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ABSTRACT

Online min-max optimization has recently gained considerable interest due to its
rich applications to game theory, multi-agent reinforcement learning, online robust
learning, etc. Theoretical understanding in this field has been mainly focused on
convex-concave settings. Online min-max optimization with nonconvex geome-
tries, which captures various online deep learning problems, has yet been studied
so far. In this paper, we make the first effort and investigate online nonconvex-
strongly-concave min-max optimization in the nonstationary environment. We
first introduce a natural notion of local Nash equilibrium (NE)-regret, and then
propose a novel algorithm coined SODA to achieve the optimal regret. We further
generalize our study to the setting with stochastic first-order feedback, and show
that a variation of SODA can also achieve the same optimal regret in expectation.
Our theoretical results and the superior performance of the proposed method are
further validated by empirical experiments. To our best knowledge, this is the first
exploration of efficient online nonconvex min-max optimization.

1 INTRODUCTION

Online optimization (Cesa-Bianchi & Lugosi, 2006) is a powerful paradigm for modeling many
applications that require decision making based on information available sequentially. Specially,
at each time instance, an online player needs to make a decision based on the history information,
and then receives a feedback (which can be a possibly adversarial and nonstationary reward or loss
value) that may be used in the future. There have been extensive studies in this field for various
scenarios, such as online convex optimization (Shalev-Shwartz, 2012; Hazan et al., 2016), online
bilevel optimization (Tarzanagh & Balzano, 2022), online federated learning (Chen et al., 2020),
etc. Recently, the online min-max (i.e., saddle point) problem has gained considerable interest
due to its broad applications in game theory (Roy et al., 2019; Zhang et al., 2022a), multi-agent
reinforcement learning (Buşoniu et al., 2010; Zhang et al., 2021), online robust learning (Gabrel
et al., 2014; Ben-Tal et al., 2015), to name a few.

On the theoretical side, a line of works have explored provably efficient algorithms for online min-
max optimization. Specifically, Cardoso et al. (2019); Fiez et al. (2021); Immorlica et al. (2019);
Zhang et al. (2022b) considered the zero-sum matrix games where the online objective function
takes a bilinear form. Rivera et al. (2018); Roy et al. (2019) studied a more general online min-max
problem, where the objective is strongly-convex and strongly-concave. Noarov et al. (2021) focused
on multi-objective online min-max games, where the reward is convex-concave in each coordinate.

Despite many efforts so far, existing literature on online min-max optimization has mainly focused
on online convex-concave problems and did not take nonconvexity into consideration. However, in
practice, nonconvexity occurs very often in online min-max problems, particularly those that apply
deep neural networks (DNNs) for decision making. For instance, in the time-varying two-player
zero-sum stochastic games (Mertens & Neyman, 1981; Roy et al., 2019; Zhang et al., 2022b), where
the payoffs change with time, the policies are modeled by DNNs with strong regularization, and
hence the online objective function is nonconvex-strongly-concave.

Motivated by the aforementioned practical problems, the goal of this paper is to take the first step
towards exploring the online nonconvex-strongly-concave min-max problem with dynamic (and
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hence nonstationary) loss functions. Due to the nonconvexity and nonstationarity nature of the
problem, two new challenges arise as we explain below.

First, how to define an appropriate notion of regret for the nonstationary environment under the
online nonconvex setting? The standard notion of Nash Equilibrium (NE)-regret, e.g., (Rivera et al.,
2018) for online convex-concave problems, which quantifies the difference between the cumulative
loss of players and the min-max value of the cumulative payoff loss, is highly unreasonable for
nonconvex-concave setting, since the min-max comparator is intractable for a nonconvex-concave
function. Hence, new surrogate for regret is in demand.

Second, with a desirable notion of regret, how to design efficient algorithms? A natural strategy
to handle the nonstationarity is that at each round, the decision maker first learns a good enough
decision based on history losses and then applies it to the adversarial loss of current round. Two
key difficulties will arise during this process. First, how to identify a good decision? In nonconvex
min-max problems, a good decision usually refers to a stationary point. The standard definition
of a stationary point involves an optimization oracle, which is unknown to the decision maker.
Thus the decision maker needs to find a surrogate to identify a near stationary point at each round.
Second, when applying the decision based on history information to the adversarial loss, mismatch
errors arise due to the variability of the environment, which motivates the need for nonstationarity
measures.

1.1 OUR CONTRIBUTIONS

In this paper, we handle the aforementioned challenges by introducing a new regret measure and
developing efficient algorithms for online nonconvex min-max problem with optimal regret guaran-
tees. The main contributions are highlighted below.

• We first introduce a novel notion of dynamic regret for online nonconvex-strongly-concave
min-max problem, called local Nash equilibrium (NE)-regret, which jointly captures the
nonconvexity, nonstationarity, and min-max nature of our problem.

• Based on the regret notion, we propose an efficient online min-max optimization algorithm,
named time-Smoothed Online gradient Descent Ascent (SODA). The main idea underly-
ing SODA is to output a near-stationary point at each round by performing two-timescale
gradient descent ascent and utilizing a specially designed stop criterion component.

• We show that the local NE-regret of SODA scales as O( T
w2 ) with a iteration complexity of

O(Tw), which matches the Ω( T
w2 ) regret lower bound and the order of iteration complexity

of O(Tw) provided in Hazan et al. (2017a) for online minimization (where we set the
maximization to be over a singleton). Thus, SODA achieves the optimal performance for
online nonconvex-strongly-concave min-max optimization.

• We further generalize our study to the setting with stochastic first-order feedback and show
that a variation of SODA can also achieve a regret of O( T

w2 ).

• We verify our theoretical results and demonstrate the effectiveness of our algorithm through
several empirical experiments on real-world datasets.

To our best knowledge, this is the first study on online nonconvex min-max optimization with theo-
retical characterization of the regret performance.

1.2 RELATED WORK

Online min-max optimization. Recently, online min-max optimization, also known as online
saddle-point game, has emerged as an interesting optimization framework, and has been studied
under various settings. More specifically, the zero-sum matrix game considers the special case
that the function is bilinear with a payoff matrix At, where the objective function is given by
ft(x,y) = x⊤Atyt. Several works, for example, Cardoso et al. (2019); Fiez et al. (2021); Immor-
lica et al. (2019); Zhang et al. (2022b) proposed and analyzed algorithms with respect to different
notions of regret. For more general objective functions, Rivera et al. (2018); Roy et al. (2019) studied
the case where the loss function ft is strongly-convex-strongly-concave. Very recently, Noarov et al.
(2021) formulated a general multi-objective framework, where the goal is to minimize the maximum
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coordinate of the cumulative vector-valued loss with convex-concave function in every coordinate.
We emphasize that all of the above studies did not consider nonconvexity in their objective functions,
which is the focus of our study here.

Online nonconvex optimization. As online nonconvex optimization is an active research area,
various works have taken different approaches to handle the nonconvexity. Assuming access to an
offline nonconvex optimization oracle to approximate minimizers of perturbed nonconvex functions,
Suggala & Netrapalli (2020); Agarwal et al. (2019) studied the performance of “follow the perturbed
leader” (FTPL) algorithm (Kalai & Vempala, 2005), and their regrets are all static regret. Further,
Hazan et al. (2017a); Hallak et al. (2021); Aydore et al. (2019) considered online nonconvex prob-
lems under nonstationary environments, and utilized sliding windows method with window size w.
They proposed different notions of dynamic regrets and algorithms, and achieved an order of O( T

w2 )
according regret notions. Additionally, Héliou et al. (2020) studied online nonconvex optimization
with imperfect feedback. Except first-order optimization, Héliou et al. (2020); Roy et al. (2022)
considered zeroth-order online nonconvex optimization and Lesage-Landry et al. (2020) studied
second-order online nonconvex optimization.

Offline min-max optimization. There is a rich literature that studies a diverse set of algorithms
for min-max optimization with nonconvexity in the offline setting. We next describe only those
studies highly relevant to our study here. One celebrated approach is the nested-loop type algo-
rithm (Rafique et al., 2021; Nouiehed et al., 2019; Thekumparampil et al., 2019; Kong & Monteiro,
2021), where the outer loop can be treated as an inexact gradient descent on a nonconvex function
while the inner loop aims to find an approximate solution to the maximization problem (see Lin
et al. (2020a) and references therein for a good collection of such studies). Another approach, man-
ifesting in the recent works of Lu et al. (2020) and Lin et al. (2020a) considers less complicated
single-loop structures. Specifically, the two-timescale GDA analyzed in Lin et al. (2020a) is closest
to the implementation at each round of our proposed SODA method. But it is not straightforward
to generalize the design to the online setting, and our analysis of the new local NE-regret for online
optimization is also very different from such a offline min-max problem.

1.3 NOTATIONS

[T ] ≜ {1, . . . , T}. We use bold lower-case letters to denote vectors as in x,y, and denote its ℓ2-
norm as ∥ · ∥. We use calligraphic upper case letters to denote sets as in Y , and use the notation
PY to denote projections onto the set. For a differentiable function Φ(·) : Rm → R, we let ∇Φ(x)
denote the gradient of Φ at x. For a function f(·, ·) : Rm × Y → R of two variables, ∇xf(x,y)
(or ∇yf(x,y)) denotes the partial gradient of f with respect to the first variable (or the second
variable) at the point (x,y). We also use ∇f(x,y) to denote the full gradient at (x,y) where
∇f(x,y) = (∇xf(x,y),∇yf(x,y)). Finally, we use the notation O(·) and Ω(·) to hide constant
factors which are independent of problem parameters.

2 PROBLEM SETUP

We consider solving the following online min-max (i.e., saddle-point) problem:

minx∈Rm maxy∈Y ft(x,y), t ∈ [T ] (1)

where ft : Rm × Rn → R is generally nonconvex in x but concave in y and where Y is a convex
set. At each round t ∈ [T ], the environment first incurs a loss function ft. Without knowing the
knowledge of ft, the x-learner and y-learner are tasked with predicting xt and yt respectively to
solve eq. (1) based on loss functions up to round t− 1, i.e., {fi}t−1

i=1 . The learners then observe the
function ft(·) and suffer a loss of ft(xt,yt).

The following regularity assumptions for ft are made throughout the entire paper:
Assumption 1 (Smoothness). ft is ℓ-smooth ∀t ∈ [T ], i.e., ∀(x,y), (x′,y′), it holds that
∥∇ft(x,y)−∇ft(x′,y′)∥ ≤ ℓ∥(x,y)− (x′,y′)∥.
Assumption 2 (Strong Concavity). The function ft(x, ·) is µ-strongly concave ∀t ∈ [T ], i.e., given
x ∈ Rm, ∀y,y′, it holds that ft(x,y) ≤ ft (x,y

′) + ⟨∇yft (x,y
′) ,y − y′⟩ − µ

2 ∥y − y′∥2.
Assumption 3 (Boundness). The set Y is a convex and bounded set with diameter D ≥ 0. There
exists M > 0, s.t. |ft(x,y)| ≤M , ∀t ∈ [T ],x ∈ Rm,y ∈ Y .

