
Multi-group Uncertainty Quantification for Long-form Text Generation

Terrance Liu1 Zhiwei Steven Wu1

1Carnegie Mellon University

Abstract

While past works have shown how uncertainty
quantification can be applied to large language
model (LLM) outputs, the question of whether
resulting uncertainty guarantees still hold within
sub-groupings of data remains open. In our work,
given some long-form text generated by an LLM,
we study uncertainty at both the level of individ-
ual claims contained within the output (via cal-
ibration) and across the entire output itself (via
conformal prediction). Using biography genera-
tion as a testbed for this study, we derive a set
of (demographic) attributes (e.g., whether some
text describes a man or woman) for each gener-
ation to form such “subgroups” of data. We find
that although canonical methods for both types
of uncertainty quantification perform well when
measuring across the entire dataset, such guar-
antees break down when examining particular
subgroups. Having established this issue, we in-
voke group-conditional methods for uncertainty
quantification—multicalibration and multivalid
conformal prediction—and find that across a vari-
ety of approaches, additional subgroup information
consistently improves calibration and conformal
prediction within subgroups (while crucially re-
taining guarantees across the entire dataset). As
the problems of calibration, conformal prediction,
and their multi-group counterparts have not been
extensively explored in the context of long-form
text generation, we consider these results to form
a benchmark for this setting.

1 INTRODUCTION

In recent years, researchers have developed stronger large
language models that perform well on a variety of tasks

across different domains [Touvron et al., 2023, Bubeck et al.,
2023, Anil et al., 2023]. However, as use of LLMs continues
to grow, so do concerns over their tendency to hallucinate
facts [Huang et al., 2023]. As a result, there is a growing
need for methods that can reduce hallucinations [Manakul
et al., 2023, Zhang et al., 2023], perform abstention [Yang
et al., 2023], or provide correctness guarantees [Kumar et al.,
2023, Mohri and Hashimoto, 2024, Quach et al., 2023]. Our
work focuses on the latter—broadly speaking, uncertainty
quantification of long-form large language model genera-
tions.

Concretely, given a set of claims produced by an LLM in
response to some prompt, our goal is to provide a confidence
score or uncertainty guarantee about the factual correctness
of the output. We explore this problem in two settings: given
a set of claims contained within some long-form prompt re-
sponse, we (1) ensure factuality at the individual claim level
and (2) provide uncertainty guarantees across the whole
set of claims. We approach problem (1) via calibration,
in which one wishes to output a calibrated score for each
claim, while for problem (2), we apply conformal predic-
tion [Shafer and Vovk, 2008], selecting a subset of claims
that—with high probability—are all correct.

In contrast to existing works on uncertainty guarantees
of long-form generations [Quach et al., 2023, Mohri and
Hashimoto, 2024], we make the observation that while these
guarantees may be valid under the full data distribution,
they may not still be valid within individual subgroups of
the distribution. For example, generations describing local
politicians may be more prone to error than generations con-
cerning national leaders. We choose biography generation as
a testbed for multi-group uncertainty quantification, arguing
that this problem is well-motivated, given that bias within
biography generation has long been studied [De-Arteaga
et al., 2019]. Having derived a set of subgroups using demo-
graphic information (e.g., whether an LLM output describes
a man or woman), we find that when evaluated with respect
to such groupings, canonical methods for calibration and



conformal prediction indeed exhibit significant biases.1

Having established such issues for standard uncertainty
quantification approaches, we shift our attention to under-
standing to what extent such biases can be corrected. To
address this unmet need, we introduce methods quantifying
uncertainty in long-form text generation that are valid not
only across a full distribution of prompts (i.e., marginally)
but also across identifiable subgroups of prompts (i.e., con-
ditionally). Invoking (1) multicalibration [Hébert-Johnson
et al., 2018] and (2) multivalid conformal prediction [Jung
et al., 2022], we categorize methods into two styles: iterative
“patching” and linear regressor-based algorithms.

Our results demonstrate that for both problems (1) and (2),
multicalibration and multivalid conformal prediction tech-
niques improve measures of uncertainty relative to standard
(marginal) calibration and conformal prediction methods.
This advantage holds regardless of whether evaluation is
conducted within groups or across the entire dataset. As
the problems of calibration, conformal prediction, and their
multi-group counterparts have not been extensively explored
in the context of long-form text generation, we consider
these results to form a benchmark for this setting.

1.1 RELATED WORK

Factuality in long-form LLM outputs. Evaluating factu-
ality for long-form generation [Min et al., 2023a, Song et al.,
2024, Wei et al., 2024, Bayat et al., 2024] is challenging: not
only do generated outputs consist of many parts that must
be scored individually, but also scoring each part requires
prohibitively costly manual annotation. To make evaluation
more tractable, Min et al. [2023a] introduce FACTSCORE,
which converts any generation into a set of atomic facts
(claims) that are then labeled as true or false. Using this
evaluation metric, Min et al. [2023a] test LLMs’ abilities
to generate biographies and find that their generations are
pervaded with errors.

Attaching confidence scores to LLM outputs. While a
natural method for producing an uncertainty estimate is to
use a model’s output probabilities directly as a confidence
score [Achiam et al., 2023], it has been shown that model
probabilities are not well calibrated [Guo et al., 2017]. As a
result, many works have recently proposed alternative meth-
ods for generating uncertainty scores that can then be used
to refine or correct LLM outputs [Wang et al., 2022, Xiong
et al., 2023, Geng et al., 2024, Fadeeva et al., 2023, Vashurin
et al., 2024]. We highlight that such work is complementary
to our line of work—rather than proposing an entirely new
uncertainty score function, we focus on how one can better

1Uncertainty can be epistemic and aleatoric, and sources of
group bias can be categorized into either (or both) types. Our work,
which focuses on atomic factuality in long-form generation, falls
under epistemic uncertainty.

leverage existing scores to produce uncertainty guarantees.

Uncertainty quantification for LLMs. We note that
much of the prior work on multicalibration and multivalid
conformal prediction are rooted in theory. Like Detommaso
et al. [2024], our work tries to bridge the gap between the-
oretical insights and practical problems today (i.e., LLM
generations). However, while Detommaso et al. [2024] cali-
brate for correctness in question-answering, we are the first
to apply multicalibration to claims decomposed from long-
form text generation. Moreover, unlike Detommaso et al.
[2024], we consider uncertainty quantification in the form
of conformal prediction.

In addition, our work closely relates to Mohri and
Hashimoto [2024], which aims to provide high probability
guarantees of factuality in long-form generation. In partic-
ular, Mohri and Hashimoto [2024] frame this problem as
a nested conformal prediction problem, producing subsets
of claims that achieve some marginally valid coverage (i.e.,
produce some generation that on average, contains a cor-
rect output with any user-specified probability). Our work,
however, extends this problem to multivalid conformal pre-
diction: we produce generations that are not only correct on
average but are also conditionally correct across subgroups.

Finally, concurrent work by Cherian et al. [2024] also builds
off this framework, but unlike our work, they introduce a
new objective in which the goal is to instead guarantee that
at least some given proportion of claims are retained. By
applying a method proposed in Gibbs et al. [2023], Cherian
et al. [2024]’s algorithm can (optionally) condition on group
membership. However, their experiments include only 5
(non-overlapping) groups that are derived from the same
feature, while our work focuses on the more challenging
setting in which examples can simultaneously belong to
many groups.

2 PRELIMINARIES

2.1 CALIBRATION

We begin by defining calibration in context of factuality in
open-ended text generation. Suppose we are given some
(X,Y ) ∼ D where X ∈ X denotes some claim outputted
by an LLM, while Y is an indicator in which Y = 1 when
the claim is correct (and Y = 0 otherwise). Suppose there
exists some uncertainty score function f : X → [0, 1] that
measures confidence for the correctness of some input X
(with higher values denoting higher levels of confidence).
Then a goal one may have when designing such a score
function f is to have that

PD(Y = 1 | f(X) = p) = p,∀x ∈ X (1)

In other words, the probability that some LLM output is
correct is given exactly by f .



Calibration, then, defines a simpler, more tractable condition,
in which instead of ensuring guarantees across all possible
values of f , it ensures a guarantee over coarser, level sets
Sp(f):

Definition 1. (Calibration) A function f is calibrated w.r.t
D if

∆p(f) = 0,∀p ∈ [0, 1]

where ∆p(f) is the bias of f for the p-th level set Sp(f) =
{f(x) = p}:

∆p(f) = ED[Y − f(X) | Sp(f)]

Defining level sets is akin to dividing the output space of
f (i.e., [0, 1]) into buckets. For example, one could round
f(X) to the nearest value in some predefined set of prob-
abilities (e.g. {0, 0.5, 1.0}). One can view this definition
of calibration as a desirable guarantee since it serves as a
minimal condition for Equation 1—any f that satisfies (1)
must (at the very least) also be calibrated. We note that to
evaluate calibration, we can consider the average squared
calibration error (ASCE) of f .

ASCE(f) = EP [∆
2
P (f)] (2)

The ASCE averages the squared bias across all level sets
and is zero when f is calibrated.

