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ABSTRACT

Graph-based tasks often violate the i.i.d. assumption as data collection scenarios
change, having attracted significant attention to graph out-of-distribution (OOD)
generalization. While extracting invariant features is a popular solution, existing
methods are limited by the complexity of graphs with distribution shifts in both
attributes and structures. Moreover, identifying invariance on graphs is challenging
due to lack of prior knowledge for the invariant features. To address these problems,
we propose a novel framework, InfoIGL, which leverages information theory to
extract invariant graph representations. The framework treats mutual information
as the invariance of graphs by exploiting rich semantic relations among different
distributions. Specifically, InfoIGL decomposes the process of extracting invariant
features for graphs into two tasks: reducing redundant information and maxi-
mizing mutual information. To reduce redundancy, InfoIGL leverages attention
mechanism to reduce the entropy of graph representations through optimizing their
probability distribution. Then InfoIGL integrates semantic-wise and instance-wise
contrastive learning to maximize mutual information through joint optimization.
Additionally, instance constraint and hard negative mining are utilized to avoid
the collapse of contrastive learning. Experiments on both synthetic and real-world
datasets demonstrate that our method achieves state-of-the-art performance under
OOD generalization for graph classification tasks. The source code is available at
https://anonymous.4open.science/r/InfoIGL-268D.

1 INTRODUCTION

Graphs are ubiquitous in the real world, appearing as chemical molecules (Fout et al., 2017), social
networks (Wu et al., 2020), and knowledge graph (Hamaguchi et al., 2017), to name a few examples.
In recent years, graph neural networks (GNNs) (Kipf & Welling, 2017; Velickovic et al., 2017; Xu
et al., 2018) have emerged as a potent representation learning technique for analyzing and making
predictions on the graph structures. Despite significant advancements, most existing GNN approaches
rely heavily on the i.i.d. assumption that the distribution of test data is independently and identically
distributed to the training data. Such an assumption, however, seldom holds in practice due to
the spatial-temporal heterogeneity nature of graph, thus having attracted significant attention in
addressing the out-of-distribution (OOD) problem.

Identifying graph features that remain invariant across distribution shifts (Koyama & Yamaguchi,
2020; Wang & Veitch, 2022; Wu et al., 2022; Liu et al., 2022b) is paramount in overcoming the
graph OOD problem. Recent studies focused mainly on developing methods in the principle of
invariance, which can be roughly categorized into two groups. On one hand, graph manipulation
approaches (Miao et al., 2022; Rong et al., 2019; Wang et al., 2021; Han et al., 2022) typically first
generate diverse augmented data (e.g., adding or removing nodes and edges) to increase the coverage
of data distribution, then learn representations consistent for all manipulated versions. However,
accurately performing data augmentations can be non-trivial, particularly when dealing with complex
graphs, of which the failure may destroy the invariant features. In contrast, causal disentanglement
methods aim to extract the underlying causal subgraphs responsible for generating consistent output
across different distributions, utilizing techniques such as stable learning (Fan et al., 2021; Li et al.,
2021) and causal intervention (Wu et al., 2022; Sui et al., 2022; Liu et al., 2022a). Nevertheless, it
requires prior knowledge regarding causal subgraphs, which may be difficult to obtain in practice. As
shown in Figure 1, the performance improvements of representative methods belonging to the two
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Figure 1: Performance comparison.
M-Mixup (Wang et al., 2021) and
GREA (Liu et al., 2022a)are rep-
resentative methods in data manip-
ulation and causal disentanglement
approaches respectively.

groups are faint as compared with traditional ERM (Montanari
& Saeed, 2022). To circumvent the aforementioned limitations,
in this work, we exploit information theory to effectively iden-
tify invariant features within complex graph data. Specifically,
on the concept of mutual information(Latham & Roudi, 2009),
we first quantify the shared information among the samples
within the same class, then isolate the common patterns that de-
termine invariance, and extract the invariant features. However,
two major challenges need to be addressed:

• Quantifying mutual information for intricate graphs
poses great challenges due to high-dimensional con-
tinuous variables and unknown data distributions,
which might significantly decrease the model effi-
ciency.

• Directly maximizing the mutual information of the
extracted features may be misled by redundant infor-
mation, thereby leading to inaccurate estimation and
exacerbating distribution shift issues.

To bridge the gap, we propose a novel framework InfoIGL for graph OOD generalization, which
decomposes the invariant feature extraction process into two key tasks driven by information theory:
redundant information reduction to compress the redundancy of the extracted graph features, and
mutual information maximization to preserve useful invariant features, both tasks complement
each other mutually to achieve effective invariant feature extraction from graphs. Specifically,
inspired by the data compression theory (Al-Shaykh & Mersereau, 1998; Hosaka & Kabashima,
2006), InfoIGL first reduces redundancy present in the input graph via an attention mechanism to
prevent erroneous identification of redundant information as invariant features. Then InfoIGL utilizes
semantic-instance (Zhang et al., 2022b; Yue et al., 2021) and instance-instance (Wang et al., 2022)
contrastive learning to maximize the mutual information of positive instances supervised by class
labels. To prevent the target collapse issue of contrastive loss (Zhang et al., 2022b; Yao et al., 2022),
InfoIGL strengthens instance-wise contrastive learning with instance constraint and hard negative
mining techniques. We provide thorough theoretical analyses for these modules from the perspective
of information theory and demonstrate the effectiveness of InfoIGL with extensive experiments. Our
main contributions are summarized as follows.

• To address graph OOD problem, we propose a novel framework called InfoIGL driven by
information theory, which views mutual information as invariant features through realizing
two tasks.

• We probe the relationship between semantic-wise and instance-wise contrastive learning to
maximize mutual information with adequate theoretical evidence.

• We conduct extensive experiments on diverse benchmark datasets to demonstrate the effec-
tiveness of our proposed framework InfoIGL.

2 PROBLEM FORMULATION AND PRELIMINARY

2.1 PROBLEM FORMULATION

Let G and Y be the sample space and label space, respectively. We denote a graph by Gi ∈ G whose
adjacent matrix and node feature matrix are A and X, respectively. A graph predictor f = θ ◦ Φ :
G → Y maps the input graph Gi to the corresponding label yi ∈ Y, which can be decomposed
into a graph encoder Φ and a classifier θ. Let Dtr = {(Gi,yi)}N

tr

i=1 and Dte = {(Gi,yi)}N
te

i=1 be
the training and testing dataset under distribution shift, i.e., P tr(Gi,yi) ̸= P te(Gi,yi), where Dte

remains unobserved during the training stage. Consequently, the generalization for graph OOD can
be formulated as follows:

min
Φ:G→H,θ:H→Y

EG,y∈Dte [L(y, θ ◦ Φ(G)] (1)
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Figure 2: Task decomposition.
Step1: Compressing H(Φ(G))
to reduce redundancy; Step2:
Maximizing I(Φ(G1); Φ(G2))
to its upper bound I(G1, G2)

To overcome the distribution shifts between Dte and Dtr, invari-
ant representation learning aims to optimize the encoder Φ(·)
to capture representations that keep invariant across all distribu-
tions when the classifier θ is deterministic and well performed,
i.e., P tr(Y |Φ(G)) = P te(Y |Φ(G)). Towards this end, we scru-
tinize the task of invariant feature learning through the lens of
information theory. Our fundamental insight is that the entropy
of invariant features is equivalent to the mutual information
across graphs of the same class. By maximizing the mutual infor-
mation between extracted graph representations, we can approach
the ideal mutual information and ultimately obtain representations
of invariant features. However, the quantization of mutual infor-
mation for the extracted graph representations is vulnerable to
interference from redundant information present in the graphs.
To overcome this challenge, we propose to decompose this task
into two subtasks (cf. Figure 2): the compression of redundant
information, followed by the maximization of mutual information.

