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Reproducibility Summary1

Scope of Reproducibility2

Sarhan et al. [2020] propose a method of learning representations that can be used in downstream tasks, yet that are3

independent of certain sensitive attributes, such as race or sex. The learned representations can be considered “fair” as4

they are independent of sensitive attributes. The authors report results on five different datasets, which most notably5

include (1) the ability of the representations to be used for downstream tasks (target prediction accuracy) and (2) the6

extent to which sensitive information is present in these representations (sensitive prediction accuracy).7

In this text we report and compare the obtained results as well as highlight any difficulties encountered in reproducing8

the reference paper by Sarhan et al. [2020].9

Methodology10

As there was no openly available code base, we re-implemented the work. We included scripts to automatically11

download the required data, designed the dataloaders, and implemented the models as described in the reference paper.12

Code is available https://github.com/paulodder/fact2021.13

Results14

We were able to reproduce some of the results of the paper, but a significant part of our results was inconsistent with the15

findings of Sarhan et al. [2020]. For some of the simpler datasets we found similar patterns, but for the more complex16

tasks the models training became unstable, leading to results that varied significantly across random seeds. This made17

reproduction infeasible.18

What was easy and what was difficult19

Conceptually, the paper was interesting and, given some prior knowledge on Variational Autoencoders and the math20

involved, it was also relatively straightforward to understand.21

The most difficult aspect of the project was dealing with missing information. Many essential implementation details22

were missing, and there were inconsistencies in the pseudo-code provided. Resolving these issues provided significant23

difficulties.24

Communication with original authors25

Various emails were exchanged with the original authors, in which we received explanation about unclear aspects of the26

paper. In general, the authors were very helpful, but despite the fact that a few emails were exchanged, some aspects of27

the paper still remained unclear.28
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1 Introduction29

A challenging problem in machine learning is learning representations that are fair with regards to a sensitive attribute30

present in the original samples. A common definition of fairness in this context is that the model’s output is statistically31

independent from the sensitive attribute [Xie et al., 2017, Roy and Boddeti, 2019a, Quadrianto et al., 2019, Barocas32

et al., 2019]. Sarhan et al. [2020] proposed a new way to learn fair representations that are invariant towards the33

sensitive attribute, but are nevertheless useful for the task at hand. The proposed method to achieve this invariability is34

to disentangle the latent representation into independent target and sensitive representations [Locatello et al., 2019].35

As a proxy for independence, orthogonality is enforced between these individual representations. Furthermore, in36

order to prevent sensitive information leaking into the target representation, the model is trained to learn a target37

representation which is agnostic to the sensitive information, maximizing the entropy of our sensitive attribute given the38

target representation.39

In order to consolidate the claims brought forth in the reference work of this report Sarhan et al. [2020], and to assess the40

reproducibility of this work, our research attempts to reproduce the achieved results by re-implementing the proposed41

method. In the next section, we specify the parts of the original work that we attempt to reproduce. In Section 3, we42

summarize the method as proposed by Sarhan et al. [2020] that we attempt to re-implement. In Section 4, we report the43

results we attain. Finally, in Section 5, we discuss the results, and we analyse the reproducibility of the reference work.44

2 Scope of reproducibility45

The reference work by Sarhan et al. [2020] works towards a method of generating embeddings of data which are useful46

for downstream tasks, while they remain invariant towards a particular (sensitive) feature. The efficacy of this proposed47

method is assessed using two evaluative questions. First, how well can the learned target representation be used in the48

target task? Second, to what degree is information which might reveal the sensitive attribute still present in the learned49

target representation?50

In the reference work, a collection of three binary- and two multi-class classification tasks are considered for a total of51

five classification tasks, corresponding to five different datasets. For each of these tasks, a version of the proposed model52

is trained, and evaluated using two metrics: target accuracy and sensitive accuracy. The target accuracy measures53

how well a predictive model is able to predict the target attribute based on the produced target representation, and the54

sensitive accuracy measures how well a predictive model is able to predict the sensitive attribute based on the target55

representation – note that we want the sensitive accuracy to be as low as possible, because this implies that the target56

representation is independent of the sensitive attribute. Both of these accuracies, for each of the five tasks at hand, are57

included in our reproduction.58

Furthermore, an ablative study is conducted in the reference work, in which specific components of the loss function59

used to train the model are excluded (i.e., ablated), in order to observe the behaviour of the model and, in doing so,60

