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Abstract

Continual few-shot relation extraction (CFRE)001
aims to continually learn new relations with002
limited samples. However, current methods003
neglect the instability of embeddings in the004
process of different task training, which leads005
to serious catastrophic forgetting. In this pa-006
per, we propose the concept of the following007
degree from the perspective of instability to008
analyze catastrophic forgetting and design a009
novel method based on adaptive gradient cor-010
rection and knowledge decomposition to alle-011
viate catastrophic forgetting. Specifically, the012
adaptive gradient correction algorithm is de-013
signed to limit the instability of embeddings,014
which adaptively constrains the current gradi-015
ent to be orthogonal to the embedding space016
learned from previous tasks. To reduce the in-017
stability between samples and prototypes, the018
knowledge decomposition module decomposes019
knowledge into general and task-related knowl-020
edge from the perspective of model architec-021
ture, which is asynchronously optimized during022
training. Experimental results on two standard023
benchmarks show that our method outperforms024
the state-of-the-art CFRE model and effectively025
improves the following degree of embeddings.026

1 Introduction027

The purpose of CFRE is to continuously train a028

model on limited new data. Compared to traditional029

continual relation extraction(CRE) models, it can030

learn new relations without accessing a large num-031

ber of previous task data, and avoid catastrophic032

forgetting (French, 1999; McCloskey and Cohen,033

1989) of the old relations.034

Due to limited training data, the features learned035

by the model at each time step of continual learn-036

ing are relatively unstable and are easily modified037

by the model when learning other class samples in038

subsequent time steps. As a result, traditional CRE039

methods cannot be directly applied to CFRE (Qin040

and Joty, 2022). To fully utilize data resources,041

Figure 1: Representation of distance relative offset dis-
tance and absolute offset distance. {x1, · · · , x5} and
{x′

1, · · · , x′
5} are sample embeddings with the same

class before and after training at a certain time step,
respectively. p and p′ are embeddings of prototypes of
those. The red dashed arrow represents the AOD of the
sample x4 or prototype p. The difference distance of
the two yellow dotted arrows represents ROD between
x2 and p.

scholars have explored many methods (Wang et al., 042

2022b; Zhong et al., 2021; Zhang et al., 2022). 043

And the methods based on memory replay (Chen 044

et al., 2023; Wang et al., 2023; Qin and Joty, 2022) 045

made great achievements in CFRE. However, these 046

models mainly focus on the strategies of memory 047

samples in the process of replaying or learning and 048

perform direct fine-tuning of the model parameters 049

through the gradient of the loss function. Further- 050

more, in-memory examples are used to generate 051

gradients that benefit the performance on previous 052

tasks, but the direction optimized by these gradi- 053

ents may contradict the optimization direction of 054

the current task gradient, which leads to the instabil- 055

ity of samples with respect to prototypes. In metric 056

learning (Kaya and Bilge, 2019), the prototype of 057

one class is the center of this class. 058

In essence, during continuous learning with min- 059

imal data usage, when samples are equivalently 060

shifted with the embedding of prototypes, the la- 061
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bels of samples will not be easily changed and062