3



Under review as a conference paper at ICLR 2023

The above assumptions are standard in the literature of online learning (Hazan et al., 2017b) and
min-max optimization (Lin et al., 2020a;b).

When the loss ft is fixed for all t, our framework specializes to the standard nonconvex-strongly-
concave min-max optimization (Lin et al., 2020a;b). Putting into the context of online min-max
optimization, our formulation is similar to those in Roy et al. (2019); Rivera et al. (2018); Zhang
et al. (2022b), where they studied only the case where ft is convex-concave. However, their standard
regret minimization and equilibrium computation will be computationally infeasible for general
nonconvex-strongly-concave losses.

3 HOW TO MEASURE THE PERFORMANCE?

3.1 LOCAL NASH EQUILIBRIUM (NE)-REGRET

We introduce a new definition of a local regret that suits online nonconvex-strongly-concave min-
max problems. Our new metric is motivated by the online nonconvex optimization literature; see
for example Hazan et al. (2017a); Hallak et al. (2021). Specifically, for each t, we first define the
smoothed functions of ft over a sliding-window of size w as:

Ft,w(x,y)
def
= 1

w

∑w−1
i=0 ft−i(x,y). (2)

For notation convenience, we treat ft(x,y) as 0 for all t < 0. Moreover, since the averaging pre-
serves strongly-convexity, which implies Ft,w is strongly-concave in y, the maximization problem
maxy∈Y Ft,w(x,y) can be solved efficiently. Then, we can naturally define the following function:

Φt,w(x)
def
= maxy∈Y Ft,w(x,y). (3)

The overall goal of online min-max optimization can be viewed as online minimization over the
above defined Φt,w(·) function.Thus, we define the following regret metric with respect to Φt,w(·).
Definition 1 (Local Nash Equilibrium (NE)-Regret). Let ft be a sequence of functions satisfying
Assumption 1-3, with Φt,w(·) defined in eq. (3). The w-local Nash Equilibrium (NE)-Regret is
defined as:

Rw−NE(T )
def
=
∑T

t=1 ∥∇Φt,w(xt)∥2. (4)

∇Φt,w is well-defined since Φt,w is differentiable for nonconvex-strongly-concave min-max prob-
lem (Lin et al., 2020a). We next justify the above notion of the local NE-regret from three aspects.

Why norm of gradient as metric? In online convex-concave min-max optimization, it is standard
to consider the Nash Equilibrium (NE)-Regret (Rivera et al., 2018) metric, defined as:

|
∑T

t=1 ft (xt,yt)−minx∈Rm maxy∈Y
∑T

t=1 ft(x,y)|.

However, the above metric of NE-regret is inappropriate and face a major issue in the online
nonconvex-concave formulation. The core challenge is that, even in the offline case (T = 1), it is
hard to efficiently find the global optimum of minx∈Rm maxy∈Y f1(x,y) in the hindsight. Clearly,
the problem is equivalent to minx∈Rm Φ(x), where Φ(·) = maxy∈Y f1(·,y) is generally noncon-
vex, and hence finding the global minimum for Φ(x) is NP hard. A common surrogate for the
global minimum of Φ in the offline nonconvex-strongly-concave min-max literature is the notion
of ϵ-stationary point (Lin et al., 2020a;b) for differentiable Φ, i.e., there exists some iterate xt for
which ∥∇Φ(xt)∥2 < ϵ. If ϵ = 0, then xt is a stationary point. Therefore, it is reasonable to leverage
such a norm of gradient as the optimality criterion from the offline nonconvex min-max analysis.

Why sliding-window averaging? The motivation behind the window averaging is two-fold: (i)
Ft,w and Φt,w represent the average performance during the window, which is widely adopted to
handle noises and fluctuations when the environment and the loss function ft encounter mild pertur-
bations and variations. For instance, when each loss function ft is an unbiased noisy realization of
some f , the expected gradient norm of a randomly selected update inside the window is a standard
measure in the nonconvex stochastic optimization literature (Bottou et al., 2018) and can reduce the
variation caused by noises. Such smoothed notion is also a common practice in the field of online
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nonconvex optimization1 (Hazan et al., 2017a; Hallak et al., 2021; Aydore et al., 2019; Zhuang et al.,
2020). (ii) The average performance itself is also a typical notion that people are interested in real-
world applications. Suppose a decision maker in a time-varying environment (with loss functions
ft) has only finite term memory w. Then she naturally wishes to find the best decision based on
the entire finite term memory and will choose the average loss function Ft,w and Φt,w as the perfor-
mance metrics. As another example, if the environment varies in a periodic manner, such an average
performance metric during a whole period is naturally adopted in time series forecasting problems.

Why capturing the dynamic nature? It is desirable that the regret can capture how well
the players adapt their actions to the best decision at each round if the environment is non-
stationary and changes over time. In the well-studied online convex-concave setting, the no-
tion of dynamic regret (Zhang et al., 2022b) is defined for this purpose, since its definition of
|
∑T

t=1 ft (xt,yt)−
∑T

t=1 minx∈Rm maxy∈Y ft(x,y)| evaluates the gap to the min-max compara-
tor at each round instead of the min-max solution of the sum of functions over all rounds. For the
nonconvex min-max setting, the best min-max comparator at each round can be set as the stationary
point of the window function Φt,w(·), which has zero gradient. Hence, our local regret in eq. (4) can
be interpreted as evaluating the gap between ∥∇Φt,w(xt)∥2 and its comparator (which equals zero
gradient) at each round, and thus implicitly captures the player’s adaption to the dynamic setting.

3.2 VARIABILITY OF ENVIRONMENT

Intuitively, if the environment (and hence the loss function ft) changes drastically over time, it
will be hard to obtain meaningful guarantees efficiently. To handle this problem, dynamic (Roy
et al., 2019; Zhang et al., 2022b) or local (Hallak et al., 2021) regret serves as better performance
metrics to take the changing environment into consideration. Such notions typically rely on certain
nonstationarity measures of the environment in order to reflect how the system dynamics affects
the performance. Therefore, in this subsection, we introduce such measures of variation for loss
functions, which will be crucial in our analysis and capture the nonstationarity of our online min-
max settings.

Definition 2 (Variation of Sliding-window). Let us denote y∗
t,w(x) = argmaxy∈Y Ft,w(x,y). The

sliding-window variation in x is defined as:

Vx,w[T ] :=
∑T

t=1 supx∈Rm ∥∇xft
(
x,y∗

t,w(x)
)
−∇xft−w

(
x,y∗

t,w(x)
)
∥2. (5)

Moreover, the sliding-window variation in y is defined as:

Vy,w[T ] :=
∑T

t=1 supx∈Rm ∥∇yft
(
x,y∗

t,w(x)
)
−∇yft−w

(
x,y∗

t−1,w(x)
)
∥2. (6)

Remark 1. Clearly, Vx,w[T ] and Vy,w[T ] are O(T ) if the gradients of ft are bounded and can be
zero in the offline setting, i.e., T = 1. A key observation is that if the loss function encounters a
periodic shift with certain period length of w∗, i.e., ft+w∗ = ft, then for w = w∗, ft = ft−w

and y∗
t,w = y∗

t−1,w, which is implied by the fact that Ft+1,w = Ft,w. As a consequence, for the
well-tuned w, the sliding-window variations could be considerably small compared to T , especially
Vx,w[T ] = Vy,w[T ] = 0 in the above case.

4 SODA: TIME-SMOOTHED ONLINE GRADIENT DESCENT ASCENT

In this section, we present our proposed method, named time-Smoothed Online gradient Descent
Ascent (SODA), for online nonconvex-strongly-concave problem, and we show that our approach is
capable of efficiently achieving a favorable local NE-regret bound.

4.1 PROPOSED ALGORITHM

At the high-level, our algorithm plays following the-leader iterates, aiming to find a suitable ap-
proximating stationary point at each round using two-timescale gradient descent ascent (GDA). At
each round t, SODA performs gradient descent over the variable x with the stepsize ηx and gradient

1If we view Y to be singleton, the local NE-regret degenerates to local regret proposed in Hazan et al.
(2017a).
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Algorithm 1 Time-Smoothed Online Gradient Descent Ascent (SODA)
Input: window size w ≥ 1, stepsizes (ηx, ηy), tolerance δ > 0
Initialization: (x1,y1)

1: for t = 1 to T do
2: Predict (xt,yt). Observe the cost function ft : Rm × Rn → R
3: Set (xt+1,yt+1)← (xt,yt)
4: repeat
5: xt+1 ← xt+1 − ηx∇xFt,w (xt+1,yt+1)
6: yt+1 ← PY (yt+1 + ηy∇yFt,w (xt+1,yt+1))

7: until κ2

η2
y
∥yt+1 −PY (yt+1 + ηy∇yFt,w (xt+1,yt+1)) ∥2 + ∥∇xFt,w(xt+1,yt+1)∥2 ≤ δ2

2w2

8: end for

ascent over the variable y with the stepsize ηy on function Ft,w(x,y) until the stop condition is sat-
isfied. Then, SODA observes the loss function ft+1 to be used in the next round. The pseudocode
of SODA is summarized in Algorithm 1.

Discussions about stopping criterion. Due to the online nature, the design of the stopping con-
dition is to guarantee that the learner outputs a good xt+1 with small local regret at round t, i.e.,
∥∇Φt,w(xt+1)∥2 is small enough. However, we do not have direct access to the first order ora-
cle of Φt,w. To circumvent this issue, we adopt the global error bound condition from the seminal
paper Drusvyatskiy & Lewis (2018) to translate conditions on ∇Φt,w(xt+1) into restrictions on
tractable ∇Ft,w. Specifically, we prove that ∥∇Φt,w(xt+1)∥2 is upper bounded by the left-hand
side of inequality in Algorithm 1 line 7 (see Lemma A.3). Therefore, alternatively we can utilize the
accessible information of∇Ft,w to terminate the inner loop iterations at time t.

Last-iterate guarantee. At each round t, the stop condition will be triggered only when the local
regret of last iteration is small enough. Such a last-iterate type guarantee is different by nature from
existing offline nonconvex-strongly-concave min-max results (Lin et al., 2020b;a), which are only
guaranteed to visit an ϵ-stationary point within a certain number of iterations, i.e., where the return
x̄ is uniformly drawn from previous iterations. Crucially, we will establish the total iteration bound
(see Theorem 2) in the next subsection, which indicates that such last-iterate type outputs can be
obtained efficiently. Furthermore, since the stopping criterion leads to stronger guarantee, our result
is incomparable with former offline iteration complexity in the special case that T = 1.

