Under review as a conference paper at ICLR 2025

SPARSE MAMBA: REINFORCING CONTROLLABILITY
IN STRUCTURAL STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we introduce the concept of controllability and observability to the
Mamba SSM’s architecture in our Sparse-Mamba (S-Mamba) for natural language
processing (NLP) applications. The structured state space model (SSM) develop-
ment in recent studies, such as Mamba and Mamba2, outperformed and solved the
computational inefficiency of transformers and large language models at small to
medium scale. The Mamba SSMs architecture drops the need for attention layers
or multilayer perception blocks in transformers. However, current Mamba models
lack reinforcement of controllability in state-space equations for computing the
A, B, C, and D matrices at each time step, leading to increased complexity and
computational costs. In this paper, we demonstrate a reduction of parameters in
comparison to the first published Mamba and Mamba2. We showcase an improve-
ment in perplexity by 5% and a decrease in training time by 3% after reinforcing
controllability and observability on the original Mamba architecture in our pro-
posed S-Mamba. The controllable n x n state matrix A is sparse and it has only n
free parameters. Our novel approach will ensure a controllable system which will
be the gate key for Mamba3.

1 INTRODUCTION

Transformers. In the early stages of natural language processing (NLP), with one of its first studies
Hutchins| (2005), recurrent neural networks (RNNs) Rumelhart et al.| (1986) suffered from explod-
ing/vanishing gradients. This case was investigated by Hochreiter in |Hochreiter| (1998), first dis-
cussed in his thesis in 1991. This study explored four types of solutions including methods which
do not use gradients, ones that keep gradients on larger values, ones that operate on higher levels,
and ones that use special architectures. This inspired the creation of a gradient-based method Long
short-term memory (LSTM) in |Hochreiter & Schmidhuber| (1997), where constant error carrousel
was introduced.

The long sequences in language modeling and generating in an encoder-decoder based architectures
as in RNNs and Generative Adversarial Nets (GANs)|Goodfellow et al.|(2014) was a main problem.
In |Vaswani| (2017), authors revolutionized NLPs with their introduction of transformers. Attention
mechanism was all you need to handle long sequences. The core of a transformer model relays in the
proposed attention equation. Here, Q, K, and V are the query, keys values matrices. W& WX WV
are projection matrices for the queries, keys, and values, respectively. W is the output projection
matrix. When these matrices are properly calculated, they form a similarity score in the attention
layer that handles longer language modeling tasks more effectively. Further development on trans-
formers produced multi-query attention |Shazeer| (2019) and flash attention (Dao et al.| (2022)),Dao
(2023))).

State Space Models (SSMs).When state space models are discussed, it is often referred to the
state space representation and classical state space models introduced by |Kalman|(1960). Recently,
studies attempted to build upon the state space representations in control theory and modeling a
dynamic system via state variables to language modeling came as in |Gu et al.| (2021a)). However,
in order to make a bridge to language modeling from state space representations, Gu in |Gu et al.
(2021b)) experimented the first known utilization of state space equations appeared as a Linear State-
Space Layer (LSSL), where the LSSL maps a sequence input to output using state space equations.
Unsurprisingly, similar to transformers, these attempts were also inspired by RNNs. In|Gu et al.



Under review as a conference paper at ICLR 2025

(2022), authors proposed a diagonal structure to the first state space model called S4. This S4
model, and previously LSSLs, was built on core state space representation discussed in control
theory literature as in|Hangos et al.| (2006).

Authors of S4 left the idea of expanding the SSM in the coefficient space and started computing
its truncated generating function in frequency space. The parameter D was also omitted by setting
itto D = 0 as it only worked as a skip-connection. A convolution kernel K was introduced as
non-circular convolution that can be computed very efficiently using FFTs. This will be discussed
more in section [2]).

