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ABSTRACT

Vision Transformers (ViTs) have become the prominent architecture for various
computer vision tasks due to their superior ability to capture long-range depen-
dencies through the self-attention mechanism. However, recent research indi-
cates that ViTs are highly susceptible to carefully crafted adversarial patch at-
tacks, presenting a significant challenge for practical deployment, particularly
in security-critical applications. Existing approaches towards robust ViT frame-
works often sacrifice clean accuracy and/or achieve suboptimal robustness, likely
due to their uniform handling of diverse input samples. In this paper, we present
NeighborViT, anovel adaptive defense framework specifically designed to counter
adversarial patch attacks for ViTs. NeighborViT stands out by detecting and
categorizing different types of attacks on inputs and applying adaptive, tailored
defense mechanisms for each type of attack. To realize effective attack de-
tection, categorization, and mitigation, NeighborViT explores the information
in neighbor patches of the target patch and strategically employs them for de-
fense. Our experimental results on the ImageNet dataset using various state-
of-the-art ViT models demonstrate that NeighborViT significantly enhances ro-
bust accuracy without compromising clean accuracy. Our code is available at
https://anonymous.4open.science/r/NeighborViT-8255.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al.l [2021) have become the leading architecture in var-
ious computer vision tasks, such as image classification (Zhu et al., |2023)), segmentation (Ye et al.,
2019), and generation (Chen et al.). However, they recently show heightened vulnerability to adver-
sarial patch attacks (Brown et al.|[2017;|Gu et al.| 2022} [Fu et al.| [2022; |Lovisotto et al., 2022} Yuan
et al., 2024). These attacks, which introduce small but strategically placed patches to an image,
exploit ViTs’ attention mechanism, leading to significant model misclassifications. For example,
only 0.5% modifications to the input image can degrade the model’s performance to 0% (Lovisotto
et al., [2022). This vulnerability underscores a fundamental weakness in the current design of ViTs
and raises concerns regarding their reliability in real-world applications.

Various works have been proposed to enhance the robustness of ViTs. One line of work treats the
model as a black box and analyzes the model inputs/outputs to mitigate adversarial patch attacks (Xi-
ang et al., 2022; |Tarchoun et al., |2023; Yang et al.,2024). In contrast, another line of work leverages
the unique self-attention mechanism in ViTs to limit the impact of abnormal attention of adversarial
patches (Yu et al.| 2023} [Liu et al., 2023; Mu & Wagner, 2021). Despite their effectiveness, many
of the above studies (Yu et al.| 2023} Liu et al., 2023} Kim et al.,|2023)) process clean and malicious
inputs indistinguishably, which inevitably harms the model’s clean accuracy. Although some stud-
ies (Xiang et al., 2022; Tarchoun et al., [2023; |Yang et al., [2024) can discern adversarial inputs, they
rely on computationally expensive detectors to manage the challenges posed by unknown attack
sizes and positions, and they treat all adversarial inputs equally without considering the impact of
different attacked locations, resulting in limited improvements in robustness.

In this paper, we highlight the importance of distinguishing different types of inputs and intro-
duce NeighborViT, an input-adaptive defense framework for ViTs against adversarial patch attacks.
NeighborViT not only detects adversarial inputs from clean ones but also categorizes different at-
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tack types, subsequently adopting tailored defense strategies. The key insight behind NeighborViT
is leveraging information from neighboring patches of target patches for effective attack detection,
categorization, and mitigation. Specifically, adversarial patches typically exhibit high pixel dis-
continuity compared to clean patches. By analyzing pixel-level discontinuity differences between
target and neighboring patches, we develop a lightweight and accurate algorithm to detect and locate
attacks. Such detection enables us to maintain the target models’ clean accuracy. To improve robust-
ness, we also distinguish between catastrophic and non-catastrophic attacks based on whether they
occur in essential or non-essential areas for classification. The categorization is achieved by replac-
ing the adversarial patch with its neighbors and observing model output variations. Non-catastrophic
attacks show more consistent outputs since they do not harm the essential features for classification.

After categorization, we develop specialized defenses for different types of attacks. For non-
catastrophic attacks, we replace adversarial patches with neighboring patches, which entirely remove
adversarial information and preserve the essential feature for classification. Such replacement can-
not be applied to catastrophic attacks, as this would result in the loss of essential features. Hence, we
design a fine-grained attention suppression mechanism instead to suppress the adversarial attention.

Our contributions are summarized as follows:

e We develop NeighborViT, a novel robust ViT framework that protects ViT against adver-
sarial patch attacks. We utilize neighbor information to categorize model inputs and design
tailored defenses for each category. This adaptive defense strategy enables us to achieve
high robustness while maintaining clean accuracy.

e We explore the pixel-level discontinuity differences between adversarial patches and the
neighboring patches and present a model-agnostic attack detector. Our detector can accu-
rately and efficiently detect and localize adversarial patches of unknown sizes.

e We show the necessity to differentiate between catastrophic and non-catastrophic attacks
and propose an essential/non-essential area detector for this. The detection is enabled by
exploiting model prediction variations when adversarial patches are replaced with different
neighboring patches.

e We propose a fine-grained attention suppression algorithm for catastrophic attacks and an
adversarial patch reconstruction method for non-catastrophic attacks. These tailored de-
fenses enable optimized robust accuracies.

To evaluate our method, we conduct extensive experiments on 12 representative ViT models across
various state-of-the-art attack approaches. Our results show that we achieve the best robust perfor-
mance while maintaining clean accuracy compared to other methods.