2.2 TASK I: REDUNDANT INFORMATION REDUCTION

In this work, we use the term “redundant information” to refer to the irrelevant yet potentially
confounding features present in graph data. According to Proposition 1, directly quantifying the
mutual information without first isolating these extraneous factors may be misled by redundant
information (Chuang et al., 2022), resulting in inaccurate estimation.

Proposition 1. Given variables X1, X2 and nosie S1, S2, X is independent of S, we have:
I(X1, S1;X2, S2) − I(X1;X2) = I(S1;S2) ≥ 0. Directly calculating the mutual information
between variables with noise may lead to capturing spurious correlations (Chuang et al., 2022).

To solve this problem, we take inspiration from the concept of “redundancy” in information theory
(cf. Theorem 1), which guides us to reduce redundant information via data compression.

Theorem 1. In information theory (Shannon, 1948), the redundancy γ of variable X is defined as
follows: γ = 1− η = 1− H∞(X)

Hm(X) , where H∞(X) is the limiting entropy, Hm(X) is the m-order
Markov average entropy.

In the context of information theory, H∞(X) and Hm(X) refer to the average entropy per symbol
(i.e., X) in a sequence of infinite or m symbols respectively. To extend the concept of redundancy
to graph learning, we posit that the entropy of graph representations generated by an ideal graph
encoder through infinite training data (i.e., H(Φ∞(G))) can be viewed as the limiting entropy, while
its counterpart obtained from the training set (i.e., H(Φ(G))) can be viewed as m-order Markov
average entropy. Thereby, the goal of task I is to reduce H(Φ(G)) close to H(Φ∗(G)).

2.3 TASK II: MUTUAL INFORMATION MAXIMIZATION

Mutual information assesses the level of shared information between variables, which can serve
as a measure of invariance across different graphs. Ideally, if the mutual information between
graph representations generated by graph encoder Φ reaches its upper bound I(G1;G2), it can be
considered as the optimal graph encoder Φ∗ for extracting invariant features (Shwartz-Ziv & Tishby,
2017; Tian et al., 2020), that is, Φ∗ = argmax

Φ
I(Φ(G1); Φ(G2)). However, directly maximizing

mutual information poses significant challenges due to the high dimensionality of continuous variables
and the unknown nature of data distributions. To overcome these obstacles, it is possible to establish
tractable objectives that approaches the boundary of mutual information.

Theorem 2. (Mutual information boundary (Oord et al., 2018; Poole et al., 2019)) Given two
variables X,Y , the bound of mutual information between X and Y can be defined as follows:

I(X;Y ) ≥ E[
1

K

K∑
i=1

log
exp(f(xi, yi)))

1
K

∑K
j=1 exp(f(xi, yj))

] ≜ INCE (2)
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Figure 3: The proposed InfoIGL framework.

where xi and yi denote a positive pair sampled from the joint distribution P (X,Y ), while xi and yj
form a negative pair sampled from the product of marginal distributions P (X)P (Y ).

As defined in Equation equation 2, maximizing the mutual information equals to minimizing the
InfoNCE loss (Oord et al., 2018), which inspires us to leverage contrastive learning to accomplish
Task II.

3 METHOD AND THEORETICAL ANALYSIS

In this section, we introduce our framework InfoIGL that simultaneously addresses two tasks to
extract invariant graph representations, as illustrated in Figure 3. Specifically, (1) For task I, we utilize
attention mechanism to reduce redundancy. (2) For task II, we jointly optimize the semantic-instance
and instance-instance contrastive learning to maximize the mutual information. (3) Finally, we
transfer the invariant representation to the downstream task — graph classification. Task I and Task II
are complementary to each other. Reducing redundancy can prevent capturing spurious correlations,
while maximizing mutual information can avoid discarding useful information.

3.1 TOWARDS REDUNDANT INFORMATION REDUCTION

To reduce redundancy, we hire attention mechanism (Sui et al., 2022; Brody et al., 2022; Thekumpara-
mpil et al., 2018; Kim & Oh, 2022) to assign weights to nodes and edges according to the Theorem 3.

Theorem 3. The entropy of variable X (i.e., H(X) = −
∑

p(xi)log2p(xi)) is a convex function,
which can be reduced through optimization of the probability distribution P (X).

In the context of graphs, we can reduce the entropy of graph representations by optimizing the
probability distribution of features, which can be realized through attention mechanism (Sui et al.,
2022; Brody et al., 2022). First, we obtain the representations for graph nodes with GNNs. Taking
GIN (Xu et al., 2018) as an example, the node update module is defined as follows:

h(k)
v = MLPk((1 + ϵ(k)) · h(k−1)

v +
∑

u∈N(v)

h(k−1)
u ) (3)

where MLP(·) stands for multi-layer perceptron, ϵ is a learnable parameter, hv and hu separately
denote the representations of nodes v and u, N(v) denotes the neighbour nodes of v.

The attention score of node v and edge (u, v) can be obtained as follows:

αv = softmax(
QvK

⊤
v√

dk
)Vv, αuv = softmax(LeakyReLU(MLP(hu||hv))) (4)
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Qv = hv ·WQ,Kv = hv ·WK , Vv = hv ·WV , WQ,WK ,WV are trainable parameter matrices,
dk is Kv’s dimension, || is the concatenation operation.

After assigning weights for nodes and edges, we encode graphs into graph-level representations hG:

h′
v = αv · hv,h

′
vu = αuv · huv, hG = READOUT(Hv,Huv) (5)

where hv,huv are node and edge embedding obtained from GIN, Hv = [...,h′
v, ...]

⊤
v∈V ,Huv =

[...,h′
uv, ...]

⊤
u,v∈V , V denotes the node set. Till now, we have optimized the probability distribution of

graph features and reduced the entropy of graph representations.

3.2 TOWARDS MUTUAL INFORMATION MAXIMIZATION

According to Theorem 2, we can leverage contrastive learning to maximize the mutual information
between representations. However, traditional contrastive-based methods may not effectively work
since complex instance-instance relationships may impede model generalization(Yao et al., 2022;
Xu et al., 2021; Zhang et al., 2022c). To fully unleashing the advantages of contrastive learning, we
jointly optimize semantic-wise and instance-wise contrastive losses after projecting the embedding to
another space with projection head, which can promote both inter-class separation and intra-class
compactness.

3.2.1 PROJECTION HEAD

A projection head is a small network that maps the embedding to another space where further
contrastive learning is applied (Yao et al., 2022; Gupta et al., 2022), which can prevent the conflicts
between reducing representation entropy and strengthening contrastive uniformity according to the
Proposition 2.
Proposition 2. Contrastive learning can promote embedding uniformity (Wang & Isola, 2020), which
may increase entropy (Ma et al., 2023) and violate task I. Using a projection head as a springboard
can avoid potential entropy increase in the original embedding hG.

We employ a two-layer MLP fθp(·) as the projection head for hG:

zG = fθp(hG). (6)

Then InfoIGL applies contrastive learning and encourages uniformity in new space zG.

