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Inductive Graph Alignment Prompt: Bridging the Gap between
Graph Pre-training and Inductive Fine-tuning From Spectral

Perspective.
Anonymous Author(s)

ABSTRACT
The "Graph pre-training and fine-tuning" paradigm has signifi-

cantly improved Graph Neural Networks(GNNs) by capturing gen-

eral knowledge without manual annotations for downstream tasks.

However, due to the immense gap of data and tasks between the

pre-training and fine-tuning stages, the model performance on

downstream task is still limited. Inspired by prompt fine-tuning

in Natural Language Processing(NLP), many endeavors have been

made to bridge the gap in graph domain. But existing methods

simply reformulate the form of fine-tuning tasks to the pre-training

ones, ignoring the inherent gap of graph data.With the premise that

the pre-training graphs are compatible with the fine-tuning ones,

these methods typically operate in transductive setting. In order

to generalize graph pre-training to inductive scenario where the

fine-tuning graphs might significantly differ from pre-training ones,

we propose a novel graph prompt based method called Inductive

Graph Alignment Prompt(IGAP). Firstly, we unify the mainstream

graph pre-training frameworks and analyze the essence of graph

pre-training from graph spectral theory. Then we identify the two

sources of the data gap in inductive setting: (i) graph signal gap and

(ii) graph structure gap. Based on the insight of graph pre-training,

we propose to bridge the graph signal gap and the graph structure

gap with learnable prompts in the spectral space. A theoretical anal-

ysis ensures the effectiveness of our method. At last, we conduct

extensive experiments among nodes classification and graph classi-

fication tasks under the transductive, semi-inductive and inductive

settings. The results demonstrate that our proposed method can

successfully bridge the data gap under different settings.
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1 INTRODUCTION
Graph Neural Networks(GNNs) taking advantage of message pass-

ing to fuse node features and topological structures, have been

successfully applied in various applications such as Web search,

personal recommendation and community discovery [10, 12, 24,

35, 43]. Traditional GNNs are trained under a supervised man-

ner which not only necessitates laborious manual annotations but

also is susceptible to over-fitting problem. Inspired by the success

of the pre-training model in Natural Language Processing(NLP)

[3, 7, 8, 21, 23, 30] and Computer Vision(CV) [5, 6, 11, 15, 22, 29],

many endeavors have been paid into transplanting the ethos of

"pre-training and fine-tuning" into the domain of graph.

Graph Pre-training and fine-tuning. This paradigm involves

two distinct stages: (i) graph pre-training stage and (ii) fine-tuning

stage. During the graph pre-training stage, GNNs glean general pat-

terns from unannotated data, encompassing many intrinsic graph

properties such as local node feature distributions, topological pat-

terns and the consistent fusion of local and global graph patterns.

Subsequently, in the fine-tuning stage, the GNNs initialized with

the pre-trained parameters can be adapted seamlessly to many

downstream tasks even with scant labels and training epochs.

Although the paradigm of "graph pre-training and fine-tuning"

emancipates GNNs from the burdensome need for extensive man-

ual annotations and empowers them to perceive general graph

patterns to improve downstream tasks, there is still an immense

gap between the pre-training stage and fine-tuning stage limiting

the performance of the pre-trained models. In the domain of NLP,

many innovative prompt based methods are proposed to bridge

this gap [3, 16, 20–22, 38], whose philosophy lies in reformulating

fine-tuning tasks to mirror the format of pre-training objectives

thus the pre-trained knowledge can be transferred seamlessly. Sim-

ilar strategies have been applied in the realm of graphs to narrow

down the gap [9, 25, 33, 34]. However, compared to the gap in NLP,

it is far more challenging in graph scenario [28], especially un-

der the inductive setting. The inductive setting, where fine-tuning

datasets significantly differ from their pre-training counterparts,

is prevalent in the application of pre-training models. In NLP, dif-

ferent language datasets are naturally compatible with each other

because the semantic information is consistent among them. But

in the graph domain, not only the node/edge features might have

disparate distributions but also the topological structures differ sig-

nificantly. This diversity of graph data will result in incompatible

patterns between the pre-training and fine-tuning graphs. We give

an example to illustrate, considering the NLP domain with distinct

corpus of pre-training and fine-tuning datasets: "I feel happy in

passing the exam." and "It’s happy to win that game.", the token

"happy" retains the consistent semantic meaning among them thus

can be transferred easily. While in the graph realm, the users from

1
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different communities might have different social patterns even

thought they are in the same social network, the knowledge spe-

cific to one graph is hard to be transferred to another. Additionally,

the pre-training process usually operates as a black box where the

pre-training dataset is unavailable. These distinctive traits inherent

to inductive scenario raise new challenges for existing methods:

• Transductive Limitation. Although many graph prompt

basedmethods have been proposed to bridge the gap caused

by pre-training and fine-tuning task types as the language

prompts do, thesemethods still ignore the diversity of graph

data [25, 33]. Existing graph prompt based methods oper-

ate under the assumption of compatibility between pre-

training and fine-tuning graphs, meaning all these methods

are all transductivewhere the performance can only be
ensured when GNNs are pre-trained and fine-tuned
on the same graph. Under the inductive setting, the pre-
trained GNNs might have sub-optimal performance and

even negative transfer on the fine-tuning graphs.

• Inaccessibility of Pre-training Data.Due to data privacy
concerns, the GNNs’ pre-training process often operates as

a black box, meaning that we can only get the pre-trained

model with the pre-training dataset unavailable. This lack

of access complicates the fine-tuning process under the

inductive setting. Traditional transfer learning based meth-

ods, which require additional information about the pre-

training dataset to align the representation of the GNNs, are

not suitable for inductive fine-tuning. Graph prompt based

methods might also have the compromised performance in

the absence of pre-training data as a prompt.

In order to generalize the paradigm of "graph pre-training and

fine-tuning" to inductive setting where the fine-tuning graphs sig-

nificantly differ from their pre-training counterparts, we propose a

novel graph prompt based method named Inductive Graph Align-

ment Prompt(IGAP). To address the the data gap without direct

access to the pre-training graph, we first delve into the process of

graph pre-training and then design graph prompts according to

the characteristics of pre-training for inductive fine-tuning. Specifi-

cally, in the graph pre-training stage, we analyze the essence of this

process using spectral graph theory. Our key insight reveals that

graph pre-training predominantly aligns the graph signal
with low-frequent components rather than high-frequent
ones. Then for the inductive fine-tuning stage, we identify two pri-

mary sources contributing to the data gap: (i) graph signal gap and

(ii) topological structure gap. These kinds of gap manifest as node

features perturbation and spectral space misalignment from graph

spectral theory. Based on the understanding of graph pre-training,

we propose an innovative solution for inductive fine-tuning. To

counteract the influence of graph signal perturbation, we introduce

a learnable graph signal prompt that offers adaptive compensations.

Additionally, a spectral space alignment prompt is introduced to

align the 𝐾-smallest frequent components, which rectifies spectral

space misalignment and makes the transfer of essential knowledge

possible. We provide a theoretical analysis to ensure the effective-

ness of our method. Finally, we utilize a label prompt to reformulate

the fine-tuning task to harmonize with the pre-training objective.

We validate the effectiveness of IGAP through extensive experi-

ments under transductive, semi-inductive, and inductive settings

for both node and graph classification tasks. The experimental re-

sults demonstrate the better performance of IGAP in bridging the

gap between graph pre-training and inductive fine-tuning.

2 RELATEDWORK
Graph Pre-training. Graph pre-training aims at leveraging vast

amounts of label-free graph data to equip GNNs with universal

graph knowledge. There are three mainstream graph pre-training

frameworks: (i) subgraph contrastive basedmethods such as GraphCL

[42], GRACE [45], and GCA [46] train the GNNs by differentiating

the negative subgraph patterns from positive ones; (ii) link predic-

tion based methods such as GPT-GNN [14] train the GNNs through

the masked link prediction task; (iii) local-global contrastive based

methods such as DGI [36], ST-DGI [27] utilize the mutual informa-

tion to encode global patterns into local representations.

Graph Transfer Learning. Graph transfer learning aims at facil-

itating the knowledge transfer learned from one task to another.

It can narrow down the gap between the source and target tasks

[26, 31, 39, 44]. These kinds of methods achieve this goal by align-

ing the distribution of the two datasets with the regularization or

generative constraints.

