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ABSTRACT

Vision Transformers (ViTs) have become the prominent architecture for various
computer vision tasks due to their superior ability to capture long-range depen-
dencies through the self-attention mechanism. However, recent research indi-
cates that ViTs are highly susceptible to carefully crafted adversarial patch at-
tacks, presenting a significant challenge for practical deployment, particularly
in security-critical applications. Existing approaches towards robust ViT frame-
works often sacrifice clean accuracy and/or achieve suboptimal robustness, likely
due to their uniform handling of diverse input samples. In this paper, we present
NeighborViT, a novel adaptive defense framework specifically designed to counter
adversarial patch attacks for ViTs. NeighborViT stands out by detecting and
categorizing different types of attacks on inputs and applying adaptive, tailored
defense mechanisms for each type of attack. To realize effective attack de-
tection, categorization, and mitigation, NeighborViT explores the information
in neighbor patches of the target patch and strategically employs them for de-
fense. Our experimental results on the ImageNet dataset using various state-
of-the-art ViT models demonstrate that NeighborViT significantly enhances ro-
bust accuracy without compromising clean accuracy. Our code is available at
https://anonymous.4open.science/r/NeighborViT-8255.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have become the leading architecture in var-
ious computer vision tasks, such as image classification (Zhu et al., 2023), segmentation (Ye et al.,
2019), and generation (Chen et al.). However, they recently show heightened vulnerability to adver-
sarial patch attacks (Brown et al., 2017; Gu et al., 2022; Fu et al., 2022; Lovisotto et al., 2022; Yuan
et al., 2024). These attacks, which introduce small but strategically placed patches to an image,
exploit ViTs’ attention mechanism, leading to significant model misclassifications. For example,
only 0.5% modifications to the input image can degrade the model’s performance to 0% (Lovisotto
et al., 2022). This vulnerability underscores a fundamental weakness in the current design of ViTs
and raises concerns regarding their reliability in real-world applications.

Various works have been proposed to enhance the robustness of ViTs. One line of work treats the
model as a black box and analyzes the model inputs/outputs to mitigate adversarial patch attacks (Xi-
ang et al., 2022; Tarchoun et al., 2023; Yang et al., 2024). In contrast, another line of work leverages
the unique self-attention mechanism in ViTs to limit the impact of abnormal attention of adversarial
patches (Yu et al., 2023; Liu et al., 2023; Mu & Wagner, 2021). Despite their effectiveness, many
of the above studies (Yu et al., 2023; Liu et al., 2023; Kim et al., 2023) process clean and malicious
inputs indistinguishably, which inevitably harms the model’s clean accuracy. Although some stud-
ies (Xiang et al., 2022; Tarchoun et al., 2023; Yang et al., 2024) can discern adversarial inputs, they
rely on computationally expensive detectors to manage the challenges posed by unknown attack
sizes and positions, and they treat all adversarial inputs equally without considering the impact of
different attacked locations, resulting in limited improvements in robustness.

In this paper, we highlight the importance of distinguishing different types of inputs and intro-
duce NeighborViT, an input-adaptive defense framework for ViTs against adversarial patch attacks.
NeighborViT not only detects adversarial inputs from clean ones but also categorizes different at-
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tack types, subsequently adopting tailored defense strategies. The key insight behind NeighborViT
is leveraging information from neighboring patches of target patches for effective attack detection,
categorization, and mitigation. Specifically, adversarial patches typically exhibit high pixel dis-
continuity compared to clean patches. By analyzing pixel-level discontinuity differences between
target and neighboring patches, we develop a lightweight and accurate algorithm to detect and locate
attacks. Such detection enables us to maintain the target models’ clean accuracy. To improve robust-
ness, we also distinguish between catastrophic and non-catastrophic attacks based on whether they
occur in essential or non-essential areas for classification. The categorization is achieved by replac-
ing the adversarial patch with its neighbors and observing model output variations. Non-catastrophic
attacks show more consistent outputs since they do not harm the essential features for classification.

After categorization, we develop specialized defenses for different types of attacks. For non-
catastrophic attacks, we replace adversarial patches with neighboring patches, which entirely remove
adversarial information and preserve the essential feature for classification. Such replacement can-
not be applied to catastrophic attacks, as this would result in the loss of essential features. Hence, we
design a fine-grained attention suppression mechanism instead to suppress the adversarial attention.

Our contributions are summarized as follows:

• We develop NeighborViT, a novel robust ViT framework that protects ViT against adver-
sarial patch attacks. We utilize neighbor information to categorize model inputs and design
tailored defenses for each category. This adaptive defense strategy enables us to achieve
high robustness while maintaining clean accuracy.
• We explore the pixel-level discontinuity differences between adversarial patches and the

neighboring patches and present a model-agnostic attack detector. Our detector can accu-
rately and efficiently detect and localize adversarial patches of unknown sizes.
• We show the necessity to differentiate between catastrophic and non-catastrophic attacks

and propose an essential/non-essential area detector for this. The detection is enabled by
exploiting model prediction variations when adversarial patches are replaced with different
neighboring patches.
• We propose a fine-grained attention suppression algorithm for catastrophic attacks and an

adversarial patch reconstruction method for non-catastrophic attacks. These tailored de-
fenses enable optimized robust accuracies.

To evaluate our method, we conduct extensive experiments on 12 representative ViT models across
various state-of-the-art attack approaches. Our results show that we achieve the best robust perfor-
mance while maintaining clean accuracy compared to other methods.