Multicalibration. While calibration provides an already
important and useful guarantee, it can often be insufficient
in many real-world scenarios. For example, in the context of
generating information about people, one maybe desire that
f is calibrated not only across all people, but also within
subpopulations defined by demographic attributes like sex
or gender. Otherwise, it is possible that certain subgroups
can still suffer from very high miscalibration, even when
the score function is perfectly calibrated across D. Ideally,
one would hope to have guarantees while conditioning on
as many subgroups in X as possible, both from the perspec-
tive of machine learning fairness as well as enhancing the
likelihood of correctness in general.

Multicalibration [Hébert-Johnson et al., 2018] was devel-
oped to provide accurate guarantees across overlapping sub-
groups (i.e., a sample can belong to many groups). Let
g : X → {0, 1} be a group function that evaluates to 1 if
X belongs to some group. We study, then, the setting in
which there exists of set of groups G that corresponds to our
data domain D. While the set of groups can be disjoint, the
problem of multicalibration then becomes trivial in this case
because one can simply split a dataset into disjoint sets that
can then each be calibrated individually. Consequently, prior
work typically considers the more interesting case where
many intersecting groups comprise G.

Given a group function g, we define group average squared
calibration error (gASCE) as:

gASCE(f, g) = EP [∆
2
p,g(f) | g(X) = 1] (3)

where

∆p,g(f) = ED[Y − f(X) | Sp,g(f)]

for Sp,g = {f(X) = p, g(x) = 1}. In other words, gASCE
conditions on both level sets and group membership. Finally,
we have:

Definition 2. (Multicalibration) A function f is α-
multicalibrated w.r.t D and a set of groups G if and only
if

gASCE(f, g) <
α

PD(g(X) = 1)
,∀g ∈ G

2.2 CONFORMAL PREDICTION

In conformal prediction, the general goal is to produce some
confidence set T (X) for some example X such that this
set marginally covers the true label Y with some target
probability 1− α.

PD(Y ∈ T (X)) = 1− α (4)

The second part of our work follows the problem statement
outlined in Mohri and Hashimoto [2024]. Unlike in calibra-
tion, where each claim contained in some long-form gener-
ation is treated individually, Mohri and Hashimoto [2024]
instead define their problem in terms of pairs (X,Y ), where
X is some input prompt and L(X) = Y ∈ Y is the long-
form generation outputted by a LLM L. Because Y may or
may not be supported by some reference ground truth Y ∗,2

Mohri and Hashimoto [2024] define factuality in terms of en-
tailment operations Y ∗ =⇒ Y . Furthermore, they rewrite
this relation as Y ∗ ∈ E(Y ) = {Y ′ ∈ Y : Y ′ =⇒ Y }.
This equivalent set notation, in other words, means that
some reference ground truth Y ∗ (e.g., a Wikipedia article in
Min et al. [2023a]) is contained in the set of possible texts
Y ′ that support all claims made in the LLM output Y .

Given this notation, the goal is to find some uncertainty set
T (L(X)) s.t. PD(Y ∈ T (L(X))) = 1− α. In the context
of long-form text generation, this goal translates to taking as
input the original LLM output L(X) and producing a subset
of claims T (L(X)) such that with high probability, 1− α,
all remaining claims are factually correct.

We note that to empirically measure such guarantees, one
can use the coverage error of T w.r.t the target error rate α.

|PD(Y /∈ T (X))− α| (5)

Multivalid Conformal Prediction. Similar to calibration,
one may also desire group conditional coverage guarantees
for intersecting groups. Known as multivalid conformal
prediction [Jung et al., 2022], these guarantees are stronger

2in the case of FActScore [Min et al., 2023a], "is Y supported
by Wikipedia?"



than marginal conformal guarantees, holding also when
conditioned on group membership. Using group functions
g, as defined in Section 2.1, full multivalid coverage can be
written as the following: Given some set of groups G, we
have that

PD(Y ∈ T (X) | g(X) = 1) = 1− α (6)

for all group functions g ∈ G. Thus, target coverage guar-
antees 1− α must hold both marginally and within all sub-
groups.

3 METHODS

Next, we introduce the methods (and their group-conditional
variants) for applying calibration and conformal prediction
to language model factuality. We organize these methods
into two categories: (1) iterative “patching”-based algo-
rithms and (2) linear regressor algorithms. As mentioned
previously, prior exploration of long-form text generation
has been limited. While Mohri and Hashimoto [2024] eval-
uate one variant—split conformal (SC)—on a small set of
entities, we are not aware of prior work that has considered
other uncertainty quantification methods in this setting.

3.1 ITERATIVE “PATCHING” ALGORITHMS

The first category of algorithms can be characterized as
patching algorithms. Given a base method for calibration
or conformal prediction, one iterates through groups g ∈ G
in which the method does poorly on. At each iteration, the
algorithm corrects the bias (i.e., patches up the function) on
just that subset of examples (i.e., g(x) = 1). Once some
stopping condition is met,3 the final, "patched up" function
satisfies multi-group guarantees.

Calibration. For calibration, we consider Histogram Bin-
ning (HB) [Zadrozny and Elkan, 2001], presented in Algo-
rithm 1. This method, takes some base scoring function f
and discretizes the output space to a set of p-th level sets
Sp(f), as defined in Section 2.1. Given some target grid of
values p ∈ [ 1m ], we round f to the closest value in the grid

f ′(x) = argmin
p∈[ 1

m ]

|f(x)− p|.

3In the standard formulation of iterative patching, the stopping
criteria is set as a function over the number of bins so that one can
prove guarantees about algorithm (see Roth [2022]). In practice,
we found this stopping criteria to be too conservative, and so
we instead run iterative patching on the calibration and test sets
concurrently and use the calibration set to determine the stopping
iteration (i.e., we enforce early stopping once we can no longer
make improvements on the calibration set).

Algorithm 1 Histogram Binning (HB)

1: Input: scoring function f ′

2: for p ∈ [ 1m ] do
3: Set

f̂(x) =

{
f ′(x) + ∆p(f

′) if x ∈ Sp(f
′)

f ′(x) otherwise

4: end for
5: Output: f̂

Algorithm 1 then applies a constant correction4 for each
level set Sp(f) in the grid, based on the calibration error of
the model f ′.

In Algorithm 2, we present the multi-group version of his-
togram binning, known as Iterative Grouped Histogram
Binning (IGHB) [Hébert-Johnson et al., 2018]. In this algo-
rithm, we instead apply a constant correction conditioned on
Sp,g (i.e., both the level set and group membership). At each
step t, IGHB identifies Sp,g for which the calibration error
(weighted by the group size) is highest and then corrects it
for this level set and group. The algorithm then continues
until some stopping condition is met, iteratively patching f ′

for various groups g ∈ G.

Algorithm 2 Iterative Grouped Histogram Binning (IGHB)

1: Input: scoring function f ′, max iterations T
2: Let Ht(p, g) = PD(Sp,g(ft))∆

2
p,g(ft)

3: Initialize f0 = f ′

4: for t ∈ {0, 1, . . . , T − 1} do
5: Set

(pt, gt) = argmax
p∈[ 1

m ],g∈G
Ht(p, g)

6: Let ∆t = ∆pt,gt and St = Spt,gt

7: Set

ht+1(x) =

{
ft(x) + ∆t(ft) if x ∈ St(ft)

ft(x) otherwise

8: Set ft+1 = ht+1

9: if Ht(pt, gt) ≥ Ht−1(pt−1, gt−1) then
10: Set t = t-1
11: break
12: end if
13: end for
14: Output: Ht

4In Algorithms 1 and 2, we assume true data distribution is
given, and therefore we can calculate ∆p,g . In practice (and our
experiments) ∆p,g is estimated using a calibration set.



Conformal prediction. We first present the Split Con-
formal (SC) method [Shafer and Vovk, 2008, Gupta et al.,
2022]. In particular, we consider the standard approach
where one constructs a set of nested sets and each output
set contains some subset F(X )t of claims generated by the
LLM.

Following Mohri and Hashimoto [2024], we define these
nested sets T as thresholds sets where each set F(L(X))
contains the set of all individual claims {x ∈ L(X) |
f(x) > t} for some scoring function f . More formally,
we have that F(L(X))t∈T satisfies the nested sequence
property if for t, t′ ∈ T , t ≤ t′, we have that Ft(L(X)) ⊆
Ft′(L(X)).

To construct these threshold sets, we have that

r(X,Y ) = inf{t ∈ T , Y ∈ Ft(L(X))}

where r defines the minimum safe threshold such that Y ∈
Ft(L(X)) for all t > r(X,Y ). Practically speaking, given
some set of uncertainty scores f(x) for each claim x ∈
L(X), r(X,Y ) defines the minimum value such that any
set of claims Ft(L(X)) = {x ∈ L(X) | f(x) ≥ t} will be
entirely true if and only if t ≥ r(X,Y ).

Given some calibration set D̂ of size n and some target
error rate α (or target coverage 1 − α), split conformal
simply outputs the set Fqα(L(X)) for any X , where qα
is the ⌈(n+1)(1−α)⌉

n th-quantile of scores {r(Xi, Yi)}ni=1 for
Xi, Yi ∈ D̂.

