.choice with P. These two changes cause
very little computational overhead. Hyperparameters are
simply set o = 1 and ppqs. = 0, except for antmaze envi-
ronments where ppqseq = 0.2 is used, because trajectory
return in antmaze can be only 0 or 1. If ppese = O, all
trajectories with return O would be discarded.

4. Experiments

In this section, experiments on D4RL benchmark (Fu et al.,
2020) are conducted to empirically show ReD can improve
popular offline RL algorithms on diverse domains, demon-
strating the effectiveness of data rebalance. Then we evalu-
ate the proposed decoupling strategy DeReD on the D4RL

Table 2. Full Results and runtime of ReD and DeReD based on IQL
on D4RL. Averaged normalized scores over the final 10 evaluations
and 5 seeds on D4RL tasks except for Antmaze. we report the
final evaluation and 5 seeds for Antmaze. Following IQL, we use
”v2” environments for mujoco tasks and ”v0” for other tasks. For
DeReD, we use upward arrow to denote stage 2 has improvement
over stage 1. The best score in every task is printed in bold type.

1QL ReD DeReD

stagel stage2
halfcheetah-medium 47.6 47.6 47.5 47.6
hopper-medium 64.3 66 65.5 65.1
walker2d-medium 79.9 78.6 74.5 81.91
halfcheetah-medium-replay 43.4 44.3 43.9 434
hopper-medium-replay 89.1 101 92.8 100.11
walker2d-medium-replay 69.6 79.5 72.9 771
halfcheetah-medium-expert 83.5 92.6 87.9 91.87
hopper-medium-expert 96.1 106.1 89.3 104.71
walker2d-medium-expert 109.2 110.5 110.1 110.5
mujoco total 682.7 726.2 684.4 722.11
antmaze-umaze 88 89.2 84.8 89.6
antmaze-umaze-diverse 64 79.8 67.0 72.31
antmaze-medium-play 71.5 78.4 68.8 71.8
antmaze-medium-diverse 575 68.4 67.7 77.61
antmaze-large-play 423 14.6 32.6 49.21
antmaze-large-diverse 44 37.6 47 48.2
antmaze total 367.3 368 367.9 408.71
kitchen-complete-v0 66.3 62.7 67.4 64
kitchen-partial-v0 533 69.5 47.6 6671
kitchen-mixed-v0 49.5 49.9 50.9 49.5
kitchen-vO total 169.1 182.1 165.9 179.51
pen-human-v0 74.8 83 76 881
hammer-human-v0 1.7 1.8 1.5 2.1
door-human-v0 43 4.4 6.1 7.1
relocate-human-v0 0.1 0.1 0.1 0.1
pen-cloned-v0 40.9 66.6 37.8 531
hammer-cloned-v0 1.8 1.1 1.6 1.8
door-cloned-v0 1.8 4.9 2.4 44
relocate-cloned-v0 -0.2 -0.2 -0.2 -0.2
adroit-v0 total 125.2 161.7 125.3 156.31
total 1344.3 1438.0 1351.8 1466.6
runtime 28min 29min 40min

benchmark. The result shows data rebalance can achieve
the new state-of-the-art on D4RL.

We choose IQL as our baseline, because IQL (Kostrikov
et al., 2021b) achieves the best performance on D4RL.
We also choose diverse types of algorithms including
CQL (Kumar et al., 2020), CRR (Wang et al., 2020), and
TD3+BC (Fujimoto & Gu, 2021) to validate our rebalance
method. Both IQL and CRR use advantage-weighted regres-
sion for policy improvement, namely KL divergence, while
TD3+BC uses a direct behavior cloning term. CQL can also
be derived by KL divergence between behavior policy and
Boltzmann policy (Kostrikov et al., 2021a). To ensure a
fair comparison, we first reproduce baselines’ results. For
IQL and TD3+BC, we rerun the author-provided code'?;

"https://github.com/ikostrikov/implicit_
g_learning
https://github.com/sfujim/TD3_BC

for CQL, we rerun a reimplementation JAX code?, causing
a slight discrepancy with PyTorch version results reported
in the CQL paper. The CRR paper only tests on RL Un-
plugged (Gulcehre et al., 2020), so we reimplement CRR
on D4RL by JAX. We run every algorithm with 1M gradi-
ent steps and evaluate every 5000 steps, except evaluating
Antmaze every 100K steps. Each evaluation consists of 10
episodes. Following TD3+BC (Fujimoto & Gu, 2021), we
report the average over the final 10 evaluations and 5 seeds
except for Antmaze, for which we report the average over
the final evaluation and 5 seeds. See “uniform” columns in
Table 1 for reproduce results.