3.2.2 SEMANTIC-WISE CONTRASTIVE LEARNING

Semantic-instance contrastive learning is more robust to complex instances by neutralizing the noise
in multiple instances. To realize semantic-wise contrastive learning, we first introduce the cluster
center of each class as the corresponding category semantic. Formally, we initialize the semantic wc

as the average semantic representation over examples belonging to class c: wc = 1
Nc

∑Nc

i=1(zGi),

Nc is the number of zG with label c in a batch. Then we update the current round w
(r)
c by calculating

the similarity between each instance embedding zGi and the semantic of last round w
(r−1)
c :

m
(r)
i = softmax(cosine(zGi ,w

(r−1)
c )), w

(r)
c =

∑Nc

i=1 m
(r)
i · zGi

(7)

where cosine(·) denotes the cosine similarity. Then we define the semantic-instance contrastive loss:

Lsem = − 1

N tr

Ntr∑
i=1

log
exp(z⊤Gi

wc/τ)

exp(z⊤Gi
wc/τ) +

∑C−1
k=1,k ̸=c exp(z

⊤
Gi
wk/τ)

(8)

where N tr denotes the number of graphs in a batch, wc denotes the target category semantic of zGi
,

C denotes the number of classes, τ is the scale factor.

3.2.3 INSTANCE-WISE CONTRASTIVE LEARNING

However, merely leveraging semantic-wise contastive learning may sacrifice some potential useful
semantic relations (Yao et al., 2022) according to the Proposition 3.
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Proposition 3. The mutual information between semantic wc and instance zG is lower
than the mutual information between instance zG: I(

∑Nc

i=1(mi · zGi); zG1 ; ..; zGNc
) ≤

I(zG1
; ...; zGi

; ...; zGNc
).

To compensate for the missing mutual information, we introduce instance-instance contrastive
learning. The loss function for instance-instance contrastive learning can be defined as follows:

Lins = −
1

N tr

Ntr∑
i=1

log
exp(z⊤Gi

zG+
/τ ′)

exp(z⊤Gi
zG+/τ) +

∑K
k=1 exp(z

⊤
Gi
zGk

/τ ′)
(9)

Positive sample zG+
are randomly selected from graphs that belong to the same class as zGi

, K
denotes the number of negative samples for each graph instance.

3.2.4 DISCUSSION FOR INSTANCE-INSTANCE CONTRASTIVE LEARNING

For instance-instance contrastive learning, model collapse (Jing et al., 2021)(i.e., samples are mapped
to the same point) is not uncommon due to excessive alignment. So we apply instance constraint (Yao
et al.) and hard negative mining (Xuan et al., 2020; Robinson et al., 2020) to prevent getting stuck in
trivial solutions (Yao et al., 2022).

Instance constraint. Enhancing the uniformity (Wang & Isola, 2020) of graph embeddings zG
can prevent model collapse from excessive alignment, which can be assisted by the uniformity of
semantics wc. The semantics wc are ensured to be uniformly distributed by semantic-wise contrastive
learning. Thus we utilize instance constraint:

z′G = λc · zG + (1− λc) ·wc (10)

where wc refers to the corresponding semantic belonging to the same class as zG.

Hard negative mining. Hard negative pair (Xuan et al., 2020; Robinson et al., 2020) plays an
important role in contrastive loss, which can help the network learn a better decision boundary. We
identify hard negative graph samples according to the Definition 1.
Definition 1. For sample z′Gi

, there are two principles to mine hard negative samples: 1) y(z′hard) ̸=
y(z′Gi

), y means the graph label; 2). ||Φ(z′hard)− Φ(z′Gi
)||2 ≤ δ, δ is a very small value.

To identify hard negative samples for instances z′G belonging to class c, we calculate the distance
between semantic wc and samples from other classes within a batch, then we choose the K nearest
ones as hard negative samples {z′hardk

}Kk=1. Then the loss for instance-wise contrastive learning can
be modified as follows:

Lins = −
1

N tr

Ntr∑
i=1

log
exp(z

′⊤
Gi
z′G+

/τ ′)

exp(z
′⊤
Gi
z′G+

/τ ′) +
∑K

k=1 exp(z
′⊤
Gi
z′hardk

/τ ′)
(11)

3.3 DOWNSTREAM TASK TRANSFER AND OVERALL FRAMEWORK

To make the invariant graph representation applicable for graph classification, we define the loss
function for prediction as follows:

Lpred = − 1

N tr

Ntr∑
i=1

y⊤
i log(θ(hGi

)) (12)

where yi is the label of Gi, θ is the classifier for hGi
.

The overall framework is illustrated in Figure 3 and the final loss can be given by:

L = Lpred + λsLsem + λiLins (13)

where the hyperparameters λs, λi are scaling weights for each loss, which can adjust the impact of
different modules on the model’s results. The algorithm of training stage is listed in the Appendix.
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4 EXPERIMENTS

In this section, we conduct extensive experiments on multiple datasets to answer the following ques-
tions: Q1: How effective is InfoIGL compared to prior methods for OOD generalization in graphs?
Q2: How do the two tasks make sense respectively? Q3: How do the different contrastive modes
impact InfoIGL’s performance respectively? Q4: How sensitive the model is to the hyperparameters?

4.1 DATASETS AND BASELINES

We conduct experiments on one synthetic (i.e., Motif) and three real-world (i.e., HIV, Molbbbp, and
CMNIST) datasets which are designed for graph OOD (Gui et al., 2022; Hu et al., 2020), where
Motif and CMNIST are evaluated with ROC-AUC while HIV and Molbbbp are evaluated with
ACC. We compare our InfoIGL against diverse graph OOD generalization baselines: Optimization
methods: ERM, IRM (Arjovsky et al., 2019), VREx (Krueger et al., 2021), GroupDRO (Sagawa
et al., 2020), FLAG (Kong et al., 2022); Causal learning: DIR (Wu et al., 2022), CAL (Sui et al.,
2022), GREA (Liu et al., 2022a), CIGA (Chen et al.), Disc (Fan et al., 2022); Stable learning:
StableGNN (Fan et al., 2021), OOD-GNN (Li et al., 2021); Data manipulation: GSAT (Miao
et al., 2022), DropEdge (Rong et al., 2019), M-Mixup (Wang et al., 2021), G-Mixup (Han et al.,
2022). Since the practical implementation of InfoIGL involves utilizing graph contrastive learning to
maximize mutual information, we also incorporate classical graph contrastive learning methods as
benchmarks, including CNC (Zhang et al., 2022a), GMI (Peng et al., 2020), Infograph (Sun et al.,
2019), GraphCL (Hafidi et al.). Detailed explanations for datasets and baselines are provided in the
Appendix.