2 BACKGROUND & RELATED WORKS

Vision Transformer: The Vision Transformer (ViT) (Dosovitskiy et al.l [2021)), inspired by NLP
models like BERT (Devlin et al., 2019), introduces self-attention to image classification, offering
an alternative to traditional CNNs. ViTs excel in tasks requiring broader context understanding, as
they avoid CNNs’ reliance on local receptive fields. Notable ViT models include ViT (Dosovitskiy
et al.| 2021), DeiT (Touvron et al.l [2021), BiFormer (BiF) (Zhu et al. [2023), and TransNeXt
(TNX) (Shi, 2024), with TNX and BiF outperforming CNNs by over 15% in classification tasks.
A typical workflow of ViTs is as follows. ViTs split input images into patches, transforming them
into embeddings. These embeddings, along with positional encodings, are fed into a transformer
encoder composed of multiple transformer blocks. In each block, embeddings first pass through the
Multi-Head Self Attention (MHSA) layer, where they are converted into queries (Q)), keys (K), and
values (V). Subsequently, the attention output for each head is calculated as

Attention(Q, K, V) ft (QKT) Vv (1)
ention(Q, K, V') = softmax

Vg
where dj, is the vector dimension. After that, the outputs from all attention heads are concate-
nated and linearly transformed, producing the output of the MHSA layer. The output is then passed
through residual connections and layer normalization before being fed into the MLP layer to in-
corporate nonlinear information. Through layer-by-layer connections, the final classification is
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achieved through an MLP head using the representation of a unique CLS token. This structured
approach enables ViTs to effectively leverage self-attention for superior classification performance.

Adversarial patch attacks: Brown et al. (Brown et al.l 2017) first introduce adversarial patch
attacks, which limit the attack region to a patch area. In Appendix [A.T} we show some examples
of patch attacks. Initially targeting CNNs, adversarial patch attacks have now expanded to Vision
Transformers (ViTs). Recent studies (Gu et al.l 2022} |Fu et al.,[2022) reveal ViTs’ vulnerability to
patch attacks, exploiting ViTs’ need to partition images into patches for attention computation. One
line of ViT’s patch attack focuses on designing loss functions that target only the model’s output,
utilizing gradient to optimize the adversarial patch aligned with the input patches of ViTs, such as
Token-attack (Joshi et al.| 2021) and ViTRPP (Gu et al.| 2022). Based on the global reasoning
of attention being the source of the vulnerability of ViT to patch attacks, another line of work not
only utilizes the model’s output but also incorporates attention-aware loss. Fu et al. propose (Fu
et al., 2022) Patch-Fool with integrated attention-aware patch selection technique and attention-
aware loss design. Subsequently, Lovisotto et al. (Lovisotto et al., [2022) observe that using post-
softmax attention scores as a loss in Patch-Fool leads to the issue of smaller gradients, thus limiting
the attack’s potential. Therefore, they proposed Attention-fool, which designs the loss using pre-
softmax attention scores to avoid this problem.

Defense methods for ViTs: Defense strategies against ViT’s patch attacks can be divided into
model-agnostic and ViT-specific methods. Model-agnostic defenses treat the model as a black box
and are generally applicable to both CNNs and ViTs; for instance, PatchCleanser (Xiang et al.
2022) uses two rounds of moving window masking and output analyzing to get the correct answer;
Jedi (Tarchoun et al.,|2023)) identifies adversarial patches using entropy analysis and an autoencoder,
exploit the fact that adversarial patches have higher entropy than natural images. To get the correct
classification result, Jedi applies a pixel reconstruction method on attacked images. ViT-specific
defenses leverage attention mechanisms; for example, Robust Self-Attention Layer (Mu & Wagner,
2021) detects and masks outlier tokens based on their value vector; ARMRO (Liu et al., |2023)
detects and masks adversarial patches by identifying the layers where the adversarial token’s score
becomes most prominent, based on its varying behavior across different layers; RTA (Yu et al.}
2023) addresses the issue of adversarial patches attracting excessive attention in ViTs by applying a
restriction operation on the attention matrix.

However, most existing methods do not differentiate between clean and adversarial inputs, limiting
their robustness and clean accuracy. Even when adversarial patch attacks are identified in some
methods, they do not classify the types of attacks (e.g., catastrophic and non-catastrophic attacks),
limiting their robustness. In contrast, our approach adaptively processes different kinds of input, re-
sulting in an improved model’s clean accuracy and robustness. The necessity of adaptive processing
is elaborated further in the following section.

3 DESIGN OF NEIGHBORVIT

In Fig. [I| Top, we introduce our adaptive defense framework, named NeighborViT, which distin-
guishes different types of adversarial patch attacks and adopts corresponding defense methods. The
framework comprises an attack detector, an essential/non-essential area detector, image reconstruc-
tion for non-catastrophic attacks, and attention suppression for catastrophic attacks. The catastrophic
attacks represent the attacks occurred in the essential areas and non-catastrophic attacks represent
the attacks located in the non-essential areas. For any input sample, we first conduct attack detec-
tion through the lightweight and effective attack detector (detection). If the input is clean, it will
be directly inputted into the ViT model for classification. Conversely, if the input contains adver-
sarial patches, we use the essential/non-essential area detector to identify whether the attack occurs
in the essential area or non-essential area (categorization). After that, we design different defense
methods to mitigate the impact of adversarial patches (mitigation). If the attack is located in the
essential area, we use fine-grained attention suppression to defend catastrophic attacks. If it occurs
in the non-essential area, we remove the adversarial patches and reconstruct the image. Notably, all
the above process, i.e., detection, categorization, and mitigation, are enhanced with the information
explored in the neighbors of target patches. With this framework, we can achieve superior robust
performance against adversarial patch attacks while maintaining clean accuracy.
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Figure 1: Overview of NeighborViT. Top: The framework of NeighborViT. Each input sample
is categorized into clean samples, catastrophic attacks, and non-catastrophic attacks by the attack
detector and essential/non-essential area detector. We do not modify clean inputs and adopt different
defense methods (e.g., reconstruction or attention suppression mechanisms TAS) for different attack
types. Middle: The details of the attack detector, which divides the input samples into clean samples
and adversarial patch attacks. Bottom: The details of the essential/non-essential area detector, which
distinguishes whether the attack occurs in essential areas (i.e., catastrophic attacks) or non-essential
areas (i.e., non-catastrophic attacks). We add red boxes on the images for better visualization.
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3.1 ATTACK DETECTOR

Why do we need to design a novel attack detector? The answer lies in two aspects. On the one
hand, in existing research of enhancing the robustness of ViTs, some methods (Yu et al., 2023} [Liu
et al., 2023; |[Kim et al.| 2023) overlook whether an attack has occurred and treat all the input sam-
ples equally, which often compromises the clean accuracy of the target model. On the other hand,
although other approaches (Xiang et al., 2022 |Yang et al., 2023 Tarchoun et al., 2023) consider
to detect adversarial patches, they either need to train an auxiliary model or query the target model
multiple times to deal with the challenges posed by unknown adversarial patch size and location,
leading to significant costs. In this paper, we present a lightweight attack detector that can accurately
detect adversarial patches of unknown locations and sizes.