Prompt and Graph Prompt. To bridge the gap between pre-

training and fine-tuning objectives, many prompt based methods

are proposed. Most of the methods are from CV and NLP domains

[3, 8, 11, 15, 21, 22, 30], whose common idea lies at reformulating the

fine-tuning tasks into the pre-training paradigms. Inspired by this

idea, several graph prompt based methods are also proposed: GPPT

[33] incorporates learnable graph label prompts, transforming node

classification into a link-prediction task to narrow down the task

type gap. GraphPrompt [25] unifies the graph prompt templates

and enhance their performance through learnable readout prompt

functions. All-in-One [34] introduces a novel graph token structure

accompanied by a token insertion technique.

However, all these methods are not fit for the inductive fine-tuning

because the transfer learning based methods need addition informa-

tion about the pre-training datasets which is unavailable; The graph

pre-training and graph prompt basedmethods are transductive with

the assumption that the pre-training and fine-tuning graphs have

compatible patterns.

3 PRELIMINARY
In this section we present the preliminary knowledge used in this

paper.

Graph andGraphLaplacian.GraphG is denoted asG = (V, E, 𝑋 ),
whereV is the set of nodes, E is the set of edges and𝑋 is the graph

signal matrix
1
. A set containing 𝑁 graphs is denoted as SG =

{G1, ...,G𝑁 }. The Graph G can also be represented as G = (𝐴,𝑋 )
where 𝐴 represents the adjacent matrix. The graph Laplacian 𝐿

of G = (𝐴,𝑋 ) is calculated as 𝐿 = 𝐷 − 𝐴 where 𝐷 is the degree

matrix. The graph Laplacian 𝐿 is a real symmetric matrix thus can

be diagonalized as [4]:

𝐿 = 𝑈Λ𝑈𝑇 (1)

1
This can also be called node features, for the convenience of graph signal process, we

call it node signal matrix in this paper.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Inductive Graph Alignment Prompt: Bridging the Gap between Graph Pre-training and Inductive Fine-tuning From Spectral Perspective.Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: The framework of IGAP. We first align the graph signals and then we align the spectral space between the pre-train
graph and fine-tune graph thus the pre-trained GNN model can be applied. A task-specific prompt is used to align the pre-train
task and the fine-tune task.

where𝑈 = [𝜐1, 𝜐2, .., 𝜐𝑁 ] is the eigenvectors and 𝜐𝑖 is the eigenvec-
tor corresponding to the eigenvalue _𝑖 (_1 < _2 < ..._𝑁 ). The graph

signal Fourier transform is defined as:

𝑥 = 𝑈𝑇 𝑥 ∀𝑥 ∈ 𝑋 (2)

and the inverse graph signal Fourier transform is:

𝑥 = 𝑈𝑥 (3)

Graph Neural Networks(GNNs).We use 𝑓\ to denote the GNN

layer parameteriezed by \ . In spectral domain it can be represented

as filter kernel 𝑔\ (.). The message passing in spectral domain is

actually the convolution between the filter kernels and the graph

signals, which can be presented as [4]:

𝑍 = 𝑓\ (𝐴,𝑋 ) = 𝑈𝑔\ (Λ)𝑈𝑇𝑋 =
∑︁
𝑖

𝜐𝑖𝑔\ (_𝑖 )𝜐𝑇𝑖 𝑥 (4)

4 METHOD
In this section, we first analyze the essence of graph pre-training

process from the graph spectral theory. Then based on the analysis,

we propose a novel graph prompt method named Inductive Graph

Alignment Prompt(IGAP) to deal with the challenges in the induc-

tive fine-tuning, whose framework is shown in Figure 1. At last,

we conduct a theoretical analysis to ensure the effectiveness of our

proposed method.

4.1 Exploring the Essence of Graph Pretraining.
In order to design effective graph prompts for the inductive fine-

tuning, it’s indispensable to understand the process of graph pre-

training. Graph pre-training frameworks can be mainly categorized

into three types: (i) link prediction, (ii) subgraph contrastive learn-

ing, and (iii) local-global contrastive learning. For the convenience

of analysis, we first reformulate these diverse frameworks into an

unified one which highlights their common essence.