4.2 OVERALL RESULTS(Q1)

Table 1: Performance of different methods on synthetic (Motif) and real-world (HIV, Molbbbp,
CMNIST) datasets. The best results are in bold, and the runner-up results are underlined.

methods Motif HIV Molbbbp CMNIST

size base size scaffold size scaffold color
ERM 70.75±0.56 81.44±0.45 63.26±2.47 72.33±1.04 78.29±3.76 68.10±1.68 28.60±1.87

IRM 69.77±0.88 80.71±0.46 59.90±3.15 72.59±0.45 77.56±2.48 67.22±1.15 27.83±2.13

GroupDRO 69.98±0.86 81.43±0.70 61.37±2.79 73.64±0.86 79.27±2.43 66.47±2.39 29.07±3.14

VREx 70.24±0.72 81.56±0.35 60.23±1.70 72.60±0.82 78.76±2.37 68.74±1.03 28.48±2.87

FLAG 56.26±3.98 72.29±1.31 66.44±2.32 70.45±1.55 79.26±2.26 67.69±2.36 32.30±2.69

DIR 54.96±9.32 82.96±4.47 72.61±2.03 69.05±0.92 76.40±4.43 66.86±2.25 33.20±6.17

CAL 66.64±2.74 81.94 ±1.20 83.33±2.84 73.05±1.86 79.20 ±3.81 67.37±3.61 27.99±3.24

GREA 73.31±1.85 80.60±2.49 66.48±4.13 70.96±3.16 77.34±3.52 69.72±1.66 29.02±3.26

CIGA 70.65±4.81 75.01±3.56 65.98±3.31 64.92±2.09 76.08±1.21 66.43±1.99 23.36±9.32

DisC 53.34±13.71 76.70±0.47 56.59±10.09 67.12±2.11 75.68±3.16 60.72±0.89 24.99±1.78

GSAT 64.16±3.35 83.71±2.30 65.63±0.88 68.88±1.96 75.63±3.83 66.78±1.45 28.17±1.26

DropEdge 55.27±5.93 70.84±6.81 54.92±1.73 66.78±2.68 78.32±3.44 66.49±1.55 22.65±2.90

M-Mixup 67.81±1.13 77.63±0.57 64.87±1.77 72.03±0.53 78.92±2.43 68.75±1.03 26.47±3.45

G-Mixup 59.92±2.10 74.66±1.89 70.53±2.02 71.69±1.74 78.55±4.16 67.44±1.62 31.85±5.82

OOD-GNN 68.62±2.98 74.62±2.66 57.49±1.08 70.45±2.02 79.48±4.19 66.72±1.23 26.49±2.94

StableGNN 59.83±3.40 73.04±2.78 58.33±4.69 68.23±2.44 77.47±4.69 66.74±1.30 28.38±3.49

CNC 66.52±3.12 82.51±1.26 70.68±2.15 66.53±2.19 76.19±3.52 68.16±1.25 32.41±1.28

GMI 67.90±1.46 79.52±0.45 74.34±0.55 73.44±0.35 77.67±0.30 69.38±1.02 30.24±5.98

InfoGraph 67.49±2.54 75.57±0.88 74.63±0.80 71.41±0.82 80.82±0.49 70.39±1.34 33.84±1.52

GraphCL 66.90±2.80 74.40±0.90 77.13±0.17 72.94±0.68 80.64±0.78 69.36±1.32 32.81±1.71

InfoIGL(ours) 85.53±2.37 92.51 ±0.16 93.15±0.77 72.37±1.63 83.39 ±2.76 77.05 ±2.24 38.93±1.11

improvemrnt ↑ 12.22% ↑ 8.80% ↑ 9.82% ↓ 1.07% ↑ 2.57% ↑ 7.33% ↑ 5.09%

We train and evaluate our proposed InfoIGL, together with all the baselines, 10 times to obtain
the average performance (mean ± standard deviation). Details of hyperparameters are listed in the
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Appendix. It can be observed from Table 1 that optimization methods exhibit stable performance
with moderate accuracy and low variance, while causal learning baselines show unstable performance
with undulating accuracy and high variance. Besides, stable learning and data manipulation baselines
perform relatively poorly compared to other baselines. Additionally, traditional graph contrastive
learning methods can partially combat distributional shifts, but their effectiveness is not as strong
as InfoIGL since they were not designed specially to extract invariant features. These observations
indicate that almost all of the baselines have their limitations for graph OOD generalization. Our
proposed framework, InfoIGL, achieves state-of-the-art performance on diverse datasets with low
variance, outperforming the strongest baseline by 9.82% on HIV (size) and 12.22% on Motif (size).
These results demonstrate the effectiveness of InfoIGL in extracting stable and invariant graph
representations for graph classification tasks.

4.3 ABLATION STUDY FOR Q2

Table 2: Results of ablation experiments on two tasks.

methods Motif HIV Molbbbp CMNIST

size base size scaffold size scaffold color

ERM 70.75±0.56 81.44±0.45 63.26±2.47 72.33±1.04 78.29±3.76 68.10±1.68 28.60±1.87

InfoIGL-A 69.69±6.24 ↓ 87.14±0.88 ↑ 76.99±2.55↑ 71.56±1.96 ↓ 79.72±3.50 ↑ 74.48±1.00↑ 34.54±2.11↑
InfoIGL-C 68.01±2.09↓ 86.63±1.33↑ 72.81±2.92↑ 68.02±2.28↓ 75.32±1.38↓ 65.62±1.07↓ 33.40±2.10↑
InfoIGL 85.53±2.37↑ 92.51±0.16↑ 93.15±0.77 ↑ 72.37±1.63↓ 83.39±2.76 ↑ 77.05±2.24↑ 38.93±1.11↑

To validate the significance of each task individually, we conduct separate ablation studies on the
attention mechanism and contrastive learning. Specifically, we compare InfoIGL with two variations:
(1) InfoIGL-A: which includes only the attention mechanism in Task I, and (2) InfoIGL-C, which
focuses solely on the contrastive learning in Task II. The results are reported in Table 2. InfoIGL-A
outperforms ERM but falls short of InfoIGL, underscoring the significance of contrastive learning
and the necessity of Task II. In contrast, InfoIGL-C yields poorer results than ERM and InfoIGL,
shedding light on the impact of Task I.

4.4 ABLATION STUDY FOR Q3

Table 3: Results of ablation experiments on semantic-wise and instance-wise contrastive learning.

methods Motif HIV Molbbbp CMNIST

size base size scaffold size scaffold color

InfoIGL-N 69.69±6.24 87.14±0.88 76.99±2.55 71.56±1.96 79.72±3.50 74.48±1.00 34.54±2.11

InfoIGL-S 84.77±2.10 ↑ 89.93±0.93 ↑ 87.30±1.21 ↑ 72.12±1.87 ↑ 81.97±1.79 ↑ 76.76±3.66 ↑ 37.31±1.50 ↑
InfoIGL-I 80.05±2.99↑ 90.36±1.54↑ 91.38±2.38↑ 63.70±5.45↓ 74.91±2.07↓ 70.11±2.02↓ 35.67±1.19↑
InfoIGL 85.53±2.37↑ 92.51±0.16↑ 93.15±0.77↑ 72.37±1.63↑ 83.39±2.76↑ 77.05±2.24↑ 38.93±1.11↑

InfoIGL-N

InfoIGL-SInfoIGL-N

InfoIGL-S

InfoIGL-I InfoIGL

InfoIGL-I InfoIGL

（a）HIV

（b）Motif

Figure 4: The t-SNE (Van der Maaten & Hinton,
2008) visualizations.