understand the role of each of these loss components within the training process. This ablative study, which entails the61

evaluation of the impact of five unique combinations of loss components, is performed on each of the five datasets, and62

is included in our reproduction.63

Finally, the authors perform a sensitivity analysis on the hyperparameters that control the relative importance of two64

of the loss terms they used, for one of the five tasks. For each combination of these hyperparameters, the model is65

trained, and the resulting target and sensitive accuracies achieved are displayed on a heatmap. We include this sensitivity66

analysis in our reproduction.67

3 Methodology68

Since the code of the original implementation is not available, it is our goal to reproduce the method, based on all69

implementation details expounded in the reference work. The essential elements of the model are described in the next70

section. For a more detailed explanation, we refer the reader to the reference work Sarhan et al. [2020].71

3.1 Model descriptions72

Let X be the dataset and let x ∈ RD be a single input sample. Each sample has an associated target vector y ∈ Rn and73

an associated sensitive attribute vector s ∈ Rm, with n and m classes respectively. The goal is to learn to map x to74

two latent representations: a target latent representation zT and a sensitive latent representation zS . This mapping is75

learned by an encoder, which is composed as follows: the first part of the encoder, which we denote f(x, θ), is shared76

between the target and sensitive representation. The output of this shared encoder is fed through two separate encoders77
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qθT (zT |x) and qθS (zS |x), which each output a distribution in the latent space, and from which the target and sensitive78

representations are sampled, respectively. Here, θT and θS denote the sets of trainable parameters for either encoder,79

and include the parameters for the shared encoder, which can be found by θ = θT ∩ θS .80

The target label ŷ is then predicted by a target discriminator qφt(y|zT ), based on the target representation zT . Similarly,81

the sensitive label ŝ is predicted by a sensitive discriminator qφS
(s|zS), based on zS . The encoder and discriminators82

are trained in supervised fashion to minimize the following losses, which we call the representation losses:83

LT (θT , φT ) = KL(p(y|x) ‖ qφt(ŷ|zT )) (1)
LS(θ∗S , φS) = KL(p(s|x) ‖ qφS

(ŝ|zS)) (2)

Here θ∗S = θS\θ. These losses are effectively equal to the cross-entropy between the predicted values for the targets84

and sensitive attributes and their actual values. Note that by backpropagating our sensitive representation loss through85

θ∗S , the shared parameters θ are prevented from being updated twice.86

To ensure that no sensitive information can leak into the target representation, the entropy of the sensitive attribute given87

the target representation is maximized, following Roy and Boddeti [2019a], Sarhan et al. [2020]. This is achieved by88

minimizing89

LE(φS , θT ) = KL(qφS
(s|zT ) ‖ U(s)) (3)

Note that zT can be used as the condition (or input) for qφS
because zT has the same dimensionality as zS (they are90

orthogonal in the same space).91

Last, we want to ensure that there is some level of independence between the two representations. Ideally, the posterior92

p(zT |x) should be statistically independent of p(zS |x). Following Sarhan et al. [2020], this independence requirement93

is relaxed to the enforcing of two properties: one, a disentanglement property (i.e. independence across dimensions94

within a representation), and two, orthogonality between the two representations. To enforce these properties, the95

aforementioned posteriors need to be estimated (as they are intractable) using variational inference [Kingma and96

Welling, 2014]. The encoder network is be similar to the encoder of a Variational Auto-Encoder (VAE) model [Kingma97

and Welling, 2013], in that it outputs the means (µT ,µS) and covariance matrix diagonals (diag(σT ), diag(σS)) for98

both latent distributions. Disentanglement is enforced by only computing the diagonals of these covariance matrices,99

while orthogonality is enforced by minimizing the KL divergence between each latent distribution with its prior, where100

the priors p(zT ) and p(zS) are initialized with orthogonal means. Two loss terms are introduced to achieve this101

minimization: LzT (θT ) = KL(qθT (zT |x) ‖ p(zT )) and LzS (θS) = KL(qθS (zS |x) ‖ p(zS))102

Here qθT (zT |x) = N (zT |µT , diag(σ2
T )) and qθS (zS |x) = N (zS |µS , diag(σ2

S)).103

These two loss terms are combined into a single term, which is called the Orthogonal Disentangled (OD) loss:104

LOD(θT , θS) = LzT (θT ) + LzS (θS) (4)