2 BACKGROUND & RELATED WORKS

Vision Transformer: The Vision Transformer (ViT) (Dosovitskiy et al., 2021), inspired by NLP
models like BERT (Devlin et al., 2019), introduces self-attention to image classification, offering
an alternative to traditional CNNs. ViTs excel in tasks requiring broader context understanding, as
they avoid CNNs’ reliance on local receptive fields. Notable ViT models include ViT (Dosovitskiy
et al., 2021), DeiT (Touvron et al., 2021), BiFormer (BiF) (Zhu et al., 2023), and TransNeXt
(TNX) (Shi, 2024), with TNX and BiF outperforming CNNs by over 15% in classification tasks.
A typical workflow of ViTs is as follows. ViTs split input images into patches, transforming them
into embeddings. These embeddings, along with positional encodings, are fed into a transformer
encoder composed of multiple transformer blocks. In each block, embeddings first pass through the
Multi-Head Self Attention (MHSA) layer, where they are converted into queries (Q), keys (K), and
values (V ). Subsequently, the attention output for each head is calculated as

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where dk is the vector dimension. After that, the outputs from all attention heads are concate-
nated and linearly transformed, producing the output of the MHSA layer. The output is then passed
through residual connections and layer normalization before being fed into the MLP layer to in-
corporate nonlinear information. Through layer-by-layer connections, the final classification is
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achieved through an MLP head using the representation of a unique CLS token. This structured
approach enables ViTs to effectively leverage self-attention for superior classification performance.

Adversarial patch attacks: Brown et al. (Brown et al., 2017) first introduce adversarial patch
attacks, which limit the attack region to a patch area. In Appendix A.1, we show some examples
of patch attacks. Initially targeting CNNs, adversarial patch attacks have now expanded to Vision
Transformers (ViTs). Recent studies (Gu et al., 2022; Fu et al., 2022) reveal ViTs’ vulnerability to
patch attacks, exploiting ViTs’ need to partition images into patches for attention computation. One
line of ViT’s patch attack focuses on designing loss functions that target only the model’s output,
utilizing gradient to optimize the adversarial patch aligned with the input patches of ViTs, such as
Token-attack (Joshi et al., 2021) and ViTRPP (Gu et al., 2022). Based on the global reasoning
of attention being the source of the vulnerability of ViT to patch attacks, another line of work not
only utilizes the model’s output but also incorporates attention-aware loss. Fu et al. propose (Fu
et al., 2022) Patch-Fool with integrated attention-aware patch selection technique and attention-
aware loss design. Subsequently, Lovisotto et al. (Lovisotto et al., 2022) observe that using post-
softmax attention scores as a loss in Patch-Fool leads to the issue of smaller gradients, thus limiting
the attack’s potential. Therefore, they proposed Attention-fool, which designs the loss using pre-
softmax attention scores to avoid this problem.

Defense methods for ViTs: Defense strategies against ViT’s patch attacks can be divided into
model-agnostic and ViT-specific methods. Model-agnostic defenses treat the model as a black box
and are generally applicable to both CNNs and ViTs; for instance, PatchCleanser (Xiang et al.,
2022) uses two rounds of moving window masking and output analyzing to get the correct answer;
Jedi (Tarchoun et al., 2023) identifies adversarial patches using entropy analysis and an autoencoder,
exploit the fact that adversarial patches have higher entropy than natural images. To get the correct
classification result, Jedi applies a pixel reconstruction method on attacked images. ViT-specific
defenses leverage attention mechanisms; for example, Robust Self-Attention Layer (Mu & Wagner,
2021) detects and masks outlier tokens based on their value vector; ARMRO (Liu et al., 2023)
detects and masks adversarial patches by identifying the layers where the adversarial token’s score
becomes most prominent, based on its varying behavior across different layers; RTA (Yu et al.,
2023) addresses the issue of adversarial patches attracting excessive attention in ViTs by applying a
restriction operation on the attention matrix.

However, most existing methods do not differentiate between clean and adversarial inputs, limiting
their robustness and clean accuracy. Even when adversarial patch attacks are identified in some
methods, they do not classify the types of attacks (e.g., catastrophic and non-catastrophic attacks),
limiting their robustness. In contrast, our approach adaptively processes different kinds of input, re-
sulting in an improved model’s clean accuracy and robustness. The necessity of adaptive processing
is elaborated further in the following section.

3 DESIGN OF NEIGHBORVIT

In Fig. 1 Top, we introduce our adaptive defense framework, named NeighborViT, which distin-
guishes different types of adversarial patch attacks and adopts corresponding defense methods. The
framework comprises an attack detector, an essential/non-essential area detector, image reconstruc-
tion for non-catastrophic attacks, and attention suppression for catastrophic attacks. The catastrophic
attacks represent the attacks occurred in the essential areas and non-catastrophic attacks represent
the attacks located in the non-essential areas. For any input sample, we first conduct attack detec-
tion through the lightweight and effective attack detector (detection). If the input is clean, it will
be directly inputted into the ViT model for classification. Conversely, if the input contains adver-
sarial patches, we use the essential/non-essential area detector to identify whether the attack occurs
in the essential area or non-essential area (categorization). After that, we design different defense
methods to mitigate the impact of adversarial patches (mitigation). If the attack is located in the
essential area, we use fine-grained attention suppression to defend catastrophic attacks. If it occurs
in the non-essential area, we remove the adversarial patches and reconstruct the image. Notably, all
the above process, i.e., detection, categorization, and mitigation, are enhanced with the information
explored in the neighbors of target patches. With this framework, we can achieve superior robust
performance against adversarial patch attacks while maintaining clean accuracy.
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Figure 1: Overview of NeighborViT. Top: The framework of NeighborViT. Each input sample
is categorized into clean samples, catastrophic attacks, and non-catastrophic attacks by the attack
detector and essential/non-essential area detector. We do not modify clean inputs and adopt different
defense methods (e.g., reconstruction or attention suppression mechanisms TAS) for different attack
types. Middle: The details of the attack detector, which divides the input samples into clean samples
and adversarial patch attacks. Bottom: The details of the essential/non-essential area detector, which
distinguishes whether the attack occurs in essential areas (i.e., catastrophic attacks) or non-essential
areas (i.e., non-catastrophic attacks). We add red boxes on the images for better visualization.

3.1 ATTACK DETECTOR

Why do we need to design a novel attack detector? The answer lies in two aspects. On the one
hand, in existing research of enhancing the robustness of ViTs, some methods (Yu et al., 2023; Liu
et al., 2023; Kim et al., 2023) overlook whether an attack has occurred and treat all the input sam-
ples equally, which often compromises the clean accuracy of the target model. On the other hand,
although other approaches (Xiang et al., 2022; Yang et al., 2023; Tarchoun et al., 2023) consider
to detect adversarial patches, they either need to train an auxiliary model or query the target model
multiple times to deal with the challenges posed by unknown adversarial patch size and location,
leading to significant costs. In this paper, we present a lightweight attack detector that can accurately
detect adversarial patches of unknown locations and sizes.