We perform an ablation study to analyze the im-
pacts of semantic-wise and instance-wise con-
trastive learning respectively. Specifically, we
compare InfoIGL with three variations: (1)
InfoIGL-N, which does not use contrastive learn-
ing; (2) InfoIGL-S, which employs semantic-
wise contrastive learning only; and (3) InfoIGL-
I, which applies instance-wise contrastive learn-
ing only. We report the results in Table 3. Our
observations are as follows: 1) Merely apply-
ing instance-instance contrastive learning may
cause performance degradation, which confirms
the Proposition 1 that directly maximizing mu-
tual information between instances may have a negative impact from an experimental perspective.
2) Applying semantic-instance contrastive learning can achieve improvement coherently on diverse
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datasets, which demonstrates the robustness of semantic-wise contrastive learning. 3) InfoIGL with
both semantic-wise and instance-wise contrastive learning outperforms all of the three variations
across diverse datasets, proving that jointly optimizing the two contrastive losses can inspire their
individual potentials. Semantic-instance and instance-instance contrastive learning can promote each
other and cooperate complementarily.

Additionally, we employ the t-SNE (Van der Maaten & Hinton, 2008) technique to visualize the
embedding of graph instances on the HIV (Gui et al., 2022) and Motif (Gui et al., 2022) datasets (cf.
Figure 4), where four variations (InfoIGL-N, InfoIGL-S, InfoIGL-I, InfoIGL) are compared. The
results reveal that compared to InfoIGL-N, the embeddings obtained by InfoIGL-S and InfoIGL-I
exhibit a more compact clustering pattern, reflecting the efficacy of semantic-wise and instance-wise
contrastive learning in aligning shared information. Furthermore, it is evident that InfoIGL exhibits
the best convergence effect, as its embeddings are more tightly clustered than those produced by the
other variations.

4.5 SENSITIVE ANALYSIS(Q3)
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Figure 5: Sensitivity analysis of hyperparameters λc, λs, λi

To assess the sensitivity of InfoIGL to its hyperparameters, namely λc for instance constraint and λs

and λi for contrastive loss respectively, we conduct sensitivity analysis experiments by tuning these
hyperparameters within the range of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} under the controlled
experimental setting. Specifically, when adjusting a specific hyperparameter, we fix the remaining
hyperparameters at the values that yield the best performance. The results are presented in Figure 5.
It is noteworthy that InfoIGL is relatively insensitive to λc and λs (gray and green), as adjusting
their values does not cause significant fluctuations in InfoIGL’s performance. While λi (pink) has
a significant impact on the InfoIGL and requires fine-tuning. Furthermore, the results demonstrate
the negative impact of excessively large values for λi in InfoIGL. For instance, the performance of
InfoIGL on Motif (size) and CMNIST (color) drops significantly when λi exceeds 0.6. By comparing
the performance of InfoIGL across different datasets under different hyperparameter settings, we can
identify the optimal hyperparameters for each dataset. For example, λs ranging from 0.3 to 0.7 and
λc ranging from 0.5 to 0.8 are more suitable hyperparameter values.

5 CONCLUSION

In this paper, we propose a novel approach InfoIGL to extract invariant representation for graph
OOD generalization from the perspective of information theory. We view the mutual information
between graphs as invariance and decompose the process of extracting invariant representation into
two tasks: reducing redundant information and maximizing mutual information. The two tasks work
together to ensure that the useful invariant features are fully isolated. Specifically, we utilize an
attention mechanism to reduce redundancy. Then we jointly optimize the semantic-instance and
instance-instance contrastive learning to maximize the mutual information, while also introducing
instance constraint and hard negative mining to prevent model collapse. Theoretical analysis together
with extensive experiments demonstrate the superiority of InfoIGL, highlighting its potential for
real-world applications.
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A RELATED WORK

Invariant learning for graph OOD. Invariant learning (Zhao et al., 2019; Rosenfeld et al., 2020;
Yang et al., 2020; Wang & Veitch, 2022; Chen et al., 2022) has gained increasing attention as a
powerful tool for developing robust representations capable of withstanding distribution shifts. In
the context of graph data, invariant learning has been extensively explored to improve generalization
performance in OOD scenarios. Recent works have demonstrated the effectiveness of diverse
approaches in identifying invariant graph features, including optimization methods (Arjovsky et al.,
2019; Krueger et al., 2021; Sagawa et al., 2020; Kong et al., 2022), causal learning (Wu et al., 2022;
Sui et al., 2022; Liu et al., 2022a; Fan et al., 2022), stable learning (Fan et al., 2021; Li et al., 2021),
and data manipulation (Miao et al., 2022; Rong et al., 2019; Wang et al., 2021; Han et al., 2022).

Contrastive learning and information theory. Contrastive learning (He et al., 2020; Chen et al.,
2020a;b; Khosla et al., 2020) has achieved success in aligning representations by pulling together pos-
itive pairs and pushing apart negative pairs, which is tightly related to information theory, particularly
mutual information. The contrastive loss can maximize the mutual information between positive pairs
from the same class, promoting the intra-class compactness and inter-class discrimination (Wang
et al., 2022). Some approaches (Huang et al., 2021; Zhang et al., 2022b; Yao et al., 2022) have
attempted to leverage contrastive learning in domain generalization tasks, demonstrating the potential
of contrastive learning for handling OOD issues.

B THEORETICAL PROOFS AND DISCUSSIONS

B.1 PROOFS.

Proof for Theorem 3. For a random variable X , its entropy function is defined as H(X) =
−
∑

i p(xi)log2p(xi), where p(xi) denotes the probability of X taking on the value xi. Given
a probability distribution p(x1), p(x2), ..., p(xn),

∑n
i=1 p(xi) = 1, we take the derivative of the

entropy function with respect to the variable xi:

p(xj) = 1−
n−1∑
i=1

p(xi) (14)

∂H

∂p(xi)
= −[1 + log2(p(xi)− 1− log2(p(xj))] = −log(

p(xi)

1− p(xi)−
∑k ̸=i,j

k p(xk))
) (15)

∂2H

∂p(xi)2
= − 1

p(xi)
− 1

1− p(xi)−
∑k ̸=i,j

k p(xk)
< 0 (16)

Equationequation 15 is the first derivative of entropy, and equation equation 16 is the second
derivative. Since the second derivative is negative and lim

p(xi)→0

∂H
∂p(xi)

→ +∞, lim
p(xi)→1

∂H
∂p(xi)

→ −∞,

we conclude that the entropy function is a strictly convex function. To obtain the maximum point of
the convex function, we introduce Lagrange multipliers λ and construct the Lagrangian function as
follows:

L(p(x1), p(x2), ..., p(xn), λ) = −
n∑

i=1

p(xi)log2p(xi) + λ(

n∑
i=1

p(xi)− 1) (17)

Taking the first partial derivative of the Lagrangian function and setting it to zero yield:

∂L

∂p(xi)
=

∂

∂p(xi)
[−

n∑
i=1

p(xi)log2p(xi) + λ(

n∑
i=1

p(xi)− 1)] (18)

⇒ λ = log2p(xi) + 1, p(xi) = 2λ−1 (19)

p(x1) = p(x2) = ... = p(xn) =
1

n
(20)

This means that given probability distribution, the entropy achieves its maximum when the distribution
is uniform distribution. Conversely, if significant differences exist among the value p(xi), the entropy
will be lower.
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The convexity of the entropy function is an important property in information theory, as it gives us
insight into how to optimize H(X) based on its probability distribution. Then if we assign weights
to change the probability distribution of graph features, the entropy of the graph representation
H(Φ(G)) can be optimized to a smaller value.

