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Abstract
Preference-based reinforcement learning (PbRL)
bypasses explicit reward engineering by infer-
ring reward functions from human preference
comparisons, enabling better alignment with hu-
man intentions. However, humans often strug-
gle to label a clear preference between similar
segments, reducing label efficiency and limiting
PbRL’s real-world applicability. To address this,
we propose an offline PbRL method: Contrastive
LeArning for ResolvIng Ambiguous Feedback
(CLARIFY), which learns a trajectory embed-
ding space that incorporates preference informa-
tion, ensuring clearly distinguished segments are
spaced apart, thus facilitating the selection of
more unambiguous queries. Extensive experi-
ments demonstrate that CLARIFY outperforms
baselines in both non-ideal teachers and real hu-
man feedback settings. Our approach not only
selects more distinguished queries but also learns
meaningful trajectory embeddings.

1. Introduction
Reinforcement Learning (RL) has achieved remarkable suc-
cess in various domains, including robotics (Kalashnikov
et al., 2018; Ju et al., 2022), gaming (Mnih et al., 2015;
Ibarz et al., 2018), and autonomous systems (Schulman,
2015; Bellemare et al., 2020). However, a fundamental chal-
lenge in RL is the need for well-defined reward functions,
which can be time-consuming and complex to design, espe-
cially when aligning them with human intent. To address
this challenge, several approaches have emerged to learn
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directly from human feedback or demonstrations, avoiding
the need for explicit reward engineering. Preference-based
Reinforcement Learning (PbRL) stands out by using hu-
man preferences between pairs of trajectory segments as
the reward signal (Lee et al., 2021a; Christiano et al., 2017).
This framework, based on pairwise comparisons, is easy to
implement and captures human intent effectively.

However, when trajectory segments are highly similar, it
becomes difficult for humans to differentiate between them
and identify subtle differences (Inman, 2006; Bencze et al.,
2021). Therefore, existing PbRL methods (Lee et al., 2021a;
Liang et al., 2022; Park et al., 2022) face this significant
challenge of ambiguous queries: humans struggle to give a
clear signal for highly similar segments, leading to ambigu-
ous preferences. As highlighted in previous work (Mu et al.,
2024), this problem of ambiguous queries not only hinders
labeling efficiency but also restricts the practical application
of PbRL in real-world settings.

In this paper, we focus on solving this problem in offline
PbRL by selecting a larger proportion of unambiguous
queries. We propose a novel method, CLARIFY, which
uses contrastive learning to learn trajectory embeddings
and incorporate preference information, as outlined in Fig-
ure 1. CLARIFY features two contrastive losses to learn
a meaningful embedding space. The ambiguity loss lever-
ages the ambiguity information of queries, increasing the
distance between embeddings of clearly distinguished seg-
ments while reducing the distance between ambiguous ones.
The quadrilateral loss utilizes the preference information
of queries, modeling the relationship between better and
worse-performing segments as quadrilaterals. With theoret-
ical guarantees, the two losses allow us to select more un-
ambiguous queries based on the embedding space, thereby
improving label efficiency.

Extensive experiments show the effectiveness CLARIFY.
First, CLARIFY outperforms the state-of-the-art offline
PbRL methods under non-ideal feedback from both scripted
teachers and real human labelers. Second, CLARIFY sig-
nificantly increases the proportion of unambiguous queries.
We conduct human experiments to demonstrate that the
queries selected by CLARIFY are more clearly distin-
guished, thereby improving human labeling efficiency. Fi-
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Figure 1: The framework of CLARIFY. 1) Train the trajectory embeddings via contrastive learning, incorporating preference
information. 2) Using the embedding space, select clearly distinguished queries for non-ideal teachers via reject sampling.

nally, the visualization analysis of the learned embedding
space reveals that segments with clearer distinctions are
widely separated while similar segments are closely clus-
tered together. This clustering behavior confirms the mean-
ingfulness and coherence of the embedding space.

2. Related Work
Preference-based RL (PbRL). PbRL allows agents to
learn from human preferences between pairs of trajectory
segments, eliminating the need for reward engineering
(Christiano et al., 2017). Previous PbRL works focus on
improving feedback efficiency via query selection (Ibarz
et al., 2018; Biyik et al., 2020), unsupervised pretraining
(Lee et al., 2021a; Mu et al., 2024), and feedback augmenta-
tion (Park et al., 2022; Choi et al., 2024). Also, PbRL has
been successfully applied to fine-tuning large language mod-
els (LLMs) (Ouyang et al., 2022), where human feedback
serves as a more accessible alternative to reward functions.

In offline PbRL, an agent learns a policy from an offline
trajectory dataset without reward signals, alongside pref-
erence feedback on segment pairs provided by a teacher.
Traditional methods (Shin et al., 2023) follow a two-phase
process: training a reward model from preference feedback,
and then performing offline RL. Some works (Kim et al.,
2022; Gao et al., 2024) focus on preference modeling, while
others (Hejna & Sadigh, 2024; Kang et al., 2023) optimize
policies directly from preference feedback.

Learning from non-ideal feedback. Despite PbRL’s po-
tential, real-world human feedback is often non-ideal, a
growing area of concern. To address this, Lee et al. (2021b)
proposes a model of non-ideal feedback. Cheng et al. (2024)
assumes random label errors, identifying outliers via loss
function values. Xue et al. (2023) improves reward ro-
bustness through regularization constraints. However, these
approaches still rely on idealized models of feedback, which
diverge from real human decision-making. Mu et al. (2024)
is perhaps the closest work to ours, addressing the challenge
of labeling similar segments in online PbRL, which aligns

with the ambiguous query issue. However, the method of
Mu et al. (2024) cannot be applied to offline settings. This
paper focuses on addressing this issue in the offline PbRL.

Contrastive learning for RL. Contrastive learning is
widely used in self-supervised learning to differentiate be-
tween positive and negative samples and extract meaningful
features (Oord et al., 2018; Chen & He, 2021). In RL, it has
been applied to representation learning in image-based RL
(Laskin et al., 2020; Yuan & Lu, 2022) to improve learning
efficiency, and to temporal distance learning (Myers et al.,
2024; Jiang et al., 2024) to encourage exploration. In this pa-
per, we apply contrastive learning to incorporate preference
into trajectory representations for offline PbRL.

3. Preliminaries
Preference-based RL. In RL, an agent aims to maximize
the cumulative discounted rewards in a Markov Decision
Process (MDP), defined by a tuple (S,A, P, r, γ). S and A
are the state and action space, P = P (·|s, a) is the environ-
ment transition dynamics, r = r(s, a) is the reward function,
and γ is the discount factor. In offline PbRL, the true reward
function r is unknown, and we have an offline dataset D
without reward signals. We request preference feedback p
for two trajectory segments σ0 and σ1 of length H sampled
from D. p = 0 denotes σ1 is preferred (σ1 ≻ σ0), p = 1
denotes the opposite (σ1 ≺ σ0). In cases where segments
are too similar to distinguish, we set p = no cop, and
this label is skipped during learning. The preference data
(σ0, σ1, p) forms the preference dataset Dp.