However, the fundamental challenge in sequence modeling is compressing context into a smaller
state. Popular sequence models, such as Transformers, recurrent models and recent SSMs, illus-
trate this trade-off. Attention-based models, like Transformers, are highly effective but inefficient
because they avoid compressing context, requiring the storage of the entire sequence during infer-
ence, leading to slow, quadratic-time training. Recurrent models and S4, while more efficient with
constant-time inference and linear-time training, struggle with effectiveness due to limited context
compression. This challenge is highlighted by tasks like Selective Copying |Arjovsky et al.| (2016),
which requires filtering relevant tokens, and Induction Heads |Olsson et al.| (2022), which demands
context-aware output generation. These tasks reveal the limitations of linear time-invariant (LTT)
models, as they lack the capacity for input-dependent dynamics and struggle with varying input-
output spacing, a problem static convolution kernels cannot solve.

Here, Mamba was introduced in (Gu & Dao|(2023). The building block of Mamba proposed a class
of selective state space models that leveraged the selection mechanism which parameterize the SSM
parameters depending on the input. It additionally used a hardware-aware algorithm that computes
the model recurrently with a scan not convolution. Here, Mamba overcame the issues of transformers
where it showed promising results on handling data that contains long-range dependencies (LRD)s.
Inspired by linear attention |[Katharopoulos et al.|(2020), Mamba2 Dao & Gu| (2024} was introduced
to showcase how SSMs are now competitive and similar and transformers.

In this work, we introduce a new family of sparse SSMs based on the fundamental control theory
concepts of controllability and observability developed by Kalman in 1960s. In particular, we in-
vestigate how vanilla Mamba overlooked important concepts in control theory: controllability and
observability. Therefore, we propose a family of Sparse Mamba (S-Mamba) networks where a
modification on the architecture of vanilla Mamba can reinforce the system to be in the controller
canonical form and in the observable canonical form Bay| (1999). Discussed in details in section
[@]E]], S-Mamba outperforms the original Mamba, reduces the number of parameters, and saves
time in training. We start presenting our work by explaining the core structure of SSMs in Section
|| Then, we will explain the building blocks, (A, B, C, D) matrices in particular, of the vanilla
Mamba and our S-Mamba in Section [3]]. We evaluate our work in Section [A]] and present the results

in Tables [[TI2I3].

2 BACKGROUND

The purpose of this section is to dive deeper into the development and the creation of state space
models (SSMs). We overview the state space equations that form the corner stone in SSMs. The train
of development is then discussed to include the ideas of HIPPO matrix, LSSLs, and S4. Although the
focus of the architecture and evolution on SSMs, we exclude the detailed derivations. Showcasing
the parts that inspired the creation of our S-Mamba stand as the main objective.

2.1 STATE SPACE REPRESENTATIONS

In control theory study |[Hespanhal (2018)), researcher and scientists built their work on the fundamen-
tal state space equations. These equation can be written in the forms of Eqs. [T]and [2}

X(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t) + Du(t), 2)



Under review as a conference paper at ICLR 2025

* x: The time derivative of the state vector x. It represents the rate of change of the state
with respect to time.

» x: The state vector, representing the internal state of the system. This vector contains all
the necessary information to describe the system at a given time.

* u: The input vector, representing external inputs or controls applied to the system.
 y: The output vector, representing the measured or observed outputs of the system.

¢ A: The state matrix, which defines how the current state x influences the state derivative
X.

: The input matrix, which defines how the input u influences the state derivative x.

B

¢ C: The output matrix, which defines how the current state x influences the output y.
D: The feed-through matrix, which defines how the input u directly influences the output
y.

where A is R™"*", B is R™*™ Cis RP*", D is RP*™. n is the number of states, m is the number of
inputs, p is the number of outputs.

2.2 HIGH-ORDER POLYNOMIAL PROJECTION OPERATOR (HIPPO)

The HiP PO matrix is one the important foundations of SSMs that was proposed in|Gu et al.[(2020).
Authors of HiPPO framework introduced a method for continuous-time memorization and can be
described in Eq.(3).

(hippo(f))(t) = coefi (projg(f)), 3)

where the composition coefoproj is called HiP PO. This operator is mapping a function f : R>o —
R to the optimal projection coefficients ¢ : R>o — RY.