Proof for Proposition 1. Given variables X1, X2 and noise S1, S2, X is independent of S, we define
the mutual information between the composition of X and S as I(X1, S1;X2, S2). According to the
chain rule for information, the mutual information I(X1, S1;X2, S2) can be transformed as follows:

I(X1, S1;X2, S2) = I(S1;X2, S2|X1) + I(X1;X2, S2|S1) (21)
Since X is independent of S, the mutual information between X and S equals zero, that means:
I(X1;S2) = I(X2;S1) = I(X1;S1) = I(X2;S2) = 0. So I(S1;X2, S2|X1) = I(S1;S2|X1),
I(X1;X2, S2|S1) = I(X1;X2|S1), then we can simplify I(X1, S1;X2, S2) as follows:

I(X1, S1;X2, S2) = I(S1;S2|X1) + I(X1;X2|S1)

= I(S1;S2) + I(X1;X2) ≥ I(X1;X2)
(22)

Since I(X1, S1;X2, S2) = I(X1, X2) + (S1;S2), we can conclude that directly calculating the
mutual information between variables with noise I(X1, S1;X2, S2) may capture spurious correlations
I(S1;S2).

B.2 DISCUSSIONS.

Explanation for Proposition 2. Under L2 normalization, the Euclidean distance is equivalent to the
negative of cosine similarity:

x⊤y = 1− 1

2
||x− y||22 (23)

We define {xj}Kj=1 as the negative samples for instance xi. Then the contrastive loss for negative
samples can be defined as:

1

N

N∑
i=1

− log
1∑

j exp(x
⊤
i xj/τ)

=
1

N

N∑
i=1

log e1/τ (

K∑
j=1

exp(−||xi − xj ||22/2τ)

=
1

N

N∑
i=1

log(

K∑
j=1

exp(−||xi − xj ||22/2τ) + α0

(24)

The loss for negative samples aims to encourage uniformity (Wang & Isola, 2020) and will encourage
the distribution of samples close to uniform distribution (Ma et al., 2023). According to Theorem
3, the uniformity of probability distribution will cause entropy to increase, which violates our task
I. Thus we apply contrastive learning in another space zG that is mapped by a projection head (i.e.,
zG = σ(MLP(hG))). Due to the non-linear mapping property of MLP, the space zG and the space
hG are in the different unit balls. Since uniformity is encouraged in the output of the projection head
(i.e., zG), the problem of entropy increase in original representation hG can be alleviated.

Explanation for Proposition 3. For class c, given the instance embeddings {zGi
}Nc
i=i and the

corresponding semantic wc =
∑Nc

i=1(mi · zGi
). Based on the properties of multivariate mutual

information, the mutual information I(
∑Nc

i=1(mi ·zGi
); zG1

; ...; zGNc
) can be transformed as follows:

I(

Nc∑
i=1

(mi · zGi); zG1 ; ...; zGNc
) = I(zG1 ; ...; zGNc

)− I(zG1 ; ...; zGNc
|
Nc∑
i=1

(mi · zGi)) (25)

Since
∑Nc

i=1(mi · zGi) contains all the variables zGi and provides some knowledge about their joint
distribution, so the conditional mutual information I(zG1

; ...; zGNc
|
∑Nc

i=1(mi ·zGi
)) is non-negative.

Then we can conclude:

I(

Nc∑
i=1

(mi · zGi); zG1 ; zG2 ; ...; zGNc
) ≤ I(zG1 ; zG2 ; ...; zGN

) (26)

Therefore, the mutual information between the semantic wc =
∑Nc

i=1(mi · zGi
) and all

graph embedding zGi
is always less than or equal to the mutual information between zGi

:
I(wc; zG1 ; zG2 ; ...; zGNc

) ≤ I(zG1 ; zG2 ; ...; zGNc
).
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C TRAINING PROCEDURE

C.1 THE TRAINING ALGORITHM

The overall training procedure of the proposed InfoIGL is summarized in Algorithm 1.

Algorithm 1: InfoIGL’s learning algorithm.
Input: Training graph dataset Dtr, hyperparameters λs, λi, λc, number of epochs e, batch size b.
Output: graph encoder Φ(·) (GNN encoder and Attention mechanism), classifier θ(·).
1: Initialize graph encoder Φ(·), Projection head fθp(·), classifierθ(·).
2: for epoch in 1, 2, ...e do
3: Sample data batches B = D1,D2, ...,DK with batch size b from Dtr.
4: for Di← {(Gk,yk)}bk=1 ⊂ B, i ∈ 1...K do
5: # Reduce redundant information
6: Calculate hGk

← Φ(Gk) .
7: # Maximize mutual information
8: Calculate zGk

= fθp(hGk
). # Projection head

9: Aggregate zGk
to wc. # Get category semantics

10: Calculate the semantic-wise contrastive loss Lsem.
11: Calculate z′Gk

= λczGk
+ (1− λc)wc. # Constrain instance embedding

12: Obtain hard negative samples z′hard. #hard negative mining
13: Calculate the instance-wise contrastive loss Lins.
14: # Transfer to downstream tasks
15: Calculate the prediction loss Lpred.
16: L = Lpred + λsLsem + λiLins. # Total loss
17: end for
18: end for
19: Update all the trainable parameters to minimize L

D EXPERIMENTAL DETAILS

D.1 DATASET DESCRIPTION

We adopt one synthetic dataset (Motif) and three real-world datasets (HIV, Molbbbp, CMNIST) to
evaluate our model. Here we provide the introduction and statistical details for datasets.

• Motif (Gui et al., 2022) is a synthetic dataset motivated by Spurious-Motif (Ying et al., 2019),
graphs of which are generated by connecting a base graph (wheel, tree, ladder, star, and path) and a
motif (house, cycle, and crane). The motifs are invariant for prediction while the base graphs may
cause distribution shifts. Here, we use the concept shift of “base" and the covariate shift of “size”
to create testing datasets.

• HIV (Gui et al., 2022) and Molbbbp (Hu et al., 2020) are small-scale molecular datasets adapted
from MoleculeNet (Wu et al., 2018) in the real world, where atoms serve as nodes and chemical
bonds serve as edges. The data splits of the two datasets are designed based on two domain
selections: “scaffold” and “size”. “Scaffold” selection is based on the Bemis-Murcko scaffold,
which represents the two-dimensional structural foundation of a molecule, while “size” selection
involves the number of nodes in a molecular graph - an inherent structural feature of a graph. As
neither feature should determine the label, both can contribute to significant distribution shifts. We
select OOD testing datasets based on the concept shift of “size” and “scaffold”.

• CMNIST (Gui et al., 2022) is a real-world dataset created by applying superpixel techniques to
handwritten digits. The dataset is divided into two parts: covariate shift split and concept shift split.
In the covariate shift split, digits are colored with seven different colors, with the first five colors,
the sixth color, and the seventh color assigned to the training, validation, and test sets, respectively.
In the concept shift split, digits are colored with 10 different colors, with each color being highly
correlated with one digit label in the training set. However, colors have weak or no correlations
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with labels in the validation and test sets. Here we use the covariate shift of “color” as the OOD
testing dataset.

Statistics of these datasets are presented in Table 4

Table 4: Statistics of multiple datasets.