Our motivation stems from the low pixel continuity inside adversarial patches. The generation pro-
cess of the adversarial patches neglects the relationships between pixels and results in a noticeable
pixel gradient. This gradient can be detected through traditional image processing tools (Sobel et al.,
1968 [Prewitt et al.|, [1970; (Canny, [1986). In particular, the sobel operator (Sobel et al. [1968), de-
signed for edge detection, utilizes horizontal and vertical kernels to detect pixel variations in both
directions and effectively highlights pixels with high gradients. Meanwhile, the pixels inside adver-
sarial patches also have high gradients that can be detected by the operator. We present an example
to show the effect of the sobel operator on adversarial patches in Fig. [[|Middle (more examples can
be seen in Appendix [A.2)), where the white areas represent higher sobel scores. It indicates that the
adversarial patches show the most salient gradient, while the pixel gradients within clean patches
are comparatively smaller. This contrast can be used for adversarial patch detection.

To detect and locate adversarial patches, we first use the above sobel operator to get the sobel score
of each pixel and calculate average sobel score of pixels in each patch, denoted as AvgSobel. The
patch with a high average sobel score is likely to be an adversarial patch. However, some clean
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patches also exhibit relatively high AvgSobel values, relying exclusively on the AvgSobel score for
detection and localization may lead to wrong results. To address this, we introduce a new distance
score d that not only considers the AvgSobel of the current patch but also incorporates the AvgSobel
of patches inside neighbor patches, denoted as AvgSobel,, , where the ny represents the neighbor
patches. The distances d of all patches are combined. The computation of d is illustrated in Eq.
and K represents the number of the sampled neighbor patches.

K
d = AvgSobel — Zk:lAngObelnk °
K
dmam:g}gg{dhd%...di’...)dz} 3)

Since the location of the adversarial patches is unknown, we propose a sliding window method
to scan for suspicious patches across the image. First, we assume that the sliding window size and
attack patch size are equal to the model’s input patch size. For the 74, slide, we sample the neighbors
of current window and calculate the above distance d;. We group all d into vector D. Second, when
finishing the window sliding process, we get the maximum distance d,,,., through Eq. [3| where 2
represents the total number of slides. At last, if the maximum distance d,,,,, exceeds the threshold
€, we deem that we have detected and located the adversarial patches and can obtain the mask M of
the adversarial patches; otherwise, the input sample is clean.

However, in practice, the size of the adversarial patches is often inconsistent with the input patch size
of the model, and their sizes are unknown. To accurately locate the adversarial patches, we introduce
a dynamic window size strategy during the window sliding process(Fig. [[|Middle). We start with a
large window size and conduct one round of sliding for each window size. In this case, we calculate
the mean of all pixel gradients within the variable window. If no adversarial patch is detected in
the current sliding round, we gradually reduce the window size and continue to the next slide. If
no adversarial patch is detected after the last round of sliding (i.e., window size equals to the input
patch size of the model), we deem that the input sample is clean. The detailed detection algorithm
is provided in Appendix Notably, our attack detector does not require to train auxiliary models
or query the target model, thereby incurring no additional cost.

3.2 ESSENTIAL/NON-ESSENTIAL AREA DETECTOR

Current defense studies (Yu et al.| 2023} [Tarchoun| Table 1: Distinguishing different types of ad-
et all, 2023} [Liu et al| [2023) often do not distin- versarial patch attacks is important (robust ac-
guish different types of adversarial patch attacks curacy (%) for attacks located in essential and
and treat them equally. However, we need to utilize non-essential areas is reported. Left: attacks
different defense measures to achieve better robust located in non-essential areas; Right: attacks
performance. Specifically, if the attack occurs in located in essential areas).

the non-essential areas (non-catastrophic attacks),

which does not contain essential features for model Model  Defense Attack Methods
classification, we can completely remove these at- VITRPP  Patch-F  Attention-F
tacked information to achieve strong robust perfor- : RTA  52.8/64.2 51.3/61.6 50.4/59.8
: DeiTS  pemoval 67.3/533 63.8/50.7  610/51.5
mance of the model. To demonstrate this, we com- 2> -0/90. 001

: ) A RTA  43.4/562 41.8/54.7  40.5/54.2
pare the effect of the two methods (i.e. remove ad VIS o al 618453 626425 609413

versarial patches and RTA (Yu et al.| 2023))) when

. - . RTA  56.4/64.3 61.5/65.2  56.4/65.1
attacks are located in the non-essential areas, where BiF-S  pomoval 72.6/53.1 66.8/59.8  64.3/56.6
RTA uses global attention for attention suppres- RIA  693/73.1 6907739  67.4/69.7
sion, which is a typical method that still retains the TNX-S Removal 74.6/672 73.4/688  70.5/652
attack information. Specifically, we select four rep-
resentative ViT models and 1,500 non-catastrophic attacks generated by Patch-Fool (Fu et al.;,[2022]).
We set the attack patch size to twice the model’s input patch size. The results in Table [I| Left show
that removing adversarial patches achieves better robustness, suggesting that removal is a superior
defense for non-catastrophic attacks.