In Algorithm 3, we present the multivalid split confor-
mal (MVSC) prediction technique that closely resembles
methods originally proposed in Jung et al. [2022]. Simi-
lar to IGHB, we start with some base threshold (i.e., the
threshold qα obtained from using split conformal). Then
at each iteration t, we find the group gt that has the worst
squared coverage error ∆t,g, weighted by the size of the
group P (gt(X) = 1). Then, we simply "patch" the thresh-
olds for examples {(X,Y ) | gt(X) = 1}, again using
the ⌈(n+1)(1−α)⌉

n th-quantile of scores for (X,Y ) belong to
group gt. Like in IGHB, we continue patching the set of
thresholds until some stopping criterion is met.

3.2 LINEAR REGRESSOR ALGORITHMS

Next, we consider algorithms that instead solve an opti-
mization problem for the purpose of calibration and con-
formal prediction. In these cases, one can naturally make
them multi-group/valid by including group-membership
(i.e., g(X) = 1 for all g ∈ G) in the optimization prob-
lem itself. Formally, we describe these linear regression
based methods in Algorithms 4 and 5. Presented in this way,
the methods for calibration vs. conformal prediction is re-
duced to a choice of loss function L. Again, we assume one
has access to some calibration set for which one solves the
optimization problem on.

Algorithm 3 Multivalid Split Conformal (MVSC)

1: Input: calibration set D̂, LLM L, fact-level scoring
function f , target error rate α, split conformal threshold
qα, max iterations T

2: Let Fht
(L(X)) = {x ∈ L(X) | f(x) ≥ ht(X)}

3: Let ∆t,g = PD(Y ∈ Fht
(L(X)) | g(X) = 1)

4: Let Ht(g) = PD(g(X) = 1)[(1− α)−∆t,g]
2

5: Initialize h0(X) = qα
6: for t ∈ {0, 1, . . . , T − 1} do
7: Set

gt = argmax
g∈G

Ht(g)

8: Let D̂t = {(X,Y ) ∈ D̂ | gt(X) = 1}
9: Set qt to be the ⌈(n+1)(1−α)⌉

n th-quantile of scores
{r(Xi, Yi)} for Xi, Yi ∈ D̂t

10: Set

ht+1(X) =

{
qt if gt(X) = 1

ft(X) otherwise

11: if Ht(gt) ≥ Ht−1(gt−1) then
12: Set t = t-1
13: break
14: end if
15: end for
16: Output: ht

Calibration. For calibration, one can choose L to be bi-
nary cross-entropy loss. In doing so, Algorithm 4 then de-
scribes Platt Scaling (PS) [Platt, 1999], which can be de-
scribed as fitting a logistic regression model to some set
of model outputs to obtain calibrated probability scores.5

Algorithm 5 describes the multi-calibrated version of Platt
Scaling. While not explicitly derived in their work, this mul-
ticalibration formulation can be traced back to Gopalan et al.
[2022], who establish a hierarchy of notions for multicalibra-
tion and analyze multicalibration on functions trained with
linear loss. Going forward, we refer to this method as Group
Conditional Unbiased Logistic Regression (GCULR).

Conformal prediction. For conformal prediction, we in-
stead choose L to be pinball loss. We refer to the non-group
version of this method (Algorithm 4) as Conformalized
Quantile Regression (CQR) [Romano et al., 2019], in which

5A related calibration method to Platt scaling (PS) is tem-
perature scaling (TS) [Guo et al., 2017], which was originally
introduced for calibrating neural networks for multiclass classifica-
tion and has been incorporated in work on calibrating NLP models
[Sicilia et al., 2024]. We note, however, that in the binary classifi-
cation setting (e.g., our setting where we identify if an output is
correct or not), TS is mathematically equivalent to PS when there
is no bias term and the weight takes on the form 1

τ
, where τ is the

temperature learned in TS.



Algorithm 4 Linear Regressor

1: Input: data distribution D, scoring function f , loss
function L

2: Set

λ̂ = argmin
λ

E(X,Y )∼D [L (f(X;λ), Y )]

s.t. f(X;λ) = λ0 + λ1f(X)

3: Output:f(X; λ̂)

Algorithm 5 Group-conditional Linear Regressor

1: Input: data distribution D, scoring function f , loss
function L, set of groups G

2: Set

λ̂ = argmin
λ

E(X,Y )∼D [L (f(X;λ), Y )]

s.t. f(X;λ) = λ0 + λ1f(X) +
∑

λg∈G λgg(x)

3: Output:f(X; λ̂)

given some target coverage 1 − α, we fit a linear quantile
regression model that minimizes pinball loss.

In our conformal prediction setting, as described in Section
2.2, X is an entire biography, or set of independent claims.
Thus, to adapt quantile regression to long-form generation,
we propose setting f(X) to be a vector of uncertainty scores
for each claim x ∈ X . Like in split conformal, the target is
then the minimum threshold r(X,Y ) for which all claims
above it are correct. In the multivalid case, we then add
group features g(X) to the optimization problem. A version
of Algorithm 5 was first presented by Jung et al. [2022],
and going forward, we will refer to this method as Group
Conditional Conformalized Quantile Regression (GCCQR).

We note that in our experiments, each biography generated
by the LLM may have a different number of claims, a set-
ting in which prior work on conformal quantile regression
does not account for. Consequently, we propose using inter-
polation to (un)squeeze the set of scores to a vector f(X)
of fixed size (K = 25 in our experiments). While Mohri
and Hashimoto [2024] only show that split conformal can
be applied to this type of setting, our experiments demon-
strate that quantile regression methods achieve similar per-
formance for marginal (CQR) and multigroup (GCCQR)
methods (Section 5).

4 EMPIRICAL EVALUATION

We focus our empirical evaluation on the problem of biogra-
phy generation, which we contend serves as a very suitable
testbed for evaluating factuality and has been used as a
benchmark in a variety of works in recent years. Outputting

biographies offers one the ability to evaluate not only a set
of objective and specific claims but also on a wide range of
topics, which in turn allows us to explore a rich set of group
functions for each person. Moreover, bias within biography
generation has long been a studied issue, further motivating
the problem of ensuring group-conditional guarantees. Like
Min et al. [2023a], we use a language model to automate
the process of decomposing biographies into claims and
evaluating for factuality (Appendix B.1).

Dataset We evaluate on a large set of biographies by ex-
tracting 8,541 entities from the Natural Questions dataset
[Kwiatkowski et al., 2019], which consists of real queries
issued to the Google search engine. We denote this dataset
as BIO-NQ. Our motivation for choosing Natural Questions
is that these extracted human entities should serve as a repre-
sentative sample of public figures that users may prompt an
LLM about. For each question, we select all entities in either
the question’s short answer or accompanying Wikipedia ar-
ticle. We then attempt to match them to their corresponding
Wikidata entry. If a match exists and its Wikidata page’s
property, if instance of, is equal to the value, human, we add
the entity to our dataset BIO-NQ.

Collecting group features To obtain groups for each per-
son found in our dataset, we extract properties by scraping
Wikidata for each entity and identifying ones that are com-
monly shared among entities in BIO-NQ. The exact group
attributes we use in our experiments are described in Ap-
pendix B. To form groups G from these attributes, we take
all 1 and 2-way combinations of attributes and the values
they take on, giving us |G| = 77 subgroups.

Generating confidence scores The algorithms described
in Section 3 require a base scoring function. For experi-
ments, we use the following:

1. Self-consistency [Wang et al., 2022]: Our first score
is a frequency-based scoring function inspired by self-
consistency. To score each claim found in a generated
biography, we prompt the LLM to output a biography
M additional times. We use the proportion of times the
claim is contained in the additional reference genera-
tions as the uncertainty score. We automate the calcu-
lation of this score using BM25 and AlignScore [Zha
et al., 2023] (See Appendix B.2).

2. P(True) [Kadavath et al., 2022]: For each biograph-
ical claim, we prompt the LLM to assess whether it
is true or false. We then output the ratio of next to-
ken probabilities of the tokens for “true” and “false”:

P (True)
P (True)+P (False) .