The re-parameterization trick [Kingma and Welling, 2013] is used to sample from the approximated posterior distribution105

in order to obtain the latent representations, which can then be fed to the respective discriminators.106

All of the aforementioned individual loss terms are derived in more detail in Appendix A. They are combined into a107

single loss term, and in doing so, we arrive at the following objective:108

argmin
θT ,θS ,φT ,φS

LT (θT , φT ) + LS(θS∗ , φS) + λELE(θT , φS) + λODLOD(φT , φS) (5)

Here λOD and λE are loss weights which determine the relative importance of the OD loss and the entropy loss,109

respectively. Additionally, two decay parameters γOD and γE are introduced which enable changing the weights of110

these two losses while training. The loss weights at epoch t during training are calculated as follows:111

λ
(t)
OD = λ

(0)
ODγ

t/ts
OD (6)

λ
(t)
E = λ

(0)
E γ

t/ts
E (7)

Here ts is the so-called step-size hyperparameter, and λ(0)OD, λ
(0)
E are the initial loss weights. The entropy loss weight112

will be computed in the same way. λ(0)OD, λ
(0)
E , γOD, γE and ts are all hyperparameters.113
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3.2 Datasets114

In order to reproduce the results obtained by Sarhan et al. [2020] it was necessary to apply the model to five datasets.115

Below, we outline some basic properties of the datasets and we explain the sensitive and target attributes that are to be116

modeled. For detailed information about the datasets such as train/test splits, number of samples, and input dimensions,117

we refer to Table 3 in the Appendix.118

Tabular data119

The Adult and German dataset were obtained from the UCI repository [Dua and Graff, 2017]. Both of these datasets120

contain census data, and include categorical and continuous attributes which contain information about the person’s121

gender, education, and occupation. For both datasets, preprocessing consisted of representing categorical columns in a122

one-hot encoding, where missing values were explicitly encoded as a separate category, while continuous variables123

were left unchanged.124

For the Adult dataset, the task is to predict whether a persons income exceeds $50, 000, and the sensitive attribute is125

binary gender. For the German dataset, the task is to classify rows as having good or bad credit risk. Similar to the126

Adult dataset, the sensitive attribute is binary gender.127

YaleB data128

The Extended YaleB dataset was collected from the University of Toronto computer science department website129

[Georghiades et al., 2000]. Specifically, the ‘Cropped’ version of the dataset was used [Lee et al., 2005], which contains130

grayscale images of 38 human faces under different illumination conditions. The task is to identify to which of the 38131

humans an image corresponds.132

For this dataset, the reference work mentioned that the sensitive attribute was constructed by clustering the illumination133

conditions into five classes loosely corresponding to top left, bottom left, top right, bottom right, and center. However,134

the reference work (as well as other works to which it referenced) did not explicitly specify which illumination135

conditions had been assigned to which cluster, and thus, in our experiments, we have manually constructed these136

clusters. The explicit clusters we defined can be found in the Appendix. It should be noted that our majority class is137

not in line with the paper by Sarhan et al., as it is mentioned by them that a majority class classifier could attain 50%138

accuracy on their YaleB dataset, while this is around 35% in our case. Unfortunately, we were unable to find sufficient139

information to be able to replicate the ratios mentioned in the reference paper, and we presume that this difference is140

due to the fact that our clusters have been defined in a different way.141

Our training dataset comprised of 190 images corresponding to one lighting position from each cluster, following142

[Sarhan et al., 2020, Louizos et al., 2015]. It is important to note that our testing dataset contained 2243 images, while143

the testing set in the reference work contained only 1096. The reason for this discrepancy is unclear, as we used the144

referenced version of the dataset, and found no mention of the omission of certain images in the reference paper.145

CIFAR data146

The CIFAR-10 and CIFAR-100 datasets were also collected from the University of Toronto computer science department147

website [Georghiades et al., 2000]. CIFAR-10 consists of colour images that are divided into 10 classes such as airplane,148

automobile and bird. Following Roy and Boddeti [2019a] and Sarhan et al. [2020], a new target attribute is constructed149

which denotes whether the subject of the image is alive or not (i.e., a binary class), and the sensitive attribute is defined150

as the original class of the image.151

The CIFAR-100 dataset is similar to CIFAR-10, except that images are categorized as one of 100 total fine classes.152