Conventional offline PbRL methods estimate a reward func-
tion r̂ = r̂ψ(s, a) from Dp and use it to train a policy πθ via
offline RL. The Preference model, typically based on the
Bradley-Terry model (Bradley & Terry, 1952), estimates the
probability Pψ[σ1 ≻ σ0] as:

Pψ[σ1 ≻ σ0] =
exp

∑
t r̂ψ(s

1
t , a

1
t )∑

i∈{0,1} exp
∑
t r̂ψ(s

i
t, a

i
t)
. (1)

The following cross-entropy loss is minimized:
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Figure 2: Illustration of quadrilateral loss Lquad. (a) A demonstration of the main idea of Lquad. (b) An embedding
visualization of the intuitive example in Section 4.1. (c) True embedding visualization results of the benchmark experiments
on the “drawer-open” task, under skip rate ϵ = 0.5 and ϵ = 0.7.

min
ψ
Lreward = − E

(σ0,σ1,p)∼Dp

[
(1− p) logPψ[σ0 ≻ σ1]

+ p logPψ[σ1 ≻ σ0]
]
.

(2)

Contrastive learning. Contrastive learning is a self-
supervised learning approach, which learns meaningful rep-
resentations by comparing pairs of samples. The basic idea
is to bring similar (positive) samples closer in the embedding
space while pushing dissimilar (negative) samples apart.
Early works (Chopra et al., 2005) directly optimize this
objective, using the following loss function:

Lcontrastive =
1

2N

N∑
i=1

[
I(yi=yj)∥zi − zj∥22

+ I(yi ̸=yj) max(0,m− ∥zi − zj∥2)2
]
,

(3)

where zi is the representation of sample i, Iyi=yj and
I(yi ̸=yj) are indicator functions, and m is a pre-defined mar-
gin. InfoNCE loss (Oord et al., 2018) is widely used in
recent works, which is formulated as:

LInfoNCE = − log
exp(sim(zi, z

′
i)/t)∑K

k=1 exp(sim(zi, zk)/t)
, (4)

where sim(·, ·) is the similarity function, z′i denotes the pos-
itive sample of zi, and t is a temperature scaling parameter.
In our work, we apply contrastive learning to model trajec-
tory representations, incorporating preference information.
The encoder z = fϕ(τ) models arbitrary-length trajectory
τ , and its corresponding preference-based loss functions are
detailed in Section 4.1.

4. Method
In this section, we start by introducing the issue of ambigu-
ous queries: humans struggle to clearly distinguish between

similar trajectory segments, making the query ambiguous.
This issue, validated in human experiments (Mu et al., 2024),
hinders the practical application of PbRL. While previous
work (Mu et al., 2024) tackles this issue in online PbRL
settings, it remains unsolved in offline settings.

To tackle ambiguous queries in offline PbRL, we propose
a novel method, Contrastive LeArning for ResolvIng Am-
biguous Feedback (CLARIFY), which maximizes the se-
lection of clearly-distinguished queries to improve human
labeling efficiency. Our approach is based on contrastive
learning, integrating preference information into trajectory
embeddings. In the learned embedding space, clearly dis-
tinguished segments are well-separated, while ambiguous
segments remain close, as detailed in Section 4.1. Based
on this embedding, we introduce a query selection method
in Section 4.2 to select more unambiguous queries. The
overall framework of CLARIFY is illustrated in Figure 1
and Algorithm 1, with implementation details provided in
Section 4.3.

4.1. Representation Learning

In this subsection, we first formalize the problem of
preference-based representation learning. Our goal is to
train an encoder z = fϕ(τ), where z is a fixed-dimensional
embedding of trajectory τ . We leverage a preference dataset
Dp containing tuples (σ0, σ1, p), where σ0 and σ1 are tra-
jectory segments, and p ∈ {0, 1,no cop} indicates the
preference: p = 0 if σ0 is preferred, p = 1 if σ1 is preferred,
and p = no cop if the segments are too similar to compare.

A well-structured embedding space should maximize the
distance between clearly distinguished segments while min-
imizing the distance between ambiguous ones. In such
a space, trajectories with similar performance are close,
while those with large performance gaps are far apart. This
results in a meaningful and coherent embedding space,
where high-performance trajectories form one cluster, low-
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performance trajectories form another, and intermediate
trajectories smoothly transition between them. To achieve
this, we propose two contrastive learning losses.

Ambiguity loss Lamb. The first loss, called the ambiguity
loss, directly optimizes this goal. It maximizes the distance
between the embeddings of clearly distinguished segment
pairs and minimizes the distance between ambiguous ones:

min
ϕ
Lamb =

[
− E

(σ0,σ1,p)∼Dp,
p∈{0,1}

ℓ(z0, z1)

+ E
(σ0,σ1,p)∼Dp,
p=no cop

ℓ(z0, z1)
]
,

(5)

where z0 = fϕ(σ0), z1 = fϕ(σ1), and ℓ(·, ·) is the distance
metric.

However, relying solely on the ambiguity loss Lamb can
cause several issues. First, when the preference dataset is
small, continuous optimization of Lamb may lead to over-
fitting. Additionally, Lamb alone can cause representation
collapse, where ambiguous segments are mapped to the
same point in the embedding space. This is because Lamb
only leverages ambiguity information (whether segments
are distinguishable) but ignores preference relations (which
segment is better). The quadrilateral loss Lquad, introduced
below, mitigates this issue by acting as a regularizer, ensur-
ing the embedding space better captures the full preference
structure and improving representation quality.

Quadrilateral loss Lquad. To address these issues, we
introduce the quadrilateral loss Lquad, which directly models
preference relations between segment pairs, better capturing
the underlying structure in the embedding space. Specif-
ically, for two clearly distinguished queries (σ+, σ−) and
(σ′

+, σ
′
−), where σ+ and σ′

+ are preferred over σ− and σ′
−,

we create a quadrilateral-shaped relationship between their
embeddings. By utilizing pairs of queries, the training data
size grows from O(n) to O(n2), mitigating the overfitting
issue caused by limited preference data.

The core idea Lquad is illustrated in Figure 2(a). For each
pair of clearly distinguished queries, we treat σ+ and σ′

+ as
“positive” samples, as they are preferred over σ− and σ′

−,
the “negative” samples. The quadrilateral loss encourages
the sum of distances between positive samples σ+, σ

′
+ and

between negative samples σ−, σ
′
− to be smaller than the sum

of distances within positive or negative pairs (i.e., between
σ+ and σ−, or σ′

+ and σ−). Formally, this is expressed as:

min
ϕ
Lquad =− E

((σ+,σ−),(σ′
+,σ

′
−))∼Dp

[
ℓ(z+, z−

′
)

+ ℓ(z+
′
, z−)− ℓ(z+, z+

′
)− ℓ(z−, z−

′
)
]
,

(6)
where z+ = fϕ(σ+), z

+′
= fϕ(σ

′
+), z

− = fϕ(σ−), z
−′

=
fϕ(σ

′
−).