catastrophic forgetting of the model will be alle-063

viated. Thus, we formally provide the definition064

of following degree of class y at time step t: the065

degree of deviation between class y samples and066

class y prototype before and after training at t. Ob-067

viously, the smaller the offset between the previous068

sample embedding and its prototype, the higher the069

following degree of this class, and the less unstable070

the samples are. In this way, the model can have071

less catastrophic forgetting of previous samples.072

Intuitively, there are two main reasons for the073

low following degree of the model on a task: 1)074

the model is not sufficiently optimized for some075

samples, which makes the prototypes deviate from076

the optimization direction of the samples; 2) af-077

ter optimization, all embeddings change too much078

compared with the previous will also increase the079

risk of low following degree. Relative offset dis-080

tance (ROD) and absolute offset distance (AOD)081

are proposed to express the above two factors, re-082

spectively. As shown in Fig. 1, |x′4−x4| and |p′−p|083

represent AOD of x4 and p. (|p′ − x′2| − |p− x2|)084

represents ROD between x2 and p. The lower the085

AOD and ROD, the higher the following degree.086

In this paper, an adaptive gradient correction087

algorithm is proposed to directly constrain and cor-088

rect the vector space of the gradient in transformer-089

based language models. Since the modified gra-090

dients are orthogonal to the embeddings of the091

previous sample, this special optimization method092

for the transformer can effectively reduce AOD.093

Specifically, for each previous task, we calculate a094

gradient direction, which has the greatest impact095

on in-memory samples, as the correction criteria.096

When updating the gradient of the current task, the097

correction matrix based on this criteria is used to098

make a linear transformation of the gradient, which099

can constrain the subspace of parameters orthogo-100

nal to the previous tasks.101

In addition, knowledge contained in model pa-102

rameters is decomposed into general and task-103

related knowledge. Based on this decomposition,104

general knowledge is used to identify a generic rep-105

resentation of relations with the corresponding enti-106

ties. We employ task-related knowledge to identify107

categorical decision boundaries between specific108

tasks based on general knowledge. In practice, we109

apply a pre-trained language model (PLM) to en-110

code the general knowledge and use an adaptive111

gradient correction algorithm to avoid mutual cov-112

erage of knowledge. Since there is no gradient113

transmission between task prototypes, we integrate 114

task-related knowledge into task prototype embed- 115

ding. These prototypes are updated discretely and 116

continuously in three different training stages to 117

reduce ROD. In the continuous optimization stage, 118

we add an additional loss to increase the distance 119

between prototypes, which can prevent confusion 120

between the new and the old task prototypes. 121

To sum up, the contributions of this paper mainly 122

include the following three aspects: 123

• We attribute catastrophic forgetting in CFRE 124

to the low following degree between samples 125

and prototypes, and analyze how to improve 126

the following degree from the perspectives of 127

AOD and ROD. 128

• According to the correction matrix calculated 129

by in-memory samples, an adaptive gradient 130

correction algorithm is proposed that makes 131

the model directly adjust the gradient to re- 132

duce AOD. 133

• We design a knowledge decomposed method 134

and corresponding update strategies to avoid 135

the confusion of knowledge between different 136

tasks, which can limit ROD during training. 137

Experimental results on two public datasets show 138

that our method can effectively alleviate the catas- 139

trophic forgetting in CFRE. 140

2 Related Work 141

RE aims to extract the implied relation from sen- 142

tences. For example, given the sentence "Steve 143

Jobs is the co-founder of Apple", the model needs 144

to determine the relation "CEO_of" between the 145

entity "Steve Jobs" and "Apple". It is a basic step 146

for many downstream tasks such as language un- 147

derstanding, question answering, and knowledge 148

graph construction (Nasar et al., 2021). 149

Most traditional RE models are built based on 150

a fixed dataset (Eberts and Ulges, 2020; Liu et al., 151

2022b; Shang et al., 2022; Li et al., 2018, 2021). 152

However, RE is often an open vocabulary problem 153

(Liu et al., 2022a), and it is difficult to model all 154

relations for any limited set. Therefore, the contin- 155

ual learning ability (Chen and Liu, 2018) of the RE 156

model has gradually attracted attention (Zhao et al., 157

2023; Xia et al., 2023). 158

But there will be serious catastrophic forget- 159

ting for the model in continual learning, that is, 160

the model will forget the old knowledge when 161
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learning new tasks. To solve this problem, the162