Is it appropriate to completely remove adversarial patches if they are located in essential areas?
To answer this question, we conduct an experiment to compare the effect of the two methods i.e.,
remove adversarial patches and RTA, when attacks are located in the essential areas. Specifically,
we select 1,500 catastrophic attacks generated by Patch-Fool, and the other experimental settings
are the same as those in the non-catastrophic attacks experiment. The results in Table [1| right are

5
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different from those of non-catastrophic attacks Figure 2: The effect of attention suppression
and show that attention suppression achieves better and removal for attacks occurred in essen-
robustness. To explore the reason, we visualize the tjal areas on the attention mechanism. X,
attention difference between these two methods in  denotes the adversarial token and X5, X3 are
Fig.[2} Current attack methods (Fu et al.,|2022;|Lo- clean tokens. Left: suppress the attention of
visotto et al.,2022)) often amplify the key vectorsto X ; Right' remove token X7 .

achieve better attack performance, and red squares

in Fig. [2| Left represent the attacked token. The
suppression method only suppresses the key vec- (CH ’1 » ) | O x . J
tors of adversarial patches while maintaining q and  (ai B ) (@ % v) (@ & ) [i X %)
v vectors, leading to less impact on the attention z : — : ‘ & T o) ‘ =

calculation process. In contrast, as shown in Fig. 2] v

Right, removing the adversarial token also affects ‘“' ‘“' qz'I . a2 I

the query and value vectors and has a greater im- |
pact on attention calculation (the red squares repre- . m m m m m
sent the affected vectors). This phenomenonis also | ”['"1”3” R T s A
verified in Appendix which shows the impact

of these two methods on the attention map. The

above experimental results and analysis suggest that adversarial patches have useful information for
classification and cannot be completely removed for catastrophic attacks.

[Enormal attention [ affected attention

Based on the above experimental results and analysis, we need to distinguish essential and non-
essential areas. To effectively distinguish them, we propose a lightweight essential/non-essential
area detector (ENED) (Fig. [l| Bottom). The losses of non-essential features do not impact the
model’s predictions, whereas removing essential features causes the predictions unreliable. This
difference allow us to determine whether the attacked area is essential or non-essential by observing
the model’s output . Specifically, after the attack detector, we obtain the mask M of adversarial
patches, with which we can use k neighbors of the adversarial patches to reconstruct k& images.
After that, we input the reconstructed images into the model to obtain the corresponding output
probabilities. At last, we compute the average similarity between each pair of outputs (Eq. [)),

—__ Ysim(exp(out), caplout;)) k
stmilarityous = : i,j =1---

k
() 2
where out;, out; refers to the output of the model for two different reconstructed images. When

the average similarity similarity,,: is below the predefined threshold v, we deem that the attacked
area is an essential area; otherwise, the attack occurs in the non-essential area. The ENED detection
algorithm is shown in Appendix

),i<j @)

3.3 ADAPTIVE DEFENSE FOR DIFFERENT ATTACK CATEGORIES

After we categorize adversarial patch attacks, we introduce corresponding defense methods for dif-
ferent types of attacks. We introduce these two different strategies below.

Defense for non-catastrophic attacks (Reconstruction). As mentioned above, removing adver-
sarial patches is a superior defense for attacks occurred in non-essential areas. Specifically, utilizing
the mask M (locating the adversarial patches), we can calculate the mask of neighbor patches (lo-
cating neighbor patches). After that, we randomly select a neighbor patch and use it to fill the
masked adversarial patches, through which we get a reconstructed image. Eventually, we feed the
reconstructed image into the original ViT architecture to obtain the final prediction.

Defense for catastrophic attacks (TAS). As mentioned in the Section [3.2] attention suppression
method, like RTA (Yu et al., |2023), is an effective approach for attacks occurred in essential areas.
Specifically, RTA restricts the attention of each token with unified global attention (i.e., mean of all
token attention weights) to prevent the model from being misled by adversarial patches. However,
calculating the mean of all token attentions is inevitably affected by the adversarial patches, making
it difficult to effectively suppress the attention weights of adversarial tokens. Moreover, since some
research (Vaswanil 2017 Han et al.| [2022)) has demonstrated that different attention heads stand
for different representation subspaces, using a unified global attention for all heads is suboptimal for
attention suppression. To solve the first problem, we remove the adversarial tokens when calculating
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Table 2: Comparison of different defense methods. We report the model’s average clean accuracy
and robust accuracy (%) across various sizes of attack patches. The results demonstrate that our
method has achieved exceptional robust performance under a range of attacks. The best results for
each attack are marked in bold, and the second best are underlined.

#Params. <20M <50M <100M >100M
Model Dei.T BiF-T Deil-S ViT-S BiF-S TNX-T TNX-S Deil.B ViT-B BiF-B TNX-B ViT-L
Nodefense 719 816 788 742 835 838 845  8L1 803 840 847 84.9
RTA 658 694 754 721 698 794 816 793 764 743 813 795
No attack Jedi 718 806 784 732 824 826 838 803 792 836  84.1 842
ARMRO 640 714 753 654 725 795 805 789 745 831 813 80.5
NeighborViT 719 816 788 741 835 836 844 8.1 802 840 846 84.8
No defense 0.1 53 0.0 00 63 102 104 0.4 06 64 111 13
RTA 528 642 529 431 565 724 714 558 563 596 724 66.3
ViTRPP Jedi 69.1 718 7156 701 815 683 690 772 747 7197 731 83.1
(Gu et al.|2022) ARMRO 668 681 747 645 690 735 759 728 740 701 768 78.8
NeighborViT 701 796 773 711 824 782 826 790 759 8L1 817 83.8
No defense 05 7.1 14 00 97 124 158 6.0 31 94 13.6 49
RTA 511 632 538 413 619 699  68.1 557 543 653 709 64.6
Patch-F Jedi 662 643 664 708 658 670 762 648 7L 712 730 76.9
(Fu et al.|[2022) ARMRO 647 672 729 613 697 7113 749 685 705 728 783 77.1
NeighborViT 679 733 746 722 784  79.1 798 751 731 792 813 80.9
No defense 0.0 6.8 03 00 89 117 136 43 22 91 124 37
RTA 491 618 506 406 596 678 672 523 514 632 685 61.2
Attention-F Jedi 653 656 670 701 616 728 7156  69.1 758 692 741 718
(Covisotto et al.[2022]  ARMRO 664  69.0 742 686 662 725 745 714 736 710 798 784