An intuitive example. To demonstrate the effectiveness
of the quadrilateral loss, we conducted a simple experiment.
We generated 1000 data points with values uniformly dis-
tributed between 0 and 1, initializing each data point’s em-
bedding as a 2-dim vector sampled from a standard normal
distribution. We then optimized these embeddings using
the quadrilateral loss. As shown in Figure 2(b), the learned
embedding space exhibits a smooth and meaningful distribu-
tion, with higher-valued data points transitioning gradually
to lower-valued ones. Please refer to Appendix C.3 for
experimental details.

4.2. Query Selection

This section presents a query selection method based on
rejection sampling to select more unambiguous queries. For
a given query (σ0, σ1, p), we calculate the embedding dis-
tance demb = ℓ(fϕ(σ0), fϕ(σ1)) between its two segments.
For a batch of queries, we can obtain a distribution p(demb)
of the embedding distances. We aim to manipulate this dis-
tribution using rejection sampling to increase the proportion
of clearly distinguished queries.

We define the rejection sampling distribution q(demb) as
follows. First, we estimate the density functions ρclr(demb)
and ρamb(demb) = 1 − ρclr(demb) for clearly-distinguished
and ambiguous pairs, using the existing preference dataset
Dp. These densities reflect the likelihood of observing
a distance demb for each type of segment pair. Next, we
compute a new density function:

ρ1(demb) =
max (0, ρclr(demb)− ρamb(demb))∫
max (0, ρclr(d′)− ρamb(d′)) dd′

,

ρ2(demb) =
ρclr(demb)/ρamb(demb)∫
(ρclr(d′)/ρamb(d′))dd′

,

ρ(demb) = 0.5(ρ1(demb) + ρ2(demb)).

(7)

This density function emphasizes the distances where clearly
distinguished segments are more frequent than ambiguous
ones. Finally, we multiply this new density function by the
original distribution p(demb) to obtain the rejection sampling
distribution q(demb):

q(demb) = p(demb) · ρ(demb), (8)

which increases the likelihood of selecting queries with
clearly distinguished segment pairs, improving labeling effi-
ciency. For the remaining queries after rejection sampling,
we follow prior work (Lee et al., 2021a; Shin et al., 2023)
by selecting those with maximum disagreement.

4.3. Implementation Details

Embedding training. For embedding training in Section
4.1, we adopt a Bi-directional Decision Transformer (BDT)
architecture (Furuta et al., 2021a), where the encoder z =
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Table 1: Success rates on Metaworld tasks (the first 7 tasks) and episodic returns on DMControl tasks (the last 2 tasks),
over 6 random seeds. We use skip rate ϵ = 0.5, 0.7 and report the average performance and standard deviation of the last 5
trained policies. The yellow and gray shading represent the best and second-best performances, respectively.

Skip
Rate Algorithm box-close dial-turn drawer-open handle

-pull-side hammer peg-insert
-side sweep-into cheetah-run walker-walk

- IQL 94.90 ± 1.42 76.50 ± 1.73 98.60 ± 0.45 99.30 ± 0.59 72.00 ± 2.35 88.40 ± 1.30 79.40 ± 1.91 607.46 ± 8.13 830.15 ± 20.08

0.5

MR 0.26 ± 0.02 14.46 ± 5.27 50.47 ± 6.24 79.73 ± 12.19 0.14 ± 0.08 9.23 ± 2.03 23.25 ± 9.67 205.04 ± 50.53 322.93 ± 161.07

OPRL 8.25 ± 3.16 57.33 ± 25.02 72.67 ± 2.87 83.92 ± 7.98 14.80 ± 5.27 22.00 ± 4.64 61.00 ± 7.52 531.96 ± 48.75 646.40 ± 51.35

PT 0.15 ± 0.20 30.54 ± 7.24 61.64 ± 10.07 89.75 ± 6.07 0.11 ± 0.10 10.20 ± 2.94 46.35 ± 3.35 384.59 ± 99.26 599.43 ± 39.42

OPPO 0.56 ± 0.79 13.06 ± 12.74 11.67 ± 6.24 0.56 ± 0.79 2.78 ± 4.78 0.00 ± 0.00 15.56 ± 11.57 346.01 ± 127.78 311.27 ± 42.73

LiRE 3.60 ± 0.69 46.20 ± 6.75 63.47 ± 10.38 52.07 ± 33.58 16.20 ± 13.37 21.60 ± 4.00 57.47 ± 2.74 553.61 ± 43.16 789.18 ± 28.77

CLARIFY 29.40 ± 16.27 77.50 ± 7.37 83.50 ± 7.40 95.00 ± 1.22 26.75 ± 11.26 24.25 ± 6.65 68.00 ± 7.13 617.31 ± 14.43 796.34 ± 12.87

0.7

MR 0.20 ± 0.11 16.57 ± 8.22 45.51 ± 10.25 74.82 ± 17.10 0.06 ± 0.09 5.21 ± 2.63 17.22 ± 6.05 234.77 ± 81.40 306.39 ± 134.72

OPRL 7.40 ± 6.97 63.40 ± 9.46 46.50 ± 18.83 84.00 ± 7.11 5.00 ± 2.28 23.75 ± 5.36 52.00 ± 9.33 513.94 ± 55.45 664.16 ± 89.47

PT 0.18 ± 0.18 25.64 ± 7.40 64.72 ± 18.44 74.94 ± 12.56 0.09 ± 0.05 8.21 ± 4.07 28.52 ± 6.67 429.19 ± 44.92 647.68 ± 38.53

OPPO 0.56 ± 0.79 2.78 ± 2.83 11.67 ± 6.24 0.56 ± 0.79 4.44 ± 6.29 0.00 ± 0.00 15.56 ± 11.57 355.69 ± 59.35 304.19 ± 16.25

LiRE 7.67 ± 16.79 38.40 ± 8.52 39.10 ± 6.78 50.60 ± 31.59 14.25 ± 7.30 23.40 ± 3.40 56.00 ± 6.40 514.75 ± 10.02 795.02 ± 22.80

CLARIFY 17.50 ± 6.87 79.40 ± 3.83 78.60 ± 10.52 95.00 ± 1.10 28.75 ± 15.58 23.00 ± 1.22 59.67 ± 10.09 593.24 ± 22.75 816.54 ± 11.08

fϕ(τ) and the decoder â = πϕ′(s, z) are Transformer-based.
The model is trained with a reconstruction loss:

min
ϕ,ϕ′
Lrecon = E τ∼D

(s,a)∼τ

∥∥πϕ′ (s, fϕ(τ)) , a
∥∥
2
. (9)

Appendix E provides more details on BDT. Also, to stabilize
training, we constrain the L2 norm of the embeddings to be
close to 1. Without this constraint, embeddings may either
grow unbounded or collapse to the origin, both of which
can cause training to fail:

min
ϕ
Lnorm = Eτ∼Dmax (∥fϕ(τ)∥2, 1) . (10)

The final loss function combines these terms:

L = Lrecon + λambLamb + λquadLquad + λnormLnorm, (11)

where λamb, λquad, λnorm are hyperparameters. We use the
L2 distance as the distance metric ℓ(·, ·).