3. Verbalized confidence [Tian et al., 2023]: To output
verbalized confidence as an uncertainty estimate, one
prompts the LLM to directly output their confidence
level in its response. We originally tried having the



Model Base Score Metric Uncalibrated HB IGHB PS GCULR

Llama

self-consistency
marginal 0.32291 0.00875 0.00038 0.00022 0.00015*

group max 0.42343 0.07711 0.01481 0.05791 0.00628*
group mean 0.33352 0.01597 0.00289 0.00636 0.00111*

P(True)
marginal 0.11768 0.00451 0.00021* 0.00036 0.00022

group max 0.20701 0.06988 0.01798 0.06025 0.00697*
group mean 0.12682 0.01176 0.00328 0.00654 0.00145*

verb. conf.
marginal 0.01642 0.00014 0.00055 0.00013* 0.00023

group max 0.06645 0.06634 0.01315 0.06709 0.00730*
group mean 0.02447 0.00738 0.00357 0.00750 0.00154*

Mistral

self-consistency
marginal 0.30706 0.01163 0.00026 0.00029 0.00013*

group max 0.43659 0.08372 0.01660 0.05729 0.00487*
group mean 0.32067 0.01988 0.00269 0.00726 0.00097*

P(True)
marginal 0.06291 0.00074 0.00031 0.00047 0.00015*

group max 0.12293 0.06942 0.01417 0.07054 0.00587*
group mean 0.07173 0.00896 0.00309 0.00886 0.00132*

verb. conf.
marginal 0.22229 0.00047 0.00036 0.00034 0.00015*

group max 0.33763 0.06922 0.01453 0.07080 0.00653*
group mean 0.23230 0.00869 0.00315 0.00878 0.00128*

Table 1: We generate biographies using Llama 2 7B Chat and Mistral 7B Instruct for entities from BIO-NQ and compare
each calibration method (HB, PS) against its multicalibration counterpart (IGHB, GCULR) on ASCE, max gASCE, and
average gASCE (↓ better). We test each method using the base scores: self-consistency, P(True), and verbalized confidence.
We bold the better-performing method for each pairing and use * to denote the best-performing method across all methods.

model rate its confidence numerically (e.g., output an
integer between 1-5, 1-10, 1-100, etc.). However, we
found these base scores to be somewhat unreliable. In-
stead, we ask the LLM to rate its confidence in each
individual claim using integers between 1 and 5. We
then output a weighted sum of the next-token probabil-
ities for the tokens “1” through “5”:

∑5
r=1 r × P (r).

5 EMPIRICAL RESULTS

To assess the efficacy of the methods introduced in Section 3,
we present results for the task of biography generation using
outputs from Llama 2 7B Chat [Touvron et al., 2023] and
Mistral 7B Instruct v0.2 [Jiang et al., 2023]. We randomly
split the entities into 80-20 calibration-test splits, averaging
results over 10 randomly generated splits.

We stress that the primary goal (and novelty) of our work
is to evaluate—as it pertains to metrics for uncertainty
quantification—the (1) efficacy and failures of marginal
methods and (2) the extent to which multi-group methods
improve over them. In supplementary results found in Ap-
pendix A, we include additional analysis comparing how
marginal and group-conditional methods behave. Tables 11,
12, 13, and 14 of the appendix provide examples of the
types of outputs produced by both marginal and multivalid
conformal methods.

Calibration. In Table 1, we report ASCE, max gASCE,
and mean gASCE, comparing each calibration method
(HB, PS) against its multicalibration counterpart (IGHB,
GCULR) across various base scoring functions. We find that
marginal calibration methods (HB, PS) are able to correct
the uncalibrated uncertainty scores, significantly decreasing
ASCE. However, when examining max and mean gASCE,
we find that these methods do not ensure strong guarantees
for uncertainty when evaluating within different subgroups.
The discrepancy is particularity large in cases where the
marginal method performs well w.r.t. marginal ASCE. For
example, when applying PS to self-consistency scores and
comparing ASCE to max group gASCE, we observe that
there exists some subgroup for which the calibration error is
approximately 263x and 198x (for Llama and Mistral output
respectively) worse on that particular subgroup compared
to the dataset as a whole.

In contrast, the multicalibration variants of both the patching
(IGHB) and linear regression (GCULR) techniques signif-
icantly outperform HB and PS in terms of max and mean
gASCE across all experimental settings. Our results provide
strong evidence that regardless of the model, base scoring
function, or algorithm type, incorporating information about
the subgroups in some meaningful way will substantially
correct biases that marginal methods exhibit.

Even more surprising is that when considering just



Model Base Score Metric Uncalibrated HB IGHB PS GCULR

Llama

self-consistency
marginal 0.475 0.169 0.148 0.152 0.143*

group max 0.535 0.323 0.247 0.285 0.235*
group mean 0.479 0.169 0.148 0.152 0.143*

P(True)
marginal 0.274 0.165 0.152 0.157 0.149*

group max 0.341 0.315 0.261 0.305 0.250*
group mean 0.277 0.165 0.152 0.157 0.148*

verb. conf.
marginal 0.177 0.161 0.152 0.161 0.150*

group max 0.270 0.311 0.253 0.311 0.248*
group mean 0.177 0.160 0.152 0.160 0.149*

Mistral

self-consistency
marginal 0.471 0.186 0.164 0.159 0.152*

group max 0.554 0.333 0.285 0.250 0.235*
group mean 0.477 0.186 0.164 0.158 0.152*

P(True)
marginal 0.237 0.175 0.164 0.174 0.161*

group max 0.304 0.318 0.259 0.317 0.249*
group mean 0.237 0.175 0.164 0.174 0.160*

verb. conf.
marginal 0.397 0.175 0.164 0.175 0.161*

group max 0.427 0.318 0.259 0.318 0.249*
group mean 0.398 0.175 0.164 0.174 0.160*

Table 2: We generate biographies using Llama 2 7B Chat and Mistral 7B Instruct for entities from BIO-NQ and compare
each calibration method (HB, PS) against its multicalibration counterpart (IGHB, GCULR) on Brier score (↓ better)
marginally across the entire dataset, as well as within each subgroup (in terms of max and mean over all groups). We test
each method using the base scores: self-consistency, P(True), and verbalized confidence. We bold the better-performing
method for each pairing and use * to denote the best-performing method across all methods.

(marginal) ASCE across the entire dataset, incorporating
group features improves performance as well. Aside from
the experiments calibrating verbalized confidence scores on
Llama 2 7B Chat generations, where HB and PS perform
particularly well, the multicalibration variant outperforms
the marginal method every time, with GCULR being the
best method in almost all cases. While improving marginal
calibration is not the primary focus of our work, these re-
sults suggest that even if one does not specifically require
parity for specific subgroups, collecting additional group
features and applying multicalibration (as opposed to vanilla
calibration) can still be extremely beneficial for generating
better-calibrated uncertainty scores.

Finally, to evaluate fact-level uncertainty more holisti-
cally, we also consider the Brier score, which is the mean
squared error between the uncertainty score function f(X)
and the true label Y . While not a direct measure of
(multi)calibration like ASCE, the Brier score is still useful in
certain settings for quantifying the efficacy of the algorithms
we consider, quantifying desirable properties of calibration
that are not captured by calibration error [Bröcker, 2009,
Liu et al., 2025]. In Table 2, we report the Brier score, also
both marginally and across groups. Similar to our analysis
of ASCE, we again see that standard calibration methods
exhibit failures when evaluating at the group level. However,
IGHB and GCULR outperform HB and PS respectively

across all metrics.

Conformal prediction. For the problem of uncertainty at
the biography level, we apply the vanilla conformal predic-
tion methods SC and CQR and their multivalid counterparts,
MVSC and GCCQR.6 We choose target coverages of be-
tween 0.5 to 0.9, evaluating on biographies generated by
Llama 2 7B Chat and Mistral 7B Instruct.7

We corroborate Mohri and Hashimoto [2024]’s findings
that (standard) conformal prediction methods are able to
achieve close to perfect coverage on biography generation.
Specifically, we show that both SC and CQR achieve target
coverages (Appendix A, Figure 2). Moreover, there is little
difference between the two in terms of the average number
of abstentions and facts per biography retained. However,
when evaluating coverage across individual subgroups, we
find that both methods have some level of error. In Figure
1, we compare the mean absolute coverage error across
all subgroups for each target coverage and find that SC

6To compare methods qualitatively, we provide illustrative
example outputs in Appendix A, Tables 11, 12, 13, and 14.

7Although we evaluate on a wide set of target coverages 1−α,
conformal prediction makes more sense only for higher target
coverages (e.g., 0.8 or higher), since lower coverage guarantees
can often be too weak to be useful in practice.



(a) LLama 2 7B Chat; self-consistency (b) Mistral 7B Instruct; self-consistency

(c) LLama 2 7B Chat; P(True) (d) Mistral 7B Instruct; P(True)

(e) LLama 2 7B Chat; verbalized confidence (f) Mistral 7B Instruct; verbalized confidence

Figure 1: For each target coverage, we run conformal methods (blue: SC, CQR) and their multigroup counterparts (orange:
MVSC, GCCQR) on BIO-NQ using the following base uncertainty scoring functions: (a, b) self-consistency, (c, d) P(True),
and (e, f) verbalized confidence. We evaluate on generations from (a, c, e) Llama 2 7B Chat and (b, d, f) Mistral 7B Instruct.
We calculate the average coverage error across all groups and plot them side by side for each pairing.

and CQR exhibit high mean errors (of up to 0.1 in some
cases), despite achieving almost no error when evaluated
(marginally) across the entire dataset (Figure 2).

Again, we investigate whether incorporating subgroup in-
formation can correct these biases. Here, the message is
clear—multivalid conformal methods improve coverage er-
ror at the group level, regardless of the model, base scoring
function, or algorithm type (Figure 1). We note however
that we do not observe the same performance gains as found
for calibration (Table 1), where group-conditional methods
sometimes outperform marginal ones by an entire order
of magnitude. This finding may result in part due to the
smaller calibration set or the possibility that (multivalid)
conformal prediction for LLMs is a more challenging prob-
lem. We leave further investigation of this observation to
future work.