existing methods for continual learning mainly in-163

clude: regularization-based approach (Zhai et al.,164

2019), memory-based approach (Cha et al., 2021),165

optimization-based approach (Schwarz et al.,166

2018), representation-based approach (Yan et al.,167

2022), and architecture-based approach (Wang168

et al., 2022a). The existing methods (Wang et al.,169

2022c; Zhou et al., 2022) are often based on a170

large number of labeled data for training, which171

is time-consuming and expensive. When the num-172

ber of training is small, overfitting of memory data173

and knowledge coverage (Song et al., 2023) is also174

one of the causes of catastrophic forgetting. The175

existing methods mainly solve this problem from176

the following three levels: data level (Wang et al.,177

2022b), feature level (Zhong et al., 2021), and task178

level (Zhang et al., 2022).179

Directly adjusting the gradient is also one of the180

methods to overcome catastrophic forgetting with181

limited data (Chen et al., 2023; Zhou et al., 2022).182

He and Jaeger (2018) proposed Concept Aided183

BackProp for disaster forgetting, in which the gradi-184

ent is shielded by a conceptor to prevent the degra-185

dation of previous tasks. Zeng et al. (2019) intro-186

duced orthogonal projection and context-dependent187

processing module for the current gradient. Guo188

et al. (2022) put forward the paranoid factor related189

to the previous task to estimate the input space, but190

the accumulation strategy for embedding of differ-191

ent samples may lead to confusion in the projection192

space. Although, the GEM algorithm (Lopez-Paz193

and Ranzato, 2017) introduced gradient projection194

to make the loss of previous tasks slowly increase195

in subsequent training, the embeddings computed196

by this method are not equivariant and cannot be197

applied to transformer-based language models.198

In contrast, our method innovatively uses the cor-199

rection matrix calculated by in-memory samples to200

directly constrain the gradient update in backpropa-201

gation to reduce the overall AOD, so as to limit the202

risk of reduced following degree. A model archi-203

tecture based on knowledge decomposition and the204

corresponding asynchronous optimization method205

is designed to further reduce the ROD of samples.206

3 Methodology207

3.1 Problem Definition208

CFRE model extracts the relations from a series209

of tasks {T 1, T 2, · · · , TK}. Every task T k has210

its own training dataset Dk
train, validation dataset211

Dk
valid, test dataset Dk

test and relation label set 212

Rk. Each set contains a small number of sam- 213

ple pairs {(xi, yi)}|D|
i=1, where the label yi ∈ Rk. 214

For example, in N -way M -shot constraint, we 215

make |Rk| = N and |Dk
train| = N × M . At 216

time step k, the model will only train on Dk
train 217

and we hope that the model will perform well on 218

{D1
test ∪D2

test ∪ · · · ∪Dk
test} after training. 219

The memory mechanism is applied to prevent 220

catastrophic forgetting in CFRE. Memory is de- 221

fined as a series of sample sets M̂K = ∪Kj=1M
j , 222

where each Mk = {(xi, yi)}|M
k|

i=1 corresponds to a 223

task T k. At time step k, a portion of the sample 224

is selected to be stored in the memory set Mk as 225

classical samples. In this paper, only one sample is 226

in memory for each category. 227

3.2 Training Process 228

Algorithm. 1 describes the whole training pro- 229

cess of our method at time step k. It mainly in- 230

cludes three different training stages to continu- 231

ously and discretely adjust ROD between proto- 232

types and samples. 233

In the first stage, we initialize the current mem- 234

ory set Mk and proto-embedding P k. Then, the 235

temporary memory {M̂k−1 ∪Mk} with all train- 236

ing data is applied to preliminarily update the PLM 237

parameters θk−1 through the corrected gradient. 238

In the second stage, we introduce cosine simi- 239

larity to find one sample that is most similar to the 240

center of the category cluster and add it to memory 241

M̂k−1. The PLM parameters update is similar to 242

the first stage, except for using selected memory 243

data. 244

In the final stage, we freeze the gradient of PLM 245

and view proto-embeddings P̂ k as learnable param- 246

eters, fine-tuning them on training data. 247

The data and gradient flow are shown in Fig. 2. 248

3.3 Knowledge Decomposition 249

To prevent the parameters in the model from being 250

covered and confused due to continuous task iter- 251

ation, we abstractly decompose them into general 252

and task-related knowledge. Since they do not in- 253

terfere with each other during the update process, 254

ROD for different categories can be effectively re- 255

duced. 256

3.3.1 General knowledge encoder 257

Because of the training with mask prediction on a 258

large number of corpora, the knowledge of BERT 259

parameters is independent of specific downstream 260
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Figure 2: The data and gradient flow of our method, where the solid lines describe the data flow in forward
propagation and the dashed lines describe the gradient flow in backpropagation.

tasks. Therefore, we choose BERT as PLM to261

encode the general knowledge of the whole re-262

lation extraction model. Specifically, for a sen-263

tence x = {Tok1, T ok2, · · · , T okn}, we first con-264

struct a template function based on prompt learning265

(Liu et al., 2023) by adding a special [MASK] to-266

ken to the sentence and get the sequence xseq =267

{[CLS], eh, [MASK], et, [SEP ], x, [SEP ]}. eh268

and et respectively represent the head and tail en-269

tity in the sentence x. Then the embedding of270

[MASK] token is taken as the relation representa-271

tion of the whole sentence:272

h[MASK] = fθ(xseq) (1)273

To facilitate symbolic representation, xseq is re-274

placed by x.275

3.3.2 Task-related knowledge encoder276

To ensure that the new task knowledge learned277

by the model does not conflict with the previous278

task and model general knowledge respectively, we279

encode the knowledge of different tasks into the280

corresponding category proto-embedding. Since281

the proto-embeddings of different categories are282

disconnected, the knowledge from new and pre-283

vious tasks will not affect each other naturally.284

And this part of knowledge is updated and trained285

asynchronously with BERT, so it also does not286

conflict with the general knowledge. The proto- 287

embeddings are updated with different strategies in 288

the three stages of training. 289

In the first stage of task k, we apply all samples 290

of each new relation in the current task to calculate 291

the new proto-embedding. To get the most repre- 292

sentative vector in the sample embedding space, 293

the average method is introduced to aggregate all 294

embeddings of samples. For the proto-embedding 295

pkj of class j task k, the calculation formula is as 296

follows: 297

P k
j =

1

|Dk
j |

∑
(xi,yi)∈Dk

j

fθ(xi) (2) 298

where Dk
j = {(xi, yi)|(xi, yi) ∈ Dk

train, yi = rj} 299

and |Dk
j | is the number of samples in Dk

j . 300

In the second stage, there is only one sample 301

for each class in memory, so we directly use the 302

relation embedding of that sample as the proto- 303

embedding of the corresponding class. 304

The updating of proto-embeddings in the first 305

two stages is discrete. In the third stage, we 306

freeze the parameters of BERT and regard the 307

proto-embedding as a parameter that can be up- 308

dated by the gradient descent algorithm. The proto- 309

embeddings are continuously updated by the gradi- 310
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Algorithm 1 Training procedure for T k(k > 1)