4.1. Results of ReD

To demonstrate simplicity and generality, we avoid chang-
ing any hyperparameters in baseline algorithms when run-
ning our rebalance method. ”ReD” columns in Table 1
demonstrates the results of baseline algorithms trained by
the weighted sampler described in Eqn. 1 and Eqn. 2. We
found ReD can markedly improve the performance of al-
gorithms, even though CQL and IQL have achieved quite
high scores on mujoco tasks. We notice that the boost of
ReD mainly comes from “medium-replay” and ”medium-
expert” level tasks. This observation adheres to our intuition
of rebalancing dataset and deriving a better behavior policy.
Fig. |1 demonstrates these datasets collected by a mixture of
policies have trajectories with diverse quality and therefore
have more potential to improve the behavior policy by data
rebalance. Full visualization results of D4RL datasets are
shown in Fig. 2. Actually, ReD can boost the performance
of IQL in 3 out of 6 tasks, i.e., umaze-diverse, medium-play,
and medium-diverse. However, ReD has a dramatic drop in
large-play and a slight drop in large-diverse. As for Kitchen
and Adroit tasks, ReD also boosts IQL. It is noteworthy
that ReD boosts the performance on kitchen-partial and pen-
clone by around 50%, which may benefit from the return
distributions with a small amount of high-return trajectories
(see Fig. 2). Meanwhile, the last row of Table 2 demon-
strates ReD only adds 1 minute time cost for resampling.
Overall, ReD outperforms vallina IQL by a large margin
and adds negligible runtime.

4.2. Decoupled Return-based Data Rebalance

Although ReD theoretically produces a higher accumulative
return and empirically gives a strong performance on stan-
dard gym-locomotion tasks with dense rewards, it tends to
hinder the performance on tasks with long-delayed sparse
rewards, e.g., on antmaze-large environments. The reason
behind is that on antmaze-large environments, all succeeded
episodes have a reward of 1, while others have a reward of
0. ReD further reduces the importance of failed trajectories,

*https://github.com/young-geng/JaxCQL

https://github.com/ikostrikov/implicit_q_learning
https://github.com/ikostrikov/implicit_q_learning
https://github.com/sfujim/TD3_BC
https://github.com/young-geng/JaxCQL

without which an agent might fail to learn distinguishable
values through Bellman’s equation.

To tackle this issue, we darw insights from the long-tailed
learning community (Kang et al., 2020) and we introduce
Decoupled ReD (DeReD), a two-stage training framework
for long-horizon delayed sparse reward scenarios. At the
first stage, we train the agent with a uniform sampler to
encourage the agent to learn meaningful value estimation
and policies. Next, we freeze the policy head and value head
of the network, and finetune the feature extraction backbone
with ReD to further improve the agent with a higher return
bound. As a result, DeReD significantly outperforms base-
line methods on the antmaze-large environments. Although,
DeReD still improves the baseline IQL on smaller domains
on antmaze-uname and antmaze-medium, it shows a neg-
ative effect when compared with ReD . This is potentially
because on domains with a shorter horizon, distinguishing
states during policy evaluation is less difficult and freezing
the policy / value head trained by uniform samplers lim-
its capability of ReD on these tasks. More details and
experiments about DeReD can be found at Appendix A.1.

4.3. The influence of Hyperparameter p;,, .

Table 3. Effect of hyperparamter pyase.

Pbase 0 0.2 0.5 1.0 oo (IQL)
halfcheetah-medium 47.6 - 474 - 47.6
hopper-medium 66 - 64.1 - 64.3
walker2d-medium 78.6 - 78.9 - 79.9
halfcheetah-medium-replay 443 - 443 - 434
hopper-medium-replay 101 - 99.2 - 89.1
walker2d-medium-replay 79.5 - 61.3 - 69.6
halfcheetah-medium-expert 92.6 - 90.6 - 83.5
hopper-medium-expert 106.1 - 84.9 - 96.1
walker2d-medium-expert 110.5 - 110.1 - 109.2
mujoco total 726.2 - 680.8 - 682.7
antmaze-umaze 86.8 89.2 85.6 914 88
antmaze-umaze-diverse 37 79.8 65.8 60.4 64
antmaze-medium-play 37.6 78.4 72.8 722 715
antmaze-medium-diverse 32.8 68.4 64 742 575
antmaze-large-play 234 14.6 20.6 244 423
antmaze-large-diverse 244 37.6 424 444 44
antmaze total 242 368 3512 367 3673