Dataset #Train #Val #Test #Classes #Metrics

Motif-size 18000 3000 3000 3 ACC
Motif-base 12600 6000 6000 3 ACC
HIV-size 14454 9956 10525 2 ROC-AUC
HIV-scaffold 15209 9365 10037 2 ROC-AUC
Molbbbp-size 1631 204 204 2 ROC-AUC
Molbbbp-scaffold 1631 204 204 2 ROC-AUC
CMNIST-color 42000 14000 14000 10 ACC

D.2 COMPARED BASELINES

We compare our method against several state-of-the-art methods that are designed for graph OOD
generalization. These baselines can be classified into four categories:

• Optimization methods aim to design optimization objectives to enhance the robustness
of the model across different environments, including ERM, IRM (Arjovsky et al., 2019),
VREx (Krueger et al., 2021), GroupDRO (Sagawa et al., 2020), FLAG (Kong et al.,
2022). Empirical Risk Minimization(ERM) is a principle used in machine learning for
selecting models. It involves selecting the model that minimizes the empirical risk, which
is the average loss over the training data. IRM (Arjovsky et al., 2019) aims to find data
representations that have consistent performance across all environments by discouraging
feature distributions that lead to different optimal linear classifiers for each environment.
VREx (Krueger et al., 2021) focuses on both covariate robustness and invariant prediction,
and reduces risk variance in test environments by minimizing the variances of risks in
training environments. GroupDRO (Sagawa et al., 2020) uses fair optimization to address
the issue of insufficient training for minority distributions. Additionally, it employs risk
interpolation, which involves minimizing the loss in the worst training environment explicitly.
FLAG (Kong et al., 2022) is achieved by applying gradient-based adversarial perturbations
to the node features, which helps the model maintain robustness to fluctuations in input data
and improve prediction performance.

• Causal learning utilizes causal theory to extract causal features that play a key role in
model prediction and ignore non-causal features, including DIR (Wu et al., 2022), CAL (Sui
et al., 2022), GREA (Liu et al., 2022a), CIGA (Chen et al.), Disc (Fan et al., 2022);
DIR (Wu et al., 2022) chooses a subset of graph representations as causal rationales, and
performs interventional data augmentation to generate multiple distributions. CAL (Sui
et al., 2022), GREA (Liu et al., 2022a) and DisC (Fan et al., 2022) are designed based on
the Structural Causal Models (SCM) to disentangle causal subgraphs. While CIGA (Chen
et al.) maximizes the mutual information between causal graphs and labels to extract
causal-invariant subgraphs.

• Stable learning is committed to independently extracting stable features across different
environments by means of sample reweighting, such as StableGNN (Fan et al., 2021),
OOD-GNN (Li et al., 2021); StableGNN (Fan et al., 2021) proposes a novel causal variable-
distinguishing regularizer which can eliminate correlations between each pair of high-level
variables through a set of sample weights while OOD-GNN (Li et al., 2021) can eliminate
statistical dependencies between variant and invariant representations by using randomized
Fourier features and sample reweighting in a nonlinear graph representation.

• Data manipulation is dedicated to generating diverse augmented data to increase the
diversity of data distribution, such as GSAT (Miao et al., 2022), DropEdge (Rong et al., 2019),
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M-Mixup (Wang et al., 2021), G-Mixup (Han et al., 2022). GSAT (Miao et al., 2022) injects
randomness to prevent unrelated information from interfering with the labels, and utilizes
the reduction in randomness to select subgraphs relevant to the labels. DropEdge (Rong
et al., 2019), M-Mixup (Wang et al., 2021) and G-Mixup (Han et al., 2022) apply various
transformations to augment the graph data which is beneficial to realize graph generalization.

For ERM, IRM (Arjovsky et al., 2019), VREx (Krueger et al., 2021), GroupDRO (Sagawa et al.,
2020), DIR (Wu et al., 2022), and M-Mixup (Wang et al., 2021), we obtain their performance on
diverse datasets following the prior research (Gui et al., 2022). While for other baseline implemen-
tations, we use the codes released by the authors and evaluate their performance on a variety of
datasets.

Additionally, classic graph contrastive learning methods which incorporate information the-
ory, including CNC (Zhang et al., 2022a), GMI (Peng et al., 2020), Infograph (Sun et al., 2019),
GraphCL (Hafidi et al.), are discussed as benchmarks. CNC (Zhang et al., 2022a) utilized ERM to
identify samples with different spurious features and then leveraged contrastive learning to learn
similar representations for samples of the same class. GMI (Peng et al., 2020) directly derived MI by
comparing the input (i.e., the sub-graph consisting of the input neighborhood) and the output (i.e.,
the hidden representation of each node) of the encoder. Infograph (Sun et al., 2019) enhanced the
alignment of graph representations by maximizing the mutual information between representations
learned by InfoGraph and that acquired by existing supervised methods. GraphCL (Hafidi et al.)
learned node embeddings by maximizing the similarity between representations of two randomly
perturbed versions of the same node.

D.3 DETAILS OF HYPERPARAMETERS FOR INFOIGL

Our code is implemented based on PyTorch Geometric. For all the experiments, we use the
Adam optimizer, where the initial learning rate and the minimum learning rate are searched
within {0.01, 0.001, 0.0001} and {0.001, 0.00001, 0.000001}, respectively. We select embed-
ding dimensions from {32, 64, 128, 300} and choose batch sizes from {64, 128, 256, 512, 1024}.
The dropout ratio is searched within {0.1, 0.3, 0.5} while λc, λs, λi are searched within
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We adopt grid search to tune the hyperparameters and
list the details of hyperparameters for InfoIGL in Table 5.

Table 5: The hyperparameters for InfoIGL on different datasets

hyperparameters Motif HIV Molbbbp CMNIST

size base size scaffold size scaffold color
encoder layers 3 3 3 3 2 2 5
embedding dim 64 128 300 128 128 300 32
max epoch 200 200 100 200 100 100 150
pretrain 40 40 80 40 20 80 60
batch size 1024 128 256 1024 64 1024 256
ini-lr 0.001 0.001 0.001 0.01 0.01 0.0001 0.001
min-lr 1e-3 1e-6 1e-6 1e-6 1e-6 1e-6 1e-3
weight decay 0 1e-1 1e-2 1e-5 1e-5 0 0
drop ratio 0.5 0.5 0.3 0.3 0.3 0.3 0.5
λc 0.7 0.7 0.7 0.7 0.2 0.7 0.7
λs 0.8 0.5 0.5 0.5 0.2 0.2 0.5
λi 0.2 0.5 0.5 0.1 0.2 0.2 0.1

D.4 RESULTS OF SENSITIVITY ANALYSIS

We conduct experiments to evaluate how sensitive is InfoIGL to the choice of graph neural network
architectures (GCN, GIN, and GAT). The results are listed in Table 6. As shown in Table 6, InfoIGN-
GCN, InfoIGL-GIN, and InfoIGL-GAT are competent on Motif and CMNIST datasets while they far

18



Under review as a conference paper at ICLR 2024

surpass the baseline ERM. The results demonstrate the effectiveness of our method, irrespective of
the choice of GNN backbones.

Table 6: Results of experiments with different backbones.

methods Motif CMNIST

size base color

ERM 70.75±0.56 81.44±0.45 28.60±1.87

InfoIGL-GCN 86.53±2.15 91.56±0.91 38.30±0.76

InfoIGL-GIN 85.53±2.37 92.51±0.16 38.93±1.11

InfoIGL-GAT 84.66±1.23 90.32±1.45 37.51±2.07

Additionally, we perform experiments to access the sensitivity of InfoIGL to its hyperparameters (i.e.,
λc, λs, λi). In the main body of the paper, we only presented a line graph for sensitivity analysis,
here we list the detailed results of sensitivity analysis on λc, λs, λi in Table 7, Table 8, Table 9,
respectively.