Input: The PLM parameters θk−1 and proto-
embedding P̂ k−1 = ∪k−1

j=1P
j trained on T k−1,

training data set Dk
train, memory set M̂k−1, learn-

ing rate γ
Output: θk, P k

Use all samples in Dk
train to initialize Mk and

P k

Freeze the gradient of P̂ k−1, unfreeze the gradi-
ent of θk−1

for i ∈ {1, · · · , epoch1} do
Calculate correction matrix C using M̂k−1

Calculate corrected gradient ∆θk−1 using C
with Lgen on D = {M̂k−1 ∪Mk ∪Dk

train}
Update θk−1 ← θk−1 − γ∆θk−1

Recalculate P k using Mk

end for
Select typical samples from Dk

train to update
Mk

M̂k ← M̂k−1 ∪Mk

for i ∈ {1, · · · , epoch2} do
Calculate correction matrix C using M̂k−1

Calculate corrected gradient ∆θk−1 using C
with Lgen on D = {M̂k ∪Dk

train}
Update θk−1 ← θk−1 − γ∆θk−1

Recalculate P k using Mk

end for
P̂ k ← P̂ k−1 ∪ P k

Freeze the gradient of θk, unfreeze the gradient
of P̂ k

for i ∈ {1, · · · , epoch3} do
Calculate gradient ∆P̂ k with Ltask on D =
Dk

train

Update P̂ k ← P̂ k − γ∆P̂ k

end for

ent.311

pkj ← pkj − γ
∂Ltask

∂pkj
(3)312

where γ is the learning rate. Ltask is calculated313

using cross entropy function, which is similar to314

Eqn. 5. We set P k = ∪|R
k|

j=1p
k
j .315

3.3.3 Calculation of loss function316

To optimize the learned embeddings of relations,317

the training and inference of our model are based318

on metric learning. At time step k, by measuring319

the similarity between each sample xi and proto-320

embedding P̂ k, the relation distribution is calcu-321

lated as: 322

p(ri|xi) =
exp(d(fθ(xi), pi))∑|Pk|
l=1 exp(d(fθ(xi), pl))

(4) 323

where d(·, ·) is the distance metric function (cosine 324

similarity in this paper) and pl is proto-embedding 325

in P̂ k. 326

Further, the cross entropy loss function is cal- 327

culated to measure the classification error of the 328

model: 329

Lce = −
∑

(xi,yi)∈D

logp(ri|xi) (5) 330

While alleviating catastrophic forgetting, it is 331

also important to correctly handle the information 332

entropy of new tasks in the model. To avoid the 333

confusion of similar relation between new task and 334

previous tasks, we select the proto-embedding sets 335

P sim
i = {pl|d(fθ(xi), pi) − d(fθ(xi), pl) < α} 336

and Pneg
i = {pl|max(d(fθ(xi), pl), l ̸= i}, which 337

are easy to be confused with the correct category 338

for each sample xi. α is the set similarity thresh- 339

old. The following probability is reduced by cross 340

entropy loss function: 341

Lsim = −
∑

(xi,yi)∈D

log
exp(d(fθ(xi), pi))∑|P sim

i ∪Pneg
i ∪pi|

l=1 exp(d(fθ(xi), pl))

(6)

342

The final general knowledge loss is calculated as: 343

Lgen = Lce + Lsim (7) 344

3.4 Adaptive Gradient Correction 345

Through the decomposition of parameters, the task- 346

related knowledge will not interfere with each other 347

and ROD of previous tasks will be kept at a low 348

level in the process of continual learning. How- 349

ever, when updating the parameters of the general 350

knowledge encoder, there will still be gradient inter- 351

ference between tasks, which leads to the coverage 352

of the general knowledge in BERT. These coverage 353

may make the embedding and AOD of previous 354

task sample change dramatically, which will in- 355

crease the risk of reducing the following degree. 356

To avoid the interference of previous task embed- 357

dings when BERT learns a new task, the memory 358

embedding of the corresponding hidden layer is 359

extracted to adaptively correct the feed forward 360
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networks (FFN) and query matrix gradient in each361