NeighborViT  70.3 77.6 7.4 71.8 79.5 80.8 81.3 79.1 76.6 80.9 81.2 81.7

the mean values of attention weights to suppress the attention weights of adversarial tokens more
effectively. To deal with the second problem, we compute the mean values of attention weights
separately for each head. The resulting attention suppression method is illustrated by Eq. [5

(m)

m A h m m
TAS(AEJ W) = Lod mm(Ag h), Agm)gkh)
A
— . 5)
(m) 1 (m)
Arask, = sz A (67) # Pado

where we denote A as the attention weight of the myj, block of the ViTs. The ¢, j represent the
index of attention values and A is the index of different heads. The A§.mh) = % > zAE?)h represents
the average attention contribution of the j;;, token and « represents the suppression coefficient. We

denote the average attention weight of clean tokens as Am askn where N denotes the total number
of patches. The win,q, is the attack patch size and padv is the index of adversarial patches detected
by the attack detector (can be found in Appendix [A.4).

4 EXPERIMENTAL EVALUATION

4.1 SETUP

Models and Datasets. In our experiments, the target models we select are from the ViT family
(ViT-S, ViT-B, and ViT-L) (Dosovitskiy et al.l [2021), the DeiT family (DeiT-T, DeiT-S, and DeiT-
B) (Touvron et al., [2021)), the BiFormer family (BiFormer-T, BiFormer-S, and BiFormer-B) (Zhu
et al.| [2023)), and the most recent TransNeXt family (TransNeXt-T, TransNeXt-S, and TransNeXt-
B) (Shi, [2024). We utilize the official pre-trained versions of all selected models, employing an
input patch size of 16 x 16 pixels. To generate adversarial patch attacks, we utilize the validation set
of ImageNet (Deng et al.| 2009) as the clean image dataset and then apply various attack strategies
under different ViTs on these clean images. We set a wide range for the attack patch size, ranging
from 0.5% to 8% of the total pixel area of the image. Specifically, we define attack patch size =
1x,2x,3x%,4x, representing that the side length of the attack patches is 1, 2, 3, and 4 times the
input patch length (e.g., 2x represents an attack patch size of 32 x 32 pixels).

Attack Strategies. To demonstrate the effectiveness of our method, we employ multiple state-of-
the-art attack methods in our experiment, including /) ViTRPP (Gu et al., 2022, 2) Patch-Fool (Fu
et al.l 2022), and 3) Attention-Fool (Lovisotto et al., |2022). As all these methods are white-box
attacks, they represent the most powerful ViT attack strategies currently available. The parameter
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Figure 3: Average robust accuracy (%) of different model families under various sizes
of adversarial patches. Each value is averaged across all models within each ViT family.
attack patch size = 1x,2x,3x,4x denotes that the side length of the attack patch is 1, 2, 3,
and 4 times the input patch length of the target model.

settings for all these attack strategies are identical to those in their original papers. The detailed
attack settings are presented in Appendix [A.3]

Baseline Defense Methods. In our experiments, we compare our method with several representative
robust ViT frameworks, including RTA (Yu et al.,[2023), ARMRO (Liu et al.| 2023)), and Jedi (Tar-
choun et al.| [2023)), of which ARMRO and Jedi are the current state-of-the-art defense approaches.
The detailed configurations of these baseline defense methods are presented in Appendix [A.6]

Evaluation Metrics. To evaluate our proposed framework, we employ two metrics to assess its per-
formance: 1) Clean Accuracy: This metric measures the percentage of correctly classified images
within the clean image dataset that has not been modified by any attacker. 2) Robust Accuracy: This
metric assesses the model’s resilience to adversarial attacks. It measures the percentage of correctly
classified images under adversarial patch attacks.

4.2 COMPARISON OF DIFFERENT DEFENSE METHODS

In this section, we comprehensively compare our defense method with RTA, Jedi, and ARMRO. We
first randomly select 5,000 clean images from the validation set of Imagenet to evaluate the defended
ViTs’ clean accuracy. As shown in Table 2] our method achieves the highest clean accuracy, with an
average reduction of less than 0.1% compared to the original model. This marks a significant im-
provement over Jedi, which has the smallest reduction among the previous methods, with a decrease
of 0.8%. The superior performance of our framework is attributed to its differentiated handling of
clean samples and adversarial patch attacks, and the high effectiveness of the attack detector.

Next, we assess the robust accuracy of the defended ViTs on adversarial images generated using
various patch attack methods under multiple attack patch sizes. Table [2] presents different models’
average robust accuracy across various attack patch sizes for each attack strategy. Meanwhile, Fig. [3]
illustrates the average robust accuracy of different model families under various sizes of adversarial
patches. As shown in Fig. [2and Tab. [3] our method consistently outperforms others across all ViT
models, attack methods, and attack patch size values, demonstrating its effectiveness in countering
adversarial patch attacks. This success can be attributed to our adaptive defensive strategies against
different types of adversarial attacks (catastrophic attacks and non-catastrophic attacks). Notably,
our approach shows more significant improvement in defense against Patch-Fool and Attention-Fool
compared to VITRPP. This is because the adversarial patches generated by the former two strategies
are more evenly distributed across essential and non-essential areas. When a specific type of attack
dominates, the performance of our framework converges to that of a single defense method (e.g.,
when all attacks are catastrophic, the performance of our framework is comparable to that of RTA).
In such cases, the improvement provided by our adaptive defense mechanism becomes limited. In
real-world scenarios, since it is uncertain whether the input patch attack will be catastrophic or
non-catastrophic, only our adaptive method can consistently achieve effective defense.

4.3 EVALUATION OF THE KEY COMPONENTS OF NEIGHBORVIT

In this section, we evaluate the effectiveness of the key components (attack detector, essential/non-
essential area detector, and token attention suppression) in our defense framework.