Our motivation stems from the low pixel continuity inside adversarial patches. The generation pro-
cess of the adversarial patches neglects the relationships between pixels and results in a noticeable
pixel gradient. This gradient can be detected through traditional image processing tools (Sobel et al.,
1968; Prewitt et al., 1970; Canny, 1986). In particular, the sobel operator (Sobel et al., 1968), de-
signed for edge detection, utilizes horizontal and vertical kernels to detect pixel variations in both
directions and effectively highlights pixels with high gradients. Meanwhile, the pixels inside adver-
sarial patches also have high gradients that can be detected by the operator. We present an example
to show the effect of the sobel operator on adversarial patches in Fig. 1 Middle (more examples can
be seen in Appendix A.2), where the white areas represent higher sobel scores. It indicates that the
adversarial patches show the most salient gradient, while the pixel gradients within clean patches
are comparatively smaller. This contrast can be used for adversarial patch detection.

To detect and locate adversarial patches, we first use the above sobel operator to get the sobel score
of each pixel and calculate average sobel score of pixels in each patch, denoted as AvgSobel. The
patch with a high average sobel score is likely to be an adversarial patch. However, some clean
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patches also exhibit relatively high AvgSobel values, relying exclusively on the AvgSobel score for
detection and localization may lead to wrong results. To address this, we introduce a new distance
score d that not only considers the AvgSobel of the current patch but also incorporates the AvgSobel
of patches inside neighbor patches, denoted as AvgSobelnk

, where the nk represents the neighbor
patches. The distances d of all patches are combined. The computation of d is illustrated in Eq. 2
and K represents the number of the sampled neighbor patches.

d = AvgSobel −
∑K

k=1AvgSobelnk

K
(2)

dmax = max
di∈D
{d1, d2, · · · di, · · · , dz} (3)

Since the location of the adversarial patches is unknown, we propose a sliding window method
to scan for suspicious patches across the image. First, we assume that the sliding window size and
attack patch size are equal to the model’s input patch size. For the ith slide, we sample the neighbors
of current window and calculate the above distance di. We group all d into vector D. Second, when
finishing the window sliding process, we get the maximum distance dmax through Eq. 3, where z
represents the total number of slides. At last, if the maximum distance dmax exceeds the threshold
ε, we deem that we have detected and located the adversarial patches and can obtain the mask M of
the adversarial patches; otherwise, the input sample is clean.

However, in practice, the size of the adversarial patches is often inconsistent with the input patch size
of the model, and their sizes are unknown. To accurately locate the adversarial patches, we introduce
a dynamic window size strategy during the window sliding process(Fig. 1 Middle). We start with a
large window size and conduct one round of sliding for each window size. In this case, we calculate
the mean of all pixel gradients within the variable window. If no adversarial patch is detected in
the current sliding round, we gradually reduce the window size and continue to the next slide. If
no adversarial patch is detected after the last round of sliding (i.e., window size equals to the input
patch size of the model), we deem that the input sample is clean. The detailed detection algorithm
is provided in Appendix A.4. Notably, our attack detector does not require to train auxiliary models
or query the target model, thereby incurring no additional cost.

3.2 ESSENTIAL/NON-ESSENTIAL AREA DETECTOR

Table 1: Distinguishing different types of ad-
versarial patch attacks is important (robust ac-
curacy (%) for attacks located in essential and
non-essential areas is reported. Left: attacks
located in non-essential areas; Right: attacks
located in essential areas).

Model Defense Attack Methods

ViTRPP Patch-F Attention-F

DeiT-S RTA 52.8/64.2 51.3/61.6 50.4/59.8
Removal 67.3/53.3 63.8/50.7 61.0/51.5

ViT-S RTA 43.4/56.2 41.8/54.7 40.5/54.2
Removal 61.8/45.3 62.6/42.5 60.9/41.3

BiF-S RTA 56.4/64.3 61.5/65.2 56.4/65.1
Removal 72.6/53.1 66.8/59.8 64.3/56.6

TNX-S RTA 69.3/73.1 69.0/73.9 67.4/69.7
Removal 74.6/67.2 73.4/68.8 70.5/65.2

Current defense studies (Yu et al., 2023; Tarchoun
et al., 2023; Liu et al., 2023) often do not distin-
guish different types of adversarial patch attacks
and treat them equally. However, we need to utilize
different defense measures to achieve better robust
performance. Specifically, if the attack occurs in
the non-essential areas (non-catastrophic attacks),
which does not contain essential features for model
classification, we can completely remove these at-
tacked information to achieve strong robust perfor-
mance of the model. To demonstrate this, we com-
pare the effect of the two methods (i.e. remove ad-
versarial patches and RTA (Yu et al., 2023)) when
attacks are located in the non-essential areas, where
RTA uses global attention for attention suppres-
sion, which is a typical method that still retains the
attack information. Specifically, we select four rep-
resentative ViT models and 1,500 non-catastrophic attacks generated by Patch-Fool (Fu et al., 2022).
We set the attack patch size to twice the model’s input patch size. The results in Table 1 Left show
that removing adversarial patches achieves better robustness, suggesting that removal is a superior
defense for non-catastrophic attacks.