layer during the model back-propagation. And the362

other gradients in BERT are frozen besides these363

two kinds of gradients.364

To express simplicity, we first abstract all lay-365

ers of the encoder into fully connected layers to366

introduce our idea. At time step k, we first extract367

the hidden state H l ∈ Rd×|M̂k−1| of samples in368

M̂k−1 before inputting each unfrozen layer. Then369

the gradient correction matrix C l of a certain layer370

is calculated according to H l (The superscripts are371

omitted for clarity):372

C = I −H(HTH)−1HT (8)373

Obviously, we can get CH = HTCT = 0. To374

guarantee the reversibility in the specific calcula-375

tion, we add a small offset: (αI +HTH)−1. The376

calculation method of α is consistent with Guo et al.377

(2022).378

When using the back-propagation algorithm to379

calculate the gradient of a certain layer, the un-380

frozen gradient of BERT is corrected by C l. The381

parameter W l update formula for a certain layer is382

shown as follows:383

∆W l =
∂Lgen

∂W l
C l

W l ←W l − γ∆W l
(9)384

where γ is the learning rate.385

For the parameters in a transformer, we only386

update the FFN layer parameters and the parame-387

ters related to the query matrix in the self-attention388

layer. The method of updating parameters in the389

FFN layer is similar to Equation 9. The gradi-390

ent update method of the query matrix in the self-391

attention layer is designed as,392

∆W q = (Cq)T
∂Lgen

∂W q

W q ←W q − γ∆W q
(10)393

where (Cq)T is the transpose row of matrix Cq,394

W q is parameters to calculate query matrix. The395

detailed discussion and further proof are included396

in the Appendix A.397

4 Experiments398

4.1 Experimental Setup399

Datasets Consistent with previous work on400

CFRE (Chen et al., 2023), our experiment will be401

conducted on two common datasets. FewRel (He402

and Jaeger, 2018) is a RE dataset that includes 80 403

relations, with 700 samples of each relation. We 404

divide these relations into 8 tasks {T 1, · · · , T 8}, 405

where each task contains 10 relations. M samples 406

are randomly drawn to form Dk
train with the con- 407

straint of 10-way M-shot. TACRED (Zhang et al., 408

2017) is a large-scale RE dataset based on news 409

networks and online documents, containing 42 re- 410

lation labels and 106,264 samples. Samples in TA- 411

CRED are imbalanced compared with FewRel. We 412

remove the particular relation "n/a" (not available) 413

and divide the remaining 41 relations into eight 414

subsets. The first subset has one more relation than 415

other subsets 416

Evaluation Metrics At time step k, we test the 417

model on D̂k
test, the union of all visible relation test 418

sets, which can simultaneously reflect the model 419

performance on new and old tasks. Since CFRE 420

may be affected by the task sequence, we run ran- 421

dom seeds six times on different task sequences to 422

ensure the randomization of that. The mean and 423

variance of relation classification accuracy on six 424

different task sequences are introduced as the per- 425

formance of the model. The training details are 426

discussed in Appendix B. 427

Baselines Four baselines are introduced to com- 428

pare our method (AGCKD). CEAR (Zhao et al., 429

2023) is a CRE approach that designs memory- 430

insensitive relation prototypes and memory aug- 431

mentation to overcome the overfitting problem. 432

SCKD (Wang et al., 2023) is a contrastive learning 433

scheme for CFRE, which employs serial knowl- 434

edge distillation and pseudo-samples for con- 435

trastive learning to keep the representation of 436

samples in different relations distinguishable. In 437

ERDA (Qin and Joty, 2022), the embedding spatial 438

regularization and data augmentation algorithms 439

are proposed to optimize memory expression in 440

CFRE tasks. ConPL (Chen et al., 2023) is the 441

state-of-the-art method for CFRE. Prototype-based 442

classification module, memory enhancement mod- 443

ule, and consistency learning module are used to 444

enhance the consistency of distribution as well as 445

avoid catastrophic forgetting. In addition to these 446

baselines, we also added two experimental settings 447

to observe the upper and lower limits. In Joint 448

Training setting, the model saves all training sam- 449

ples in the memory. Since the model can replay all 450

past data at every time step, there is no catastrophic 451

forgetting. In SeqRun setting, the memory does 452

not save any samples. This setting may cause the 453
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Method Task index
1 2 3 4 5 6 7 8

10-way 5-shot of FewRel

Joint Training 97.93±0.47 96.25±0.35 94.09±0.45 92.37±0.39 91.96±0.71 91.15±0.56 90.35±0.40 88.9±0.03

SeqRun 97.06±1.34 92.77±1.36 85.76±3.06 80.95±2.82 75.19±3.87 66.62±3.71 55.53±2.05 42.57±2.26

CEAR 69.46±7.49 64.53±1.7 62.22±3.01 61.27±3.88 60.04±2.37 58.70±3.51 57.88±2.66 55.77±2.63

SCKD 94.77±0.35 82.83±2.61 76.21±1.61 72.19±1.33 70.61±2.24 67.15±1.96 64.86±1.35 62.98±0.88

ERDA 96.55±0.43 92.56±2.29 88.56±3.34 84.47±3.25 84.14±3.01 79.94±2.46 78.45±1.74 77.02±2.93

ConPL 95.23±2.29 92.77±2.78 90.58±2.17 89.03±0.96 88.64±1.39 88.09±1.06 87.29±0.95 85.83±0.62