In Table 3, We also demonstrates the effect of hyperparam-
eter ppgse in Eqn. 2 on ReD. With larger pygse, the prob-
ability of sampling transition with different returns would
be closer, and when py.s. goes to oo, ReD degenerates to
uniform sample. For mujoco, we find when pp,se €quals
0.5, the effect of ReD has decreased to the performance of
IQL. Antmaze’s return can be only zero or one (see Fig. 2).
Prase = 0 causes the trajectories where the agent don’t
reach the target have no chance to be sampled, resulting in
a catastrophic drop. When adopting a milder resample, i.e.,
Dhase €quals to 0.2, 0.5, 1.0, ReD boosts the performance
on ’antmaze-umaze’ and ’antmaze-medium’ but drops in
antmaze-large-play compared to IQL (ppgse — 00). When

Dbase goes larger, the boost and drop both approach a smaller
value.

4.4. Compare Different Data Rebalance Methods

Table 4. Analyze different rebalance methods based on CQL.

return reward
CQL resample CQL[10%] resample

halfcheetah-medium 48.1 48.2 47 48.2
hopper-medium 71.8 69.4 65.5 68.2
walker2d-medium 83.3 83.5 76.5 83
halfcheetah-medium-replay 452 46.3 41.8 46.4
hopper-medium-replay 95.3 98.6 96.8 97.7
walker2d-medium-replay 82.3 86.7 67.9 83.9
halfcheetah-medium-expert 66.2 81.6 73.3 74.2
hopper-medium-expert 76.9 95 106.6 87
walker2d-medium-expert 110 110 109.3 109.4
mujoco total 679.1 719.3 684.7 698

In this section, we compare different data rebalance meth-
ods along two dimensions - what should be rebalanced and
how to implement rebalance. we choose CQL as our base-
line. For the former question, we conduct experiments
to rebalance the dataset by return and reward, denoted as
return-resample and reward-resample. Table 4 shows
reward rebalance boosts vallina CQL but falls behind re-
turn rebalance, revealing that trajectory return is a better
indicator than transition reward to evaluate behavior qual-
ity. For the latter question, we test an invariant where the
agent is trained in top 10% transitions sorted by trajectory
return, denoted as CQL[10%]. It achieves the best score
in hopper-medium-expert, but performs not well in many
tasks.

5. Conclusion

We present a training pipeline to boost offline RL algorithms
by return-based data rebalance. ReD adds nearly no com-
putation burden and can be easily implemented. Despite
its simplicity and efficiency, experiments show that it can
significantly improve the performance of prior popular al-
gorithms. Then we propose DeReD by decoupling training
into two stages, which combined with IQL achieves the
state-of-the-art on the DARL benchmark. The effectiveness
of data rebalance may indicate data rebalance is a promising
research direction for offline RL.

References

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Buckman, J., Gelada, C., and Bellemare, M. G. The impor-
tance of pessimism in fixed-dataset policy optimization.
arXiv preprint arXiv:2009.06799, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,

Laskin, M., Abbeel, P, Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. NIPS, 2021.

Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y., and Ross,
K. BAIL: best-action imitation learning for batch deep
reinforcement learning. In NIPS, 2020.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. NIPS, 2021.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In ICML,
2019.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T., Gémez, S.,
Zolna, K., Agarwal, R., Merel, J. S., Mankowitz, D. J.,
Paduraru, C., et al. Rl unplugged: A suite of benchmarks
for offline reinforcement learning. NIPS, 2020.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. In NIPS,
2021.

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C.,
Agata Lapedriza, Jones, N., Gu, S., and Picard, R. W. Way
off-policy batch deep reinforcement learning of implicit
human preferences in dialog. CoRR, 2019.

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng,
J., and Kalantidis, Y. Decoupling representation and
classifier for long-tailed recognition. In /CLR, 2020.

Kostrikov, L., Fergus, R., Tompson, J., and Nachum, O. Of-
fline reinforcement learning with fisher divergence critic
regularization. In ICML, 2021a.

Kostrikov, 1., Nair, A., and Levine, S. Offline reinforcement
learning with implicit q-learning. In Deep RL Workshop
NeurlIPS 2021, 2021b.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy g-learning via bootstrapping error
reduction. NIPS, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative q-learning for offline reinforcement learning. In
NIPS, 2020.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning. Springer, 2012.