In other words, for a continuous function f at every time ¢, there is an optimal projection g(*) of f
onto the space of polynomials, with respect to a measure ;(*) weighing the past. Afterwords, for an
appropriately chosen basis, the corresponding coefficients c(t) € R, representing a compression
of the history of f, satisfy linear dynamics. This continuous-time HiP PO ODE can be shown
in Eq.(4). The result of this will be a discretized version of the dynamics that yields an efficient
closed-form recurrence for online compression of the time series ( fx)xen in Eq..

d
Gt S(t) = At)e(t) + B(t)E(t), )
Ck+1 = Axck + By, 4)
for some A(t) € RV*N_ B(t) € RN*1. Where N is the model size.

2.3 LINEAR STATE-SPACE LAYERS (LSSL)

The first attempt to build the bridge from SSMs to machine learning models was LSSLs |Gu et al.
(2021Db)), proposed by the same authors of HiPPO. Here, the linear state space layer maps the con-
tinuous in Egs.(I), (2) to a discretized state space model A, B, C, D. Then, these two equations can
be seen as the first view of LSSL. The discrete-time state-space model in Egs.(6), can be seen
the recurrence view or the second view.

x; = Ax;_1 + Buy, (6)
vyt = Cx; + Duy, @)
where the recurrent state x;_; € R¥*¥ carries the context of all inputs before time ¢. Then, the

current state x; and output y; can be computed. The input u € RE*H | N is the model size. L
representing the length of a sequence where each timestep has an H-dimensional feature vector.

The third view of LSSL is the convolution view. Then, in Eq.(8) y is simply the non-circular convo-
lution y = K (A, B,C) * u + Du.



Under review as a conference paper at ICLR 2025

yk = C(A)*Buy + C(A)* " 'Bu; + - -- + CABuy_; + Buy, + Duy, (8)

Ki(A,B,C) = (CA'B) € R" = (CB,CAB,...,CA" 'B), )

i€[L]

where the output y € R¥ <L, K7 is the Krylov function Krylov|(1931).

2.4  STRUCTURED STATE SPACES (S4)

Creating a state model that can evolve over time to learn more information as they arrive was the
main reason for creating RNNs and then LSTMs. Nevertheless, the memory remained an issue for
long sequences. S4 model |Gu et al.| (2021a)) emerged as the first SSM model built upon the concept
of LSSLs. Following similar steps taken in [2.2]] and [2.3]], one can write the state space equations
by setting the parameter D = 0 as it serves the purpose of a skip connection, which can be learned
easily. Then, the architecture of S4 models are defined with four parameters (A, A, B, C).

In other words, the first step is done by taking the continuous time equations [[I[2]] and discritize
them. Therefore, Eqs.(TI0) and (TT) represent the recurrence view. Similarly, the convolutions view
can also be rewritten as Eqs.(12) and (13).

hy = Ahy_; + Bxg, (10

yt = Chy, (1T)

K = (CB,CAB,...,CA"B,...), (12)
y = X*K, (13)

where the transformation from parameters (A, A, B) to parameters (A, B) is done through fixed
formulas A = f4(A,A) and B = fg(A, A, B). The pair (fa, fp) are called discretization rule.

3 MAMBA

The structure of state space representations in (A, B, C, D) matrices has an enormous impact on
the SSM’s performance. Furthermore, the initialization of these matrices is as critical. Discus-
sion in Section [2]] revolved specifically around the building blocks of Mamba and around SSMs
in general. Here, we present our novel method of initialization and calculation of (A, B, C,D) in
our sparse Mamba S-Mamba. This presentation is done through showing these matrices’ structure
in Mamba first, then ours afterwords. From this point on, mentioning Mamba will refer to vanilla
Mamba version as Mamba |Gu & Dao|(2023)) and S-Mamba will refer to the family of sparse mamba:
Controlable Mamba SC-Mamba and Observable Mamba SO-Mamba.