4.2 THEORETICAL GUARANTEES

In this subsection, we provide the regret and computational complexity guarantees of our algorithm
under local NE-regret and highlight several connections with the existing results from offline min-
max optimization and online nonconvex problem.
Theorem 1 (Local NE regret minimization). Let κ = ℓ/µ denote the condition number. Under
Assumptions 1-3, and letting the stepsizes be chosen as ηx = Θ

(
1/κ3ℓ

)
and ηy = Θ(1/ℓ), then

Algorithm 1 enjoys the following local NE-regret bound:

ℜw−NE(T ) =
∑T

t=1 ∥∇Φt,w(xt)∥2 ≤ 3
w2 (Tδ

2 + (κw)2

(w−1)2Vy,w[T ] + Vx,w[T ]).

Theorem 2 (Iteration bound). Let τ denote the total number of iterations incurred by Algorithm 1.
Then τ can be upper bounded as:

τ ≤ 480κ3ℓMwT

δ2
+ 256

κ2T

µ
+

256D2κ3ℓ2w2

δ2
+ 512

w2κ5

(w − 1)2δ2
Vy,w[T ].

Furthermore, the number of first-order gradient calls is bounded by O(wτ).

Theorems 1 and 2 together reveal the trade-off between the impact of sliding-window size w on the
regret and the computational complexity, where larger w leads to smaller regret bound but incurs
more gradient calls.

Robustness of SODA. Our results in Theorems 1 and 2 are expressed in terms of variation measures
Vx,w[T ] and Vy,w[T ] of the environment introduced in Section 3.2. If we make the more restrictive
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assumption similar to that in Hazan et al. (2017a) that the gradient of ft is bounded, the above
theorems provide a robust guarantee for SODA; namely, no matter how the environment changes at
each round, SODA always ensures O( T

w2 ) local NE-regret with O(Tw) iterations since Vx,w[T ] and
Vy,w[T ] are O(T ) by definitions. Therefore, the regret can be made sublinear in T if w is selected
accordingly. Interestingly, following SODA, the local NE-regret can achieve the same order without
the bounded gradient assumption depending on the nonstationarity. Particularly, as we discussed in
Remark 1, for the scenario that ft is periodic with period w, Vx,w[T ] = Vy,w[T ] = 0.

Optimality of regret bound. Note that the basic online nonconvex minimization problem can
be viewed as a special case of our online nonconvex min-max problem, if ft(x, y) takes values
independent of y. In such a degenerate case, our local NE-regret is equivalent to the local regret
analyzed in Hazan et al. (2017a); Hallak et al. (2021). Consequently, the adversarial example that
incurs the local regret of Ω( T

w2 ) constructed in Hallak et al. (2021) can also serve as a worst case
example for our online noncovex min-max setting. Moreover, under the same assumption made in
Hazan et al. (2017a) (which is more restrictive than our assumption here), we achieve a robust regret
upper bound of O( T

w2 ) (as discussed in the previous paragraph), which matches the worst-case lower
bound, indicating that our bound Theorem 1 for online nonconvex min-max problem is optimal.

Comparison to offline min-max optimization. When the environment is fixed, i.e. ft ≡ f or T =
1 with w = 1, our problem specializes to offline min-max optimization and Vx,w[T ] = Vy,w[T ] = 0
will disappear from our results. Therefore, an immediate implication from our theorems is that
GDA is guaranteed to find ϵ-stationary point with O(κ3ϵ−2) iteration complexity. The best known
complexity bound for GDA in offline min-max optimization is O(κ2ϵ−2) (Lin et al., 2020a). How-
ever, as we discussed in Section 4.1, SODA aims to output x with last-iterate type guarantee, which
is a stronger notion than that considered in Lin et al. (2020a), where GDA are only guaranteed to
visit an ϵ-stationary point within a certain number of iterations. Thus, these results are not directly
comparable.

5 SODA WITH STOCHASTIC FIRST-ORDER ORACLE

In this section, we extend our online min-max framework to an online stochastic version. This
setting is motivated by the fact that, in real world application, such as training a neural network, an
oracle with access to the gradient of loss function is hard to reach. Instead, a stochastic first-order
oracle (SFO) is used to approximate the ground truth gradient. Similar settings have been studied
in Nemirovski et al. (2009); Hazan et al. (2017a); Hallak et al. (2021). Specifically, the formal SFO
definition is as follows.

Definition 3 (Stochastic first-order oracle). A stochastic first-order oracle (SFO) is a function Sσ
such that, given a point (x,y) ∈ Rm×Y , a random seed ζ, and a smooth function h : Rm×Y → R
satisfies:

• Sσ(x,y; ζ, h) is an unbiased estimate of∇h(x,y) : E (S(x,y; ζ, h)−∇h(x,y)) = 0;

• Sσ(x,y; ζ, h) has variance bounded by σ2 > 0 : E
(
∥S(x,y; ζ, h)−∇h(x,y)∥2

)
≤ σ2.

5.1 PROPOSED ALGORITHM

With the above definition of SFO, we introduce the stochastic version of Algorithm 1, named SODA-
SFO (see Algorithm 2). Similarly, SODA-SFO also follows the-leader iterates using two-time scale
GDA. Taking the noise brought by SFO into consideration, nested loops and special stopping cri-
terion (in line 6 in Algorithm 2) are modified accordingly. Specially, (i) SFO results in different
coefficients in stop criterion compared to SODA. (ii) The stopping criterion in SODA-SFO only
ensures that ∥∇Φt,w(xt+1)∥2 is bounded by the threshold plus the variation of SFO. But the vari-
ation here does not play an important role, since sliding windows serve variance reduction purpose
to reduce the variation in the final expectation regret. We defer Algorithm 2 to Appendix B.

5.2 THEORETICAL GUARANTEES

Denote τt as the number of iterations of inner loop at round t and thus τ =
∑T

t=1 τt. We first
establish that for each round t, the inner loop terminates with finite iterations τt provided that δ is

7
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not too small (recall that δ is the tolerance for stopping criterion), which justifies that SODA-SFO is
computation tractable.
Theorem 3 (Finite iteration with SFO). Let κ = ℓ/µ denote the condition number, and let the
stepsizes be chosen as ηx = Θ

(
1/κ3ℓ

)
and ηy = Θ(1/ℓ). Under Assumptions 1-3, for any t ∈ [T ],

if δ, w and σ satisfy that δ2 = O(κ
4ℓ2σ2

w ), then τt and τ is finite with high probability. Specially,
when K ∈ R is large enough, P(τt > K) = O(1/K).

With the finite step stopping guarantee on hand, we next characterize the performance of SODA-
SFO with expectation local NE-regret formally in terms of w, T, Vx,w[T ], Vy,w[T ].
Theorem 4 (Expectation local NE-regret with SFO). Under the setting of Theorem 3, SODA-SFO
enjoys the following expectation local NE regret bound:

E [ℜw−NE(T )] ≤ T
w2

(
3δ2 +

(18κ2+9)σ2

w

)
+ 3κ2

(w−1)2Vy,w[T ] +
3
w2Vx,w[T ].

Beyond finite stopping and the regret bound, people may wonder whether the inner loop is meaning-
ful if the per-stage calls of SFOs increase greatly, and are also interested in the total complexity of
SFO calls. To address such an issue, we further provide an upper bound on the complexity of SFO
calls similar to Theorem 2. In the stochastic online nonconvex min-max setting, we further need the
following widely adopted assumption (Li & Orabona, 2019; Hallak et al., 2021) to control the noise
caused by SFO calls.
Assumption 4. Given any point (x,y) ∈ Rm×Y , random seed ζ, and smooth function h: Rm×Y ,
the SFO defined in Definition 3 satisfys that ∥S(x,y; ζ, h)−∇h(x,y)∥2 ≤ σ2.
Remark 2. We remark here that Theorems 3 and 4 do not require Assumption 4, and Theorem 3
provide the finite iteration guarantee with high probability and Theorem 4 provides an upper bound
for expectation regret. With Assumption 4, which is slightly stronger than the assumptions in Def-
inition 3, we are able to provide the following deterministic bound on iterations and the number of
SFO calls as in Theorem 5. Furthermore, Theorem 5 can provide deterministic guarantees rather
than high probability guarantees because Assumption 4 controls the variation of noise in an absolute
and deterministic manner.
Theorem 5 (Iterations and SFO calls bounds). Under the setting of Theorem 3 and Assumption 4,
and suppose that δ2 > 540κ4σ2. Then the total number of iterations satisfies

τ ≤ 1

ηx

2MTw + 3δ2T
64ℓ + ℓw2

3µ2(w−1)2Vy,w[T ] + w2M + 5ℓD2w2

32(
δ2

27 − 20κ4σ2
) .

Furthermore, the number of SFO calls is bounded by O(wτ).

The above results also provide a robust guarantee for SODA-SFO, where SODA-SFO achieves a
expectation regret of O( T

w2 ) with at most O(Tw) iterations and hence O(Tw2) calls of SFO, as
long as Vx,w[T ] and Vy,w[T ] scale with O(T ). Following the similar discussions from Remark 1
and Section 4.2, such condition can hold with relaxed assumptions depending on nonstationarity.

Specially, if the variance of SFO defined in Definition 3 is zero, then SFO reduces to perfect first
order feedback. Hence, as discussed in Section 4.2, the adversarial example provided by Hazan
et al. (2017a) is also applicable to the stochastic setting, and thus indicates that the expectation
regret O( T

w2 ) reaches optimality. If the set Y is a singleton, online nonconvex min-max problem
with SFO reduces to the online nonconvex problem with SFO. In this case, the term consisting of
Vy,w[T ] will disappear in our analysis, and our theorems recover the results in Hallak et al. (2021).

6 EXPERIMENTS

In this section, we evaluate the efficiency of the proposed SODA algorithm and verify the theoretical
results through numerical simulations. We consider the min-max problem of training an empirical
Wasserstein robustness model (WRM) (Sinha et al., 2017), which has the following form2:

min
x

max
{yi}N

i=1

L(x,y;D) ≜ 1
N

∑
(ξi,zi)∈D

[
ℓ (hx (yi) , zi)− γ ∥ξi − yi∥2

]
, (7)

2Note that we can choose sufficiently large γ > 0 to make the maximization part be strongly-concave.
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(a) MNIST (b) Fashion-MNIST

Figure 1: Performance of SODA with different window size. Average regret Ravg vs. round.

(a) MNIST (b) Fashion-MNIST

Figure 2: Comparison of SODA and onlineGDmax. Number of gradient calls vs. average accuracy.

where ℓ is the cross-entropy loss function, N is the number of training samples, x is the network
parameter, (ξi, zi) ∈ D corresponds to the i-th data sample and label, respectively, and yi is the
adversarial sample corresponding to ξi. Denote {yi}Ni=1 as y. We simulate the online WRM model
as follows. We randomly split the given dataset into T pieces {Dt}Tt=1, and the learner sequentially
receives Dt. At each round t, ft(x,y) = L(x,y;Dt). We defer the detailed specification of the
setup to Appendix C.1.