Under review as a conference paper at ICLR 2025

Model ~ Strategy ViTRPP Patch-F Attention-F Model Strategy ViTRPP Patch-F Attention-F
2x 4x 2x 4x 2x 4x 2x 4x 2x 4x 2x 4x

TAS Only 556 524 547 529 567 532 No defense 494 462 503 47.7 51.8 46.2

DeiT-S NROnly 694 68.1 66.7 642 674 643 DeiT-S RTA 69.6 687 672 653 694 66.7

Both 717 765 757 721 765 71.8 TAS 717 765 757 721 765 71.8

TAS Only 48.6 453 46.7 458 513 497 No defense 53.7 474 525 502 548 527

VIT-S NROnly 642 627 656 629 674 657 ViT-S RTA 66.7 653 668 647 69.1 677
Both 712 70.0 733 716 728 70.1 TAS 712 700 733 71.6 728 70.1

TAS Only 58.7 569 642 623 669 63.7 No defense 62.1 59.7 57.6 558 637 624

BiF-S NROnly 743 752 670 684 752 763 BiF-S RTA 762 749 682 67.1 771 750
Both 81.7 824 783 76.6 789 77.1 TAS 81.7 824 783 76.6 789 771

TASOnly 724 729 71.8 69.7 726 694 No defense 653 627 63.1 61.8 674 653

TNX-S NROnly 774 788 742 746 762 754 TNX-S RTA 785 789 753 749 782 713

Both 827 826 792 778 819 79.6 TAS 827 826 792 778 819 79.6

Table 3: Ablation study of the essential/non- Table 4: Comparison of different attention sup-
essential area detector. The best results are pression methods on catastrophic attacks. The
marked in bold. best results are marked in bold.

Effectiveness of the Attack Detector. The at- . )

tack detection strategies used in current ViTs de- Figure 4: Comparison of different attack de-
fense methods either need to train an auxiliary —tection methods. Our attack detector has the
model (Tarchoun et al, 2023) or query the target highest detection accuracy with little time cost.
model multiple times (Xiang et al., 2022; Yang
et al.,[2023)), both of which are computationally ex-
pensive. In contrast, our attack detector is more
accurate and lightweight. To demonstrate this,
we compare the detection methods proposed in
PatchCleanser (Xiang et al.l [2022), IBCD (Yang
et al.l |2023)), and Jedi (Tarchoun et al., 2023) with
ours, evaluating both detection accuracy and aver-
age time cost for each sample. For the test dataset,
we select a mixture of 500 clean and 500 adver- 1x
sarial patch attacks generated with Attention-Fool

toward DeiT-X. As shown in Fig. [ our attack detector achieves the highest detection accuracy
across various attack patch sizes (with improvements of 10% to 12%) while keeping the time cost
among the lowest. Additionally, as the attack patch size decreases, the time cost increases due to the
search process starting from larger patches and progressively narrowing to smaller ones.

3 PatchC W IBCD [ Jedi W@ Ours

1x 2x 3x
attack patch size

Average Cost (ms) Detection Accuracy (%)

2x 3x 4%
attack patch size

Necessity and Efficacy of the Essential/Non-Essential Area Detector. To demonstrate the ne-
cessity and efficacy of our essential/non-essential area detector (ENED), we conduct experiments
comparing three defense strategies: 1) TAS Only, where adversarial examples bypass ENED and
are handled solely by the token attention suppression method; 2) NR Only, where adversarial exam-
ples bypass ENED and are processed using the neighbor replacement method; and 3) Both, where
ENED categorizes adversarial patch attacks into catastrophic attacks and non-catastrophic attacks,
subsequently handling them with TAS and NR, respectively. For the test dataset, we select one
model from each ViT family and perform different attack strategies with two attack patch sizes. We
then apply the three defense strategies to the target models and evaluate the robust accuracy of the
models. As shown in Table 3] models with activated ENED achieve the highest robust performance,
validating the efficiency and necessity of ENED.

Effectiveness of Token Attention Suppression. To enhance the robustness of ViT against catas-
trophic attacks, we propose token attention suppression (TAS), which applies fine-grained token
attention suppression using masked global token information (attention of non-attacked patches).
In this section, we assess the impact of different attention suppression strategies’ influence on the
robust accuracy of the defended models. We compare three approaches: no attention processing,
RTA’s restriction method, and our TAS, where we keep the non-catastrophic defense approach the
same. As shown in Table ] TAS achieves the best robust performance, with nearly a 7% improve-
ment on DeiT-S and approximately a 5% improvement on ViT-S, BiF-S, and TNX-S, highlighting
its effectiveness against catastrophic attacks.
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4.4 HYPER-PARAMETERS

To evaluate the robustness of our proposed NeighborViT architecture, we conduct comprehensive
studies by varying the hyper-parameters within our framework and compare the defensive effective-
ness with the state-of-the-art method, Jedi. We employ the DeiT-T model architecture as the target
model and randomly select 2,500 clean images to generate adversarial patch attacks for validation.

Influence of c. We evaluate the de- Taple 5: The impact of different AD thresholds & on
tection threshold ¢ in our attack detec-  ¢lean accuracy and robust accuracy. We report CA and
tor, which determines whether an in- RA under different attack methods. CA: clean accuracy;
put sample is classified as an adver- RA: robust accuracy. The results of our defense method,

sarial example. For this experiment, yhich are better than those of Jedi, are marked in bold.
we utilize multiple attack strategies with

attack patch size = 2. We adjust ¢ B 195 200 210 215 225 235 245 255 Jedi
and assess both the clean accuracy and vitRpp CA 672 684 716 724 724 724 724 724 6938
RA 702 703 7L1 716 686 663 647 628 684
robust accuracy of the defended model.
. . Patch-F CA 684 693 699 717 724 724 724 724 697
As shown in Table B when ¢ is less RA 717 719 716 7.6 716 682 645 613 655
than 2.25, our method consistenﬂy out- Attention.F CA 689 703 724 724 724 724 724 724 700
.. RA 716 717 71.6 671 653 626 607 598 647
performs Jedi in robust accuracy across
all attack scenarios. Additionally, for ¢
greater than 2.10, it maintains a clear advantage over Jedi in clean accuracy. When ¢ is between
2.10 and 2.25, our method consistently outperforms Jedi in terms of both clean accuracy and robust
accuracy across the three attack scenarios.