The dataset also provides 20 coarse classes, which are a partition of the 100 fine classes, and which cluster similar153

fine classes into one category. As an example, fine classes ‘beaver’, ‘dolphin’ and ‘otter’ all belong to the coarse class154

‘aquatic mammals’ (c.f. [Roy and Boddeti, 2019b]). Following Sarhan et al. [2020], the coarse classes are used as the155

target attributes, while the fine classes are used as the sensitive attribute.156

3.3 Implementation details157

Following the paper of Sarhan et al. [2020], we implement the following networks for the several datasets. Note that, for158

every MLP mentioned below, ReLU’s are used as (non-final) activation functions. For the CIFAR-10 and CIFAR-100159

tasks, the encoder used was the ResNet-18 architecture [He et al., 2016].160
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3.4 Hyperparameters161

Most of the values used for the hyperparameters were taken directly from the reference work, or its supplement provided162

by Sarhan et al. However, optimal values for some hyperparameters were not reported, and thus, we empirically set163

these to values that seemed to result in satisfactory performance. We discuss which hyperparameters we were missing164

in Section 5, and report all hyperparameters that we used in the Appendix.165

3.5 Experimental setup and code166

Setup Reproducibility167

Our implementation and instructions to run the code are available at https://github.com/paulodder/fact2021.168

The repository contains a folder scripts that contains all the scripts necessary to perform several tasks. All instructions169

for setting up are in the README and instructions for reproducing any of the numbers or figures reported in this text can170

be found in produce_results.pdf in the aforementioned repository.171

Evaluation172

Evaluation of the embeddings learned by our model is non-trivial, as it must be assessed whether the embeddings173

adequately represent the data for the downstream task (e.g. classification of target attribute), while it also must be174

verified that the embeddings contain no sensitive information. In order to quantitatively evaluate our model after175

completing training, two classifiers are trained. These classifiers use the test data which is embedded using our trained176

model in the target space.177

The first classifier, known as the target predictor, is trained to predict the target label from the target embeddings. In178

accordance with the reference paper, we evaluated the target predictor using the accuracy metric. The details of the179

target predictors used are reported in Table 7 in the Appendix. It is desirable that the target predictor performs as well as180

possible, as this means that the target embeddings appropriately embed the information necessary for downstream tasks.181

The second classifier, known as the sensitive predictor, is trained to predict the sensitive attribute from the target182

representation. For the sensitive predictor, the exact same architecture and hyperparameters are used as for the sensitive183

discriminator. It is desirable that this classifier performs poorly, as we would like there to be no information pertaining to184

the sensitive attribute in our target embedding. As such, we would like the model to be as close to a ‘majority classifier’185

as possible, where the model is forced to simply predict the majority label for each data row as it has no meaningful186

information with which to make a prediction about the sensitive attribute. Again, accuracy is used as evaluation metric.187

Additional avenues of exploration188

For the sake of completeness, we briefly report alternatives that were explored but did not yield improved results, and189

were therefore abandoned. None of the features described below were used to generate results.190

In order to select the best performing model to evaluate, two independent selection mechanisms were implemented, but191

not used in the final experiments. (1) We attempted to select the best iteration of the proposed model (over all epochs)192

by keeping track of the version in which performance was best. We first defined performance as train target accuracy193

(higher is better). Later, to also take into account the extent of sensitive information leakage in the target representations,194

we also included the accuracy of predicting sensitive attributes based on target representations. (2) In order to make the195

evaluative target and sensitive predictors less dependent on the number of epochs they are trained for (which was a196

hyperparameter not disclosed by the reference paper, while overfitting might lead to a severe reduction in the reported197

results), we attempted to track all iterations of these predictors, perform evaluation using all of the iterations, and return198

the evaluation which had the highest performance. Here, performance was defined as test target accuracy. However, this199

augmentation was discarded as we were unsure whether this was implemented correctly, as results did not improve200

(even though it should, in theory).201

For YaleB, various model architectures were implemented in an attempt to amend performance on this dataset. We202

experimented with variations in the dimensionality and number of hidden layers of the encoder and discriminators,203

activation functions (specifically, we tried Tanh), and the hyperparameters learning rate, max epochs, batch size, λOD,204

λE , γOD, and γE .205

For CIFAR-10 and CIFAR-100, we experimented with freezing the ResNet-18 encoder (with the exception of the final,206