3.1 MAMBA

Building upon S4, Mamba was introduced to improve matching the modeling power of Transformers
while scaling linearly in sequence length. Here, the parameter A in a Mamba governs how much
attention is given to the current input z;. It acts as a generalization of gates in Recurrent Neural
Networks (RNNs). A large A resets the hidden state h; and focuses on the current input, while a
small A retains the hidden state and disregards the input. This can be interpreted as a discretization
of a continuous system, where a large A — oo results in the system focusing on the current input
for longer, whereas a small A — 0 implies that the input is transient and ignored.

—/Cn+1)2k+1) ifn >k,

A =4q¢—-(n+1) ifn =k, (14)
0 ifn < k.

A =exp(AA), (15)

B = (AA) '(exp(AA) — 1) - AB, (16)



Under review as a conference paper at ICLR 2025

After initializing A based on the HiPPO matrix defined in Eq.(T4), the dicretaized parameters A
and B interacts with A through the relation of zero-order hold (ZOH) defined in Eqs.(T3),(16)
respectively. The matrices B and C in Mmaba are responsible for selectively filtering information
to ensure that only relevant inputs are integrated into the state h; and subsequently into the output
y;. Making B and C selective allows for finer control over whether the input z; affects the state or
whether the state influences the output. This selectivity enables the model to modulate its dynamics
based on both the content (input) and the context (hidden states), thereby efficiently compressing
a sequence model’s context and discarding irrelevant information. The D matrix is initialized as a
vector of 1’s and set to be a learnable parameter as it works as a skip connection. Therefore, easy to
be learned.

3.2 SPARSE MAMBA USING CONTROLLABLE AND OBSERVABLE FORMS

In control theory, the controllable canonical form is a specific configuration of state-space represen-
tation where the state matrix A, the input matrix B, and the output matrix C have specific structured
forms. The n x n matrix A is arranged in such a way that it makes the system controllable Kailath
(1980), and this form is particularly useful for state feedback control design discussed in section
[3:2.1)). We will further implement and discuss the observable form [Dullerud & Paganini| (2013) in

section [3:2.2].

3.2.1 CONTROLLABILITY

u—sf 1 _+.O_> f *1 f X2 ___ | f Xn—1 J- | | *n
e

Figure 1: Block diagram analysis of controllable canonical form (CCF).

The first part of our Sparce Mamba Family is Sparce Controllable Mamba (SC-Mamba). Here, the
derivation of the controllable canonical form C'C'F is closely related to the concept of reachability. A
system is said to be reachable if it is possible to drive the state from any initial state to any final state
within a finite time interval using an appropriate control input. In other words, The system is reach-
able if and only if the reachability matrix R has full rank Bay|(1999). The CCF makes the system’s
controllability properties explicit. This means that it is easier to analyze and design controllers for
the system because the controllability matrix is in a specific, structured form. Furthermore, since the
CCF provides a clear structure, it simplifies the design of state feedback controllers. The placement
of poles and zeros becomes more manageable. Here, a linear time-invariant system represented by
the transfer function[T7] The state matrix A in controllable canonical form is structured as Eq.(T8).

bn_18n71 + bn_28n72 + -+ bis+ b
s+ ap1s" 4o +ars+ag

H(s) = (17)



Under review as a conference paper at ICLR 2025

0 1 0 0
0 0 1 0
A= z AN ¥ (8)
0 0 0 e 1
—O0p—-1 —0p—2 —Ap-3 -*° —ag

The input matrix B is a column vector, structured as:
B=[0 0 --- 1", (19)

The output matrix C in controllable canonical form can vary depending on the output structure
required but is often a row vector of coefficients:

C=lbn-1 bp—2 -+ b b, (20

where ¢; of the transfer function. In this form, the last row of A contains the negatives of the transfer
function coefficients [—a;] that form the characteristic polynomial of the system. We initialize A as
a vector uniformly distributed over a given interval. Then, the vector is inserted into the controllable
matrix form of A [[I8]] during training. The structure of B [[I9] ensures that the input u; directly
influences only the last state variable, making the system controllable from the input. The matrix C
[20] determines how the state variables are weighted in the output yy, allowing selective emphasis
on different state components. The D component in the controllable form is set to a value of D = 0.
However, while maintaining this setting, we set it as a learnable parameter afterward. Figure[[T] is
the block diagram that represents the proposed controllable structure.