Metrics. Since we do not have access to the first-order oracle of ∇Φt,w in practice, two alternative
performance metrics are considered, which capture the essence of the online setting and are consis-
tent with the definition of our local NE-regret. The first metric is the stronger notion we utilize in
the stop criterion, which provides an upper bound for ∥∇Φt,w(xt)∥2. Observing that the projected
gradient of y does not change significantly in experiments, we only compute ∥∇xFt,w(xt,yt)∥2
and report the average Ravg ≜ 1

t

∑t
j=1 ∥∇xFj,w(xj ,yj)∥2 of these at each round t, which serves as

an approximation of 1
tℜw−NE(t). The second metric is the average accuracy, where we evaluate the

test accuracy of output (xt,yt) from the last round on the newly coming Dt and report the average
from round 1 to t.

The effect of window size w. In Figure 1, we plot Ravg of SODA on MNIST and Fashion-MNIST
with different w. It can be observed that as w increases from 2 to 10, the local regret becomes
smaller, which verifies the bound in Theorem 1 and justifies the usage of large window size.

Comparison of SODA and baseline algorithm. To further investigate the performance of SODA,
we conduct experiments to compare it with a baseline algorithm. Note that to our best knowledge,
there has been no existing formal studies on the performance of any developed algorithm for online
nonconvex min-max problems. Here, we consider a baseline algorithm, which is a natural extension
of the well-known offline min-max method GDmax (Jin et al., 2020) to the online framework, named
onlineGDmax. Detailed description about this algorithm is provided in Appendix C.2. As shown in
Figure 2, to achieve similar accuracy, onlineGDmax requires significantly larger number of gradient
calls than SODA, which demonstrates the efficiency of our algorithm.

7 CONCLUSIONS

This paper provides the first analysis for the online nonconvex-concave min-max optimization prob-
lem. We introduced a novel notion of local Nash Equilibrium regret to capture the nonconvexity and
nonstationary of the environment. We developed and analyzed algorithms SODA and its stochastic
version with respect to the proposed notions of regret, establishing favorable regret and complexity
guarantees. Furthermore, we conduct experiments with real-world data to validate the theoretical
statements and show its superiority in practice.
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REPRODUCIBILITY STATEMENT

All proofs are stated in the appendix with explanations and underlying assumptions. All experimen-
tal setups are provided in the appendix with detailed descriptions.
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imax problems. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
6083–6093. PMLR, 13–18 Jul 2020a. URL https://proceedings.mlr.press/v119/
lin20a.html.

Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization. In
Conference on Learning Theory, pp. 2738–2779. PMLR, 2020b.

Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block successive ap-
proximation for one-sided non-convex min-max problems: algorithms and applications. IEEE
Transactions on Signal Processing, 68:3676–3691, 2020.

J-F Mertens and Abraham Neyman. Stochastic games. International Journal of Game Theory, 10
(2):53–66, 1981.

Arkadi Nemirovski, Anatoli B. Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM J. Optim., 19(4):1574–1609, 2009.
doi: 10.1137/070704277. URL https://doi.org/10.1137/070704277.

Georgy Noarov, Mallesh Pai, and Aaron Roth. Online multiobjective minimax optimization and
applications. arXiv preprint arXiv:2108.03837, 2021.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solving
a class of non-convex min-max games using iterative first order methods. Advances in Neural
Information Processing Systems, 32, 2019.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Weakly-convex–concave min–max
optimization: provable algorithms and applications in machine learning. Optimization Methods
and Software, pp. 1–35, 2021.

A. Pallares Rivera, He Wang, and Huan Xu. The online saddle point problem and online convex
optimization with knapsacks. arXiv: Machine Learning, 2018.

Abhishek Roy, Yifang Chen, Krishnakumar Balasubramanian, and Prasant Mohapatra. Online and
bandit algorithms for nonstationary stochastic saddle-point optimization. ArXiv, abs/1912.01698,
2019.

11

http://proceedings.mlr.press/v89/li19c.html
https://proceedings.mlr.press/v119/lin20a.html
https://proceedings.mlr.press/v119/lin20a.html
https://doi.org/10.1137/070704277


Under review as a conference paper at ICLR 2023

Abhishek Roy, Krishnakumar Balasubramanian, Saeed Ghadimi, and Prasant Mohapatra. Stochastic
zeroth-order optimization under nonstationarity and nonconvexity. Journal of Machine Learning
Research, 23(64):1–47, 2022.

Shai Shalev-Shwartz. Online learning and online convex optimization. Found. Trends Mach.
Learn., 4(2):107–194, 2012. doi: 10.1561/2200000018. URL https://doi.org/10.
1561/2200000018.

Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distributional
robustness with principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
leader is optimal. In Algorithmic Learning Theory, pp. 845–861. PMLR, 2020.

Davoud Ataee Tarzanagh and Laura Balzano. Online bilevel optimization: Regret analysis of online
alternating gradient methods. arXiv preprint arXiv:2207.02829, 2022.

Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Efficient algorithms
for smooth minimax optimization. Advances in Neural Information Processing Systems, 32, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
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A MISSING PROOF OF SECTION 4

A.1 TECHNICAL LEMMA

Recall that Φt,w(x) = maxy∈Y Ft,w(x,y) and y∗
t,w(x) = argmaxy∈Y Ft,w(x,y). In this section,

we first present some technical lemmas to characterize the structure of the function Φt,w and y∗
t,w

in the nonconvex-strongly-concave setting, which will be essential throughout the analysis.
Lemma A.1. Φt,w(·) is (ℓ + κℓ)-smooth with ∇Φt,w(·) = ∇xFt,w

(
·,y⋆

t,w(·)
)
. Also, y⋆

t,w(·) is
κ-Lipschitz.

Proof. Since the averaging maintains the strongly-nonconcavity and smoothness, i.e. Ft,w(x,y) is
still µ-strongly-convave in y and ℓ-smooth. Thus, the proof directly follow Lemma 4.3 in Lin et al.
(2020a) and we omit the details.

Furthermore, we derive the following lemma to provide the smoothness property of y∗
t,w(x) with

respect to t. In other words, given any fixed x, the movement of y∗
t,w(x) when t changes can be

controlled by the variability of environment of the sliding window.
Lemma A.2. For any x ∈ Rm, t ∈ [T ], it holds that∥∥y∗

t−1,w(x)− y∗
t,w(x)

∥∥ ≤ ∥∥∇yft,w(x,y
∗
t,w(x))−∇yft−w(x,y

∗
t−1,w(x))

∥∥
µ(w − 1)

.

Proof. By the optimality of y∗
t,w(x) and y∗

t−1,w(x), for ∀x, we have

(y − y∗
t,w(x))

⊤∇yFt,w(x,y
∗
t,w(x)) ≤ 0,∀y ∈ Y, (8)

(y − y∗
t−1,w(x))

⊤∇yFt−1,w(x,y
∗
t−1,w(x)) ≤ 0,∀y ∈ Y. (9)

Summing up Equation (8) with y = y∗
t−1,w(x) and Equation (9) with y = y∗

t,w(x) yields that

(y∗
t−1,w(x)− y∗

t,w(x))
⊤(∇yFt,w(x,y

∗
t,w(x))−∇yFt−1,w(x,y

∗
t−1,w(x))) ≤ 0. (10)

By the definition of Ft,w(x,y), we have

∇yFt,w(x,y
∗
t,w(x))−∇yFt−1,w(x,y

∗
t−1,w(x))

=
1

w

w−1∑
i=0

∇yft−i(x,y
∗
t,w(x))−

1

w

w−1∑
i=0

∇yft−i−1(x,y
∗
t−1,w(x))

=
1

w

{
∇yft,w(x,y

∗
t,w(x))−∇yft−w(x,y

∗
t−1,w(x))

}
+

1

w

w−1∑
i=1

{
∇yft−i(x,y

∗
t,w(x))−∇yft−i(x,y

∗
t−1,w(x))

}
. (11)

Since for any t and fixed x, the ft(x, ·) is µ-strongly-concave, we have

(y∗
t−1,w(x)− y∗

t,w(x))
⊤ {∇yft−i(x,y

∗
t−1,w(x))−∇yft−i(x,y

∗
t,w(x))

}
+ µ

∥∥(y∗
t−1,w(x)− y∗

t,w(x))
∥∥2 ≤ 0. (12)

Plug Equations (11) and (12) into Equation (10), then we have

(y∗
t−1,w(x)− y∗

t,w(x))
⊤ 1

w

{
∇yft,w(x,y

∗
t,w(x))−∇yft−w(x,y

∗
t−1,w(x))

}
+

w − 1

w
µ
∥∥(y∗

t−1,w(x)− y∗
t,w(x))

∥∥2 ≤ 0.
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As a result
w − 1

w
µ
∥∥y∗

t−1,w(x)− y∗
t,w(x)

∥∥2
≤ −(y∗

t−1,w(x)− y∗
t,w(x))

⊤ 1

w

{
∇yft,w(x,y

∗
t,w(x))−∇yft−w(x,y

∗
t−1,w(x))

}
≤ 1

w

∥∥y∗
t−1,w(x)− y∗

t,w(x)
∥∥∥∥∇yft,w(x,y

∗
t,w(x))−∇yft−w(x,y

∗
t−1,w(x))

∥∥ ,
where the last inequality follows from Cauchy-Schwartz inequality.

Finally, by some algebra manipulation, we finish the proof as following∥∥y∗
t−1,w(x)− y∗

t,w(x)
∥∥ ≤ ∥∥∇yft,w(x,y

∗
t,w(x))−∇yft−w(x,y

∗
t−1,w(x))

∥∥
µ(w − 1)

.

The next lemma provides an upper bound for the gradient norm of ∇Φt,w in term of notions about
∇Ft,w, which justifies our design of stop conditions.
Lemma A.3. Given a pair (x,y) ∈ Rm × Y , for t ∈ [T ] and w > 0, it holds that

∥∇Φt,w(x)∥2 ≤
2κ2

η2y
∥y − PY (y + ηy∇yFt,w (x,y)) ∥2

+ 2∥∇xFt,w(x,y)∥2

Proof. By Cauchy-Schwartz inequality, we have

∥∇Φt,w(x)∥2 ≤2∥∇Φt,w(x)−∇xFt,w(x,y)∥2 + 2∥∇xFt,w(x,y)∥2

≤2ℓ2∥y∗
t,w(x)− y∥2 + 2∥∇xFt,w(x,y)∥2

where the last inequality holds by combining Lemma A.1 and the fact that Ft,w is ℓ-smooth. Since
Ft,w(x, ·) is µ-strongly-concave over Y , from the global error bound condition in Drusvyatskiy &
Lewis (2018), we obtain

∥y∗
t,w(x)− y∥2 ≤ κ2

η2yℓ
2
∥∇Φt,w(x)−∇xFt,w(x,y)∥2

Thus, we complete the proof.