Linear layer, which was reinitialized), but despite faster training, the model’s performance did not increase.207
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Table 1: The average run-time for each of the five datasets and their configurations.
Dataset Adult German YaleB CIFAR-10 CIFAR-100 Total
Average run-time (min.) 0.8 0.22 2 11 19 62
Number of epochs 2 15 30 30 55 -

3.6 Computational Requirements208

We used Google Colab Pro to train our models, which supplies one Tesla V100-SXM2-16GB GPU, and two Intel(R)
Xeon(R) CPU @ 2.00GHz CPUs. Average run-times are specified in Table 1. In order to train all models over various
seeds for all results, this would be the estimated required run-time:

(3 ∗ 62) + (5 ∗ 5 ∗ 62) + (2 ∗ 82 ∗ 5 ∗ 0.8) = 4, 296 minutes

4 Results209

To judge the reproducibility of the model proposed by Sarhan et al. [2020], we compare their results with those results210

we were able to attain using our implementation. First, a comparison is made between their and our target and sensitive211

accuracy attained by training and evaluating the proposed model on each of the five datasets. Second, results of the212

ablative study are compared. Finally, results of the sensitive study are compared.213

CIFAR-10 and CIFAR-100214

Table 2: Results on CIFAR-10 and CIFAR-100 datasets
CIFAR-10 CIFAR-100

Target Acc. ↑ Sensitive Acc. ↓ Target Acc. ↑ Sensitive Acc. ↓
Sarhan et al. 0.9725 0.1907 0.7074 0.1447
Ours 0.9582 0.3462 0.0500 0.0100

While we have been able to reproduce the CIFAR-10 target accuracy attained by Sarhan et al., the CIFAR-10 sensitive215

accuracy we attained is substantially higher than theirs, as displayed in Table 2. As for the CIFAR-100 dataset, our216

results strongly differed from those reported by Sarhan et al., as our model was not able to learn a representation that217

carried meaningful information, resulting in target and sensitive accuracies that are equal to accuracies attained by218

majority vote (see Table 2).219

Adult, YaleB, and German220

Note that for the following results, we focus on the comparison between performances of the proposed models. We221

have included a comparison of the alternative models in Figure 1 mainly to be able to investigate discrepancies in222

our reimplementation outside of the proposed method itself (e.g. significant differences in the dataset definition,223

pre-processing, et cetera).224

Our results for Adult, as displayed in Figure 1, are similar to those obtained by Sarhan et al. [2020], with the only225

difference being a small increase in our sensitive accuracy with regards to theirs. As for German, we observe similar,226

yet not identical, target and sensitive accuracies. It should be noted that for specific runs during training (with specific227

random seeds), a target accuracy was obtained that was identical to the 76% reported by Sarhan et al.; however, over228

multiple runs, we obtained a lower average accuracy around 73% (see Figure 1). For YaleB, we were not able to229

reproduce the accuracies reported by Sarhan et al. Instead, our model achieved a lower target accuracy, and a sensitive230

accuracy which is further away from the majority label classifier, suggesting that our model’s performance was worse231

than that of Sarhan et al.232

Ablative233

The results of our ablative study are shown in Figure 2, which can be compared with the ablative study of Sarhan et234

al. in Figure 5 in Appendix B. As a discussion of the potential implications of the various combinations explored in235

this ablative study forego the scope of this paper, we refer to Sarhan et al. [2020] for a detailed overview. The baseline236

measurement was omitted as it was unclear from the text what it entailed.237
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(a) Adult target accuracy (b) German target accuracy (c) YaleB target accuracy

(d) Adult sensitive accuracy (e) German sensitive accuracy (f) YaleB sensitive accuracy

Figure 1: Performance of the proposed model, together with majority label classifier (denoted by the horizontal dashed
line) and various other models for Adult, German, and YaleB datasets, compared between Sarhan et al. and our
reproduction. The bars denoted by X correspond to direct use of the input data for our target prediction. Furthermore, a
VAE was trained on the Adult and German datasets using MSE loss as reconstruction loss, and the accuracies denoted
with ‘VAE’ correspond to the performance achieved by target and sensitive predictors trained on these VAE embeddings
as input features. For YaleB, Logistic Regression was also performed on the raw data to predict the sensitive and target
attributes, whose performance is denoted by ‘LR’.