4.1.1 Unifying Pre-training Framework. We contend that all these

pre-training frameworks fundamentally operate as a contrastive

process, distinguishing positive samples from negative ones. This

contrastive form is encapsulated in the InfoNCE loss [13] as follows:

𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 = −
∑︁
𝑖

𝑙𝑜𝑔
𝑠𝑖𝑚(𝜎 (𝑓\ (G𝑖 )), 𝜎 (𝑓\ (G+

𝑖
)))∑

𝑠𝑖𝑚(𝜎 (𝑓\ (G𝑖 )), 𝜎 (𝑓\ (G
−/+
𝑖

))) (5)

where G𝑖 represents the 𝑖-th graph view, G+
𝑖
and G−

𝑖
are positive

and negative samples respectively.
2 𝑠𝑖𝑚(, ) is the similarity func-

tion and 𝜎 represents a readout head. Different graph pre-training

methods are consistent with this formulation, differing only in how

they define positive/negative samples and similarity functions.

Subgraph Contrastive Learning. This approaches ensure that
similar graph views have similar representations, while disparate

graph views are distinctly represented [42, 45, 46]. They naturally

have the contrastive formation where positive samples are the small

perturbated ego-subgraphs centered on the same node and negative

samples are the ego-subgraphs centered on different nodes.

Link Prediction. The link prediction based methods equip GNNs

with universal graph knowledge by predicting randomly masked

edges [14]. It increases the link probability between the nodes with

masked edges while lowering the probability between the actually

nonadjacent nodes. This process can also be represented as the

form 5 where positive samples are the subgraphs centered on the

nodes with masked edges while negative samples are the subgraphs

centered on non-adjacent nodes. The link possibility calculation is

denoted as the 𝑠𝑖𝑚(, ) function.
Local-Global Contrastive Learning. The local-global contrastive
based methods enable GNNs to capture the consistent patterns

among the local and global perspectives [27, 36]. These methods

assimilate representations between subgraphs and the entire graph

2G−/+
𝑖

represents all the positive and negative samples.

3
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while maintaining dissimilarity with feature-shuffled graphs. The

local-global contrastive based methods also naturally have the In-

foNCE formation where the positive samples are the subgraphs

while the negative samples are the shuffled ones.

4.1.2 The Spectral Character of Graph Pre-training. In order to dig

out the essential characteristics of graph pre-training to facilitate

the inductive graph fine-tuning, we delve into the pre-training

process from a graph spectral perspective. We begin with the con-

clusion which is presented as the theorem 1, and then provide its

proof.

Theorem 1. Graph pre-training aligns the graph signal 𝑥 more
with the low-frequent components than the high-frequent components,
where 𝑠𝑖𝑚(𝑥,𝜐1) > ... > 𝑠𝑖𝑚(𝑥,𝜐𝑁 ) for _1 < .. < _𝑁 .

For analytical convenience, we use the contrastive pre-training

paradigm as an example since we have demonstrated that all the

mainstream graph pre-training frameworks can be reformulated

as this. There are two major ways to generate positive/negative

graph samples: (i) graph structure perturbation and (ii) graph signal

perturbation. For the generation of positive samples, the structure

perturbation is small and does not rotate the spectral basis, which

can be denoted as 𝜐𝑖+ = 𝑞𝑖+ +𝜐𝑖 where 𝑞𝑖+ is small and parallel with

𝜐𝑖 ; The graph signal perturbation actually is a small, angle-stable

transformation denoted as a symmetric matrix 𝐹+ = 𝐼 + 𝐹𝑠𝑝 where

𝐹𝑠𝑝 is sparse with small non-zero components. For the generation

of negative samples, the structure perturbation introduces high-

frequent noise to the spectral basis described as 𝜐𝑖− = 𝑞𝑖− + 𝜐𝑖 . The
graph signal transformation is described as a matrix 𝐹− = 𝐼 + 𝐹𝑑𝑡
where 𝐹𝑑𝑡 is dense. For the graph signal 𝑥 , we have the proof:

Proof. The message passing process is described as:

𝑧 =
∑︁
𝑖

𝜐𝑖𝑔\ (_𝑖 )𝜐𝑇𝑖 𝑥

𝑧+ =
∑︁
𝑖

(𝑞𝑖+ + 𝜐𝑖 )𝑔\ (_𝑖+ ) (𝑞𝑖+ + 𝜐𝑖 )𝑇 (𝐼 + 𝐹𝑠𝑝 )𝑥

𝑧− =
∑︁
𝑖

(𝑞𝑖− + 𝜐𝑖 )𝑔\ (_𝑖− ) (𝑞𝑖− + 𝜐𝑖 )𝑇 (𝐼 + 𝐹𝑑𝑡 )𝑥

(6)