A.2 LOCAL REGRET: PROOF OF THEOREM 1

Proof of Theorem 1. Recall the definition of Φt,w and notice that

Φt,w(x) = max
y∈Y

1

w

t∑
i=t−w+1

fi(x,y) = max
y∈Y

[
Ft−1,w(x,y) +

1

w
(ft(x,y)− ft−w(x,y))

]
Then

∥∇Φt,w (xt)∥2 =
∥∥∇xFt,w(xt,y

∗
t,w(xt))

∥∥2
=
∥∥∇xFt−1,w(xt,y

∗
t−1,w(xt)) +∇xFt−1,w(xt,y

∗
t,w(xt))−∇xFt−1,w(xt,y

∗
t−1,w(xt))

+
1

w

(
∇xft

(
xt,y

∗
t,w(xt)

)
−∇xft−w

(
xt,y

∗
t,w(xt)

))∥∥∥∥2
≤ 3 ∥∇Φt−1,w (xt)∥2 +

3κ2

(w − 1)2
∥∇yft

(
xt,y

∗
t,w(xt)

)
−∇yft−w

(
xt,y

∗
t−1,w(xt)

)
∥2

+
3

w2
∥∇xft

(
xt,y

∗
t,w(xt)

)
−∇xft−w

(
xt,y

∗
t,w(xt)

)
∥2, (13)
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where the second term in last inequality follows from that

∥∇xFt−1,w(xt,y
∗
t,w(xt))−∇xFt−1,w(xt,y

∗
t−1,w(xt))∥

≤ ℓ∥y∗
t,w(xt)− y∗

t−1,w(xt)∥
(a)

≤
κ
∥∥∇yft,w(x,y

∗
t,w(x))−∇yft−w(x,y

∗
t−1,w(x))

∥∥
(w − 1)

where (a) is implied by Lemma A.2.

Moreover, for the first term in Equation (13), by Lemma A.3, and the stop condition, we obtain

∥∇Φt−1,w (xt)∥2 ≤
δ2

w2

Summing over t = 1, · · · , T , and combining the definition of variation measures Vx,w and Vy,w,
then we have

ℜw−NE(T ) =

T∑
t=1

∥Φt,w(xt)∥2 ≤
3

w2
(Tδ2 +

(κw)2

(w − 1)2
Vy,w[T ] + Vx,w[T ])

A.3 ORACLE QUERIES: PROOF OF THEOREM 2

Denote the sequence generated in the inner loop at time t ∈ [T ] by

x0
t = xt xk+1

t ← xk
t − ηx∇xFt,w

(
xk
t ,y

k
t

)
y0
t = yt yk+1

t ← PY
(
yk
t + ηy∇yFt,w

(
xk
t ,y

k
t

))
Let τt be the number of times the gradient update is executed at the t-th iteration. Note that xτ

t =
xt+1 and yτ

t = yt+1.

A.3.1 SUPPORTING LEMMAS

We present three key lemmas which are important step descent lemmas. In this section, we focus
on a crucial quantity, δkt,w =

∥∥y⋆
t,w

(
xk
t

)
− yk

t

∥∥2, which are useful for the subsequent analysis.
Throughout our analysis, we choose ηx = 1

8κ3ℓ and ηy = 1
ℓ .

Lemma A.4. Denote τt the total iteration of inner loop at step t, for 0 ≤ k ≤ τt − 1

Φt,w

(
xk+1
t

)
≤Φt,w

(
xk
t

)
− (

ηx
2
− η2xκℓ)

∥∥∇xFt,w

(
xk
t ,y

k
t

)∥∥2 + ηxℓ
2

2
δkt,w (14)

Proof. Since Φt,w is (ℓ+ κℓ)-smooth and ℓ+ κℓ ≤ 2κℓ, for any x, x+ ∈ Rm, we have

Φt,w

(
x+
)
− Φt,w (x)−

(
x+ − x

)⊤∇Φt,w (x) ≤ κℓ
∥∥x+ − x

∥∥2
Plugging x+ − x = −ηx∇xFt,w (x,y) yields that

Φt,w

(
x+
)
≤Φt,w (x)− ηx ∥∇xFt,w (x,y)∥2 + η2xκℓ ∥∇xFt,w (x,y)∥2

+ ηx (∇xFt,w (x,y)−∇Φt,w (x))
⊤∇xFt,w (x,y)

By Young’s inequality, we have

(∇xFt,w (x,y)−∇Φt,w (x))
⊤∇xFt,w (x,y)

≤ ∥∇xFt,w (x,y)−∇Φt,w (x) ∥2 + ∥∇xFt,w (x,y) ∥2

2

Since∇Φt,w (x) = ∇xFt,w

(
x,y∗

t,w(x)
)
, we have

∥∇xFt,w (x,y)−∇Φt,w (x) ∥2 ≤ ℓ2∥y − y∗
t,w(x)∥2

15
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Putting these pieces together, we obtain

Φt,w

(
x+
)
≤Φt,w (x)− (

ηx
2
− η2xκℓ) ∥∇xFt,w (x,y)∥2

+
ηxℓ

2

2
∥y − y∗

t,w(x)∥2

Lemma A.5. For any t, k ≥ 0, the following statement holds true,

∥yk+1
t − yk

t ∥2 ≤ (4− 2

κ
)δkt,w. (15)

Proof. By Young’s inequality, we have

∥yk+1
t − yk

t ∥2 ≤ 2∥yk+1
t − y⋆

t,w

(
xk
t

)
∥2 + 2∥y⋆

t,w

(
xk
t

)
− yk

t ∥2

≤
(
2(1− 1

κ
) + 2

)
δkt,w = (4− 2

κ
)δkt,w.

Lemma A.6. Let δkt,w =
∥∥y⋆

t,w

(
xk
t

)
− yk

t

∥∥2, the following statement holds true,

δkt,w≤
(
1− 1

2κ

)
δk−1
t,w + 2κ3η2x∥∇xFt,w(x

k−1
t ,yk−1

t )∥2

Proof. Since ft(x, ·) is µ-strongly concave and ηy = 1/ℓ, we have

∥y⋆
t,w

(
xk−1
t

)
− yk

t ∥2 ≤ (1− 1

κ
)δk−1

t,w

By Young’s inequality, we have

δkt,w ≤
(
1 +

1

2(κ− 1)

)
∥y⋆

t,w

(
xk−1
t

)
− yk

t ∥2 + (1 + 2(κ− 1))∥y⋆
t,w

(
xk
t

)
− y⋆

t,w

(
xk−1
t

)
∥2

≤
(
2κ− 1

2κ− 2

)
∥y⋆

t,w

(
xk−1
t

)
− yk

t ∥2 + 2κ∥y⋆
t,w

(
xk
t

)
− y⋆

t,w

(
xk−1
t

)
∥2

≤
(
1− 1

2κ

)
δk−1
t,w + 2κ∥y⋆

t,w

(
xk
t

)
− y⋆

t,w

(
xk−1
t

)
∥2 (16)

Since y⋆
t,w(·) is κ-Lipschitz, we have

∥y⋆
t,w

(
xk
t

)
− y⋆

t,w

(
xk−1
t

)
∥2 ≤ 2κ2∥xk

t − xk−1
t ∥2 = 2κ2η2x∥∇xFt,w(x

k−1
t ,yk−1

t )∥2.

Thus, plug into eq. (16)

δkt,w≤
(
1− 1

2κ

)
δk−1
t,w + 2κ3η2x∥∇xFt,w(x

k−1
t ,yk−1

t )∥2

A.4 PROOF OF THEOREM 2

Proof of Theorem 2. Denote γ = 1− 1
2κ , from Lemma A.6 and using telescoping we have

δkt,w ≤ γkδ0t,w + 2κ3η2x

k−1∑
j=0

γk−1−j
∥∥∥∇xFt,w

(
xj
t ,y

j
t

)∥∥∥2
 (17)

16



Under review as a conference paper at ICLR 2023

Specially, for t > 1,

δ0t,w = ∥y0
t − y∗

t,w(x
0
t )∥2

≤ 2∥yτt−1

t−1 − y∗
t−1,w(x

τt−1

t−1 )∥2 + 2∥y∗
t−1,w(x

τt−1

t−1 )− y∗
t,w(x

τt−1

t−1 )∥2

≤ δ2

ℓ2w2
+

2

µ2(w − 1)2
∥∇yft(x

τt−1

t−1 ,y
∗
t,w(x

τt−1

t−1 ))−∇yft−w(x
τt−1

t−1 ,y
∗
t−1,w(x

τt−1

t−1 ))∥2

Then plug Equation (17) into Equations (14) and (15) from Lemmas A.4 and A.5, and sum over
outer loop number.

(
ηx
2
− η2xκℓ− 2κ4η3xℓ

2)

τt−1∑
j=0

∥∥∥∇xFt,w

(
xj
t ,y

j
t

)∥∥∥2 ≤ Φt,w (xt)− Φt,w (xt+1) + κηxℓ
2δ0t,w

τt−1∑
j=0

∥yk+1
t − yk

t ∥2 ≤ (8κ− 4)δ0t,w + (16− 8

κ
)κ4η2x

τt−1∑
j=0

∥∥∥∇xFt,w

(
xj
t ,y

j
t

)∥∥∥2

Letting ηx = 1
8κ3ℓ , we have

τt−1∑
j=0

∥∥∥∇xFt,w

(
xj
t ,y

j
t

)∥∥∥2 ≤ 8

ηx
(Φt,w (xt)− Φt,w (xt+1)) + 8κℓ2δ0t,w (18)

τt−1∑
j=0

(κℓ)2∥yj+1
t − yj

t∥2 ≤ (8κ− 4)(κℓ)2δ0t,w +
1

4

τt−1∑
j=0

∥∥∥∇xFt,w

(
xj
t ,y

j
t

)∥∥∥2 (19)

Therefore add Equation (18) ×ηx

8 and Equation (19) ×ηx

10 we have

ηx
10

τt−1∑
j=0

[∥∥∥∇xFt,w

(
xj
t ,y

j
t

)∥∥∥2 + (κℓ)2∥yj+1
t − yj

t∥2
]
≤ (Φt,w (xt)− Φt,w (xt+1)) +

8ℓ

5
δ0t,w.

(20)

Denote Φ0,w(x) = 0, we notice that

ΦT,w(xT ) =

T∑
t=1

(Φt,w(xt)− Φt−1,w(xt−1))

=

T∑
t=1

(Φt,w(xt)− Φt−1,w(xt)) +

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1))

=
1

w

T∑
t=1

(
Ft−1,w(xt,y

∗
t,w(xt))− Ft−1,w(xt,y

∗
t−1,w(xt))

)
+

1

w

T∑
t=1

(
ft(xt,y

∗
t,w(xt))− ft−w(xt,y

∗
t,w(xt))

)
+

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1))

(i)

≤ 1

w

T∑
t=1

(
ft(xt,y

∗
t,w(xt))− ft−w(xt,y

∗
t,w(xt))

)
+

T∑
t=2

(Φt−1,w(xt)− Φt−1,w(xt−1)),

where (i) follows from that y∗
t−1,w(xt) is the maximizer of Ft−1,w(xt, ·).