Any state-space model can be converted into a controllability model by applying a similarity trans-
formation to the state-space model that satisfies the controllable canonical form [Chen| (1984). Simi-
larly, it can be converted into an observablility model, which we will describe in the next section.

3.2.2 OBSERVABILITY

" N

bn_1 bn—> by | —— | bo

+ +
X1 X +
F + +

Figure 2: Block diagram analysis of observable canonical form (OCF).

The second group of Sparse Mamba'’s that we introduce is Sparse Observable Mamba (SO-Mamba).
In this section, we will reinforce the observable canonical form OCF on the structure state space
equations. Similar to CCF, the OCF makes the system’s observability properties explicit. This means
that it is easier to analyze and design observers for the system because the observability matrix is
in a specific, structured form. Additionally, the coefficients of the characteristic polynomial of the
system appear directly in the state matrix A. This makes it straightforward to analyze the system’s
dynamics and stability.



Under review as a conference paper at ICLR 2025

Table 1: Perplexity Evaluation Table: Training results comparison between vanilla Mamba, our
sparse observable Mamba (SO-Mamba), and our sparse controllable Mamba ( SC-Mamba) based on
perplexity matrix. Numbers in parentheses, (1M) and (100K), stand for the number of rows used in
each of the datasets.

Model CodeParrot IM OpenWebText IM  ArXiv  Cosmopidia 100K
Mamba 10.4618 99.2525 70.33 30.5017
SO-Mamba 10.0525 99.3704 72.2705 30.1241
SC-Mamba 9.8904 98.5427 69.6179 30.0191

Table 2: Training Time Evaluation Table: Training results comparison between vanilla Mamba,
sparse observable Mamba (SO-Mamba), and sparse controllable Mamba (SC-Mamba) based on
training time. The base task in this table is the Fill-in-Middle task. Numbers in parentheses, (1M)
and (100K), stand for the number of rows used in each of the datasets.

Model CodeParrot IM  OpenWebText IM ArXiv Cosmopidia 100K
Mamba 6:27:03 2:27:39 50:32 36:57
SO-Mamba 6:19:08 2:28:26 51:05 36:43
SC-Mamba 6:15:39 2:26:11 50:21 36:32

The derivation of the observable canonical form is closely related to the concept of observability. A
system is said to be observable if it is possible to determine the state of the system from the output
measurements over a finite time interval. Here the system is observable if and only if the observ-
ability matrix O has full rank [Bay| (1999). Therefore, one can construct the matrices in observable
canonical form as:

0O 0 --- 0 —an

1 0 --- 0 —Qnp—-1
A=|0 1 0 0 —ana| (21)

00 - 1 —a
B=[bh1 by - b by, (22)
c=[0 0 0 --- 1], (23)

where the matrices in observable canonical form follow the same structures and sizes as the control-
lable canonical form. A € R™*"™ is an n X n matrix, the transpose of the controllable canonical
form matrix. B € R™*! is an n x 1 column vector, the transpose of the corresponding vector in
controllable canonical form. C € R'*" is a 1 x n row vector, the transpose of the corresponding
vector in controllable canonical form. D € R is a scalar and will be set to be trainable. Here we
can see that A matrix is the transpose of the controller canonical form and that b and c are the
transposes of the ¢ and b matrices, respectively, of the controller canonical form. Figure[2] is the
block diagram that represents the proposed observable structure.

4 EXPERIMENTAL RESULTS

The first stage of our training was converting the data rows from each of the datasets and covert
them into a columnar data format using LanceDB framework [LanceDB|(2024). We choose to prove
our optimization on four popular datasets: CodeParrot Dataset OpenWebText Corpus Dataset
On the Use of ArXiv as a Dataset[}} and Cosmopedia Dataset [ We indicate the count of rows used
from the datasets except for Ar X iv dataset, where we used all available rows in the dataset.