Rejection sampling. For rejection sampling in Section 4.2,
following the successful discretization of low-dimensional
features in prior RL works (Bellemare et al., 2017; Furuta
et al., 2021b), we discretize the embedding distance demb it
into nbin intervals to handle continuous distributions.

Based on the above discussion, the overall process of CLAR-
IFY is summarized in Algorithm 1. First, we randomly
sample a query batch to pretrain the encoder and reward
model. Next, we select queries based on the pretrained em-
bedding space, update the preference dataset Dp and reward
model, and retrain the embedding using the updated Dp.
Finally, we train the policy πθ using a standard offline RL
algorithm, such as IQL (Kostrikov et al., 2021). Additional
implementation details are provided in Appendix C.2.

5. Theoretical Analysis
This section establishes the theoretical foundation of CLAR-
IFY’s embedding framework and provides insights into the

proposed objective. We present two key propositions show-
ing that the losses Lquad and Lamb ensure: 1) margin separa-
tion for distinguishable samples, and 2) convex separability
of preference signals in the embedding space. The first
property guarantees a meaningful geometric embedding for
selecting distinguishable samples, while the second ensures
that the embedding space does not collapse and maintains a
clear separation between positive and negative samples.

Margin guarantees for disentangled representations.
Proposition 5.1 formalizes how Lamb enforces geometric
separation between trajectories with distinguishable value
differences.

Proposition 5.1 (Positive Separation Margin under Optimal
Ambiguity Loss). Let Dp be a distribution over labeled tra-
jectory pairs (σ0, σ1, p) with p ∈ {0, 1,no cop}. Define
P = {(σ0, σ1) | p ∈ {0, 1}} and N = {(σ0, σ1) | p =
no cop}. Let

ϕ∗ = argmin
ϕ
Lamb(ϕ), zi = fϕ∗(σi),

and set
d+min = inf

(σ0,σ1)∈P
ℓ(z0, z1),

d−max = sup
(σ0,σ1)∈N

ℓ(z0, z1),

where ℓ(z0, z1) = ∥z0−z1∥. If the class {fϕ} is continuous
and sufficiently expressive, and supp(Dp) is compact in
(σ0, σ1)-space, then there exists δ > 0 such that

d+min ≥ d−max + δ > 0.

Proof. Please refer to Appendix A.1 for detailed proof.

This proposition guarantees that the ambiguity-loss min-
imizer ϕ∗ yields not only a correct ordering of pairwise
distances but also enforces a strict margin δ > 0:

inf
(σ0,σ1)∈P

∥z0 − z1∥ ≥ sup
(σ0,σ1)∈N

∥z0 − z1∥+ δ.
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(d) walker-walk

Figure 3: Visualizations of the learned embedding spaces under ϵ = 0.5, where segments with high returns (bright color)
and low returns (dark color) are clearly separated into distinct clusters, with a smooth transition between their centers.

In effect, CLARIFY’s objective Lamb provably carves out a
uniform buffer δ around all distinguishable trajectory pairs,
endowing the learned embedding space with a nontrivial
geometric margin that enhances robustness and separability.

Convex geometry of preference signals. The second propo-
sition characterizes how Lquad induces convex separability
in the embedding space. We show that minimizing this loss
directly translates to constructing a robust decision boundary
between preferred and non-preferred trajectories:

Proposition 5.2 (Convex Separability). Assume the positive
and negative samples are distributed in two convex sets C+
and C− in the embedding space. Let µ+ = E[z+] and µ− =
E[z−] denote the class centroids. If Lquad is minimized with
a margin η > 0, then there exists a hyperplane H defined
by:

H = {z ∈ Rd | wT z + b = 0}

such that for all z+ ∈ C+ and z− ∈ C−,

d̃(z+,H) ≥ η and d̃(z−,H) ≤ −η

where d̃(z,H) = (w⊤b + z)/||w|| denotes the signed dis-
tance from z toH.

Proof. Please refer to Appendix A.2 for detailed proof.

The second proposition characterizes the separability
achieved in the embedding space. The centroid separation
µ+ − µ− acts as a global discriminator, while the margin
η ensures local robustness against ambiguous samples near
decision boundaries. This result has two key implications:
1) The existence of a separating hyperplane H guarantees
linear separability of preferences, enabling simple query
selection policies (e.g., margin-based sampling) to achieve
high labeling efficiency. 2) The margin η directly quan-
tifies the “safety gap” against ambiguous queries, where
any query pair within 2η distance would be automatically
filtered out as unreliable. This mathematically substantiates
our method’s ability to actively avoid ambiguous queries
during human feedback collection.

To better illustrate the dynamics of the embedding space
of the proposed losses, we provide a gradient-based analy-

sis to explain, available in Appendix A.3. Overall, CLAR-
IFY’s framework combines three principles: 1) Margin max-
imization for query disambiguation, 2) Convex geometric
separation for reliable hyperplane decisions, 3) Dynami-
cally balanced contrastive gradients for stable embedding
learning. Together, these properties ensure that the learned
representation is both geometrically meaningful (aligned
with trajectory values) and algorithmically useful (enabling
efficient query selection).

6. Experiments
We designed our experiments to answer the following ques-
tions: Q1: How does CLARIFY compare to other state-of-
the-art methods under non-ideal teachers? Q2: Can CLAR-
IFY improve label efficiency by query selection? Q3: Can
CLARIFY learn a meaningful embedding space for trajec-
tory representation? Q4: What is the contribution of each
of the proposed techniques in CLARIFY?

6.1. Setups

Dataset and tasks. Previous offline PbRL studies often use
D4RL (Fu et al., 2020) for evaluation, but D4RL is shown
to be insensitive to reward learning due to the “survival in-
stinct” (Li et al., 2023), where performance can remain high
even with wrong rewards (Shin et al., 2023). To address this,
we use the offline dataset presented by Choi et al. (2024)
with Metaworld (Yu et al., 2020) and DMControl (Tassa
et al., 2018), which has been proven to be suitable for re-
ward learning (Choi et al., 2024). Specifically, we choose
7 complex Metaworld tasks: box-close, dial-turn, drawer-
open, handle-pull-side, hammer, peg-insert-side, sweep-into,
and 2 complex DMControl tasks: cheetah-run, walker-walk.
Task details are provided in Appendix C.1.

Baselines. We compare CLARIFY with several state-of-
the-art methods, including Markovian Reward (MR), Pref-
erence Transformer (PT) (Kim et al., 2022), OPRL (Shin
et al., 2023), OPPO (Kang et al., 2023), and LiRE (Choi
et al., 2024). MR is based on a Markovian reward model
using MLP layers, serving as the baseline in PT, which uses
a Transformer for reward modeling. OPRL leverages reward
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Figure 4: Query clarity ratio and accuracy of human labels
for CLARIFY and OPRL, with CLARIFY-selected queries
are more clearly distinguished for humans.

ensembles and selects queries with maximum disagreement.
OPPO also learns trajectory embeddings but optimizes the
policy directly in the embedding space. LiRE uses the
listwise comparison to augment the feedback. Following
prior work, we use IQL (Kostrikov et al., 2021) to optimize
the policy after reward learning. Also, we train IQL with
ground truth rewards as a performance upper bound. More
implementation details are provided in Appendix C.2.