AGCKD (Ours) 97.78±0.95 95.93±1.30 94.13±0.81 92.67±0.40 91.71±0.79 90.97±0.65 90.11±0.53 88.68±0.47

5-way 5-shot of TACRED

Joint Training 97.93±0.47 96.25±0.35 94.09±0.45 92.37±0.39 91.96±0.71 91.15±0.56 90.35±0.40 88.9±0.03

SeqRun 97.06±1.34 92.77±1.36 85.76±3.06 80.95±2.82 75.19±3.87 66.62±3.71 55.53±2.05 42.57±2.26

CEAR 82.14±7.28 68.43±8.46 57.43±6.80 51.83±6.75 48.71±6.04 45.23±4.25 43.29±2.88 40.74±4.08

SCKD 88.42±0.83 79.35±4.13 70.61±3.16 66.78±4.29 60.47±3.05 58.05±3.84 54.41±3.47 52.11±3.15

ERDA 94.57±2.72 86.55±3.55 78.59±2.88 74.58±3.92 69.31±1.63 66.53±3.12 61.92±4.61 55.97±2.16

ConPL 96.79±3.01 88.65±4.61 85.40±4.66 82.67±2.67 80.82±2.79 79.46±3.26 77.47±2.34 75.82±1.12

AGCKD (Ours) 98.85±1.37 91.43±3.17 87.89±3.89 85.04±2.26 83.12±1.69 81.99±2.34 80.48±2.24 78.56±1.10

Table 1: Accuracy (%) of various methods for each task on Fewrel’s 10-way 5-shot and TACRED’s 5-way 5-shot.

Figure 3: Comparison results for each task on Fewrel’s 10-way 2-shot, Fewrel’s 10-way 10-shot and TACRED’s
5-way 10-shot. The variance is reported as light color regions.

model to face severe catastrophic forgetting, so it454

serves as a lower bound.455

4.2 Main Results456

4.2.1 FewRel Benchmark457

The accuracy of AGCKD for each task on Fewrel’s458

10-way 5-shot, 2-shot and 10-shot is described in459

Table 1 and Fig. 3. From these results, we can460

observe that:461

(1) By comparing the mean in Table 1, we can462

find that AGCKD is significantly higher than the463

traditional method at each time step. The perfor-464

mance in T 1 indicates that AGCKD can effectively465

adopt the general knowledge learned by BERT.466

Meanwhile, AGCKD also achieves state-of-the-art467

performance in T 8, reflecting that the interference468

between different task parameters in AGCKD is469

the least, which mainly benefits from adaptive cor-470

rection of the gradient and efficient decomposition471

of knowledge during model training. As a tradi- 472

tional method of CRE, CEAR requires many train- 473

ing data to learn the memory and embedding of 474

a new task. When there is less training data, the 475

features learned by the model will become unsta- 476

ble, which makes it collapse with the performance. 477

ConPL and ERDA adjust the consistency of embed- 478

ding indirectly only from the perspective of the loss 479

function and data augmentation, which has limited 480

ability to improve following degree. We further 481

discuss the forgetting metrics of ConPL, ERDA 482

and AGCKD in Appendix C. 483

(2) The standard deviation of AGCKD on the 484

final task T 8 remains at a low level compared with 485

the other methods, which indicates that it has a 486

small fluctuation range when faced with different 487

task sequences. It further reflects the robustness of 488

AGCKD under different task sequences, thanks to 489

the gradient correction matrix constraining the off- 490

7



Figure 4: The sum of AOD and ROD of baselines on
FewRel’s 10-way 5-shot. The abscissa represents all 7
task indexes of models.