(a) German (b) Adult (c) CIFAR-10

(d) CIFAR-100 (e) YaleB

Figure 2: Target and sensitive accuracies of our model trained using various combinations of loss term components,
results are averaged over 5 random seeds. Specifically, Entropy refers to the LE component, Orth refers to the
orthogonality constraint between the prior means, and KL refers to the LOD component (c.f. Sarhan et al. [2020]). The
horizontal dashed line denotes the accuracies attained when using the full loss (also displayed as the right-most set of
bars in each subplot).

7



In comparison to Sarhan et al., for German, we see that varying loss components seems to have less impact on238

performance; for Adult, we see similar invariability for target accuracy but a lower impact on sensitive accuracy; for239

CIFAR-10, we observe a larger variance in performance over seeds and loss components; and lastly, CIFAR-100 and240

YaleB results are significantly different. In summary, our ablative study results generally do not exhibit the same241

patterns as those of Sarhan et al. This may, however, be attributed to our use of random seed averaging, a technique242

which was not mentioned in the reference paper.243

Sensitivity analysis on Adult244

245

Figure 3: Target and sensitive accuracies when varying λOD together with λE (left), and when varying γOD together
with γE (right).246

The results of our sensitivity study are shown in Figure 3, which can be compared with the sensitivity study of Sarhan247

et al. in Figure 6 in Appendix B.248

When comparing these sensitivity analyses, it can easily be observed that there is very little in common between the249

two. First off, there is, for each subfigure, a sizeable difference in the accuracy ranges. This difference is in line with250

differences encountered in Figures 1a and 1d. In addition, there is little similarity to be found in any of the accuracy251

landscapes displayed, with peaks and valleys located in different places. Keep in mind, however, that in both the252

reference and our sensitivity analyses, the accuracy ranges are rather small. Finally, in the reference sensitivity analysis,253

these landscapes are smooth, while this is not reflected in our sensitivity analysis. Note that the smoothness of the254

reference sensitivity analysis might be visually exaggerated due to a relatively low number of coordinate samples255

compared to ours.256

5 Discussion257

The main claim of the original authors is as follows: by disentangling the latent representation of a data sample into two258

subspaces that are orthogonal to each other, as well as training the model using a loss function that encourages it to259

encode sensitive information into one of these subspaces, and meaningful information for the task at hand into the other260

of those subspaces, it is possible to create meaningful representations that do not contain any information from which a261

protected, or sensitive, attribute can be inferred.262

In order for our results to support this claim, they would need to show that the proposed model is able to create263

representations that perform well on the target task (i.e. attains a high target accuracy), while it performs poorly in264

the inference of the sensitive attribute using the target representation (i.e. attains a sensitive accuracy close to the265

accuracy of majority voting). When looking at our results, we observe that this is indeed the case for the German dataset.266

However, for the Adult and CIFAR-10 datasets, the attained sensitive accuracy is substantially higher than the majority267

vote baseline, and for the CIFAR-100 and YaleB datasets, the model does not achieve a satisfactory performance in268

terms of target accuracy. As for the YaleB dataset, this difference might be caused by a deviation in our perusal and/or269

construction of the dataset resulting from ambiguity in the reference paper; for the CIFAR-100 dataset, however, we270

are confident in the correspondence between our setup and that of the reference paper, and therefore question the271

reproducibility of that particular task.272

In summary, results from four out of five datasets do not appear to support the original claim of the authors. Furthermore,273

those patterns that the authors observe in their ablative studies are generally not reproduced in our own ablative studies.274

Based on these observations, we can state that there is a discrepancy between our results and the original results from275

Sarhan et al. [2020]. Thus, when considering the large effort undertaken in this research to minutely re-implement276

their proposed method, we conclude that the original paper is relatively difficult to reproduce, and can in fact not be277

reproduced based solely on its contents.278
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5.1 What was easy279

We experienced the theoretical part of the paper to be especially well-structured and thought out. The use of two types280

of representations and notions of disentanglement and orthogonality makes a lot of sense intuitively. Additionally, all281

loss terms are well described and were therefore easy to implement.282

5.2 What was difficult283

Performance fluctuations and training instability One of the issues we ran into is that for these models training284

seems to be unstable, which is evident from the high fluctuation in performance when we vary the random seed or the285

number of maximum epochs. This is not addressed in the paper and therefore there is no information on how to deal286

with it. To add to this, it was unclear what trade-off between target and sensitive accuracy was used by the authors to287

select the best model during training. This trade-off ultimately determines which model is selected for testing which288

can have a large influence on performance.289

Implementation There were a few unclear aspects of the model implementation that we resolved either by making a290

choice that seemed logical to us, or through contacting the original author. For example, there was limited information291

on how certain losses were backpropagated with a shared encoder network. Besides this, the implementation of the292

decay the two λ parameters was not clearly reported. These issues were both resolved in contact with the authors.293