Non-ideal teacher design. Following prior works (Lee
et al., 2021a; Shin et al., 2023), we use a scripted teacher
for systematic evaluation, which provides preferences be-
tween segments based on the sum of ground truth rewards
rgt. To better mimic human decision-making uncertainty,
we introduce a “skip” mechanism. When the performance
difference between two segments σ0, σ1 is marginal, that is,∣∣∣∣ ∑

(s,a)∈σ0

rgt(s, a)− Σ(s,a)∈σ1
rgt(s, a)

∣∣∣∣ < ϵH · ravg, (12)

the teacher skips the query by assigning p = no cop. Here,
H is the segment length, and ravg is the average ground
truth reward for transitions in offline dataset D. We refer
to ϵ ∈ (0, 1) as the skip rate. This model is similar to the
“threshold” mechanism in Choi et al. (2024), but differs from
the “skip” teacher in B-Pref (Lee et al., 2021b), which skips
segments with too small returns.

6.2. Evaluation on the Offline PbRL Benchmark

Benchmark results. We compare CLARIFY with baselines
on Metaworld and DMControl. Table 1 shows that skipping
degrades MR’s performance, even with PT. LiRE improves
MR via listwise comparison, while OPRL enhances perfor-
mance by selecting maximally disagreed queries. OPPO is
similarly affected by skipping, performing on par with MR.
In contrast, CLARIFY selects clearer queries, improving
reward learning and achieving the best results in most tasks.

Enhanced query clarity. To assess CLARIFY’s ability to
select unambiguous queries, we compare the distinguish-
able query ratio under a non-ideal teacher. Table 3 shows
CLARIFY achieves higher query clarity across tasks.

We further validate this via human experiments on dial-

Table 2: Performance of CLARIFY and MR using different
numbers of queries, under skip rate ϵ = 0.5.

# of
Queries

dial-turn sweep-into

CLARIFY MR CLARIFY MR

100 59.50 ± 4.67 49.50 ± 10.16 54.00 ± 2.16 49.67 ± 4.03

500 77.25 ± 6.87 50.50 ± 5.98 68.67 ± 1.70 56.67 ± 4.03

1000 77.50 ± 3.01 57.33 ± 5.02 68.00 ± 3.19 61.00 ± 7.52

2000 77.80 ± 6.10 59.00 ± 5.72 68.75 ± 1.48 63.25 ± 6.02

Table 3: Ratios of clearly-distinguished queries under the
non-ideal teacher with ϵ = 0.5, for CLARIFY and baselines.

dial-turn hammer sweep-into walker-walk

CLARIFY 76.33% 62.67% 68.67% 46.86%
MR 46.95% 50.33% 36.67% 36.28%

OPRL 31.67% 12.67% 25.60% 15.64%
PT 43.90% 49.33% 31.67% 37.90%

turn, hammer, and walker-walk. Labelers provide 20 prefer-
ence labels per run over 3 seeds, selecting the segment best
achieving the task (e.g., upright posture in walker-walk).
Unclear queries are skipped. Appendix D details task objec-
tives and prompts.

We evaluate with:

1) Query clarity: the ratio of queries with human-provided
preferences.
2) Accuracy: agreement between human labels and ground
truth.

Figure 4 confirms CLARIFY’s superior query clarity and
accuracy, validating its effectiveness.

Embedding space visualizations. We visualize the learned
embedding space using t-SNE in Figure 3. Each point repre-
sents a segment embedding, colored by its normalized return
value. For most tasks, high-performance segments (bright
colors) and low-performance segments (dark colors) form
distinct clusters with smooth transitions, indicating that the
embedding space effectively captures performance differ-
ences. The balanced distribution of points further demon-
strates the stability and quality of the learned representation,
highlighting CLARIFY’s ability to create a meaningful and
coherent embedding space.

6.3. Human Experiments

Validation of the non-ideal teacher. To validate the ap-
propriateness of our non-ideal teacher (Section 6.1), we
conduct a human labeling experiment, where labelers pro-
vide preferences between segment pairs with varying return
differences. The results in Figure 5 show that as the return
difference increases, both the query clarity ratio and accu-
racy improve. This suggests that when the return difference
is small, humans struggle to distinguish between segments,
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Figure 5: Query clarity ratio and accuracy of human labels
for queries with varying return differences (RD). For dial-
turn and hammer, RD values are 300, 100, and 10; for
walker-walk, RD are 30, 10, and 1.

Table 4: Performance of CLARIFY and ρclr-based query
selection method, under skip rate ϵ = 0.5.

Query Selection dial-turn sweep-into

CLARIFY 77.50 ± 3.01 68.00 ± 3.19

ρclr-based 61.33 ± 5.31 48.60 ± 10.74

aligning with our assumption that small return differences
lead to ambiguous queries.

Human evaluation. To evaluate CLARIFY’s perfor-
mance with real human preferences, we conduct experi-
ments comparing CLARIFY with OPRL on the walker-
walk task across 3 random seeds. Human labelers provide
100 feedback samples per run, with preference batch size
M = 20. As shown in Table 5, CLARIFY outperforms
OPRL in policy performance, suggesting that our reward
models have higher quality. Additionally, queries selected
by CLARIFY have higher clarity ratios and accuracy in
human labeling, indicating that our approach improves the
preference labeling process by selecting more clearly distin-
guished queries. For more details on the human experiments,
please refer to Appendix D. We believe these results indicate
CLARIFY’s potential in real-world applications, especially
those involving human feedback, such as LLM alignment.

6.4. Ablation Study

Component analysis. To assess the impact of each con-
trastive loss in CLARIFY, we incrementally apply the ambi-
guity loss Lamb and the quadrilateral loss Lquad. As shown in
Table 6, without either loss, performance is similar to OPRL.
Using only Lamb yields unstable results due to overfitting
early in training. When only Lquad is applied, performance
improves but with slower convergence. When both losses
are used, the best results are achieved, showing that their

Table 5: Performance of CLARIFY and OPRL on walker-
walk task, under real human labelers.

CLARIFY OPRL

Episodic Returns 420.75 ± 52.02 265.91 ± 33.57

Query Clarity Ratio (%) 63.33 ± 8.50 53.33 ± 6.24

Accuracy (%) 87.08 ± 9.15 66.67 ± 4.71

Table 6: Performance of CLARIFY with and without opti-
mizing Lamb and Lquad, under skip rate ϵ = 0.5.

Lamb Lquad dial-turn sweep-into

✗ ✗ 63.20 ± 4.79 40.00 ± 11.29

✓ ✗ 69.00 ± 11.20 52.80 ± 17.01

✗ ✓ 71.25 ± 8.81 62.20 ± 4.92

✓ ✓ 77.50 ± 3.01 68.00 ± 3.19

combination is crucial to the method’s success.