Is it appropriate to completely remove adversarial patches if they are located in essential areas?
To answer this question, we conduct an experiment to compare the effect of the two methods i.e.,
remove adversarial patches and RTA, when attacks are located in the essential areas. Specifically,
we select 1,500 catastrophic attacks generated by Patch-Fool, and the other experimental settings
are the same as those in the non-catastrophic attacks experiment. The results in Table 1 right are
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Figure 2: The effect of attention suppression
and removal for attacks occurred in essen-
tial areas on the attention mechanism. X1

denotes the adversarial token and X2, X3 are
clean tokens. Left: suppress the attention of
X1; Right: remove token X1.
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different from those of non-catastrophic attacks
and show that attention suppression achieves better
robustness. To explore the reason, we visualize the
attention difference between these two methods in
Fig. 2. Current attack methods (Fu et al., 2022; Lo-
visotto et al., 2022) often amplify the key vectors to
achieve better attack performance, and red squares
in Fig. 2 Left represent the attacked token. The
suppression method only suppresses the key vec-
tors of adversarial patches while maintaining q and
v vectors, leading to less impact on the attention
calculation process. In contrast, as shown in Fig. 2
Right, removing the adversarial token also affects
the query and value vectors and has a greater im-
pact on attention calculation (the red squares repre-
sent the affected vectors). This phenomenon is also
verified in Appendix A.3, which shows the impact
of these two methods on the attention map. The
above experimental results and analysis suggest that adversarial patches have useful information for
classification and cannot be completely removed for catastrophic attacks.

Based on the above experimental results and analysis, we need to distinguish essential and non-
essential areas. To effectively distinguish them, we propose a lightweight essential/non-essential
area detector (ENED) (Fig. 1 Bottom). The losses of non-essential features do not impact the
model’s predictions, whereas removing essential features causes the predictions unreliable. This
difference allow us to determine whether the attacked area is essential or non-essential by observing
the model’s output . Specifically, after the attack detector, we obtain the mask M of adversarial
patches, with which we can use k neighbors of the adversarial patches to reconstruct k images.
After that, we input the reconstructed images into the model to obtain the corresponding output
probabilities. At last, we compute the average similarity between each pair of outputs (Eq. 4),

similarityout =

∑k
i,jsim(exp(outi), exp(outj))(

k
2

) i, j = 1 · · ·
(
k

2

)
, i < j (4)

where outi, outj refers to the output of the model for two different reconstructed images. When
the average similarity similarityout is below the predefined threshold γ, we deem that the attacked
area is an essential area; otherwise, the attack occurs in the non-essential area. The ENED detection
algorithm is shown in Appendix A.4.

3.3 ADAPTIVE DEFENSE FOR DIFFERENT ATTACK CATEGORIES

After we categorize adversarial patch attacks, we introduce corresponding defense methods for dif-
ferent types of attacks. We introduce these two different strategies below.

Defense for non-catastrophic attacks (Reconstruction). As mentioned above, removing adver-
sarial patches is a superior defense for attacks occurred in non-essential areas. Specifically, utilizing
the mask M (locating the adversarial patches), we can calculate the mask of neighbor patches (lo-
cating neighbor patches). After that, we randomly select a neighbor patch and use it to fill the
masked adversarial patches, through which we get a reconstructed image. Eventually, we feed the
reconstructed image into the original ViT architecture to obtain the final prediction.

Defense for catastrophic attacks (TAS). As mentioned in the Section 3.2, attention suppression
method, like RTA (Yu et al., 2023), is an effective approach for attacks occurred in essential areas.
Specifically, RTA restricts the attention of each token with unified global attention (i.e., mean of all
token attention weights) to prevent the model from being misled by adversarial patches. However,
calculating the mean of all token attentions is inevitably affected by the adversarial patches, making
it difficult to effectively suppress the attention weights of adversarial tokens. Moreover, since some
research (Vaswani, 2017; Han et al., 2022) has demonstrated that different attention heads stand
for different representation subspaces, using a unified global attention for all heads is suboptimal for
attention suppression. To solve the first problem, we remove the adversarial tokens when calculating
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Table 2: Comparison of different defense methods. We report the model’s average clean accuracy
and robust accuracy (%) across various sizes of attack patches. The results demonstrate that our
method has achieved exceptional robust performance under a range of attacks. The best results for
each attack are marked in bold, and the second best are underlined.

#Params. <20M <50M <100M >100M

Model DeiT-T BiF-T DeiT-S ViT-S BiF-S TNX-T TNX-S DeiT-B ViT-B BiF-B TNX-B ViT-L

No attack

No defense 71.9 81.6 78.8 74.2 83.5 83.8 84.5 81.1 80.3 84.0 84.7 84.9
RTA 65.8 69.4 75.4 72.1 69.8 79.4 81.6 79.3 76.4 74.3 81.3 79.5
Jedi 71.8 80.6 78.4 73.2 82.4 82.6 83.8 80.3 79.2 83.6 84.1 84.2

ARMRO 64.0 71.4 75.3 65.4 72.5 79.5 80.5 78.9 74.5 83.1 81.3 80.5
NeighborViT 71.9 81.6 78.8 74.1 83.5 83.6 84.4 81.1 80.2 84.0 84.6 84.8

ViTRPP

No defense 0.1 5.3 0.0 0.0 6.3 10.2 10.4 0.4 0.6 6.4 11.1 1.3
RTA 52.8 64.2 52.9 43.1 56.5 72.4 71.4 55.8 56.3 59.6 72.4 66.3
Jedi 69.1 77.8 75.6 70.1 81.5 68.3 69.0 77.2 74.7 79.7 73.1 83.1

(Gu et al., 2022) ARMRO 66.8 68.1 74.7 64.5 69.0 73.5 75.9 72.8 74.0 70.1 76.8 78.8
NeighborViT 70.1 79.6 77.3 71.1 82.4 78.2 82.6 79.0 75.9 81.1 81.7 83.8

Patch-F

No defense 0.5 7.1 1.4 0.0 9.7 12.4 15.8 6.0 3.1 9.4 13.6 4.9
RTA 51.1 63.2 53.8 41.3 61.9 69.9 68.1 55.7 54.3 65.3 70.9 64.6
Jedi 66.2 64.3 66.4 70.8 65.8 67.0 76.2 64.8 71.1 71.2 73.0 76.9

(Fu et al., 2022) ARMRO 64.7 67.2 72.9 67.3 69.7 71.3 74.9 68.5 70.5 72.8 78.3 77.1
NeighborViT 67.9 73.3 74.6 72.2 78.4 79.1 79.8 75.1 73.1 79.2 81.3 80.9