6 CONCLUSION

In this paper, we conduct an extensive study on uncertainty
quantification for long-form text generation. We focus on
two forms of uncertainty—claim-level (calibration) and
biography-level (conformal prediction)—and present a vari-
ety of methods for these settings. We empirically validate
that marginal methods for calibration and conformal predic-
tion perform well when evaluated across the entire dataset.
However, when looking at subgroup performance, we find
that performance consistently degrades. Introducing two
categories of algorithms (iterative patching and linear re-
gression), we demonstrate that by accounting for additional
groups, multicalibration and multivalid conformal predic-
tion methods correct the aforementioned biases of marginal-
guarantee counterparts. We consider these empirical results
to establish a benchmark for this setting and hope that our
findings will motivate future work in this area.
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A ADDITIONAL ANALYSIS AND RESULTS

We provide additional analysis of the methods studied in our paper. For conciseness, we conduct this analysis on methods
applied to self-consistency scores only. We note, however, that similar findings can be made when applying such methods to
P(True) or verbalized confidence.

HB IGHB ∆

Top 5 ∆

# Wiki prop. = Low & nationality = EU/ME 0.0771 0.0148 -0.0623
# Wiki prop. = Low & has IMDb ID = True 0.0540 0.0055 -0.0485
# Wiki prop. = Low & sport = False 0.0429 0.0031 -0.0398
# Wiki prop. = Low & sex or gender = female 0.0395 0.0033 -0.0362
# Wiki prop. = Low & nationality = NA 0.0379 0.0042 -0.0337

Min ∆ # Wiki prop. = Medium & nationality = APAC 0.0114 0.0088 -0.0026

Table 3: [Calibration on self-consistency scores] Using outputs from Llama 2 7B Chat on BIO-NQ, we calculate the
ASCE for each group using HB and IGHB as well as the difference in ASCE (∆) between the two methods. First, we then
present the top 5 groups according (∆) where top corresponds to groups for which the multicalibration method achieves the
biggest improvement (most negative change ∆). In our experiments, we find that IGHB improves over HB for all groups,
and so as reference, we also present the group with the minimum amount of change between IGHB and HB.

HB IGHB ∆

Top 5 ∆

# Wiki prop. = Low & nationality = EU/ME 0.0837 0.0166 -0.0671
# Wiki prop. = Low & has IMDb ID = True 0.0718 0.0097 -0.0621
# Wiki prop. = Low & sport = False 0.0505 0.0059 -0.0446
# Wiki prop. = Low & nationality = NA 0.0458 0.0088 -0.0370
# Wiki prop. = Low & sex or gender = female 0.0414 0.0045 -0.0369

Min ∆ # Wiki prop. = Medium & nationality = APAC 0.0118 0.0098 -0.0021

Table 4: [Calibration on self-consistency scores] Using outputs from Mistral 7B Instruct on BIO-NQ, we calculate the
ASCE for each group using HB and IGHB as well as the difference in ASCE (∆) between the two methods. First, we then
present the top 5 groups according (∆) where top corresponds to groups for which the multicalibration method achieves the
biggest improvement (most negative change ∆). In our experiments, we find that IGHB improves over HB for all groups,
and so as reference, we also present the group with the minimum amount of change between IGHB and HB.



PS GCULR ∆

Top 5 ∆

# Wiki prop. = Low & nationality = EU/ME 0.0579 0.0063 -0.0516
# Wiki prop. = Low & has IMDb ID = True 0.0375 0.0030 -0.0345
# Wiki prop. = Low & sport = False 0.0266 0.0013 -0.0253
# Wiki prop. = Low & sex or gender = female 0.0243 0.0034 -0.0209
# Wiki prop. = Low & nationality = NA 0.0338 0.0031 -0.0306
Mean 0.0338 0.0031 -0.0306

Bottom 5 ∆

has IMDb ID = True & nationality = APAC 0.0015 0.0018 0.0003
# Wiki prop. = Low & sport = True 0.0028 0.0033 0.0005
has IMDb ID = False & nationality = NA 0.0005 0.0012 0.0007
has IMDb ID = False & sex or gender = female 0.0011 0.0019 0.0008
nationality = APAC & sex or gender = female 0.0016 0.0024 0.0008
Mean 0.0016 0.0024 0.0008

Table 5: [Calibration on self-consistency scores] Using outputs from Llama 2 7B Chat on BIO-NQ, we calculate the ASCE
for each group using PS and GCULR as well as the difference in ASCE (∆) between the two methods. We then present
the top and bottom 5 groups according (∆) where top corresponds to groups for which the multivalid method achieves the
biggest improvement (most negative change ∆). In addition, we calculate the mean values for the top and bottom 5. We
observe that GCULR greatly improves over PS among the top 5 groups, and even in the cases where GCULR worsens
ASCE compared to PS, we find that the errors are already extremely small for both PS and GCULR.

PS GCULR ∆

Top 5 ∆

# Wiki prop. = Low & nationality = EU/ME 0.0573 0.0049 -0.0524
# Wiki prop. = Low & has IMDb ID = True 0.0488 0.0035 -0.0453
# Wiki prop. = Low & sport = False 0.0291 0.0011 -0.0280
# Wiki prop. = Low & nationality = NA 0.0253 0.0018 -0.0235
# Wiki prop. = Low & sex or gender = female 0.0226 0.0026 -0.0200
Mean 0.0366 0.0028 -0.0338

Bottom 5 ∆

# Wiki prop. = Medium & nationality = APAC 0.0018 0.0019 0.0001
nationality = APAC & sex or gender = female 0.0020 0.0027 0.0008
has IMDb ID = False & sex or gender = female 0.0011 0.0022 0.0011
has IMDb ID = True & nationality = APAC 0.0010 0.0022 0.0012
# Wiki prop. = Low & sport = True 0.0021 0.0041 0.0020
Mean 0.0016 0.0026 0.0011

Table 6: [Calibration on self-consistency scores] Using outputs from Mistral 7B Instruct on BIO-NQ, we calculate the
ASCE for each group using PS and GCULR as well as the difference in ASCE (∆) between the two methods. We then
present the top and bottom 5 groups according (∆) where top corresponds to groups for which the multivalid method
achieves the biggest improvement (most negative change ∆). In addition, we calculate the mean values for the top and
bottom 5. We observe that GCULR greatly improves over PS among the top 5 groups, and even in the cases where GCULR
worsens ASCE compared to PS, we find that the errors are already extremely small for both PS and GCULR.



Calibration. In Section 5, we demonstrate that multicalibration methods (IGHB, GCULR) significantly outperform
standard calibration methods (HB, PS) with respect to calibration error both marginally and and within groups (max
and mean gASCE). In this section, we further examine group calibration error, specifically looking at which groups do
multicalibration methods improve over marginal methods most.

First, in Tables 3 and 4, we compare HB to IGHB for outputs from LLAMA 2 7B CHAT and MISTRAL 8B INSTRUCT,
calculating the difference ∆ in ASCE between the two methods for each group. Interestingly, we find that IGHB improves
over HB for every group. We note that this finding is expected when one has access to the true data distribution. In our
case, we implement IGHB using the calibration set (since we do not have access to the true data distribution), suggesting
that the distributions for our calibration and test sets are still close enough such that IGHB is able to achieve such a strong
result. Therefore, we present in Tables 3 and 4 the top 5 groups in terms of improvement ∆ of IGHB compared to HB. For
reference, we also present results for the group with the smallest improvement (to show the minimum improvement of the
method).

Next, in Tables 5 and 6, we compare PS to GCULR for outputs from LLAMA 2 7B CHAT and MISTRAL 8B INSTRUCT.
Upon initial inspection, we find that unlike for HB and IGHB, GCULR does not improve ASCE for every single group
when compared to its standard variant, PS. Thus, in Tables 3 and 4, we instead show the top and bottom 5 groups in terms
of improvement ∆ of GCULR over PS. As shown in these results, like IGHB, GCULR is able to improve ASCE by a
large margin (top 5 ∆). Moreover, we find that among groups (bottom 5 ∆) where GCULR is not able to improve ASCE,
the calibration errors of PS are already very small (≤ 0.0028 for Llama 2 and ≤ 0.0021 for Mistral). While GCULR
does worsen ASCE for these 5 groups, the mean difference ∆ is only 0.0008 and 0.0011 for LLAMA 2 7B CHAT and
MISTRAL 8B INSTRUCT, thereby achieving still small calibration errors. In comparison, when GCULR does correct ASCE
for subgroups, it does so by large margin, with mean reduction in error of 0.0306 and 0.0338 respectively. Consequently, we
still see large improvements for overall mean and max gASCE when comparing GCULR to PS (as shown in Table 1 of the
main body).