Ablation on the query selection. We compare two query
selection methods: CLARIFY ‘s rejection sampling and
a density-based approach that selects the highest-density
queries ρclr(d), aiming for the most clearly distinguished
queries. As shown in Table 4, the density-based method per-
forms poorly, likely due to selecting overly similar queries,
reducing diversity in the queries. In contrast, CLARIFY
selects a more diverse set of unambiguous queries, yielding
better performance.

Enhanced query efficiency. We compare the performance
of CLARIFY and MR using different numbers of queries.
As shown in Table 2, CLARIFY outperforms MR consis-
tently, even if only 100 queries are provided. The result
demonstrates CLARIFY’s ability to make better use of the
limited feedback budget.

Ablation on hyperparameters. As Figure 6 visualizes,
when varying the values of λdist, λquad, and λnorm, the qual-
ity of embedding space remains largely unaffected. This
demonstrates the robustness of CLARIFY to hyperparame-
ter changes, as small adjustments do not significantly alter
the quality of learned embeddings.

7. Conclusion
This paper presents CLARIFY, a novel approach that en-
hances PbRL by addressing the ambiguous query issue.
Leveraging contrastive learning, CLARIFY learns trajec-
tory embeddings with preference information and employs
reject sampling to select more clearly distinguished queries,
improving label efficiency. Experiments show CLARIFY
outperforms existing methods in policy performance and
labeling efficiency, generating high-quality embeddings that
boost human feedback accuracy in real-world applications,
making PbRL more practical.
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improve the alignment of reinforcement learning agents with
human preferences, enabling more precise and adaptable
AI systems. Such advancements could have broad soci-
etal implications, particularly in domains like healthcare,
education, and autonomous systems, where understanding
and responding to human intent is crucial. By enhancing
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sponsible advancement of AI technologies, improving their
safety, fairness, and applicability in real-world scenarios.
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A. Additional Proofs and Theoretical Analysis
A.1. Proof of Proposition 5.1: Margin Lower Bound

Theorem A.1 (Proposition 5.1, restated). Let Dp be a distribution over trajectory-pairs (σ0, σ1, p) where p ∈
{0, 1,no cop}. Define

P =
{
(σ0, σ1) | p ∈ {0, 1}

}
, N =

{
(σ0, σ1) | p = no cop

}
. (13)

Let ϕ∗ = argmin
ϕ
Lamb(ϕ). Assume:

1. (Compactness) The support of Dp in (σ0, σ1)-space is compact, and each fϕ is continuous.

2. (Richness) For any two pairs (z+0 , z
+
1 ) with (σ+

0 , σ
+
1 ) ∈ P and (z−0 , z−1 ) with (σ−

0 , σ
−
1 ) ∈ N , there exists an

infinitesimal perturbation of ϕ∗ that simultaneously changes ℓ(z+0 , z
+
1 ) and ℓ(z−0 , z−1 ) without affect other embeddings.

Write zi = fϕ∗(σi) and define

d+min = inf
(σ0,σ1)∈P

ℓ(z0, z1), d−max = sup
(σ0,σ1)∈N

ℓ(z0, z1). (14)

Then there exists a constant δ > 0 such that

d+min ≥ d−max + δ > 0. (15)

Proof. We first show that
d+min > d−max. (16)

Set
A(ϕ) := E(σ0,σ1)∈P

[
ℓ
(
fϕ(σ0), fϕ(σ1)

)]
, B(ϕ) := E(σ0,σ1)∈D

[
ℓ
(
fϕ(σ0), fϕ(σ1)

)]
, (17)

so that Lamb(ϕ) = −A(ϕ) +B(ϕ). Since ϕ∗ is a global minimizer,

Lamb(ϕ
∗) ≤ Lamb(ϕ

∗ +∆ϕ) =⇒ −A(ϕ∗) +B(ϕ∗) ≤ −A(ϕ∗ +∆ϕ) +B(ϕ∗ +∆ϕ) (18)

for every infinitesimal admissible ∆ϕ.

Suppose for contradiction that
d+min ≤ d−max. (19)

Then there exist one distinguished pair (σ+
0 , σ

+
1 ) and one ambiguous pair (σ−

0 , σ
−
1 ) such that

ℓ
(
z+0 , z

+
1

)
≤ ℓ

(
z−0 , z−1

)
. (20)

Because ℓ is strictly increasing in the Euclidean norm, we can choose a tiny ε > 0 and perturb

z+0 7→ z+0 + ε
2 u

+, z+1 7→ z+1 − ε
2 u

+, z−0 7→ z−0 − ε
2 u

−, z−1 7→ z−1 + ε
2 u

−, (21)

where u+ is the unit-vector from z+1 to z+0 (and similarly u−), so as to increase ℓ(z+0 , z
+
1 ) by some δ′ > 0 and decrease

ℓ(z−0 , z−1 ) by some δ′′ > 0. By the richness assumption, this arises from some ϕ∗ +∆ϕ.

Under this perturbation,

A(ϕ∗ +∆ϕ) = A(ϕ∗) + 1
N+ δ′ + (higher-order terms), B(ϕ∗ +∆ϕ) = B(ϕ∗)− 1

N− δ′′ + · · · , (22)

so
Lamb(ϕ

∗ +∆ϕ)− Lamb(ϕ
∗) = − 1

N+ δ′︸ ︷︷ ︸
<0

+ 1
N− δ′′︸ ︷︷ ︸
>0

< 0 (23)

for sufficiently small ε. This contradicts the global optimality of ϕ∗. Therefore

d+min > d−max, (24)
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as claimed.

Then we show the strict gap via compactness. Since the support of Dp is compact and fϕ∗ , ℓ are continuous, the image sets

S+ = {ℓ(z0, z1) | (σ0, σ1) ∈ P}, S− = {ℓ(z0, z1) | (σ0, σ1) ∈ N} (25)

are compact and, by the separation result, disjoint in R. Two disjoint compact subsets of R have a strictly positive gap:

δ = inf S+ − supS− > 0. (26)

Therefore

d+min = inf S+ ≥ supS− + δ = d−max + δ, (27)

completing the proof.

A.2. Proof of Proposition 5.2: Convex Separability

Proposition A.2 (Margin Guarantee for Lquad). Let C+ and C− ⊂ Rd be convex, and write

µ+ = E[z+], µ− = E[z−], w = µ+ − µ−, b = − 1
2

(
∥µ+∥2 − ∥µ−∥2

)
. (28)

Define the signed distance d̃(z) = (w⊤z + b)/∥w∥. If ϕ globally minimizes

Lquad = −E
[
ℓ(z+, z′−) + ℓ(z′+, z

−)− ℓ(z+, z−)− ℓ(z′+, z
′
−)

]
, (29)

then for every z+ ∈ C+ and z− ∈ C−,

d̃(z+) ≥ η, d̃(z−) ≤ − η, (30)

where η = 1
2 ∥µ

+ − µ−∥.