Hyperparameters The amount of epochs that the model was trained was not reported in either the paper or its294

supplementary material. This was quite an important value given that no explicit stopping criterion was mentioned295

either. In correspondence with Sarhan et al., we were able to set values for the ts (stepsize) hyperparameter that296

correspond to those used by the original team. Furthermore, amongst the not reported hyperparameters were those297

involved the training of the network-based target and sensitive predictors. These include the optimizer used, the learning298

rate, weight decay, amount of epochs as well as the nonlinearities, to name a few.299

Dataset details As mentioned in YaleB paragraph of the Datasets section we have made a number of assumptions300

about how to set up the classes corresponding to the sensitive attributes, which might have some influence on the301

performance of our approach for this datasets. We were unsure about some other details concerning the data as well.302

Namely, the type of data-normalization is not specified, and for the German dataset there is not a train-test split reported.303

However, these details were not as vital for reproduction as the aforementioned issue concerning the YaleB dataset.304

5.3 Communication with original authors305

We have had the pleasure of communicating with the original authors of the paper. This enabled us to learn the values306

of some additional hyperparameters, such as the stepsize ts, as well as the dimensions of the latent representations for307

some datasets. Furthermore, we were able to accrue additional insight in some implementation details, such as how308

the loss weights λOS and λE are updated, and how the losses should be backpropagated when dealing with a shared309

encoder network. In addition, it was the intention of the authors to supply us with more information on the YaleB310

dataset specifically, but we were not able to receive said information before the submission deadline of our work. This311

hiccup notwithstanding, communication with the authors was especially pleasant and straightforward.312

5.4 Our approach313

Due to the large scope of the research performed in our reference paper, our approach was diverse from the start. Many314

different avenues were explored from the beginning, dataloaders for all of the datasets were implemented and we had315

quickly written code to produce many of the figures necessary to asses the reproducibility of the research. While this316

meant that we gained a better understanding of the models’ performance and behaviour on all of the datasets and tasks317

from the beginning, it was complicated to work on all the tasks and datasets simultaneously and evenly throughout the318

team.319
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Appendix350

A Loss terms derivations351

Representation loss352

The representation target loss can be computed as follows:353

LT (θT , φT ) = KL(p(y|x) ‖ qφT
(y|zT ))

= −
∑
y

p(y|x) log qφT
(s|zT ) +

∑
y

p(y|x) log p(y|x) (8)

The second part of this expression solely depends on the true posterior of our data and hence does not depend on our354

neural network. Therefore, we drop it here. What remains is equal to the cross-entropy loss:355

LT (θT , φT ) =
∑
y

p(y|x) log qφT
(s|zT ) (9)

This is the same as the cross-entropy loss over the output of the discriminator. The representation sensitive loss can be356

computed in similar fashion.357
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Maximum Entropy loss358

We can compute the entropy loss as follows:359

LE(φS , θT ) = KL(qφS
(s|zT ) ‖ U(s))

=
∑
s

qφS
(s|zT ) log qφS

(s|zT )−
∑
s

qφS
(s|zT ) logU(s)

=
∑
s

qφS
(s|zT ) log qφS

(s|zT )− log
1

m

∑
s

qφS
(s|zT )

=
∑
s

qφS
(s|zT ) log qφS

(s|zT ) + logm

(10)

The second term is a constant and will be the same for every loss no matter the network, hence we drop it:360

LE(φS , θT ) =
∑
s

qφS
(s|zT ) log qφS

(s|zT ) (11)

Note that by dropping the last term, the entropy loss will always be negative.361

Orthogonal-Disentangled loss362

We can write out the OD target loss as follows,363

LzT
(θT ) = KL(qθT (zT |x) ‖ p(zT ))

= −
dT∑
i=1

KL(qθT z
i
T |x) ‖ p(ziT ))

because both the prior and the encoder posterior are independent Gaussian distributions, the KL divergence between the364

two is simply a sum over KL divergences between the univariate Gaussians qθT (z
i
T |x) and p(ziT ).365