Finally, we note that in all tables Tables 3, 4, 5, and 6, we observe the same set of groups in top and bottom 5, sorted
by difference in ASCE ∆. For example, regardless of model (Llama vs Mistral) or algorithm type (iterative patching vs
regression-based), the top 5 groups (and their order) are exactly the same. Similarly, we find that for both models, the group
with the smallest improvement is # Wiki prop. = Medium & nationality = APAC. These observations suggest that our
findings are not unique to either the model choice or calibration algorithm type.

Looking specifically at which groups does multicalibration correct the most (top 5 ∆), we see that our models are most
miscalibrated w.r.t. groups where the # Wikidata properties is low, suggesting that standard calibration methods (HB,
PS) are miscalibrated when it comes to quantifying uncertainty for individuals whose information is not prevalent on the
Internet (and therefore most likely do not appear as often in training data used to train LLMs today). Fortunately, however,
incorporating group information (as is done in IGHB and GCULR) helps alleviate this issue (i.e., in Tables 3 and 4, the
mean ASCE of GCULR for the top and bottom groups is fairly close).

Conformal Prediction. In Figure 2, we provide additional information about the prediction sets outputted by our various
conformal methods on BIO-NQ. On the left panel, we plot the empirical coverage achieved against the target coverage.
Figure 2 demonstrates that all methods achieve the target (marginal) coverage. On the middle panel, we plot the fraction of
biographies retained (i.e., non-abstentions) for each method against the target coverage level, while on the right panel, we
plot the number of facts per biography retained. Generally speaking, all methods retain about the same number of facts
per biography. We also observe that to achieve the same target coverage, with SC and MVSC generally retaining fewer
biographies (i.e., more abstentions) when compared to CQR and GCCQR. However, when comparing each conformal
method (SC and CQR) to their multivalid counterparts (MVSC and GCCQR), we again observe that there are very little
differences between them.

To help illustrate how different conformal methods (e.g., standard conformal vs. the multivalid counterpart) affect the final
output text (i.e., subsets of retained claims), we provide examples1 outputted by models on BIO-NQ. In Tables 11 and 12,
we demonstrate how multivalid conformal methods can produce sets with additional claims retained. Moreover, in some
cases, standard conformal methods (SC, CQR) may produce empty sets (abstain) while their multivalid counterparts do not
(Tables 13 and 14).

Finally, like in the section above, we again examine what groups do multivalid conformal methods improve over standard

1Note that these examples are meant to be illustrative—measuring actual effectiveness of conformal prediction methods must done at
the group or dataset level (e.g., Figure 1).



(a) LLama 2 7B Chat

(b) Mistral 7B Instruct

Figure 2: We report additional metrics for conformal predictions techniques when evaluated on biographies generated for
BIO-NQ. Here, we use self-consistency as our base uncertainty score function. On the top row, we present these metrics for
outputs from LLama 2 7B Chat, and on the bottom, Mistral 7B Instruct. On the left panel, we plot the empirical coverage
achieved against the target coverage. On the middle panel, we plot the fraction of biographies retained for each method
against the target coverage level. Finally, on the right panel, we plot the number of facts per biography retained, again
against the target coverage level.

SC MVSC ∆

Top 5 ∆

# Wiki prop. = Very High & has IMDb ID = True 0.0318 0.0137 -0.0182
# Wiki prop. = Low & nationality = NA 0.0325 0.0153 -0.0171
# Wiki prop. = High & sex or gender = Female 0.0312 0.0183 -0.0129
has IMDb ID = True & plays pro sport = True 0.0427 0.0298 -0.0129
# Wiki prop. = Very High 0.0256 0.0131 -0.0125
Mean 0.0328 0.0180 -0.0147

Bottom 5 ∆

has IMDb ID = False & nationality = APAC 0.0272 0.0401 0.0129
# Wiki prop. = High & has IMDb ID = False 0.0180 0.0292 0.0112
# Wiki prop. = Low & has IMDb ID = True 0.0183 0.0216 0.0033
# Wiki prop. = Very High & has IMDb ID = False 0.0259 0.0283 0.0024
nationality = APAC & plays pro sport = False 0.0231 0.0244 0.0013
Mean 0.0225 0.0287 0.0062

Table 7: [Conformal on self-consistency scores] Using outputs from Llama 2 7B Chat on BIO-NQ, we calculate the
coverage error (for a target coverage of 90%) for each group using SC and MVSC as well as the difference in coverage
error (∆) between the two methods. We then present the top and bottom 5 groups according (∆) where top corresponds
to groups for which the multivalid method achieves the biggest improvement (most negative change ∆). In addition, we
calculate the mean values for the top and bottom 5.



SC MVSC ∆

Top 5 ∆

# Wiki prop. = Very High & nationality = EU/ME 0.0423 0.0235 -0.0188
# Wiki prop. = Low & has IMDb ID = True 0.0282 0.0112 -0.0170
# Wiki prop. = Very High & sex or gender = Male 0.0335 0.0190 -0.0145
has IMDb ID = Medium & plays pro sport = True 0.0404 0.0269 -0.0135
# Wiki prop. = Very High & has IMDb ID = False 0.0371 0.0240 -0.0131
Mean 0.0363 0.0209 -0.0154

Bottom 5 ∆

nationality = NA & plays pro sport = True 0.0173 0.0282 0.0109
has IMDb ID = False & plays pro sport = True 0.0221 0.0279 0.0058
plays pro sport = False & sex or gender = Female 0.0138 0.0192 0.0055
sex or gender = Female 0.0143 0.0193 0.0050
has IMDb ID = True & sex or gender = Female 0.0145 0.0190 0.0044
Mean 0.0164 0.0227 0.0063

Table 8: [Conformal on self-consistency scores] Using outputs from Mistral 7B Instruct on BIO-NQ, we calculate the
coverage error (for a target coverage of 90%) for each group using SC and MVSC as well as the difference in coverage
error (∆) between the two methods. We then present the top and bottom 5 groups according (∆) where top corresponds
to groups for which the multivalid method achieves the biggest improvement (most negative change ∆). In addition, we
calculate the mean values for the top and bottom 5.

CQR GCCQR ∆

Top 5 ∆

# Wiki prop. = Low & sport = False 0.0652 0.0190 -0.0463
# Wiki prop. = Low & IMDb ID = True 0.0564 0.0153 -0.0411
# Wiki prop. = Low 0.0556 0.0167 -0.0389
# Wiki prop. = Low & IMDb ID = False 0.0565 0.0226 -0.0339
# Wiki prop. = Low & sex or gender = Male 0.0556 0.0222 -0.0334
Mean 0.0579 0.0192 -0.0387

Bottom 5 ∆

nationality = APAC & sport = False 0.0150 0.0294 0.0143
# Wiki prop. = Very High & IMDb ID = False 0.0193 0.0335 0.0142
nationality = APAC & sex or gender = Male 0.0151 0.0227 0.0076
# Wiki prop. = Medium & nationality = EU/ME 0.0196 0.0268 0.0072
# Wiki prop. = Medium & sex or gender = Female 0.0183 0.0241 0.0058
Mean 0.0175 0.0273 0.0098

Table 9: [Conformal on self-consistency scores] Using outputs from Llama 2 7B Chat on BIO-NQ, we calculate the
coverage error (for a target coverage of 90%) for each group using CQR and GCCQR as well as the difference in coverage
error (∆) between the two methods. We then present the top and bottom 5 groups according (∆) where top corresponds
to groups for which the multivalid method achieves the biggest improvement (most negative change ∆). In addition, we
calculate the mean values for the top and bottom 5.



CQR GCCQR ∆

Top 5 ∆

# Wiki prop. = Low & nationality = NA 0.0795 0.0135 -0.0661
# Wiki prop. = Low & IMDb ID = True 0.0758 0.0173 -0.0585
# Wiki prop. = Low & sport = False 0.0746 0.0175 -0.0571
# Wiki prop. = Low 0.0662 0.0121 -0.0541
# Wiki prop. = Low & sex or gender = Male 0.0698 0.0244 -0.0454
Mean 0.0732 0.0170 -0.0562

Bottom 5 ∆

IMDb ID = False & nationality = EU/ME 0.0193 0.0331 0.0138
nationality = NA & sport = True 0.0155 0.0283 0.0128
IMDb ID = False & sport = False 0.0114 0.0194 0.0080
nationality = EU/ME & sex or gender = Female 0.0275 0.0352 0.0077
IMDb ID = False & sport = True 0.0267 0.0325 0.0057
Mean 0.0201 0.0297 0.0096

Table 10: [Conformal on self-consistency scores] Using outputs from Mistral 7B Instruct on BIO-NQ, we calculate the
coverage error (for a target coverage of 90%) for each group using CQR and GCCQR as well as the difference in coverage
error (∆) between the two methods. We then present the top and bottom 5 groups according (∆) where top corresponds
to groups for which the multivalid method achieves the biggest improvement (most negative change ∆). In addition, we
calculate the mean values for the top and bottom 5.

methods on the most, where in this case, we instead calculate the difference ∆ in coverage error (at target coverage of 90%)
between each pairing of conformal and multivalid conformal methods. In particular, we display the top and bottom 5 groups
in terms of difference ∆ in Tables 7, 8, 9, and 10

Our findings show that for the topic of factuality in long-form text generation, multivalid conformal prediction is a more
challenging problem when compared to calibration. As shown in Figure 1, multivalid methods (GCCQR and MVSC)
consistently (at all target coverages) outperform standard conformal methods (SC and CQR) w.r.t. group coverage error.
Tables 7, 8, 9, and 10 corroborate this finding, showing that the mean coverage difference ∆ for the top groups is larger (at a
minimum, 2.41x more for MVSC and 3.95x more for GCCQR), demonstrating that multivalid methods tend to improve
coverage error on groups more than it worsens it (for other groups), thereby achieving a better mean group coverage error
overall. However, the improvements are not as stark as those found in Tables 3, 4, 5, and 6 for calibration error, suggesting
that multivalid conformal prediction may be a harder problem overall.