By some algebra, we have

T∑
t=1

Φt,w(xt))− (Φt,w(xt+1) ≤
1

w

T∑
t=1

(
ft(xt,y

∗
t,w(xt))− ft−w(xt,y

∗
t,w(xt))

)
− ΦT+1,w(xT+1).

17



Under review as a conference paper at ICLR 2023

Algorithm 2 SODA with Stochastic First-order Oracle (SODA-SFO)
Input: window size w ≥ 1, stepsizes (ηx, ηy), tolerance δ > 0
Initialization: (x1,y1)

1: for t = 1 to T do
2: Cost function ft : Rm × Rn → R is updated;
3: Sample ∇̃ft (xt,yt)← Sσ/w (xt,yt; ζ, ft)

4: Set ∇̃Ft,w (xt,yt) = ∇̃Ft−1,w (xt,yt) +
1
w (∇̃ft−w (xt,yt)− ∇̃ft (xt,yt))

5: Set x0
t = xt, y0

t = yt, G0
x,t = ∇̃xFt,w (xt,yt), G0

y,t = ∇̃yFt,w (xt,yt), k = 0

6: while 2κ2

η2
y
∥yk

t − PY
(
yk
t + ηyG

k
y,t

)
∥2 + ∥Gk

x,t∥2 > δ2/3w2 do

7: xk+1
t ← xk

t − ηxG
k
x,t

8: yk+1
t ← PY

(
yk
t + ηyG

k
y,t

)
9: Sample ∇̃fi(xk+1

t ,yk+1
t )← S σ

w
(xk+1

t ,yk+1
t ; ζ, fi) for i = t− w + 1, · · · , t;

10: Set Gk+1
t := (Gk+1

t,x , Gk+1
t,y ) = 1

w

∑t
i=t−w+1 ∇̃fi(x

k+1
t ,yk+1

t )
11: k ← k + 1
12: end while
13: xt+1 = xk

t , yt+1 = yk
t , and ∇̃Ft,w(xt+1,yt+1) = Gk

t
14: end for

Sum Equation (20) over t, we have

ηx
10
× δ2

2w2
τ =

ηxδ
2τ

20w2

(i)

≤ ηx
10

T∑
t=1

τt−1∑
j=0

[∥∥∥∇xFt,w

(
xj
t ,y

j
t

)∥∥∥2 + (κℓ)2∥yj+1
t − yj

t∥2
]

≤
T∑

t=1

(Φt,w (xt)− Φt,w (xt+1)) +
8ℓ

5

T∑
t=1

δ0t,w

≤ 1

w

T∑
t=1

(
ft(xt,y

∗
t,w(xt))− ft−w(xt,y

∗
t,w(xt))

)
− ΦT+1,w(xT+1)

+
8Tδ2

5ℓw2
+

16ℓ

5µ2(w − 1)2
Vy,w[T ] +

8ℓD2

5

≤ 2MT

w
+M +

8Tδ2

5ℓw2
+

16ℓ

5µ2(w − 1)2
Vy,w[T ] +

8ℓD2

5
.

Hence

τ ≤ 480κ3ℓMwT

δ2
+ 256

κ2T

µ
+ 256

w2κ3ℓ2

δ2
+ 512

w2κ5

(w − 1)2δ2
Vy,w[T ] +

256D2κ3ℓ2w2

δ2
.

B ALGORITHM 2 AND MISSING PROOF OF SECTION 5

In this section, we first present Algorithm 2 below and then make some notation
clearly here, Gk+1

t = 1
w

∑t
i=t−w+1 ∇̃fi(x

k+1
t ,yk+1

t ) = ∇̃Ft,w(x
k+1
t ,yk+1

t ) =(
∇̃xFt,w(x

k+1
t ,yk+1

t ), ∇̃yFt,w(x
k+1
t ,yk+1

t )
)

. And for simplification, we denote yk
t = yτt

t

for any k ≥ τt.

Before our theoretical analysis of Algorithm 2 and proof of Section 5, we define the filtration in
Algorithm 2 formally to describe clearly what is known and what is unknown at certain stage.

18
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Definition 4 (Filtration). For any t ≥ 1, we denote filtration Ft to be the σ-fields that corresponds
to the randomness of all gradient feedback up to stage t − 1 and the decision of ft at stage t. In
particular, Ft includes ft,xt and ∇̃Ft−1,w(xt,yt), but doesn’t include ∇̃ft(xt,yt), ∇̃Ft,w(xt,yt).
For any t ≥ 1, k ≥ 1, we denote filtration Fk

t to be the σ-fields that corresponds to the randomness
of all gradient feedback up to the k-th iteration in line 6 at stage t in Algorithm 2. In particular,
Fk

t includes ft,xk
t ,y

k
t , ∇̃Ft,w(xt,yt), {∇̃fi(xk−1

t ,yk−1
t )}ti=t−w+1 and Gk−1

t , but doesn’t include
Gk

t , {∇̃fi(xk
t ,y

k
t )}ti=t−w+1.

B.1 FINITE ITERATION: PROOF OF THEOREM 3

B.1.1 SUPPORTING LEMMAS

Generally speaking, the lemmas in this section extends lemmas in Appendix A.3.1 to noisy setting.
We first provide a descend lemma for Φt,w(x) in each iteration of inner loop.

Lemma B.1. Denote τt the total iteration of inner loop at stage t and δkt,w =
∥∥y⋆

t,w

(
xk
t

)
− yk

t

∥∥2,
for 0 ≤ k ≤ τt − 1

Φt,w

(
xk+1
t

)
≤Φt,w

(
xk
t

)
− (

ηx
2
− η2xκℓ)

∥∥∥∇̃xFt,w (x,y)
∥∥∥2 + ηxℓ

2δkt,w

+ ∥∇̃xFt,w (x,y)−∇xFt,w (x,y) ∥2

Proof. Since Φt,w is (ℓ+ κℓ)-smooth, for any x, x+ ∈ Rm, we have

Φt,w

(
x+
)
− Φt,w (x)−

(
x+ − x

)⊤∇Φt,w (x) ≤ κℓ
∥∥x+ − x

∥∥2 .
Set x+ = xk+1

t ,x = xk
t , we have x+−x = xk+1

t −xk
t = −ηx∇̃xFt,w

(
xk
t ,y

k
t

)
, which yeilds that

Φt,w

(
xk+1
t

)
≤Φt,w

(
xk
t

)
− ηx

∥∥∥∇̃xFt,w

(
xk
t ,y

k
t

)∥∥∥2 + η2xκℓ
∥∥∥∇̃xFt,w

(
xk
t ,y

k
t

)∥∥∥2
+ ηx

(
∇̃xFt,w

(
xk
t ,y

k
t

)
−∇Φt,w

(
xk
t

))⊤
∇̃xFt,w

(
xk
t ,y

k
t

)
. (21)

By Young’s inequality, we have(
∇̃xFt,w

(
xk
t ,y

k
t

)
−∇Φt,w

(
xk
t

))⊤
∇̃xFt,w

(
xk
t ,y

k
t

)
≤
∥∇̃xFt,w

(
xk
t ,y

k
t

)
−∇Φt,w

(
xk
t

)
∥2 + ∥∇̃xFt,w

(
xk
t ,y

k
t

)
∥2

2

≤
2∥∇̃xFt,w

(
xk
t ,y

k
t

)
−∇xFt,w

(
xk
t ,y

k
t

)
∥2 + 2∥∇xFt,w

(
xk
t ,y

k
t

)
−∇Φt,w

(
xk
t

)
∥2

2

+
∥∇̃xFt,w

(
xk
t ,y

k
t

)
∥2

2
. (22)

Since∇Φt,w

(
xk
t

)
= ∇xFt,w

(
xk
t ,y

∗
t,w(x

k
t )
)
, we have

∥∇xFt,w

(
xk
t ,y

k
t

)
−∇Φt,w

(
xk
t

)
∥2 ≤ ℓ2∥yk

t − y∗
t,w(x

k
t )∥2. (23)

Putting Equations (21) to (23) together, we obtain

Φt,w

(
xk+1
t

)
≤Φt,w

(
xk
t

)
− (

ηx
2
− η2xκℓ)

∥∥∥∇̃xFt,w

(
xk
t ,y

k
t

)∥∥∥2
+ ηxℓ

2∥yk
t − y∗

t,w(x
k
t )∥2 + ∥∇̃xFt,w

(
xk
t ,y

k
t

)
−∇xFt,w

(
xk
t ,y

k
t

)
∥2.

The next lemma characterizes the descent property of distance to the maximizer y∗
t,w.
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Lemma B.2. Let δkt,w =
∥∥y⋆

t,w

(
xk
t

)
− yk

t

∥∥2, the following statement holds true,

δkt,w≤
(
1− 1

4κ

)
δk−1
t,w + 8κ3η2x∥∇̃xFt,w(x

k−1
t ,yk−1

t )∥2

+
2κ

ℓ2

∥∥∥∇xFt,w(x
k−1
t ,yk−1

t )− ∇̃xFt,w(x
k−1
t ,yk−1

t )
∥∥∥2 .

Proof. Since f(x, ·) is µ-strongly concave and ηy = 1/ℓ, we have

∥y⋆
t,w

(
xk−1
t

)
− yk

t ∥2

=
∥∥∥y⋆

t,w

(
xk−1
t

)
− PY

(
yk−1
t + ηy∇̃xFt,w(x

k−1
t ,yk−1

t )
)∥∥∥2

=
∥∥y⋆

t,w

(
xk−1
t

)
− PY

(
yk−1
t + ηy∇xFt,w(x

k−1
t ,yk−1

t )
)

+PY
(
yk−1
t + ηy∇xFt,w(x

k−1
t ,yk−1

t )
)
− PY

(
yk−1
t + ηy∇̃xFt,w(x

k−1
t ,yk−1

t )
)∥∥∥2

≤ (1 +
1

2(κ− 1)
)
∥∥y⋆

t,w

(
xk−1
t

)
− PY

(
yk−1
t + ηy∇xFt,w(x

k−1
t ,yk−1

t )
)∥∥2

+(1+2(κ−1))∥PY(yk−1
t +ηy∇xFt,w(xk−1

t ,yk−1
t ))−PY(yk−1

t +ηy∇̃xFt,w(xk−1
t ,yk−1

t ))∥2

≤ (1− 1

2κ
)δk−1

t,w +
2κ− 1

ℓ2

∥∥∥∇xFt,w(x
k−1
t ,yk−1

t )− ∇̃xFt,w(x
k−1
t ,yk−1

t )
∥∥∥2 . (24)

By Young’s inequality, we have

δkt,w ≤
(
1 +

1

2(2κ− 1)

)
∥y⋆

t,w

(
xk−1
t

)
− yk

t ∥2

+ (1 + 2(2κ− 1))∥y⋆
t,w

(
xk
t

)
− y⋆

t,w

(
xk−1
t

)
∥2

≤
(

4κ− 1

2(2κ− 1)

)
∥y⋆

t,w

(
xk−1
t

)
− yk

t ∥2 + 4κ∥y⋆
t,w

(
xk
t

)
− y⋆

t,w

(
xk−1
t

)
∥2

≤
(
1− 1

4κ

)
δk−1
t,w + 4κ∥y⋆

t,w

(
xk
t

)
− y⋆

t,w

(
xk−1
t

)
∥2

+
2κ

ℓ2

∥∥∥∇xFt,w(x
k−1
t ,yk−1

t )− ∇̃xFt,w(x
k−1
t ,yk−1

t )
∥∥∥2

Since y⋆
t,w(·) is κ-Lipschitz, we have

∥y⋆
t,w

(
xk
t

)
− y⋆

t,w

(
xk−1
t

)
∥2 ≤ 2κ2∥xk

t − xk−1
t ∥2

= 2κ2η2x∥∇̃xFt,w(x
k−1
t ,yk−1

t )∥2

Thus, plug into

δkt,w≤
(
1− 1

4κ

)
δk−1
t,w + 8κ3η2x∥∇̃xFt,w(x

k−1
t ,yk−1

t )∥2

+
2κ

ℓ2

∥∥∥∇xFt,w(x
k−1
t ,yk−1

t )− ∇̃xFt,w(x
k−1
t ,yk−1

t )
∥∥∥2 .