set of the previous samples’ embedding during pa-491

rameter update. To prove this, we calculate the sum492

of AOD and ROD for each task in the model and493

show them in Fig. 4. It can be seen that AGCKD494

has low-level AOD and ROD on all tasks. In com-495

bination with Table 1, we observe that the smaller496

the sum of AOD and ROD of the model, the higher497

the accuracy. This is also consistent with our pre-498

vious theoretical analysis of the following degree499

and offset distance.500

(3) As is shown in Fig. 3, the performance of501

AGCKD is close to Joint Training, which indicates502

that AGCKD is less affected by catastrophic for-503

getting during training. In this case, we consider504

that more information introduced by new tasks also505

unexpectedly leads to the decline of model perfor-506

mance. Because the training times of samples at507

different time steps may be uneven during joint508

training, AGCKD even exceeds Joint Training on509

some tasks.510

4.2.2 TACRED Benchmark511

The performance of AGCKD for each task on TA-512

CRED’s 5-way 5-shot and 10-shot is shown in Ta-513

ble 1 and Fig. 3. It can be observed from these514

results that AGCKD still has advantages over state-515

of-the-art methods. AGCKD has a strong gener-516

alization ability, which depends on our approach517

without any dataset-specific components.518

4.3 Ablation Study519

To verify the effectiveness of each part in AGCKD,520

we performed ablation experiments. Specifically,521

we separately remove adaptive gradient correc-522

tion (w.o.AGC) and knowledge decomposition523

(w.o.KD). Average ablation results for the final524

tasks are presented in Fig. 5.525

Through the box line diagram, the adaptive gradi-526

Figure 5: Box line diagram of ablation study on
FewRel’s 10-way-5-shot. The vertical axis represents
accuracy of the model on the final task T 8.

ent correction and knowledge deconstruction mod- 527

ule have a great impact on the average accuracy 528

and performance stability of the model. The sepa- 529

rate use of these two modules leads to confusion 530

about the corresponding part of knowledge, which 531

greatly damages the performance of the model. Ac- 532

cording to the definition, while reducing AOD, it 533

also indirectly reduces ROD. Thus, the adaptive 534

gradient correction has a greater impact on the final 535

result. This phenomenon again demonstrates the 536

effectiveness of the adaptive gradient correction 537

algorithm and the importance of reducing the im- 538

pact of subsequent tasks on previous tasks in the 539

embedding space. 540

5 Conclusion 541

In this paper, a method of direct decoupling pa- 542

rameters and modifying gradient is proposed to 543

improve the following degree of samples, which 544

can eventually reduce the catastrophic forgetting 545

for CFRE. Specifically, we first propose the con- 546

cept of the following degree and analyze it from 547

the perspectives of AOD and ROD. The parame- 548

ters of the model are decomposed into general and 549

task-related knowledge based on metric learning. 550

For general knowledge, an adaptive gradient cor- 551

rection algorithm is proposed to reduce the impact 552

of gradient updates on previous knowledge, which 553

can reduce the AOD of samples. For task-related 554

knowledge, we update the parameters discretely 555

and continuously in three different training stages 556

to optimize ROD between prototypes and samples. 557

The theoretical derivation and experimental results 558

on two standard benchmarks verify the superiority 559

of AGCKD. 560
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Limitations561

In practical calculations, a small ROD is a suffi-562

cient and unnecessary condition for better model563

performance. Specifically, if ROD is large and the564

distance between prototypes is also relatively large,565

the model performance will not also be poor. In566

future work, we hope to consider the distance be-567

tween classes in ROD and obtain a necessary and568

sufficient condition for model performance.569

Currently, in the field of NLP, since the570

transformer-based model is the most widely used571

language model, we have only explored gradient572

correction algorithms for the relevant structures in573

the transformer. The performance of AGCKD in574

CFRE based on a transformer shows us the poten-575

tial for designing gradient correction algorithms576

in other model architectures. And we will further577

explore the algorithm for gradient correction of pa-578

rameters in other network structures (such as CNN,579

RNN, etc.).580
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A Mathematical Proof of Adaptive747

Gradient Correction Algorithm748

To prove that the algorithm can adaptively correct749

the gradient so that the model updates have less750

impact on the previous task samples, we record751

H l
i ∈ Rd×1 as the layer l embedding correspond-752

ing to the memory sample of category i and El
i ∈753

Rd×1 as that corresponding to any training sample754

of category i. Since the memory samples are calcu-755

lated according to the maximum cosine similarity756

of the average class sample, the vector angle of757

H l
i and El

i is much smaller than that of H l
j(j ̸=i)758

and El
i (also thanks to the optimization of metric759

learning). C l
i is essentially a linear transformation760

of any vector into the space which is orthogonal to761

H l
i . Accordingly, when the angle between H l

i and762

El
i is small, El

i is approximately equal to zero vec-763

tor after linear transformation through C l
i . From764

a single vector to the entire C l matrix, we can765

get:∆W lEl =
∂Lgen

∂W l (C
lEl) ≈ 0.766

For the FFN layer in BERT, it avoids the inter-767

ference of the gradient update of subsequent tasks768

on the embeddings of previous tasks:769

OutFFN
k = X +WFFNX

= X + (WFFN + γ
∂Lgen

∂WFFN
CFFN )X

= OutFFN
k+1

(11)

770

where OutFFN
k is the output of FFN at time step771

k, X ∈ Rd×1 is [MASK] token embedding of772

any previous sample, and CFFN is calculated by773

memory M̂k.774

For the self-attention module in BERT, we freeze775

the key and value matrices, while the gradient cor-776

rection and parameter update are only performed777

on the query matrix. The common self-attention778

formula is as follows:779

Q = XTW q

K = XTW k

V = XTW v

SelfAttention(Q,K, V ) = softmax(
QKT

√
d

)V

(12)

780

where X = [x1, · · · , x[mask], · · · , xn] ∈ Rd×n781

is the token embedding sequence of any previous 782

sample. We set the updated Q as Q′: 783

Q′ =XT (W q + γ(Cq)T
∂Lgen

∂W q
)

=[q′1, · · · , q[mask], · · · , q′n]T
(13) 784

where vector q′n ∈ R1×d is the nth row of matrix 785

Q′. 786

Q′KT =
q′1k

T
1 q′1k

T
2 · · · q′1k

T
n

...
...