Attention-F

No defense 0.0 6.8 0.3 0.0 8.9 11.7 13.6 4.3 2.2 9.1 12.4 3.7
RTA 49.1 61.8 50.6 40.6 59.6 67.8 67.2 52.3 51.4 63.2 68.5 61.2
Jedi 65.3 65.6 67.0 70.1 61.6 72.8 75.6 69.1 75.8 69.2 74.1 77.8

(Lovisotto et al., 2022) ARMRO 66.4 69.1 74.2 68.6 66.2 72.5 74.5 71.4 73.6 71.0 79.8 78.4
NeighborViT 70.3 77.6 77.4 71.8 79.5 80.8 81.3 79.1 76.6 80.9 81.2 81.7

the mean values of attention weights to suppress the attention weights of adversarial tokens more
effectively. To deal with the second problem, we compute the mean values of attention weights
separately for each head. The resulting attention suppression method is illustrated by Eq. 5,

TAS(A(m)
i,j,h) =

A(m)
i,j,h

A(m)
j,h

min(A(m)
j,h , αA(m)

maskh
)

A(m)
maskh

=
1

N2 − win2
adv

∑
i,jA(m)

i,j,h, (i, j) ̸= padv
(5)

where we denote A(m) as the attention weight of the mth block of the ViTs. The i, j represent the
index of attention values and h is the index of different heads. The A(m)

j,h = 1
N

∑
iA(m)

i,j,h represents
the average attention contribution of the jth token and α represents the suppression coefficient. We

denote the average attention weight of clean tokens as A(m)
maskh

, where N denotes the total number
of patches. The winadv is the attack patch size and padv is the index of adversarial patches detected
by the attack detector (can be found in Appendix A.4).

4 EXPERIMENTAL EVALUATION

4.1 SETUP

Models and Datasets. In our experiments, the target models we select are from the ViT family
(ViT-S, ViT-B, and ViT-L) (Dosovitskiy et al., 2021), the DeiT family (DeiT-T, DeiT-S, and DeiT-
B) (Touvron et al., 2021), the BiFormer family (BiFormer-T, BiFormer-S, and BiFormer-B) (Zhu
et al., 2023), and the most recent TransNeXt family (TransNeXt-T, TransNeXt-S, and TransNeXt-
B) (Shi, 2024). We utilize the official pre-trained versions of all selected models, employing an
input patch size of 16×16 pixels. To generate adversarial patch attacks, we utilize the validation set
of ImageNet (Deng et al., 2009) as the clean image dataset and then apply various attack strategies
under different ViTs on these clean images. We set a wide range for the attack patch size, ranging
from 0.5% to 8% of the total pixel area of the image. Specifically, we define attack patch size =
1×, 2×, 3×, 4×, representing that the side length of the attack patches is 1, 2, 3, and 4 times the
input patch length (e.g., 2× represents an attack patch size of 32× 32 pixels).

Attack Strategies. To demonstrate the effectiveness of our method, we employ multiple state-of-
the-art attack methods in our experiment, including 1) ViTRPP (Gu et al., 2022), 2) Patch-Fool (Fu
et al., 2022), and 3) Attention-Fool (Lovisotto et al., 2022). As all these methods are white-box
attacks, they represent the most powerful ViT attack strategies currently available. The parameter
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Figure 3: Average robust accuracy (%) of different model families under various sizes
of adversarial patches. Each value is averaged across all models within each ViT family.
attack patch size = 1×, 2×, 3×, 4× denotes that the side length of the attack patch is 1, 2, 3,
and 4 times the input patch length of the target model.

settings for all these attack strategies are identical to those in their original papers. The detailed
attack settings are presented in Appendix A.5.

Baseline Defense Methods. In our experiments, we compare our method with several representative
robust ViT frameworks, including RTA (Yu et al., 2023), ARMRO (Liu et al., 2023), and Jedi (Tar-
choun et al., 2023), of which ARMRO and Jedi are the current state-of-the-art defense approaches.
The detailed configurations of these baseline defense methods are presented in Appendix A.6.

Evaluation Metrics. To evaluate our proposed framework, we employ two metrics to assess its per-
formance: 1) Clean Accuracy: This metric measures the percentage of correctly classified images
within the clean image dataset that has not been modified by any attacker. 2) Robust Accuracy: This
metric assesses the model’s resilience to adversarial attacks. It measures the percentage of correctly
classified images under adversarial patch attacks.

4.2 COMPARISON OF DIFFERENT DEFENSE METHODS

In this section, we comprehensively compare our defense method with RTA, Jedi, and ARMRO. We
first randomly select 5,000 clean images from the validation set of Imagenet to evaluate the defended
ViTs’ clean accuracy. As shown in Table 2, our method achieves the highest clean accuracy, with an
average reduction of less than 0.1% compared to the original model. This marks a significant im-
provement over Jedi, which has the smallest reduction among the previous methods, with a decrease
of 0.8%. The superior performance of our framework is attributed to its differentiated handling of
clean samples and adversarial patch attacks, and the high effectiveness of the attack detector.

Next, we assess the robust accuracy of the defended ViTs on adversarial images generated using
various patch attack methods under multiple attack patch sizes. Table 2 presents different models’
average robust accuracy across various attack patch sizes for each attack strategy. Meanwhile, Fig. 3
illustrates the average robust accuracy of different model families under various sizes of adversarial
patches. As shown in Fig. 2 and Tab. 3, our method consistently outperforms others across all ViT
models, attack methods, and attack patch size values, demonstrating its effectiveness in countering
adversarial patch attacks. This success can be attributed to our adaptive defensive strategies against
different types of adversarial attacks (catastrophic attacks and non-catastrophic attacks). Notably,
our approach shows more significant improvement in defense against Patch-Fool and Attention-Fool
compared to ViTRPP. This is because the adversarial patches generated by the former two strategies
are more evenly distributed across essential and non-essential areas. When a specific type of attack
dominates, the performance of our framework converges to that of a single defense method (e.g.,
when all attacks are catastrophic, the performance of our framework is comparable to that of RTA).
In such cases, the improvement provided by our adaptive defense mechanism becomes limited. In
real-world scenarios, since it is uncertain whether the input patch attack will be catastrophic or
non-catastrophic, only our adaptive method can consistently achieve effective defense.