Influence of 7. We assess the detec-  Tuble 6: The impact of different ENED thresholds ~y. The
tion threshold  of our essential/non-  regults better than Jedi are marked in bold. 1x, ... ,4x

essential area detector for categorizing denotes attack patch size = 1x, ... ,4x.
adversarial inputs. For this experiment,

we utilize Patach-Fool as the attack

5 20 215 225 235 245 255 265 ledi
strategy with multiple attack patch sizes. 1x 614 629 647 685 703 716 693 66.0
We adjust v and evaluate the robust ac- DeitT 2% 608 633 662 698 716 681 643 655

3x 654 682 70.5 716 679 661 627 64.3
curacy of the defended model. The re- 4x 648 716 679 674 642 618 597 625

sults are shown in Table |6l Under each
attack patch size, our approach outperforms Jedi within a  range that spans over 0.3. When 7 is
between 2.35 and 2.45, our method consistently outperforms Jedi across all attack patch sizes.

Influence of . We aim to suppress Table 7: The impact of different attention coefficient pa-
abnormally high attention weights for rameters o.. The results of our defense method, which are

patch attacks located in the essential petter than those of Jedi, are marked in bold.
area. To achieve this, we introduce a key

attention coefficient parameter, c, rep- a 085 095 100 105 115 120 125 130 Jedi
resenting the scaling factor for the mean Deil.T 637 642 663 697 716 705 687 669 655
of the masked attention (i.e., without ad-
versarial tokens). In this section, we aim to assess the impact of .. For this experiment, we ultilize
Patach-Fool as the attack strategy with attack patch size = 2. We adjust « and assess the robust
accuracy of the defended model, with the results shown in Tab. [/| Our approach achieves stronger
defense performance than the best baseline Jedi across a wide « range (from 1.00 to 1.30).

5 CONCLUSION

In this work, we introduce NeighborViT, a novel defense framework for Vision Transformers (ViTs)
designed to counter adversarial patch attacks. Unlike traditional defense methods that treat all input
samples equally, NeighborViT categorizes different types of inputs and applies adaptive, tailored
defense mechanisms. Specifically, NeighborViT employs an attack detector to identify potential
attacks in input images and further classifies the detected adversarial examples into catastrophic
or non-catastrophic attacks. The key to NeighborViT’s ability to detect, categorize, and mitigate
adversarial attacks lies in its strategic use of neighbor information at various stages. Experimental
results on both classical and state-of-the-art ViTs demonstrate the effectiveness of our proposed
method, achieving superior robust performance while maintaining clean accuracy.

10
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A APPENDIX

A.1 ADVERSARIAL PATCH

Figure[5] shows some examples of adversarial patches.

Clean

) Flower pot (88.1%)  Sandbar (87.9%) Spaghetti squash (88.9%)

Sock (90.3%) Leopard (87.8%)  Hourglass (79.2%)

Figure 5: Examples of patch attacks. First row: Clean samples; Second row: Adversarial exam-
ples derived from various patch attack methodologies. Adversarial patches are highlighted with red
boxes for better visualization.

A.2 ADVERSARIAL PATCH DETECTION WITH SOBEL OPERATOR

Figure 5] shows some examples of adversarial patches detection with sobel operator.

patch attack  sobel score patch attack sobel score

e

Figure 6: The potential of sobel operator for adversarial patch attack detection. We calculate
the gradient of pixels on the image and white areas represent higher sobel scores.

A.3 TAS & REMOVAL FOR CATASTROPHIC ATTACKS

In this section, we visualize the different effects of attention suppression (TAS) and removing adver-
sarial patches on essential area attacks. We still analyze from the perspective of attention. Since the
essential features contained in the essential area have been lost, our defense at this time should mini-
mize the focus impact on other essential features. In Fig. [7] we visualize the changes in the attention
of each layer for essential area attacks after using /) neighbor replacement (NR) to reconstruct the

13
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image and 2) using TAS for attention suppression. The selected samples are correctly classified with
TAS but wrongly with NR.

Figure 7: Comparison between neighbor replacement construction (NR) and attention sup-
pression with global attention algorithm (TAS). The generation of the adversarial patches mainly
changes their key vectors while the changes to the query and value are relatively small. The attention
suppression method only suppresses the key vector and affects the attention calculation less; how-
ever, directly replacing the original adversarial patches with a neighbor will incur more significant
effect on query and value vectors and affect the attention calculation more.

A.4 ALGORITHMS

This section details the algorithmic principles of the attack detector (AD), essential/non-essential
area detector (ENED). We have uniformly adopted the neighbor-informed mechanism in the design
of these components. What differs is the type of neighbor information we consider in each com-
ponent. In AD, We summarize our attack detection algorithm in Algorithm [T} For any given input
x, we set the initial sliding window size to win;, = win,, = 4, beginning the detection from the
top-left region of the image with a window stride equivalent to the model’s patch size. After each
window slide, we calculate the average sobel score of the patch within the current window. Con-
currently, we sample neighbors in the four directions—top, bottom, left, and right—with the same
size as the current window and compute the average score of all neighboring patches. After that, we
calculate the distance of these scores from the current window’s patch score. If the current distance
exceeds the maximum distance d,, ., updated in the previous instance, we update this calculation
as the new maximum distance. Once a round of searching is completed, we obtain the maximum
distance for that window size. If this distance surpasses a preset maximum distance ¢, we consider
the adversarial patches to have been detected and localized effectively and we can obtain the mask
M of adversarial patches. Otherwise, we reduce the window size and proceed to the next round of
searching. Since our distance measurements are patch-wise, we can design a uniform threshold e
without dynamic variation for each attack methods.