Nair, A., Gupta, A., Dalal, M., and Levine, S. Awac: Accel-
erating online reinforcement learning with offline datasets.
arXiv preprint arXiv:2006.09359, 2020.

Oh, J., Guo, Y., Singh, S., and Lee, H. Self-imitation learn-
ing. In ICML, 2018.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. In ICLR, 2016.

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604—-609, 2020.

Shen, Y., Fang, Z., Xu, Y., Cao, Y., and Zhu, J. A rank-based
sampling framework for offline reinforcement learning.
In 2021 IEEE International Conference on Computer Sci-
ence, Electronic Information Engineering and Intelligent
Control Technology (CEI). IEEE, 2021.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350-354, 2019.

Wang, Q., Xiong, J., Han, L., Liu, H., Zhang, T., et al.
Exponentially weighted imitation learning for batched
historical data. NIPS, 2018.

Wang, Z., Novikov, A., Zolna, K., Merel, J., Springenberg,
J. T., Reed, S. E., Shahriari, B., Siegel, N. Y., Giilcehre,
C., Heess, N., and de Freitas, N. Critic regularized regres-
sion. In NIPS, 2020.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Yarats, D., Brandfonbrener, D., Liu, H., Laskin, M., Abbeel,
P, Lazaric, A., and Pinto, L. Don’t change the algorithm,
change the data: Exploratory data for offline reinforce-
ment learning. In ICLR, 2022.

Zhang, Y., Kang, B., Hooi, B., Yan, S., and Feng, J.
Deep long-tailed learning: A survey. arXiv preprint
arXiv:2110.04596, 2021.

Appendix

A. Additional Experiment Results
A.1. DeReD Details

At the first stage, we train the agent with 1M gradient steps. Then the agent is finetuned with 200K steps, except mujoco
where we finutune with 500K steps. Longer gradient steps will not cause fairness concerns, because usually 1M steps are
suitable for offline algorithms in D4RL and more steps will impair the performance due to overfitting. We don’t change any
hyperparameters in prior algorithms. Actor and critic are both three-layer MLP in IQL. During the second stage, we only
finetune the first two layers with 0.1x learning rate and fix the last one, which performs a little bit better than finetuning all

layers denoted as DeReD-A (see Table 5). It may be because data rebalance mainly helps learn representation, rather than
value prediction.

Table 5. Compare DeReD and DeReD-A on D4RL.
DeReD DeReD-A

mujoco total 722.1 7155
antmaze total 408.7 390.6
kitchen-vO total 179.5 178.2
adroit-v0 total 156.3 146

total 1466.6 1430

B. Imbalance Visualization

halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2 halfcheetah-medium-replay-v2 hopper-medium-replay-v2

& | 20
2 =
0 o

© ke w0 w0 s 00 o o0 oo o0 w0 o0 o 1000 2000 a0 000 o a0 o0 w00 0 000 L

walker2d-medium-replay-v2 halfcheetah-medium-expert-v2 hopper-medium-expert-v2 walker2d-medium-expert-v2

” 100
“
(T ol
B 1000 2000 3000 4000 o 2000 4000 6000 8000 10000 500 1000 1500 2000 2500 3000 3500 o 1000 2000 3000 4000 5000
(a) Mujoco Locomation
antmaze-umaze-v0 antmaze-umaze-diverse-v0 antmaze-medium-play-v0 antmaze-medium-diverse-v0 antmaze-large-play-v0
. . .
= - - 150 000
= i 1000 -
a0 e | L
2000 . -
200 bl
antmaze-large-diverse-v0 kitchen-complete-v0 kitchen-partial-v0 kitchen-mix-v0
w000 L 1
B
5000 bl |
4000 o b “
0 os u »
° o 02 04 06 o8 10 5 0 20 90 30 350 °3 100 200 300 400 500 3 100 200 200 00
(b) Antmanze & Kitchen
pen-human-v0 hammer-human-v0 door-human-v0 relocate-human-v0 pen-cloned-v0
™ J
.
¢ 0
I s # = 200
° 1000 2000 3000 4000 5000 6000 g o 2000 4000 6000 8000 LR 200 400 600 800 1000 o 1000 2000 3000 4000 s 1000 2000 3000 4000 5000 6000
hammer-cloned-v0 door-cloned-v0 relocate-cloned-v0
1000 2500 3000 1
- o]
1500 o 15001
1000 o 10004
500 - 500 4
4 l I-J [N o —

(c) Adroit

Figure 2. Full Visualization of Trajectory Return Distributions.