4.3 EVALUATION OF THE KEY COMPONENTS OF NEIGHBORVIT

In this section, we evaluate the effectiveness of the key components (attack detector, essential/non-
essential area detector, and token attention suppression) in our defense framework.
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Model Strategy ViTRPP Patch-F Attention-F

2× 4× 2× 4× 2× 4×

DeiT-S
TAS Only 55.6 52.4 54.7 52.9 56.7 53.2
NR Only 69.4 68.1 66.7 64.2 67.4 64.3

Both 77.7 76.5 75.7 72.1 76.5 71.8

ViT-S
TAS Only 48.6 45.3 46.7 45.8 51.3 49.7
NR Only 64.2 62.7 65.6 62.9 67.4 65.7

Both 71.2 70.0 73.3 71.6 72.8 70.1

BiF-S
TAS Only 58.7 56.9 64.2 62.3 66.9 63.7
NR Only 74.3 75.2 67.0 68.4 75.2 76.3

Both 81.7 82.4 78.3 76.6 78.9 77.1

TNX-S
TAS Only 72.4 72.9 71.8 69.7 72.6 69.4
NR Only 77.4 78.8 74.2 74.6 76.2 75.4

Both 82.7 82.6 79.2 77.8 81.9 79.6

Table 3: Ablation study of the essential/non-
essential area detector. The best results are
marked in bold.

Model Strategy ViTRPP Patch-F Attention-F

2× 4× 2× 4× 2× 4×

DeiT-S
No defense 49.4 46.2 50.3 47.7 51.8 46.2

RTA 69.6 68.7 67.2 65.3 69.4 66.7
TAS 77.7 76.5 75.7 72.1 76.5 71.8

ViT-S
No defense 53.7 47.4 52.5 50.2 54.8 52.7

RTA 66.7 65.3 66.8 64.7 69.1 67.7
TAS 71.2 70.0 73.3 71.6 72.8 70.1

BiF-S
No defense 62.1 59.7 57.6 55.8 63.7 62.4

RTA 76.2 74.9 68.2 67.1 77.1 75.0
TAS 81.7 82.4 78.3 76.6 78.9 77.1

TNX-S
No defense 65.3 62.7 63.1 61.8 67.4 65.3

RTA 78.5 78.9 75.3 74.9 78.2 77.3
TAS 82.7 82.6 79.2 77.8 81.9 79.6

Table 4: Comparison of different attention sup-
pression methods on catastrophic attacks. The
best results are marked in bold.

Figure 4: Comparison of different attack de-
tection methods. Our attack detector has the
highest detection accuracy with little time cost.
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Effectiveness of the Attack Detector. The at-
tack detection strategies used in current ViTs de-
fense methods either need to train an auxiliary
model (Tarchoun et al., 2023) or query the target
model multiple times (Xiang et al., 2022; Yang
et al., 2023), both of which are computationally ex-
pensive. In contrast, our attack detector is more
accurate and lightweight. To demonstrate this,
we compare the detection methods proposed in
PatchCleanser (Xiang et al., 2022), IBCD (Yang
et al., 2023), and Jedi (Tarchoun et al., 2023) with
ours, evaluating both detection accuracy and aver-
age time cost for each sample. For the test dataset,
we select a mixture of 500 clean and 500 adver-
sarial patch attacks generated with Attention-Fool
toward DeiT-X. As shown in Fig. 4, our attack detector achieves the highest detection accuracy
across various attack patch sizes (with improvements of 10% to 12%) while keeping the time cost
among the lowest. Additionally, as the attack patch size decreases, the time cost increases due to the
search process starting from larger patches and progressively narrowing to smaller ones.

Necessity and Efficacy of the Essential/Non-Essential Area Detector. To demonstrate the ne-
cessity and efficacy of our essential/non-essential area detector (ENED), we conduct experiments
comparing three defense strategies: 1) TAS Only, where adversarial examples bypass ENED and
are handled solely by the token attention suppression method; 2) NR Only, where adversarial exam-
ples bypass ENED and are processed using the neighbor replacement method; and 3) Both, where
ENED categorizes adversarial patch attacks into catastrophic attacks and non-catastrophic attacks,
subsequently handling them with TAS and NR, respectively. For the test dataset, we select one
model from each ViT family and perform different attack strategies with two attack patch sizes. We
then apply the three defense strategies to the target models and evaluate the robust accuracy of the
models. As shown in Table 3, models with activated ENED achieve the highest robust performance,
validating the efficiency and necessity of ENED.

Effectiveness of Token Attention Suppression. To enhance the robustness of ViT against catas-
trophic attacks, we propose token attention suppression (TAS), which applies fine-grained token
attention suppression using masked global token information (attention of non-attacked patches).
In this section, we assess the impact of different attention suppression strategies’ influence on the
robust accuracy of the defended models. We compare three approaches: no attention processing,
RTA’s restriction method, and our TAS, where we keep the non-catastrophic defense approach the
same. As shown in Table 4, TAS achieves the best robust performance, with nearly a 7% improve-
ment on DeiT-S and approximately a 5% improvement on ViT-S, BiF-S, and TNX-S, highlighting
its effectiveness against catastrophic attacks.
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4.4 HYPER-PARAMETERS

To evaluate the robustness of our proposed NeighborViT architecture, we conduct comprehensive
studies by varying the hyper-parameters within our framework and compare the defensive effective-
ness with the state-of-the-art method, Jedi. We employ the DeiT-T model architecture as the target
model and randomly select 2,500 clean images to generate adversarial patch attacks for validation.

Table 5: The impact of different AD thresholds ε on
clean accuracy and robust accuracy. We report CA and
RA under different attack methods. CA: clean accuracy;
RA: robust accuracy. The results of our defense method,
which are better than those of Jedi, are marked in bold.