Proof. Writing out the expectation and differentiating under the integral sign, we can find

∂Lquad

∂w
= 2

(
w − (µ+ − µ−)

)
= 0,

∂Lquad

∂b
= 2

(
b+ 1

2 (∥µ
+∥2 − ∥µ−∥2)

)
= 0. (31)

Hence, at any global minimum,

w = µ+ − µ−, b = − 1
2

(
∥µ+∥2 − ∥µ−∥2

)
. (32)

A direct expansion shows

w⊤z + b = 1
2

(
∥z − µ−∥2 − ∥z − µ+∥2

)
, (33)

so

d̃(µ+) =
∥µ+ − µ−∥2

2∥µ+ − µ−∥
=

1

2
∥µ+ − µ−∥ = η, d̃(µ−) = −η. (34)

Since d̃(z) is an affine function of z and C+, C− are convex, the entire set C+ must lie on or beyond the level set {d̃ = η},
and C− on or beyond {d̃ = −η}. Equivalently,

d̃(z+) ≥ η, d̃(z−) ≤ −η, (35)

for every z+ ∈ C+, z− ∈ C−, as claimed.
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A.3. Gradient Dynamics of Lquad and Lamb

The gradient expressions reveal two key mechanisms that govern the dynamics of the embedding:

• Parametric Alignment (Lquad): The gradient ∇z+Lquad = 2(z+
′ − z−

′
) induces a relational drift, which does not

move z+ towards fixed coordinates but instead navigates based on the relative positions of its augmented counterpart
z+

′ and the negative sample z−
′. This leads to a self-supervised clustering effect, where trajectories with similar

preference labels naturally group together in tight neighborhoods.

• Discriminant Scaling (Lamb): The distance-maximization gradient for distinguishable pairs, −2(z0 − z1), enforces
repulsive dynamics, similar to the Coulomb forces between same-charge particles. In contrast, the gradient for
indistinguishable pairs, 2(z0 − z1), acts like spring forces, pulling uncertain samples toward neutral regions. This
dynamic equilibrium prevents the embedding from collapsing while maintaining geometric coherence with the
preference signals.

Together, these dynamics resemble a potential field in physics: high-preference trajectories act as attractors, low-preference
ones as repulsors, and ambiguous regions as saddle points. This resulting geometry directly facilitates our query selection
objective.
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Figure 6: Embedding visualizations of the drawer-open task with ϵ = 0.5, under different hyperparameters settings. The
subfigure captions of are the values of (λamb, λquad), and (λamb, λquad) = (0.1, 1) is the setting we use in experiments.

B. Additional Experimental Results
Ablation on hyperparameters. As Figure 6 visualizes, when varying the values of λamb, λquad, and λnorm, the quality of
embedding space remains largely unaffected. This demonstrates the robustness of CLARIFY to hyperparameter changes, as
small adjustments do not significantly alter the quality of learned embeddings.

C. Experimental Details
C.1. Tasks

The robotic manipulation tasks from Metaworld (Yu et al., 2020) and the locomotion tasks from DMControl (Tassa et al.,
2018) used in our experiments are shown in Figure 7. The descriptions of these tasks are as follows.

Metaworld Tasks:

1. Box-close: An agent controls a robotic arm to close a box lid from an open position.

2. Dial-turn: An agent controls a robotic arm to rotate a dial to a target angle.

3. Drawer-open: An agent controls a robotic arm to grasp and pull open a drawer.

4. Handle-pull-side: An agent controls a robotic arm to pull a handle sideways to a target position.

5. Hammer: An agent controls a robotic arm to pick up a hammer and use it to drive a nail into a surface.
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Algorithm 1 The proposed offline PbRL method using CLARIFY embedding

Require: Offline dataset D with no reward signal, total feedback number Ntotal, query batch size M , number of discretization
nbin, number of gradient steps ninit, nemb, nreward, coefficients λamb, λquad, λnorm
// Reward learning

1: Initialize preference dataset Dp = ∅
2: Randomly select M queries {(σ0, σ1, p)}M , update Dp ← {(σ0, σ1, p)}M ∪Dp

3: Optimize the encoder fϕ based on Eq. 11 by ninit gradient steps
4: Optimize the reward model r̂θ based on Eq. 2 by nreward gradient steps
5: while total feedback < Ntotal do
6: Select M queries {(σ0, σ1, p)}M based on the query selection method in Section 4.2, update Dp ← {(σ0, σ1, p)}M ∪

Dp

7: Optimize the encoder fϕ based on Eq. 11 by nemb gradient steps
8: Optimize the reward model r̂ψ based on Eq. 2 by nreward gradient steps
9: end while

// Policy learning
10: Label the offline dataset D using reward model r̂θ
11: Train the IQL policy πθ using the relabeled dataset D

6. Peg-insert-side: An agent controls a robotic arm to insert a peg into a hole from the side.

7. Sweep-into: An agent controls a robotic arm to sweep an object into a target area.

DMControl Tasks:

1. Cheetah-run: A planar biped is trained to control its body and run on the ground.

2. Walker-walk: A planar walker is trained to control its body and walk on the ground.

We use the offline dataset from LiRE (Choi et al., 2024) for our experiments. LiRE allows for control over dataset quality by
adjusting the size of the replay buffer (replay buffer size = data quality value * 100000), which provides different levels of
dataset quality. The dataset quality in our experiments differs from the one used in LiRE, as detailed in Table 7. The number
of total preference feedback used in our experiments is detailed in Table 8.

(a) Box-close (b) Dial-turn (c) Drawer-open (d) Hammer (e) Handle-pull-side

(f) peg-insert-side (g) Sweep-into (h) Cheetah-run (i) Walker-walk

Figure 7: Nine tasks from Metaworld (a-g) and DMControl (h, i).
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Table 7: The dataset quality in our experiments. Specifically, to prevent all the methods from failing under our teacher with
the skip mechanism, we enhanced the dataset quality for several tasks.

Task Value of LiRE Value of CLARIFY

Box-close 8.0 9.0
Dial-turn 3.5 3.5

Drawer-open 1.0 1.0
Hammer 5.0 5.0

Handle-pull-side 1.0 2.5
Peg-insert-side 5.0 5.0

Sweep-into 1.0 1.5
Cheetah-run / 6.0
Walker-walk 1.0 1.0

Table 8: Total feedback number Ntotal.

Task Value

Metaworld tasks 1000
Cheetah-run 500
Walker-walk 200

C.2. Implementation Details

In our experiments, MR, PT, OPRL, LiRE, and CLARIFY are all two-step PbRL methods. In these methods, the reward
model is first trained, followed by offline RL using the trained reward model. The reward models used in CLARIFY, MR,
and OPRL share the same structure, as outlined in Table 9. We use the trained reward model to estimate the reward for every
(s, a) pair in the offline RL dataset, and we apply min-max normalization to the reward values so that the minimum and
maximum values are mapped to 0 and 1, respectively. We use IQL as the default offline RL algorithm. The total number of
gradient descent steps in offline RL is 200,000, and we evaluate the success rate or episodic return for 20 episodes every
5,000 steps. For all baselines and our method, we run 6 different seeds. We report the average success rate or episodic return
of the last five trained policies. The hyperparameters for offline policy learning are provided in Table 9.

We follow the official implementations of MR and PT1, OPPO2, and LiRE3. Note that LiRE treats queries with a too-small
reward difference as equally preferred (p = 0.5), while in our setting, these queries are labeled as no cop and excluded
from reward learning.