In essential/non-essential area detection, we refer to the pixels of neighbor regions within the image.
The implementation details of the algorithms are presented in Algorithm [2]

A.5 ATTACK CONFIGURATIONS

We show the attack parameters in Tab. [8] We employ three attack scenarios: ViTRPP, Patch-
Fool, and Attention-Fool. In each attack scenario, we set the perturbation area size with
attack patch size = 1x,2x,3x,4x. T-iters represents the total number of iterations. Ir rep-
resents the learning rate for the generation of adversarial patches. #steps and gamma denotes that
for every #steps epoch, the learning rate is multiplied by gamma (which is typically less than 1) to

14
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Algorithm 1 Attack Detection with Sobel Operator

Input: input x; win_size: the size of the sliding window; SOB: sobel operator; N: total number of patches; ¢:

preset distance threshold;

Output:
attack_flag > 0 No attack; 1 Adversarial examples;
Dadvs WiNlady, M > padv: index of adversarial patches; winqq.: attack patch size; M: mask of adv.
patches.
1: initial:
2: Scur < 0; > current window’s average score
3: Snei + 03 > neighboring patches’ average score
4: d+ 0; > distance of the current window and neighboring patches
S: dmaz < 0; > maximum distance
6: WiNgdy < 0; > the attack patch size
7: sobel detection: S(z) < SOB(x);
8: while win_size > 0 do
9: initial dyae < 0;
10:  fori <« 0;i < (VN —win_size + 1)%;i + + do
11: Scuri wmzsfzé ; > current window patches’ sobel
12: Sneii %Q > neighboring patches’ score
13: d <+ Scuri — Sneiis
14: if d > dpas then
15: Padv < 1, Admaz < d, WiNgdy < Win_size;
16: else
17: slide to the next window;
18: end if
19: end for > If the threshold is exceeded, an attack is detected
20: if dy0x > € then return attack_flag = 1 (mask M, paaw, wingd.)
21: else
22: win_size < win_size — 1;
23: end if
24: end while

25:

return attack_flag = 0;

Algorithm 2 ENED Algorithm

Input: Inputx, Adv mask M, Neighbor mask M,,, f : the ViT model, +y: preset similarity threshold;
Output attack in essential area (EA) or attack in non-essential area (NEA)

°

(N
Rl A

PRDNBERN

: Get k Neighbor mask: M,,,, Mm, oM,

Get k reconstructed image: xi =ModzxOM,,
Set Sim_sum <+ 0;
fori < 0;i<k — 1;7+ + do
for j <— v+ 1;i<k;7+ + do
sim_sum = sim_sum + cos_sim(f(x;), f(x;))
end for
end for
sim = 6)
if sim>~ then
Return NEA

: else

Return EA

. end if

reduce it progressively. In Patch-Fool, « is the coefficient for the attention loss, and #l represents
the selection of the attention layer from which to optimize the adversarial patch. In Attention-Fool,
« is the step size of PGD.
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Table 8: Attack Parameters

Configurations
ViTRPP cl; T-iters=500;1r=0.1;#steps=10;gamma=0.9

cl; T-iters=250;a=0.002;#1=4;1r=0.22;

Patch-Fool #steps=10; gamma=0.95;

cl; T-iters=250;1r=0.25;=8/255;

Attention-Fool #steps=10; gamma=0.95;

A.6 DEFENSE CONFIGURATIONS

In this section, we will present the detailed parameters of various baseline defense methods and our
approach NeighborViT (Tab. O Tab. [I0). In RTA, « is the restriction parameter. In JeDi, € is the

Table 9: Baseline Defense Parameters

Configurations

RTA a=1.15
JeDi e=18.4;r=5
T
ViTs:1.43;
DeiTs:1.42;

BiFormers:1.57;
ARMRO  TransNeXts:1.62;
cl=1:Nd=1;
cl=2:Nd=5;
cl=3:2%(Nd=5);
cl=4:4%(Nd=5);

entropy detection limit and 7 neighbor sampling radius. In ARMRO, 7 is the threshold to identify
whether adversarial, and Nd is a preset coefficient stating the number of tokens needed to detect.
In NeighborViT, ¢ and +y represent the attack detector (AD) and the essential/non-essential area
detector (ENED) detection threshold, respectively. « represents the attention suppression coefficient
parameters.

Table 10: NeighborViT Defense Parameters

Model cl=1 cl=2 cl=3 cl=4
> e > e
ViTRPP:2.15; ViTRPP:2.15; ViTRPP:2.15; ViTRPP:2.15;

ViTs Palch-f:2.25; Patch—F:2.25; Palch-F:Z.ZS; Palch-f:2.25;

h Attention-F:2.10;  Attention-F:2.10;  Attention-F:2.10;  Attention-F:2.10;
~7=1.93; 7=1.89; ~=1.82; v=1.75;
a=1.05; a=1.05; a=1.05; a=1.05;

& £: e e
ViTRPP:2.15; ViTRPP:2.15; ViTRPP:2.15; ViTRPP:2.15;

DeiTs Palch-F:2.25; Pa(ch-F:Z.ZS; Palch-F:Z.ZS; Palch-f:2.25;
Attention-F:2.10;  Attention-F:2.10;  Attention-F:2.10;  Attention-F:2.10;
7=2.55; v=2.45; ~4=2.35; ¥=2.15;
a=1.15; a=1.15; a=1.15; a=1.15;

e € e e
ViTRPP:2.15; ViTRPP:2.15; ViTRPP:2.15; ViTRPP:2.15;
BiFormers Palch-F:Z.ZS; Pmch-F:Z.ZS; Patch-F:2.25: Palch-F:Z.ZS;
Attention-F:2.10;  Attention-F:2.10;  Attention-F:2.10;  Attention-F:2.10;
7=2.33; ¥=2.25; 7=2.18; ¥=1.97;
a=1.27; a=1.27; a=1.27; a=1.27;
> € € €
ViTRPP:2.15; ViTRPP:2.15; ViTRPP:2.15; ViTRPP:2.15;
TransNeX Patch-F:2.25; Patch-F:2.25; Patch-F:2.25; Patch-F:2.25;

TansNeXIS  Attention-F:2.10;  Attention-F:2.10;  Attention-F:2.10;  Attention-F:2.10;
~4=2.58; y=2.24; 4=2.13; v=2.07;
£8=5.21; a=1.32; a=1.32; a=1.32;
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