ε 1.95 2.00 2.10 2.15 2.25 2.35 2.45 2.55 Jedi

ViTRPP CA 67.2 68.4 71.6 72.4 72.4 72.4 72.4 72.4 69.8
RA 70.2 70.3 71.1 71.6 68.6 66.3 64.7 62.8 68.4

Patch-F CA 68.4 69.3 69.9 71.7 72.4 72.4 72.4 72.4 69.7
RA 71.7 71.9 71.6 71.6 71.6 68.2 64.5 61.3 65.5

Attention-F CA 68.9 70.3 72.4 72.4 72.4 72.4 72.4 72.4 70.0
RA 71.6 71.7 71.6 67.1 65.3 62.6 60.7 59.8 64.7

Influence of ε. We evaluate the de-
tection threshold ε in our attack detec-
tor, which determines whether an in-
put sample is classified as an adver-
sarial example. For this experiment,
we utilize multiple attack strategies with
attack patch size = 2. We adjust ε
and assess both the clean accuracy and
robust accuracy of the defended model.
As shown in Table 5, when ε is less
than 2.25, our method consistently out-
performs Jedi in robust accuracy across
all attack scenarios. Additionally, for ε
greater than 2.10, it maintains a clear advantage over Jedi in clean accuracy. When ε is between
2.10 and 2.25, our method consistently outperforms Jedi in terms of both clean accuracy and robust
accuracy across the three attack scenarios.

Table 6: The impact of different ENED thresholds γ. The
results better than Jedi are marked in bold. 1×, ... , 4×
denotes attack patch size = 1×, ... , 4×.

γ 2.0 2.15 2.25 2.35 2.45 2.55 2.65 Jedi

DeiT-T

1× 61.4 62.9 64.7 68.5 70.3 71.6 69.3 66.0
2× 60.8 63.3 66.2 69.8 71.6 68.1 64.3 65.5
3× 65.4 68.2 70.5 71.6 67.9 66.1 62.7 64.3
4× 64.8 71.6 67.9 67.4 64.2 61.8 59.7 62.5

Influence of γ. We assess the detec-
tion threshold γ of our essential/non-
essential area detector for categorizing
adversarial inputs. For this experiment,
we utilize Patach-Fool as the attack
strategy with multiple attack patch sizes.
We adjust γ and evaluate the robust ac-
curacy of the defended model. The re-
sults are shown in Table 6. Under each
attack patch size, our approach outperforms Jedi within a γ range that spans over 0.3. When γ is
between 2.35 and 2.45, our method consistently outperforms Jedi across all attack patch sizes.

Table 7: The impact of different attention coefficient pa-
rameters α. The results of our defense method, which are
better than those of Jedi, are marked in bold.

α 0.85 0.95 1.00 1.05 1.15 1.20 1.25 1.30 Jedi

DeiT-T 63.7 64.2 66.3 69.7 71.6 70.5 68.7 66.9 65.5

Influence of α. We aim to suppress
abnormally high attention weights for
patch attacks located in the essential
area. To achieve this, we introduce a key
attention coefficient parameter, α, rep-
resenting the scaling factor for the mean
of the masked attention (i.e., without ad-
versarial tokens). In this section, we aim to assess the impact of α. For this experiment, we ultilize
Patach-Fool as the attack strategy with attack patch size = 2. We adjust α and assess the robust
accuracy of the defended model, with the results shown in Tab. 7. Our approach achieves stronger
defense performance than the best baseline Jedi across a wide α range (from 1.00 to 1.30).

5 CONCLUSION

In this work, we introduce NeighborViT, a novel defense framework for Vision Transformers (ViTs)
designed to counter adversarial patch attacks. Unlike traditional defense methods that treat all input
samples equally, NeighborViT categorizes different types of inputs and applies adaptive, tailored
defense mechanisms. Specifically, NeighborViT employs an attack detector to identify potential
attacks in input images and further classifies the detected adversarial examples into catastrophic
or non-catastrophic attacks. The key to NeighborViT’s ability to detect, categorize, and mitigate
adversarial attacks lies in its strategic use of neighbor information at various stages. Experimental
results on both classical and state-of-the-art ViTs demonstrate the effectiveness of our proposed
method, achieving superior robust performance while maintaining clean accuracy.
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A APPENDIX

A.1 ADVERSARIAL PATCH

Figure 5 shows some examples of adversarial patches.

Clean

Patch 

Attack

Rottweiler (82.9%)

Sock (90.3%)

Grey fox (71.2%)

Barrel (74.3%)

Flower pot (88.1%)

Bee (80.4%)

Sandbar (87.9%)

Leopard (87.8%)

Spaghetti squash (88.9%)

Hourglass (79.2%)

Figure 5: Examples of patch attacks. First row: Clean samples; Second row: Adversarial exam-
ples derived from various patch attack methodologies. Adversarial patches are highlighted with red
boxes for better visualization.

A.2 ADVERSARIAL PATCH DETECTION WITH SOBEL OPERATOR

Figure 5 shows some examples of adversarial patches detection with sobel operator.

patch attack sobel score patch attack sobel score

Figure 6: The potential of sobel operator for adversarial patch attack detection. We calculate
the gradient of pixels on the image and white areas represent higher sobel scores.

A.3 TAS & REMOVAL FOR CATASTROPHIC ATTACKS

In this section, we visualize the different effects of attention suppression (TAS) and removing adver-
sarial patches on essential area attacks. We still analyze from the perspective of attention. Since the
essential features contained in the essential area have been lost, our defense at this time should mini-
mize the focus impact on other essential features. In Fig. 7, we visualize the changes in the attention
of each layer for essential area attacks after using 1) neighbor replacement (NR) to reconstruct the
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image and 2) using TAS for attention suppression. The selected samples are correctly classified with
TAS but wrongly with NR.

NR

NR

TAS

TAS

Figure 7: Comparison between neighbor replacement construction (NR) and attention sup-
pression with global attention algorithm (TAS). The generation of the adversarial patches mainly
changes their key vectors while the changes to the query and value are relatively small. The attention
suppression method only suppresses the key vector and affects the attention calculation less; how-
ever, directly replacing the original adversarial patches with a neighbor will incur more significant
effect on query and value vectors and affect the attention calculation more.