When looking at which groups do multivalid conformal methods improve the most on, we find no consistent patterns.
However, we do observe that all groups for which MVSC or GCCQR improve the most on are related to the number of
Wikidata properties. Interesting, we do observe that CQR does quite poorly on groups containing people with a low number
of Wikidata properties, mirroring our findings for calibration above. Like in multicalibration, GCCQR is able to significanly
improve coverage error for these groups. Lastly, we note that CQR seems to achieve worse group coverage than that of
SC. For example, on outputs from MISTRAL 7B INSTRUCT, the mean coverage error among the top 5 groups is 0.0732 for
CQR compared to 0.0363 for SC. However, we find that for both models (Tables 9, and 10), GCCQR is able to still reduce
coverage errors to levels similar to that of MVSC (Tables 7, and 8).



Claims SC MVSC CQR GCCQR

Henry Cavill was born in Jersey, Channel Islands. X X X X
Henry Cavill has reprised the role of Superman in "Batman v Superman:
Dawn of Justice" (2016).

X X X

Henry Cavill gained international recognition for his portrayal of Super-
man in the DC Extended Universe.

X X

Henry Cavill has reprised the role of Superman in "Justice League" (2017). X X
Henry Cavill is British. X
Henry Cavill is also known for his philanthropic work. X
Henry Cavill is an actor. X
Henry Cavill was born on May 5th, 1983. X
Henry Cavill’s performance in the role of Superman has been widely
praised.

X

Amy Winehouse left a lasting impact on the music industry. X X X X
Amy Winehouse released her follow-up album, "Back to Black," in 2006. X X X X
Amy Winehouse’s debut album "Frank" was released in 2003. X X X X
Amy Winehouse was a unique artist. X X X
Amy Winehouse’s lyrics were poignant. X X X
The hit single "Rehab" contributed to the album’s success. X X X
Winehouse began singing and writing songs at a young age. X X X
"Frank" received critical acclaim. X
Amy Winehouse was a British singer and songwriter. X
Amy Winehouse was a talented singer-songwriter. X
Fans mourned the loss of Amy Winehouse. X
Winehouse grew up in a family of Jewish descent. X

Table 11: Using outputs from Llama 2 7B Chat on BIO-NQ, we present examples in which all conformal methods using
self-consistency scores (at 90% target coverage) produce a subset of claims that are entirely correct. In these examples,
multivalid methods (MVSC, GCCQR) retain more claims.



Claims SC MVSC CQR GCCQR

H. G. Wells is considered a pioneer of science fiction. X X X X
H.G. Wells is best remembered for H. G. Wells’s works in the science
fiction genre.

X X X X

H.G. Wells is most famous for H. G. Wells’s science fiction. X X X X
H.G. Wells was a pioneer of the science fiction genre. X X X X
H.G. Wells was a prolific writer. X X X X
H.G. Wells was born in Bromley, England. X X X X
H.G. Wells was known for H. G. Wells’s science fiction works. X X X X
H.G. Wells’ most famous works include "The Time Machine," "The War
of the Worlds," and "The Invisible Man."

X X X X

H.G. Wells was a renowned writer. X X X
H.G. Wells was an English writer. X X
H.G. Wells died in 1946. X
H.G. Wells was a prolific writer, publishing over 50 books. X
H.G. Wells was born on September 21, 1866, in Bromley, Kent, England. X
H.G. Wells wrote works in various other genres, including fiction. X
H.G. Wells wrote works in various other genres, including social com-
mentary.

X

H.G. Wells’ works often explored the social and political implications of
scientific and technological advancements.

X

Wells’ works, such as "The Time Machine," "The War of the Worlds," and
"The Invisible Man," have had a significant impact on the development of
the science fiction literary genre.

X

Heisenberg made significant contributions to quantum mechanics. X X X X
Werner Heisenberg passed away on February 1, 1976. X X X X
Werner Heisenberg studied under Arnold Sommerfeld at the University
of Munich.

X X X X

Werner Heisenberg was a key figure in the development of quantum
mechanics.

X X X X

Werner Heisenberg was born in Wurzberg, Germany in 1901. X X X X
Werner Heisenberg’s work had a profound impact on the field of physics. X X X X
Heisenberg played a pioneering role in quantum theory. X X
Werner Heisenberg attended the University of Munich. X X
Werner Heisenberg is best known for his uncertainty principle. X X
Werner Heisenberg’s contributions paved the way for the development of
quantum mechanics.

X X

Werner Heisenberg’s work revolutionized the field of physics. X X

Table 12: Using outputs from Mistral 7B Instruct on BIO-NQ, we present examples in which all conformal methods using
self-consistency (at 90% target coverage) produce a subset of claims that are entirely correct. In these examples, multivalid
methods (MVSC, GCCQR) retain more claims.



SC MVSC CQR GCCQR

Anaximander believed that the universe is infinite. X X
Anaximander came from a noble family. X X
Anaximander was born in Miletus, a city in the ancient Greek world. X X
Anaximander’s work has survived to the present day. X X
Despite his contributions to philosophy, Anaximander’s life remains some-
what shrouded in mystery.

X X

Merritt Butrick is best known for his roles in the Star Trek franchise. X X
Merritt Butrick was an American actor. X X
Merritt Butrick contributed to the Star Trek franchise. X

Table 13: Using outputs from Llama 2 7B Chat on BIO-NQ, we present examples in which all conformal methods (at 90%
target coverage) produce a subset of claims that are entirely correct. In these examples, the multivalid methods (MVSC,
GCCQR) output nonempty steps while the standard conformal methods (SC, CQR) do not.

SC MVSC CQR GCCQR

Bessel van der Kolk has written extensively on the connection between
the brain, mind, and body in the healing of trauma.

X X X

Bessel van der Kolk is a world-renowned Dutch-American psychiatrist. X X X
Bessel van der Kolk’s work has had a significant impact on the under-
standing and treatment of trauma.

X X

Richard Chamberlain continues to act. X
Richard Chamberlain has received numerous awards and accolades
throughout his career.

X

Richard Chamberlain was born on March 31, 1934, in Beverly Hills,
California.

X

Table 14: Using outputs from Mistral 7B Instruct on BIO-NQ, we present examples in which all conformal methods using
self-consistency (at 90% target coverage) produce a subset of claims that are entirely correct. In these examples, we have
that either SC or CQR produce empty sets while their multivalid counterparts (MVSC and GCCQR respectively) do not.



B ADDITIONAL EXPERIMENTAL DETAILS

B.1 BIOGRAPHY GENERATION AND FACTUALITY EVALUATION

While the ground truth score must be human-annotated, Min et al. [2023a] show that FACTSCORE can be approximated by
an automated process that leverages an LLM (i.e., ChatGPT and LLaMa-7B) and natural language retrieval. Following Min
et al. [2023a], we also use an LLM to automate the annotation process. For some input person, [ENTITY], we prompt a large
language model with the following:

[INST] Question: Tell me a bio of [ENTITY]. [/INST]

We then decompose each long-form generation into a set of atomic facts, which are then checked against some set of
Wikipedia articles about the [ENTITY] to evaluate overall performance of language model in terms of factuality. Min
et al. [2023a] demonstrate that while the evaluation process should ideally be conducted by human annotators, using large
language models (i.e., ChatGPT and LLama 1 7B) to both decompose long-form generations and check against Wikipedia
articles serves as a very good proxy for human annotation.

Following this general framework for automated evaluation, we use Llama 2 7B Chat to decompose each generation
[GEN_BIO] with the following prompt:

[INST] «SYS» Break down the following input into a set of small, independent claims. You must not add
additional information. Output the claims as a numbered list separated by a new line. The subject
of each line should be [ENTITY]. «/SYS» Input: [GEN_BIO] [/INST]

For checking each atomic fact against Wikpedia, we directly use the code released by Min et al. [2023a], which first conducts
passage retrieval via Generalizable T5-based Retrievers [Liu et al., 2023] to find relevant articles from a dump of Wikipedia
(dated 2023-04-01) and then prompts an LLM (i.e., ChatGPT or Llama 1 7B) to predict whether each fact is supported by
the retrieved passages. For our evaluation, we again use Llama 2 7B Chat. Finally, these predictions are ensembled with
predictions using likelihood estimates derived from a nonparametric masked language model [Min et al., 2023b].