For the BDT implementation in CLARIFY, we follow the implementation of HIM (Furuta et al., 2021a)4, using the BERT
architecture as the encoder and the GPT architecture as the decoder.

The code repository of our method is:

https://github.com/MoonOutCloudBack/CLARIFY PbRL

The hyperparameters for both the baselines and our method are listed in Table 10.

C.3. Details of the Intuitive Example

To validate the effectiveness of proposed Lquad, we generated 1,000 data points with values uniformly distributed between 0
and 1. Each data point’s embedding was initialized as a 2-dimensional vector sampled from a standard normal distribution.
To simulate the issue of ambiguous queries, we defined queries with value differences smaller than 0.3 as ambiguous. We

1https://github.com/csmile-1006/PreferenceTransformer
2https://github.com/bkkgbkjb/OPPO
3https://github.com/chwoong/LiRE
4https://github.com/frt03/generalized dt
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then optimized these embeddings using the quadrilateral loss. To ensure stability during training, we imposed a penalty to
constrain the L2 norm of the embedding vectors to 1. The learning rate was set to 0.1, and the hyperparameters λquad and
λnorm were set to 1 and 0.1, respectively.

Table 9: Hyperparameters of reward learning and policy learning.

Hyperparameter Value

Reward model

Optimizer Adam
Learning rate 3e-4
Segment length H 50
Batch size 128
Hidden layer dim 256
Hidden layers 3
Activation function ReLU
Final activation Tanh
# of updates nreward 50
# of ensembles 3
Reward from the ensemble models Average
Query batch size M 50

IQL

Optimizer Adam
Critic, Actor, Value hidden dim 256
Critic, Actor, Value hidden layers 2
Critic, Actor, Value activation function ReLU
Critic, Actor, Value learning rate 0.5
Mini-batch size 256
Discount factor 0.99
β 3.0
τ 0.7

D. Human Experiments
Preference collection. We collect feedback from human labelers (the authors) familiar with the tasks. Specifically, they
watched video renderings of each segment and selected the one that better achieved the objective. Each trajectory segment
was 1.5 seconds long, consisting of 50 timesteps. For Figure 5, labelers provided labels for 20 queries for each reward
difference across 3 random seeds. For Figure 4, we ran 3 random seeds for each method, with labelers providing 20
preference labels for each run. For Table 5, we ran 3 random seeds for each method, with labelers providing 100 preference
labels for each run, and the preference batch size M = 20.

Prompts given to human labelers. The prompts below describe the task objectives and guide preference judgments.

Metaworld dial-turn task.

Task Purpose:

In this task, you will be comparing two segments of a robotic arm trying to turn a dial. Your goal is to evaluate which
segment performs better in achieving the task’s objectives.

Instructions:

• Step 1: First, choose the segment where the robot’s arm reaches the dial more accurately (the reach component).

• Step 2: If the reach performance is the same in both segments, then choose the one where the robot’s gripper is closed
more appropriately (the gripper closed component).

• Step 3: If both reach and gripper closure are equal, choose the segment that has the robot’s arm placed closer to the
target position (the in-place component).
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Metaworld hammer task.

Task Purpose:

In this task, you will be comparing two segments where a robotic arm is hammering a nail. The aim is to evaluate which
segment results in a better execution of the hammering process.

Instructions:

• Step 1: First, choose the segment where the hammerhead is in a better position and the nail is properly hit (the in-place
component).

• Step 2: If the hammerhead positioning is similar in both segments, choose the one where the robot is better holding the
hammer and the nail (the grab component).

• Step 3: If both the hammerhead position and grasping are the same, select the segment where the orientation of the
hammer is more suitable (the quaternion component).

DMControl walker-walk task.

Task Purpose:

In this task, you will compare two segments where a bipedal robot is attempting to walk. Your goal is to determine which
segment shows better walking performance.

Instructions:

• Step 1: First, choose the segment where the robot stands more stably (the standing reward).

• Step 2: If both segments have the same stability, choose the one where the robot moves faster or more smoothly (the
move reward).

• Step 3: If both standing and moving are comparable, select the segment where the robot maintains a better upright
posture (the upright reward).

E. Introduction to Bi-directional Decision Transformer
Introduction to Hindsight Information Matching (HIM). Hindsight Information Matching (HIM) (Furuta et al.,
2021a) aims to improve offline reinforcement learning by aligning the state distribution of learned policies with expert
demonstrations. Instead of directly imitating actions, HIM minimizes the discrepancy between the marginal state distributions
of the learned and expert policies, ensuring that the agent visits states similar to those in expert trajectories. This approach is
particularly effective for multi-task and imitation learning settings, where aligning state distributions across different tasks
can enhance generalization.

The main idea of BDT. BDT is designed for offline one-shot imitation learning, also known as offline multi-task imitation
learning. In this setting, the agent must generalize to unseen tasks after observing only a few expert demonstrations. Standard
Decision Transformer (DT) faces challenges in such scenarios due to its reliance on autoregressive action prediction and
task-specific fine-tuning. In contrast, BDT improves generalization by utilizing bidirectional context, enabling it to infer
useful patterns from limited data. This makes BDT particularly effective for imitation learning tasks where the agent needs
to efficiently adapt to new environments with just a small number of demonstrations.

BDT extends the Decision Transformer (DT) framework by incorporating bidirectional context, which improves sequence
modeling in offline reinforcement learning. Unlike standard DT, which predicts actions autoregressively using causal
attention, BDT adds an anti-causal transformer that processes the trajectory in reverse order. This anti-causal component
enables BDT to use both past and future information, making it highly effective for state-marginal matching and imitation
learning.
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The architecture of BDT. In this paper, we utilize the encoder-decoder framework of BDT to learn the trajectory
representation. The architecture of BDT consists of two transformer networks: a causal transformer that models forward
dependencies in the trajectory, and an anti-causal transformer that captures backward dependencies. This bidirectional
structure allows BDT to extract richer temporal patterns, improving its ability to learn from diverse offline datasets.

18



CLARIFY: Contrastive Preference RL for Untangling Ambiguous Queries

Table 10: Hyperparameters of baselines and CLARIFY.

Hyperparameter Value

OPRL Initial preference labels M = 50
Query selection Maximizing disagreement

PT

Optimizer AdamW
# of layers 1
# of attention heads 4
Embedding dimension 256
Dropout rate 0.1

OPPO

Optimizer AdamW
Learning rate 1e-4
z∗ learning rate 1e-3
Number of layers 4
Number of attention heads 4
Activation function ReLU
Triplet loss margin 1
Batch size 256
Context length 50
Embedding dimension 16
Dropout 0.1
Grad norm clip 0.25
Weight decay 1e-4
α 0.5
β 0.1

LiRE Reward model Linear
RLT feedback limit Q 100

CLARIFY

Embedding dimension 16
Activation function ReLU
λamb 0.1
λquad 1
λnorm 0.1
Batch size 256
Context length 50
Dropout 0.1
Number of layers 4
Number of attention heads 4
Grad norm clip 0.25
Weight decay 1e-4
ninit 20000
nemb 2000
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