A.4 ALGORITHMS

This section details the algorithmic principles of the attack detector (AD), essential/non-essential
area detector (ENED). We have uniformly adopted the neighbor-informed mechanism in the design
of these components. What differs is the type of neighbor information we consider in each com-
ponent. In AD, We summarize our attack detection algorithm in Algorithm 1. For any given input
x, we set the initial sliding window size to winh = winw = 4, beginning the detection from the
top-left region of the image with a window stride equivalent to the model’s patch size. After each
window slide, we calculate the average sobel score of the patch within the current window. Con-
currently, we sample neighbors in the four directions—top, bottom, left, and right—with the same
size as the current window and compute the average score of all neighboring patches. After that, we
calculate the distance of these scores from the current window’s patch score. If the current distance
exceeds the maximum distance dmax updated in the previous instance, we update this calculation
as the new maximum distance. Once a round of searching is completed, we obtain the maximum
distance for that window size. If this distance surpasses a preset maximum distance ε, we consider
the adversarial patches to have been detected and localized effectively and we can obtain the mask
M of adversarial patches. Otherwise, we reduce the window size and proceed to the next round of
searching. Since our distance measurements are patch-wise, we can design a uniform threshold ε
without dynamic variation for each attack methods.

In essential/non-essential area detection, we refer to the pixels of neighbor regions within the image.
The implementation details of the algorithms are presented in Algorithm 2.

A.5 ATTACK CONFIGURATIONS

We show the attack parameters in Tab. 8. We employ three attack scenarios: ViTRPP, Patch-
Fool, and Attention-Fool. In each attack scenario, we set the perturbation area size with
attack patch size = 1×, 2×, 3×, 4×. T-iters represents the total number of iterations. lr rep-
resents the learning rate for the generation of adversarial patches. #steps and gamma denotes that
for every #steps epoch, the learning rate is multiplied by gamma (which is typically less than 1) to
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Algorithm 1 Attack Detection with Sobel Operator
Input: input x; win size: the size of the sliding window; SOB: sobel operator; N: total number of patches; ε:

preset distance threshold;
Output:

attack flag ▷ 0 No attack; 1 Adversarial examples;
padv , winadv , M ▷ padv: index of adversarial patches; winadv: attack patch size; M: mask of adv.
patches.

1: initial:
2: scur ← 0; ▷ current window’s average score
3: snei ← 0; ▷ neighboring patches’ average score
4: d← 0; ▷ distance of the current window and neighboring patches
5: dmax ← 0; ▷ maximum distance
6: winadv ← 0; ▷ the attack patch size
7: sobel detection: S(x) ← SOB(x);
8: while win size > 0 do
9: initial dmax ← 0;

10: for i← 0; i < (
√
N − win size+ 1)2; i++ do

11: scur i ←
∑

s

win size2
; ▷ current window patches’ sobel

12: snei i ←
∑

neighbor

4∗win size2
; ▷ neighboring patches’ score

13: d← scur i − snei i;
14: if d > dmax then
15: padv ← i, dmax ← d, winadv ← win size;
16: else
17: slide to the next window;
18: end if
19: end for ▷ If the threshold is exceeded, an attack is detected
20: if dmax > ε then return attack flag = 1 (mask M, padv , winadv)
21: else
22: win size← win size− 1;
23: end if
24: end while
25: return attack flag = 0;

Algorithm 2 ENED Algorithm

Input: Input x, Adv mask M, Neighbor mask Mn, f : the ViT model, γ: preset similarity threshold;
Output: attack in essential area (EA) or attack in non-essential area (NEA)

1: Get k Neighbor mask: Mn1
, Mn2

, . . . , Mnk

2: Get k reconstructed image: x
′

i = M⊕ x⊙Mni

3: Set Sim sum← 0;
4: for i← 0; i<k − 1; i++ do
5: for j ← i+ 1; i<k; j ++ do
6: sim sum = sim sum+ cos sim(f(x

′

i), f(x
′

j))
7: end for
8: end for
9: sim = sim sum

(k2)
10: if sim>γ then
11: Return NEA
12: else
13: Return EA
14: end if

reduce it progressively. In Patch-Fool, α is the coefficient for the attention loss, and #l represents
the selection of the attention layer from which to optimize the adversarial patch. In Attention-Fool,
α is the step size of PGD.
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Table 8: Attack Parameters

Configurations

ViTRPP cl;T-iters=500;lr=0.1;#steps=10;gamma=0.9

Patch-Fool cl;T-iters=250;α=0.002;#l=4;lr=0.22;
#steps=10; gamma=0.95;

Attention-Fool cl;T-iters=250;lr=0.25;α=8/255;
#steps=10; gamma=0.95;

A.6 DEFENSE CONFIGURATIONS

In this section, we will present the detailed parameters of various baseline defense methods and our
approach NeighborViT (Tab. 9, Tab. 10). In RTA, α is the restriction parameter. In JeDi, ϵ is the

Table 9: Baseline Defense Parameters

Configurations

RTA α=1.15

JeDi ϵ=18.4;r=5

ARMRO

τ :
ViTs:1.43;
DeiTs:1.42;
BiFormers:1.57;
TransNeXts:1.62;
cl=1:Nd=1;
cl=2:Nd=5;
cl=3:2*(Nd=5);
cl=4:4*(Nd=5);

entropy detection limit and r neighbor sampling radius. In ARMRO, τ is the threshold to identify
whether adversarial, and Nd is a preset coefficient stating the number of tokens needed to detect.
In NeighborViT, ε and γ represent the attack detector (AD) and the essential/non-essential area
detector (ENED) detection threshold, respectively. α represents the attention suppression coefficient
parameters.

Table 10: NeighborViT Defense Parameters

Model cl=1 cl=2 cl=3 cl=4

ViTs

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=1.93;
α=1.05;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=1.89;
α=1.05;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=1.82;
α=1.05;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=1.75;
α=1.05;

DeiTs

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.55;
α=1.15;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.45;
α=1.15;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.35;
α=1.15;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.15;
α=1.15;

BiFormers

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.33;
α=1.27;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.25;
α=1.27;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.18;
α=1.27;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=1.97;
α=1.27;

TransNeXts

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.58;
β=5.21;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.24;
α=1.32;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.13;
α=1.32;

ε:
ViTRPP:2.15;
Patch-F:2.25;
Attention-F:2.10;
γ=2.07;
α=1.32;
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