The next lemma shows that updates over y can be controlled by δkt,w plus a noisy term.

Lemma B.3. For any t, k ≥ 0, the following statement holds true,

∥yk+1
t − yk

t ∥2 ≤ (4− 1

κ
)δkt,w +

4κ

ℓ2

∥∥∥∇xFt,w(x
k
t ,y

k
t )− ∇̃xFt,w(x

k
t ,y

k
t )
∥∥∥2 .
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Proof. By Young’s inequality, we have

∥yk+1
t − yk

t ∥2 ≤ 2∥yk+1
t − y⋆

t,w

(
xk
t

)
∥2 + 2∥y⋆

t,w

(
xk
t

)
− yk

t ∥2

(i)

≤
(
2(1− 1

2κ
) + 2

)
δkt,w +

4κ

ℓ2

∥∥∥∇xFt,w(x
k
t ,y

k
t )− ∇̃xFt,w(x

k
t ,y

k
t )
∥∥∥2

≤ (4− 1

κ
)δkt,w +

4κ

ℓ2

∥∥∥∇xFt,w(x
k
t ,y

k
t )− ∇̃xFt,w(x

k
t ,y

k
t )
∥∥∥2 ,

where (i) follows from Equation (24).

B.1.2 PROOF OF THEOREM 3

Proof. From Lemma B.1

δkt,w≤
(
1− 1

4κ

)
δk−1
t,w + 8κ3η2x∥∇̃xFt,w(x

k−1
t ,yk−1

t )∥2

+
2κ

ℓ2

∥∥∥∇xFt,w(x
k−1
t ,yk−1

t )− ∇̃xFt,w(x
k−1
t ,yk−1

t )
∥∥∥2

Denote γ = 1− 1
4κ , Given Fk−1

t we have

δkt,w ≤ γkδ0t,w + 8κ3η2x

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w

(
xj
t ,y

j
t

)∥∥∥2


+
2κ

ℓ2

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w(x

j
t ,y

j
t )−∇xFt,w(x

j
t ,y

j
t )
∥∥∥2


(i)

≤ γkD2 +
32κ4η2xδ

2

3w2
+

2κ

ℓ2

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w(x

j
t ,y

j
t )−∇xFt,w(x

j
t ,y

j
t )
∥∥∥2
 , (25)

where the first term of (i) follows from that Y is bounded with D, and the second term of (i) follows
from the stopping criterion of Algorithm 2 and

∑k−1
j=0 γ

k−1−j ≤ 4κ.

Notice that for any fixed t, k and j ∈ [k − 1],

E
∥∥∥∇̃xFt,w(x

j
t ,y

j
t )−∇xFt,w(x

j
t ,y

j
t )
∥∥∥2

(i)
= EFj

t

[
E
[∥∥∥∇̃xFt,w(x

j
t ,y

j
t )−∇xFt,w(x

j
t ,y

j
t )
∥∥∥2∣∣∣∣F j

t

]]

= EFj
t

 1

w2
E

∥∥∥∥∥
t−1∑

i=t−w

{
∇̃xfi(x

j
t ,y

j
t )−∇xfi(x

j
t ,y

j
t )
}∥∥∥∥∥

2∣∣∣∣F j
t


(ii)
= EFj

t

[
1

w2

t−1∑
i=t−w

E
[∥∥∥∇̃xfi(x

j
t ,y

j
t )−∇xfi(x

j
t ,y

j
t )
∥∥∥2∣∣∣∣F j

t

]]
(iii)
= EFj

t

[
1

w2
· w · σ

2

w2

]
=

σ2

w3
, (26)

where (i) follows from the property of conditional expectation, (ii) follows from that the SFO calls
in line 9 of Algorithm 2 is independent and (iii) follows from definition of SFO and filtration F j

t .

Thus take expectation over two sides of Equation (25), we have

E
[
δkt,w

]
≤ γkD2 +

32κ4η2xδ
2

3w2
+

8κ2σ2

ℓ2w3
. (27)
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Then by Lemma B.2

Φt,w

(
xk
t

)
− Φt,w

(
xk+1
t

)
≥ (

ηx
2
− η2xκℓ)

∥∥∥∇̃xFt,w

(
xk
t ,y

k
t

)∥∥∥2
− ηxℓ

2δkt,w − ∥∇̃xFt,w

(
xk
t ,y

k
t

)
−∇xFt,w

(
xk
t ,y

k
t

)
∥2

≥ 15ηx
32

∥∥∥∇̃xFt,w

(
xk
t ,y

k
t

)∥∥∥2
− ηxℓ

2δkt,w − ∥∇̃xFt,w

(
xk
t ,y

k
t

)
−∇xFt,w

(
xk
t ,y

k
t

)
∥2 (28)

By Lemma B.3

15

4
κ2ℓ2ηxδ

k
t,w +

15

4ℓ

∥∥∥∇xFt,w(x
k
t ,y

k
t )− ∇̃xFt,w(x

k
t ,y

k
t )
∥∥∥2 ≥ 15ηx

32
× 2κ2ℓ2∥yk+1

t − yk
t ∥2.

(29)

Sum Equation (28) and Equation (29), we have

Φt,w

(
xk
t

)
− Φt,w

(
xk+1
t

)
+

15

4
κ2ℓ2ηxδ

k
t,w +

15

4ℓ

∥∥∥∇xFt,w(x
k
t ,y

k
t )− ∇̃xFt,w(x

k
t ,y

k
t )
∥∥∥2

≥ 15ηx
32
×
(
2κ2ℓ2∥yk+1

t − yk
t ∥2 +

∥∥∥∇̃xFt,w

(
xk
t ,y

k
t

)∥∥∥2)
− ηxℓ

2δkt,w − ∥∇̃xFt,w

(
xk
t ,y

k
t

)
−∇xFt,w

(
xk
t ,y

k
t

)
∥2

Rearranging the term, we have

Φt,w

(
xk
t

)
− Φt,w

(
xk+1
t

)
≥ 15ηx

32
×
(
2κ2ℓ2∥yk+1

t − yk
t ∥2 +

∥∥∥∇̃xFt,w

(
xk
t ,y

k
t

)∥∥∥2)
− 5κ2ℓ2ηxδ

k
t,w −

(
15

4ℓ
+ 1

)
∥∇̃xFt,w

(
xk
t ,y

k
t

)
−∇xFt,w

(
xk
t ,y

k
t

)
∥2 (30)

Take expectation over both sides of Equation (30), plug into Equation (27) and follow from the
similar step of Equation (26), we have

E
[
Φt,w

(
xk
t

)
− Φt,w

(
xk+1
t

)]
≥ 5ηxδ

2

32w2
− 5κ2ℓ2ηx

(
γkD2 +

32κ4η2xδ
2

3w2
+

8κ2σ2

ℓ2w3

)
−
(
15

4ℓ
+ 1

)
σ2

w3
.

Because γ = 1− 1
4κ ≤ 1, there exist a constant K̃ such that γK̃D2 ≤ max

{
32κ4η2

x

3w2 , 8κ2σ2

ℓ2w3

}
. Thus

for k ≥ K̃, we have

E
[
Φt,w

(
xk
t

)
− Φt,w

(
xk+1
t

)]
≥ 5ηxδ

2

32w2
− 5κ2ℓ2ηx

(
35κ4η2xδ

2

3w2
+

9κ2σ2

ℓ2w3

)
−
(
15

4ℓ
+ 1

)
σ2

w3

≥ 25ηxδ
2

256w2
− 45κ4ηxσ

2

w3
−
(
15

4ℓ
+ 1

)
σ2

w3
.
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when δ2 > 2304κ4σ2

5w + 256(4ℓ+1)σ2

25ηxw
, we set α = 25ηxδ

2

256w2 − 45κ4ηxσ
2

w3 −
(
15
4ℓ + 1

)
σ2

w3 > 0. Then for
K ≥ K̃, we have

2M ≥ E
[
Φt,w

(
xK̃
t

)
− Φt,w

(
xK+1
t

)]
= E

 K∑
k=K̃

(
Φt,w

(
xk
t

)
− Φt,w

(
xk+1
t

))
=

K∑
k=K̃

(
E
[(

Φt,w

(
xk
t

)
− Φt,w

(
xk+1
t

) ∣∣∣∣τt ≥ k + 1

)]
P (τt ≥ k + 1) + 0 · P (τt < k + 1)

)

≥ α

K∑
k=K̃

P (τt ≥ k + 1)

≥ α

K∑
k=K̃

P (τt > K) = α
(
K − K̃

)
P (τt > K) ,

where the third equation follows from the Optional Stopping Theorem. Consequently, we have τt is
finite in probability, which implies that τ =

∑T
t=1 τt is finite in probability since it is the finite sum

of finite variables in probability.