"https://huggingface.co/codeparrot/codeparrot
Zhttps://huggingface.co/datasets/Skylion007/openwebtext
3https://github.com/mattbierbaum/arxiv-public-datasets
*https://huggingface.co/datasets/HuggingFace TB/cosmopedia



Under review as a conference paper at ICLR 2025

Table 3: Number of Parameter Comparison: The reduction of parameter analysis between
Mamba, our sparse observable Mamba (SO-Mamba), and our sparse controllable Mamba (SC-
Mamba) under the same settings.

Model Number of Parameters
Mamba 64475648
SO-Mamba 64352904
SC-Mamba 64344840

In Table [T]l, we present the improvement in perplexity in our family Sparse Mamba. Here, the
sparse controllable Mamba (SC-Mamba) shows an improvement of 5% in comparison to the original
vanilla Mamba model. Additionally, we mention the results of enforcing the observability matrix in
SO-Mamba. Table [2], shows a reduction by 3% in training time. The training for the models on
each of the datasets was done for 7 epochs and the comparison was made on the last epoch.

The significant parameter reduction, presented in Table [J3], demonstrates the benefits in enforcing
controlability and observability in the Mamba’s architecture. This reduction of 100K in parameters
proves the utilization of sparsity in our family of S-Mamba. Our theoretical analysis of the architec-
ture of Mamba?2 shows that the number of parameters in our S-Mamba is also lower than the number
of parameters in Mamba?2.

5 CONCLUSION

In our paper, we introduce a family of Sparse Mamba (S-Mamba) that reinforces the controllability
and observability on the original Mamba model. The controllable n x n state matrix A is sparse and
it has only n free parameters. We showcase that our novel architecture has a better performance in
terms of perplexity, less training time, and a reduction in the number of parameters in than vanilla
Mamba. Our experiments prove a possibility to make any model that is based on state space rep-
resentations sparse, including the diagonal structure in Mamba2, by enforcing Controllability and
observability in (A, B, C,D) matrices. This will conclude a less complex system for language
modeling using SSMs.

REFERENCES

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pp. 1120-1128. PMLR, 2016.

John Bay. Fundamentals of linear state space systems. WCB/McGraw-Hill, 1999.
Chi-Tsong Chen. Linear system theory and design. Saunders college publishing, 1984.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,

35:16344-16359, 2022.

Geir E Dullerud and Fernando Paganini. A course in robust control theory: a convex approach,
volume 36. Springer Science & Business Media, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.



Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474-1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572-585, 2021b.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971—
35983, 2022.

Katalin M Hangos, J6zsef Bokor, and Gabor Szederkényi. Analysis and control of nonlinear process
systems. Springer Science & Business Media, 2006.

Joao P Hespanha. Linear systems theory. Princeton university press, 2018.

Sepp Hochreiter. Recurrent neural net learning and vanishing gradient. International Journal Of
Uncertainity, Fuzziness and Knowledge-Based Systems, 6(2):107-116, 1998.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

John Hutchins. The first public demonstration of machine translation: the georgetown-ibm system,
7th january 1954. noviembre de, 2005.

Thomas Kailath. Linear systems. Prentice-Hall, Inc., 1980.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. J. Fluids Eng.,
1960.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156-5165. PMLR, 2020.

Aleksei Nikolaevich Krylov. De la résolution numérique de 1’équation servant a déterminer dans des
questions de mécanique appliquée les fréquences de petites oscillations des systemes matériels.
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 4:491-539, 1931.

LanceDB. Lancedb: A modern columnar data format and serverless vector database for ai applica-
tions. https://github.com/lancedb, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by
error propagation, parallel distributed processing, explorations in the microstructure of cognition,
ed. de rumelhart and j. mcclelland. vol. 1. 1986. Biometrika, 71(599-607):6, 1986.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.


https://github.com/lancedb

	Introduction
	Background
	State Space Representations
	High-Order Polynomial Projection Operator (HiPPO)
	Linear State-Space Layers (LSSL)
	Structured State Spaces (S4)

	Mamba
	Mamba
	Sparse Mamba Using Controllable and Observable Forms
	Controllability
	Observability


	Experimental Results
	Conclusion