Each column of the table represents the experimental results of the model with varying ratios on
different datasets. From the data in each column of the table, it can be observed that the model results
vary slightly across different ratios, indicating that the model is not sensitive to these hyperparameters.

Table 7: Performance of InfoIGL with different constraint ratio λc.

ratio
Motif HIV Molbbbp CMNIST

size base size base scaffold scaffold color

0.1 82.53±2.75 90.46±1.13 87.73±2.40 70.89±2.12 83.07±1.24 79.44±3.24 38.34±1.78

0.2 84.13±1.79 89.86±0.70 89.42±2.60 70.47±2.12 83.39±2.76 80.45±3.22 37.13±3.37

0.3 84.18±2.05 89.66±1.10 89.55±2.98 71.16±1.41 81.38±1.65 82.34±1.04 37.95±2.78

0.4 84.23±1.65 89.84±0.76 90.84±2.31 68.97±3.40 82.93±1.71 72.56±0.51 36.49±2.22

0.5 83.62±2.38 89.21±1.68 91.18±1.38 69.81±2.50 81.18±2.86 72.69±2.96 39.05±2.05

0.6 83.48±1.80 90.67±0.69 91.36±1.50 69.64±2.64 82.03±1.37 73.70±2.02 38.92±1.52

0.7 83.65±1.05 90.39±0.83 92.55±1.02 69.60±2.27 79.98±3.01 77.36±2.02 38.51±3.22

0.8 85.05±3.30 90.86±0.87 92.75±0.84 71.02±1.81 80.07±2.91 80.14±1.24 38.01±1.70

0.9 82.67±2.44 90.86±0.77 93.23±1.01 71.04±2.54 80.12±3.25 75.71±1.27 33.02±2.85

Table 8: Performance of InfoIGLL with different semantic loss ratio λs

ratio
Motif HIV Molbbbp CMNIST

size based size scaffold size scaffold color

0.1 81.39±2.84 90.28±0.57 92.24±1.26 69.61±1.16 80.56±2.51 74.89±2.30 37.05±2.15

0.2 81.17±3.40 90.83±1.00 92.09±1.07 71.16±1.77 81.43±1.98 75.38±0.89 38.14±2.43

0.3 83.85±3.10 90.57±0.81 92.14±0.65 70.72±0.81 80.81±2.41 75.38±2.45 36.64±1.87

0.4 84.64±1.91 90.19±0.73 92.25±0.89 71.30±0.96 82.05±3.13 76.15±2.56 37.90±0.64

0.5 81.93±2.98 90.36±0.36 92.44±1.16 70.60±0.92 80.45±2.12 77.26±2.11 38.12±0.49

0.6 92.71±0.95 70.37±0.82 83.80±3.73 87.87±3.28 80.61±4.34 77.01±1.54 37.30±2.82

0.7 83.17±3.54 90.80±0.42 91.90±0.51 70.42±0.54 80.76±2.64 76.62±0.60 34.72±3.41

0.8 84.06±2.44 90.61±1.15 92.21±0.81 70.54±1.84 81.38±2.11 75.12±1.64 37.55±0.46

0.9 84.69±4.12 90.47±0.27 91.96±0.73 71.74±1.67 77.89±3.99 75.44±2.20 36.50±2.77
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Table 9: Performance of InfoIGL with different instance loss ratio λi.

ratio
Motif HIV Molbbbp CMNIST

size base size scaffold size scaffold color

0.1 82.57±0.57 90.74±0.76 91.86±0.69 62.03±4.63 83.81±1.75 71.12±1.79 38.02±0.61

0.2 84.89±1.41 90.30±0.77 92.57±0.76 60.13±3.68 77.24±1.78 74.71±2.17 34.51±1.53

0.3 84.79±2.08 90.61±0.44 92.26±1.23 56.67±1.13 78.44±3.11 68.15±2.88 38.28±1.75

0.4 85.46±1.63 90.04±1.58 92.41±0.68 61.77±2.81 77.90±2.08 68.04±5.93 34.61±0.75

0.5 82.87±2.60 90.11±0.42 92.25±1.21 55.93±3.79 79.73±3.74 62.76±2.78 32.69±3.57

0.6 83.64±1.39 90.66±1.03 92.42±0.88 61.33±3.45 77.42±2.22 60.60±4.97 36.48±1.80

0.7 83.17±1.30 90.82±0.76 92.08±1.09 57.09±2.29 71.17±6.02 57.02±2.42 29.61±5.93

0.8 83.89±1.44 91.10±0.77 92.38±0.61 58.92±2.68 76.11±2.48 60.43±3.95 30.75±1.41

0.9 80.71±1.60 91.17±0.37 92.09±0.45 59.31±2.57 73.66±4.99 63.73±4.49 27.09±5.08

E TIME AND SPACE COMPLEXITY ANALYSIS

Let N denote the number of graphs, n denote the average node number per graph, lG, lA, lP and
dG, dA, dP denote the numbers of layers and the embedding dimensions in the GNN backbone,
attention mechanism and projection head, respectively, C denote the number of class and K denote
the number of hard negative samples per instance. The time complexity of the GNN backbone is
O(NnlGdG). For the attention mechanism, the time complexity is O(NnlAdA). For the projection
head, since it turns from node level to graph level, the time complexity is O(NlP dP ). For semantic-
wise contrastive learning, the time complexity is O(NC). For instance-wise contrastive learning, the
time complexity is O(NK). Therefore, the time complexity of the whole model is O(N(nlGdG +
nlAdA + nlP dP ) +C +K), and the order of magnitude is O(Nn). Similarly, the space complexity
is also approximately O(Nn) which is about the same as baselines.

F LIMITATIONS AND POTENTIAL NEGATIVE SOCIAL IMPACTS

F.1 LIMITATIONS

Informal hard negative mining. There are several techniques for generating hard negative samples
in machine learning. One approach is to choose negative samples that closely resemble positive
examples by sampling from a pool of negatives. These selected samples can be relabeled as “hard
negatives” and included in the training process. Another method involves the use of sophisticated
algorithms like online hard example mining (OHEM), which identifies challenging negative samples
based on their loss values during training. However, instead of these methods, we select hard
negative samples by computing the distance between the negative samples and the semantic center
that corresponds to the positive sample. While this informal hard negative mining technique may
conserve computational resources, it could also introduce a certain degree of error.

Lack of testing the applicability to other tasks. Contrastive learning is typically used to extract
useful features that can be transferred to downstream tasks. Therefore, the InfoIGL framework,
which employs contrastive learning techniques, has the potential to improve the performance of other
downstream tasks such as node classification. The applicability of InfoIGL to other tasks is what we
leave for future work.

F.2 POTENTIAL NEGATIVE SOCIAL IMPACTS

As our framework can extract the invariant representations with information theory and realize
reliable GNNs which can alleviate graph OOD problems, we are confident that the benefits of our
work outweigh any potential negative impacts. However, the trustworthy GNN may cause over-
reliance and be widely applied in the real world, leading to decreased human ability and consequent
unemployment. Additionally, excessive trust in this technology may cause significant losses due
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to potential error overlooking. Therefore, it is crucial that people use the framework prudently and
increase supervision when applying it.
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