We note that for prompting the LLMs described above, we use Hugging Face’s transformer’s library and generate responses
with temperature set to 1.0.

B.2 BASE SCORING FUNCTIONS

Self-consistency. Instead of manually annotating which claims are contained in the additional generations, we automate
the process. Specifically, we use a procedure similar to frequency scoring algorithm proposed by Wang et al. [2024] in
which (1) a set of K most relevant claims from a reference generation is retrieved using a vanilla BM25 algorithm (to reduce
computational costs). Then (2) an LLM is tasked to evaluate whether the target claim is supported by the set of K reference
claims. In our work, we replace LLM prompting in step (2) with ALIGNSCORE-LARGE [Zha et al., 2023], which runs
significantly faster and is reported by Zha et al. [2023] to compare favorably to LLM-based alignment methods.

P(True). We use the following prompt:

[INST] «SYS» Answer the question based on your knowledge of the topic, [TOPIC]. If you are unsure
about the question, output False. «/SYS» Question: Is the following statement True or False? [CLAIM]
[/INST]

Verbalized confidence. We use the following prompt:

[INST] «SYS» Given a [TOPIC]: [CLAIM] pair as input, use your knowledge about [TOPIC] to rate (on
an integer scale between 1 and 5) how confident you are that the input [CLAIM] is true. «/SYS»
[TOPIC]: [CLAIM] [/INST]

B.3 MISCELLANEOUS DETAILS

Datasets. Table 15 reports additional information about datasets BIO-NQ and BIO-FACTSCORE, including the number of
entities and claims per biography outputted by each model.

http://huggingface.co


dataset model # entities total # claims avg. # claims per bio.

BIO-NQ Llama 2 7B Chat 8,541 206,620 24.19
Mistral 7B Instruct 8,541 297,714 34.86

BIO-FACTSCORE
Llama 2 7B Chat 683 17,605 25.78

Mistral 7B Instruct 683 25,283 37.02

Table 15: Statistics describing our two datasets and how many claims are generated by each LLM.

Group Attributes. For our experiments, we use the following group attributes:

• # Wikidata properties: For each entity, we count the number of Wikidata properties and discretize them into the
following buckets: [0, 25), [25, 50), [50− 100), [100,∞). This group serves as proxy for the amount of information
available online for some given entity.

• nationality: Following Min et al. [2023a], who use nationality derived from Wikidata to sample their dataset of
human entities, we take the property country of citizenship (or place of birth when not available) and categorize the
corresponding value into the following categories defined by Min et al. [2023a]: Asia/Pacific, Europe/Middle East,
North America, Latin/South America/Africa.

• sex or gender: We take directly the value for the Wikidata property, sex or gender.
• plays professional sports: We check whether the Wikidata entry has the property, sport.
• has IMDb entry: We check whether the Wikidata entry has the property, IMDb ID, to use as a proxy for whether a

person has been involved in films or television series.

In total, we have |G| = 77 subgroups. To prevent extremely uncommon groups that may exist in the Wikidata database from
biasing our results, we exclude groups of size < 5% of the total test set size. Note that while we create groups using 1 and
2-way combinations for evaluation, we train the quantile regression models in CQR and GCCQR using only single attribute
groups as features in order to reduce computation.

Hyperparameters. For our patching algorithms IGHB and MVSC, we set the max iterations T = 100. For training
(multi)calibration, our logistic regression models are trained using default hyperparameters given my Sci-kit learn. For
training CQR and GCCQR, we run 5-fold cross validation for each target coverage 1− α to optimize the ℓ1-penalty term
C ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}

For ALIGNSCORE, we set M = 4 and K = 5. We found that ALIGNSCORE generally returns values close to 0 or 1, giving
us self-consistency uncertainty scores around the 5 values {0, 1

4 ,
1
2 ,

3
4 , 1}. As a result, we evaluate all methods using p = 5

level sets.

GPU requirements. We use a NVIDIA A100 80GB GPU for all experiments. For obtaining results on all entities across
BIO-NQ and BIO-FACTSCORE, our experiments, per LLM require approximately the following:

• Generating biographies (+ 4 additional generations for getting frequency scores): 15 hours (x5)
• Splitting atomic facts (+ 4 additional generations for getting frequency scores): 30 hours (x5)
• Checking facts against Wikipedia: 75 hours (x1)
• Calculating frequency scores via AlignScore: 10 hours (x1)

Licenses. Wikidata and Wikipedia are licensed under the Creative Commons CC0 License. Llama 2 7B is licensed under
Meta’s Llama 2 license. Mistral 7B Chat and Hugging Face’s transformers library are licensed under Apache 2.0 license. We
also make use of code released by Min et al. [2023a] under the MIT license.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://github.com/shmsw25/FActScore


C EVALUATING ON ENTITIES USED IN MIN ET. AL (2023A)

In addition to evaluating on our dataset, BIO-NQ, we construct an additional dataset using the 683 entities used by Min
et al. [2023a] for their empirical evaluation. We denote this dataset as BIO-FACTSCORE and evaluate all methods using
self-consistency as the base scoring function.

Calibration. In Table 16, we observe similar results to that on BIO-NQ—namely, multicalibrated counterparts (IGHB
and GCULR) perform better than their base counterpart (HB and PS). However, we note that for Mistral 7B Instruct, PS
performs the best when looking at marginal ASCE. We hypothesize that the smaller gap in ASCE between PS and GCULR
may be due to the smaller training size of BIO-FACTSCORE (25,283 claims), which is roughly 10x smaller than that of
BIO-NQ (297,714 claims). Lastly, with respect to Brier score, multicalibration still dominates across all metrics (Table 17).

Conformal Prediction. For BIO-FACTSCORE, we observe that multivalid conformal methods do not improve performance
across subgroups. In Figure 3, we observe very little difference in mean coverage error across groups. We hypothesize,
however, that this negative result again is due to the smaller dataset size. In this case, our number of examples is the
number of biographies in the dataset (683), giving us a calibration set size of 546 and test set size of 137. Further dividing
the calibration and test sets into subgroups, it is possible there could simply not be enough examples per group for the
distribution on the calibration set to generalize to the test set. Comparing the left panels of Figures 4 to 2, we also find that
even when looking at marginal coverage, all methods perform worse (the lines deviate more from y = x), likely due again
to the small calibration and test size.

Model Metric Uncalibrated HB IGHB PS GCULR

Llama 2 7B Chat
marginal 0.26830 0.00951 0.00229 0.00164 0.00125*

group max 0.48594 0.07208 0.04088 0.05017 0.03519*
group mean 0.29983 0.02848 0.01108 0.01659 0.00858*

Mistral 7B Instruct
marginal 0.25496 0.01032 0.00268 0.00093* 0.00146

group max. 0.54701 0.08436 0.04585* 0.07043 0.04931
group mean 0.29435 0.03226 0.01143 0.01848 0.00911*

Table 16: We generate biographies for entities from BIO-FACTSCORE and compare each calibration method (HB, PS)
against its multicalibration counterpart (IGHB, GCULR) on ASCE, max gASCE, and average gASCE (↓ better). We bold
the better-performing method for each pairing. * denotes the best-performing method across all methods evaluated. All
methods use self-consistency as their base scoring function.

Model Metric Uncalibrated HB IGHB PS GCULR

Llama 2 7B Chat
marginal 0.475 0.169 0.148 0.152 0.143*

group max 0.535 0.323 0.247 0.285 0.235*
group mean 0.479 0.169 0.148 0.152 0.142*

Mistral 7B Instruct
marginal 0.471 0.186 0.159 0.164 0.152*

group max 0.554 0.333 0.250 0.285 0.235*
group mean 0.477 0.186 0.158 0.164 0.152*

Table 17: We generate biographies for entities from BIO-FACTSCORE and compare each calibration method (HB, PS)
against its multicalibration counterpart (IGHB, GCULR) on Brier score (↓ better) marginally across the entire dataset, as
well as within each subgroup (in terms of max and mean over all groups). We bold the better-performing method for each
pairing. * denotes the best-performing method across all methods evaluated. All methods use self-consistency as their base
scoring function.



(a) LLama 2 7B Chat

(b) Mistral 7B Instruct

Figure 3: For each target coverage, we run conformal methods (SC, CQR) and their multigroup counterparts (MVSC,
GCCQR) on BIO-FACTSCORE. We evaluate on generations by (a) Llama 2 7B Chat and (b) Mistral 7B Instruct. We calculate
the average coverage error across all groups and plot them side by side for each pairing. All methods use self-consistency as
their base scoring function.



(a) LLama 2 7B Chat

(b) Mistral 7B Instruct

Figure 4: We report additional metrics for conformal predictions techniques using self-consistency scores when evaluated
on biographies generated for BIO-FACTSCORE: On the top row, we present these metrics for outputs from LLama 2 7B
Chat, and on the bottom, Mistral 7B Instruct. On the left panel, we plot the empirical coverage achieved against the target
coverage. On the middle panel, we plot the fraction of biographies retained for each method against the target coverage
level. Finally, on the right panel, we plot the number of facts per biography retained, again against the target coverage level.
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