B.2 LOCAL REGRET: PROOF OF THEOREM 4

Proof of Theorem 4. Following from Equation (13), we have

∥∇Φt,w (xt)∥2 =
∥∥∇xFt,w(xt,y

∗
t,w(xt))

∥∥2
≤ 3 ∥∇Φt−1,w (xt)∥2 +

3κ2

(w − 1)2
∥∇yft

(
xt,y

∗
t,w(xt)

)
−∇yft−w

(
xt,y

∗
t−1,w(xt)

)
∥2

+
3

w2
∥∇xft

(
xt,y

∗
t,w(xt)

)
−∇xft−w

(
xt,y

∗
t,w(xt)

)
∥2. (31)

For the first term

∥∇Φt−1,w(xt)∥2

=
∥∥∇Φt−1,w(x

τt−1

t−1 )
∥∥2

≤ 3
∥∥∇Φt−1,w(x

τt−1

t−1 )−∇xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥2

+ 3
∥∥∥∇xFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2 + 3

∥∥∥∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

≤ 3ℓ2
∥∥y⋆

t−1(x
τt−1

t−1 )− y
τt−1

t−1

∥∥2 + 3
∥∥∥∇̃xFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

+ 3
∥∥∥∇xFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2 .
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Consider
∥∥y⋆

t−1(x
τt−1

t−1 )− y
τt−1

t−1

∥∥2∥∥y⋆
t−1(x

τt−1

t−1 )− y
τt−1

t−1

∥∥2
(i)

≤ κ2 · 1

η2yℓ
2

∥∥yτt−1

t−1 − PY
(
yt + ηy∇yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )
)∥∥2

≤ 2κ2 · 1

η2yℓ
2

∥∥∥yτt−1

t−1 − PY

(
yt + ηy∇̃yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )
)∥∥∥2

+ 2κ2 · 1

η2yℓ
2

∥∥∥PY
(
yt + ηy∇yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )
)
− PY

(
yt + ηy∇̃yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )
)∥∥∥2

(ii)

≤ 2κ2 · 1

η2yℓ
2

∥∥∥yτt−1

t−1 − PY

(
yt + ηy∇̃yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )
)∥∥∥2

+ 2κ2 · 1
ℓ2

∥∥∥∇yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2 ,

where (i) follows from the global error bound condition in Davis & Drusvyatskiy (2019) and (ii)
follows from the project operator is a contraction.

Then

∥∇Φt−1,w(xt)∥2

≤ 6κ2 · 1

η2y

∥∥∥yτt−1

t−1 − PY

(
yt + ηy∇̃yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )
)∥∥∥2 + 3

∥∥∥∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

+ 6κ2
∥∥∥∇yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

+ 3
∥∥∥∇xFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

(i)

≤ δ2

w2
+ 6κ2

∥∥∥∇yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

+ 3
∥∥∥∇xFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2 , (32)

where (i) follows from the stopping condition of inner loop and ηy = 1/ℓ.

Plug Equation (32) into Equation (31) and sum over t, we have

Rw(T ) =

T∑
t=1

∥∇Φt,w(xt)∥2

≤
T∑

t=1

{
3δ2

w2
+ 18κ2

∥∥∥∇yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

+ 9
∥∥∥∇xFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

+
3κ2

(w − 1)2
∥∇yft

(
x
τt−1

t−1 ,y
∗
t,w(x

τt−1

t−1 )
)
−∇yft−w

(
x
τt−1

t−1 ,y
∗
t−1,w(x

τt−1

t−1 )
)
∥2

+
3

w2

∥∥∇xft
(
x
τt−1

t−1 ,y
∗
t,w(x

τt−1

t−1 )
)
−∇xft−w

(
x
τt−1

t−1 ,y
∗
t,w(x

τt−1

t−1 )
)∥∥2}

=
3Tδ2

w2
+

3κ2

(w − 1)2
Vy,w[T ] +

3

w2
Vx,w[T ]

+

T∑
t=1

{
18κ2

∥∥∥∇yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

+ 9
∥∥∥∇xFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2} . (33)
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Notice that for any t ∈ [T ],

E
∥∥∥∇yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2

(i)
= EF

τt−1
t−1

[
E
[∥∥∥∇yFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2∣∣∣∣Fτt−1

t−1

]]

= EF
τt−1
t−1

 1

w2
E

∥∥∥∥∥
t−1∑

i=t−w

{
∇yfi(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yfi(x
τt−1

t−1 ,y
τt−1

t−1 )
}∥∥∥∥∥

2∣∣∣∣Fτt−1

t−1


(ii)
= EF

τt−1
t−1

[
1

w2

t−1∑
i=t−w

E
[∥∥∥∇yfi(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃yfi(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2∣∣∣∣Fτt−1

t−1

]]
(iii)
= EF

τt−1
t−1

[
1

w2
· w · σ

2

w2

]
=

σ2

w3
, (34)

where (i) follows from the property of conditional expectation, (ii) follows from that the SFO calls
in line 9 of Algorithm 2 is independent and (iii) follows from definition of SFO.

Similarly, for any t, we have

E
∥∥∥∇xFt−1,w(x

τt−1

t−1 ,y
τt−1

t−1 )− ∇̃xFt−1,w(x
τt−1

t−1 ,y
τt−1

t−1 )
∥∥∥2 =

σ2

w3
. (35)

Plug Equations (34) and (35) into Equation (33), we have

E [ℜw(T )] =

T∑
t=1

E
[
∥∇Φt,w(xt)∥2

]
≤ 3Tδ2

w2
+

3κ2

(w − 1)2
Vy,w[T ] +

3

w2
Vx,w[T ] +

(
18κ2 + 9

)
Tσ2

w3
.

B.3 ITERATION AND SFO CALLS BOUND: PROOF OF THEOREM 5

Proof of Theorem 5. From Lemma B.1

δkt,w≤
(
1− 1

4κ

)
δk−1
t,w + 8κ3η2x∥∇̃xFt,w(x

k−1
t ,yk−1

t )∥2

+
2κ

ℓ2

∥∥∥∇xFt,w(x
k−1
t ,yk−1

t )− ∇̃xFt,w(x
k−1
t ,yk−1

t )
∥∥∥2

Denote γ = 1− 1
4κ , Given Ft we have

δkt,w ≤ γkδ0t,w + 8κ3η2x

k−1∑
j=0

γk−1−j
∥∥∥∇̃xFt,w

(
xj
t ,y

j
t

)∥∥∥2
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+
2κ

ℓ2
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γk−1−j
∥∥∥∇̃xFt,w(x

j
t ,y

j
t )−∇xFt,w(x

j
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j
t )
∥∥∥2
 (36)

Then by Lemma B.2

Φt,w

(
xk+1
t

)
≤ Φt,w

(
xk
t

)
− (

ηx
2
− η2xκℓ)

∥∥∥∇̃xFt,w

(
xk
t ,y

k
t
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+ ηxℓ

2δkt,w + ∥∇̃xFt,w

(
xk
t ,y

k
t

)
−∇xFt,w

(
xk
t ,y

k
t

)
∥2 (37)
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Then plugging Equation (36) into Equation (37) and summing up them over k = 0, . . . , τt − 1, we
have

Φt,w(x
τt
t ) ≤ Φt,w(x

0
t )− (

ηx
2
− η2xκℓ)

τt−1∑
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)∥∥∥2 + ηxℓ
2
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γkδ0t,w
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2
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(
xj
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+ 2ηxκ
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+
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(
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k
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)
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(
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≤ Φt,w(x
0
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∥∥∥2) ,

where the last inequality follows from that
∑τt−1

k=0 γk = 1−γτt

1−γ ≤ 4κ and changing the order of
summation over j and k.

Rearranging the terms, we have

(
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By Lemma B.3
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Letting ηx = 1
32κ3ℓ , we have

τt−1∑
k=0

∥∥∥∇̃xFt,w

(
xk
t ,y

k
t

)∥∥∥2 ≤ 16

7ηx
(Φt,w

(
xk
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(
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)
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64κℓ2δ0t,w
7
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7ηx
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k
t ,y

k
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k
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k
t )
∥∥∥2) . (39)

Therefore add Equation (38) ×ηx

8 and Equation (39) ×ηx

9 , we have

ηx
9
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k=0

[∥∥∥∇̃xFt,w

(
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t ,y

k
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t ∥2
]
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7
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43ηxκ
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Denote Φ0,w(x) = 0, we notice that

ΦT,w(xT )

=
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where (i) follows from that y∗
t−1,w(xt) is the maximizer of Ft−1,w(xt, ·).

By some algebra, we have
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Algorithm 3 OnlineGDmax
Input: window size w ≥ 1, stepsizes (ηx, ηy), tolerance δ > 0, ascent step K
Initialization: (x1,y1)

1: for t = 1 to T do
2: Predict (xt,yt). Observe the cost function ft : Rm × Rn → R
3: Set (xt+1,yt+1)← (xt,yt)
4: repeat
5: xt+1 ← xt+1 − ηx∇xFt,w (xt+1,yt+1)
6: k = 0
7: while k < K do
8: yt+1 ← PY (yt+1 + ηy∇yFt,w (xt+1,yt+1))
9: k = k + 1

10: end while
11: until κ2

η2
y
∥yt+1 −PY (yt+1 + ηy∇yFt,w (xt+1,yt+1)) ∥2 + ∥∇xFt,w(xt+1,yt+1)∥2 ≤ δ2

2w2

12: end for

Sum Equation (40) over t and take expectation, we have(
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where the first inequality follows from Assumption 4.

Thus

τ ≤ 1

ηx

2MTw + 3δ2T
64ℓ + ℓw2

3µ2(w−1)2Vy,w[T ] + w2M + 5ℓD2w2

32(
δ2

27 − 20κ4σ2
)

C EXPERIMENTAL SETUPS

C.1 IMPLEMENTATION DETAILS

The real-world datasets we consider are MNIST (Deng, 2012) and Fashion-MNIST (Xiao et al.,
2017), each containing 60k samples. We choose T = 100 for the online setting. The network
architecture mainly follows Sinha et al. (2017), which consists of three convolution blocks with
filters of size 8 × 8, 6 × 6 and 5 × 5 respectively activated by ELU function, then followed by a
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fully connected layer and softmax output. Furthermore, we set the adversarial perturbation γ ∈
{0.4, 1.3}, which is consistent with Sinha et al. (2017).

For the results presented in Figure 1 to investigate the effect of window size, the two-timescale
learning rates are set to ηx = 5 × 10−3, ηy = 0.01 for MNIST and ηx = 10−4, ηy = 5 × 10−3

for Fashion-MNIST. Moreover, considering experiments in Figure 2, which compared SODA and
onlineGDmax, for onlineGDmax, the learning rates are set to ηx = ηy = 5 × 10−3 for MNIST
and ηx = ηy = 10−3 for Fashion-MNIST; And for SODA, the learning rates are set to ηx = 10−3,
ηy = 5× 10−3 for MNIST and ηx = 10−4, ηy = 5× 10−3 for Fashion-MNIST. The window size
is 10.

C.2 ONLINEGDMAX

Specifically, onlineGDmax replaces the inner-loop procedure of SODA by the nested-loop GDmax,
i.e., at each iteration in the inner loop of round t, onlineGDmax will firstly maximize the function
by multi-step gradient ascent for y, which is 10 steps in our setting, then perform one-step GD
for x. Typically, the stepsizes for GDmax are chosen to be equal, i.e. ηx, ηy (Sinha et al., 2017).
OnlineGDmax is summarized in Algorithm 3.
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