One KL divergence terms can be computed as follows:366

KL(qθT (z
i
T |x) ‖ p(ziT )) = −

∫
qθT (z

i
T |x) log

qθT (z
i
T |x)

p(ziT )
dx

=
1

2
log(2πσipT ) +

(σiqT )
2(µiqT − µ

i
pT )

2

2(σipT )
2

− 1

2
(1 + log 2π(σiqT )

2)

= log
σipT
σiqT

+
(σiqT )

2(µiqT − µ
i
pT )

2

2(σipT )
2

− 1

2

(12)

In practice, we will compute the element-wise KL divergence between the prior and posterior and sum over the result.367

The OD losses therefore require the output means and variances of the encoder network and the prior distributions of368

the latent variable. The OD sensitive loss can be computed in a similar way.369

B Dataset details370

Table 3: Details concerning the several datasets we used. Here MV target and MV sensitive correspond to how much
percent of the data belongs to the biggest target and sensitive class respectively. The input size corresponds to the
amount of features in the case of the tabular data and for the picture dimensions of the visual data.

sample amount train/test split input size MV target MV sensitive
Adult 48, 842 2 : 1 108 75% 67%
German 1000 4 : 1 61 68% 70%
YaleB 2433 190 : 2243 192× 168 2.7% 35.6%
CIFAR-10 60, 000 5 : 1 3× 32× 32 60% 10%
CIFAR-100 60, 000 5 : 1 3× 32× 32 5% 1%
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YaleB pre-processing371

372

Figure 4: Definitions of YaleB sensitive attributes, which are a clustering of lighting positions, which are defined by an
elevation and an azimuth.373

In order to construct the sensitive attributes for the YaleB dataset, we define a five-class clustering for the lighting374

positions, which corresponds to a five-class sensitive attribute. These clusters, as well as the lighting positions that are375

selected for the train partition, are displayed in Figure 4.376

C Hyperparameters377

The hyperparameters that we used for our reported results can be found in Table 4 and 5. Note that for all experiments378

we used the Adam optimizer [Kingma and Ba, 2014].379

Table 4: Hyperparameters that we used in our experiments for the various datasets. For the CIFAR datasets, the first
number of the learning rate and weight decays refers to the encoder network and the second to the discriminator
network.

Learning Rate Weight Decay Batch Size Max. Epochs
Adult 10−3 5× 10−4 64 2
German 10−3 5× 10−4 64 15
YaleB 10−4 5× 10−2 64 30
CIFAR-10 10−4, 10−2 10−2, 10−3 128 30
CIFAR-100 10−4, 10−2 10−2, 10−3 128 80

Table 5: The λOD, λE , γOD and γE used for every dataset.
λOD λE γOD γE

Adult 0.037 0.55 0.8 1.66
German 0.01 1.0 1.4 2.0
YaleB 0.037 1.0 1.1 2.0
CIFAR-10 0.063 1.0 1.7 1.0
CIFAR-100 0.0325 0.1 1.2 1.67

D Encoder and Discriminator details380

See Table 6 for the specific implementation details regarding the encoder and discriminator models used.381
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Table 6: Encoder and discriminator implementation details.
Encoder Discriminator

Network Type Hidden Dims Latent Dim Network type Hidden Dims
Adult & German MLP 64 2 MLP 64, 64
YaleB MLP 100 100 MLP 100, 100
CIFAR ResNet-18 - 128 MLP 256, 128

E Target predictor details382

We have reported the architectures and hyperparameters of the target predictor networks in Table 7. We used the Adam383

optimizer [Kingma and Ba, 2014] to optimize all MLP-based predictor networks.384

Table 7: Details of the target predictor network per dataset.
Network Type Hidden Dims Learning Rate Weight Decay

Tabular Logistic Regression - - -
YaleB MLP 100 10−3 0
CIFAR MLP 256, 128 10−3 0

F Ablative and sensitive study results in Sarhan et al. (2020)385

For ease of comparison, we include two Figures from the reference paper. All rights for Figures 5 and 6 reserved by386

Sarhan et al.387

Figure 5: Figure 3 from Sarhan et al. [2020], with original caption: Ablative study. Dark gray and light gray dashed
lines represent the accuracy results on the target and sensitive task respectively for the “Entropy + KL Orth.” model.

Figure 6: Figure 5 from Sarhan et al. [2020], with original caption: Sensitivity analysis on the Adult dataset
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