. . .
...

q[mask]k
T
1 q[mask]k

T
2 · · · q[mask]k

T
n

...
...

. . .
...

q′nk
T
1 q′nk

T
2 · · · q′nk

T
n


(14)

787

Let A′ = softmax(Q
′KT
√
d

), then the row vec- 788

tor corresponding to [MASK] token in matrix 789

A′ is consistent with that in A, that is, A′ = 790

[a′1, · · · , amask, · · · , a′n]T . Thus, the embedding 791

of [MASK] token in A′V is consistent with that 792

before the gradient update, i.e. the output of self- 793

attention related to previous tasks is not affected by 794

the updated gradient of subsequent tasks. In other 795

words, our gradient correction method can also 796

avoid the knowledge coverage caused by gradient 797

updates in the self-attention layer. 798

B Training Details 799

The BERT-base (Devlin et al., 2018) is used as the 800

encoder and is trained using AdamW (Loshchilov 801

and Hutter, 2018) optimizer at a learning rate γ = 802

2e − 5. The head of the attention mechanism is 803

set to 8 and the embedding size of BERT is 768, 804

i.e. d = 768. The batch size is set to 5. We 805

train the model one time at the first training step 806

(epoch1 = 1), and three times at the second step 807

and third step (epoch2 = epoch3 = 1). We set 808

α = 0.2 in P sim. The memory is size set to 1 for 809

each class. AGCKD can complete all tasks in about 810

20 minutes using one NVIDIA 4060Ti GPU. We 811

run the model 6 times with different task sequences 812

and report the mean result. 813

C Forgetting Metrics 814

The degree of catastrophic forgetting of AGCKD 815

is measured by the forgetting metrics proposed by 816

Chaudhry et al. (2018). After learning all tasks, the817
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Method Task index
1 2 3 4 5 6 7 Mean

Joint Train 7.07 4.28 3.02 2.00 1.43 3.99 0.50 3.18
SeqRun 49.28 49.08 44.18 39.69 28.93 11.14 7.29 32.80

ERDA 21.52 15.54 13.18 13.14 9.69 9.46 6.93 12.78
ConPL 11.47 6.11 3.79 2.47 0.46 −0.12 −0.98 3.31

AGCKD (Ours) 7.87 5.34 5.39 2.40 2.46 −1.05 0.30 3.24

Table 2: Forgetting (%) of various methods after train-
ing for each task on FewRel’s 10-way-5-shot.

Method Task index
1 2 3 4 5 6 7 8

Related to T 1 2.50 2.40 2.40 1.90 2.10 1.90 2.00 1.60

Related to T̂ k 2.50 4.50 6.40 9.40 11.60 12.20 12.60 16.60

Table 3: The error rate (%) of AGCKD for each task on
D1

test. After the learning of T k, the first line represents
the error rate related to T 1; the second line represents
that related to all tasks visible to the model.

following formula is calculated on all test datasets:818

Fk =
1

n− k

n∑
j=k+1

max
l∈{k,...,j−1}

(al,k − aj,k) (15)819

where al,k is the accuracy of the model on task k820

after the training step l and n is the total number of821

tasks. Fk(k ∈ [1, · · · , n−1]) is the forgetting met-822

rics of task k after all training steps. Obviously, the823

smaller Fk, the less knowledge the model forgets.824

Table 2 shows the forgetting metrics after train-825

ing for each task on FewRel’s 10-way-5-shot. The826

average forgetting metrics of AGCKD are lower827

than that of other methods and are closest to Joint828

Training, which indicates that AGCKD can reduce829

catastrophic forgetting to a certain extent. At the830

same time, we find that even if all the training data831

are available, forgetting still exists. This may be832

because this index does not fully consider the in-833

formation increment of the newly introduced task.834

To observe the forgetting metrics more intu-835

itively, Table 3 directly shows the total error rate836

and that related to T 1 at each time step k on D1
test.837

The errors related to the first learning task of the838

model almost do not continue to increase, which in-839

tuitively reflects that AGCKD can effectively avoid840

the catastrophic forgetting of previous tasks. 841
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