Where 𝑧, 𝑧+ and 𝑧− are normalized. The InfoNCE loss can be

expressed as:

𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 (𝑧, 𝑧+, 𝑧−)

= −𝑙𝑜𝑔

∑
𝑖
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 )𝑔\ (_+𝑖 )𝜐

𝑇
𝑖
(𝐼 + 𝐹𝑠𝑝 )𝑥 + 𝛽𝑖∑

𝑖, 𝑗
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 )𝜐𝑇𝑖 (𝑞 𝑗+/− + 𝜐 𝑗 )𝑔\ (_ 𝑗+/− ) (𝑞 𝑗+/− + 𝜐 𝑗 )𝑇 (𝐼 + 𝐹𝑠𝑝/𝑑𝑡 )𝑥

(7)

Where 𝛽𝑖 is the influence of 𝑞𝑖+ on the graph signal 𝑥 and is very

small. We assume that 𝑞 𝑗− =
∑
𝑖 𝛼𝑘,𝑗𝜐𝑘 where

∑
𝑖 𝛼𝑘,𝑗 = 1, thus the

formulation 7 is transformed as:

𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 (𝑧, 𝑧+, 𝑧−)

= 𝑙𝑜𝑔{1 +

∑
𝑖
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 ) (1 + 𝛼2𝑖,𝑖 )𝑑𝑒𝑡 (𝐼 + 𝐹𝑑𝑡 )𝑖𝑔\ (_𝑖− )𝜐

𝑇
𝑖
𝑥∑

𝑖
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 )𝑑𝑒𝑡 (𝐼 + 𝐹𝑠𝑝 )𝑖𝑔\ (_𝑖+ )𝜐𝑇𝑖 𝑥 + 𝛽𝑖

+

∑
𝑖, 𝑗≠𝑖

𝑥𝑇𝜐𝑖𝑔\ (_𝑖 ) (𝛼𝑖, 𝑗 )𝑑𝑒𝑡 (𝐼 + 𝐹𝑑𝑡 ) 𝑗𝑔\ (_ 𝑗− ) (
∑
𝑖 𝛼𝑖, 𝑗𝜐𝑖 + 𝜐 𝑗 )𝑇 𝑥∑

𝑖
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 )𝑑𝑒𝑡 (𝐼 + 𝐹𝑠𝑝 )𝑖𝑔\ (_𝑖+ )𝜐𝑇𝑖 𝑥 + 𝛽𝑖

}

≈ 𝑙𝑜𝑔{1 +

∑
𝑖
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 )

∑
𝑗 𝛼𝑖, 𝑗 (1 + _𝑑𝑡,𝑗 )𝑔\ (_ 𝑗− )𝜐𝑇𝑗 𝑥∑

𝑖
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 ) (1 + _𝑠𝑝,𝑖 )𝑔\ (_+𝑖 )𝜐

𝑇
𝑖
𝑥

+

∑
𝑖
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 ) (1 +

∑
𝑗 𝛼

2

𝑖, 𝑗
(1 + _𝑑𝑡,𝑗 )𝑔\ (_ 𝑗− ))𝜐𝑇𝑖 𝑥∑

𝑖
𝑥𝑇𝜐𝑖𝑔\ (_𝑖 ) (1 + _𝑠𝑝,𝑖 )𝑔\ (_+𝑖 )𝜐

𝑇
𝑖
𝑥

}

= 𝑙𝑜𝑔{1 +

∑
𝑖
(𝜐𝑇
𝑖
𝑥)𝑔\ (_𝑖 ) (1 +

∑
𝑗 (𝛼𝑖, 𝑗 + 𝛼2𝑖, 𝑗 ) (1 + _𝑑𝑡,𝑗 ))𝑔\ (_ 𝑗− ) (𝜐

𝑇
𝑖
𝑥)∑

𝑖
(𝜐𝑇
𝑖
𝑥)𝑔\ (_𝑖 )2 (1 + _𝑠𝑝,𝑖 ) (𝜐𝑇𝑖 𝑥)

}

(8)

Where _𝑠𝑝,𝑖 is the 𝑖-smallest the eigenvalue of 𝐹𝑠𝑝 , _𝑑𝑡,𝑖 is the 𝑖-

smallest the singular value of 𝐹𝑑𝑡 and _𝑠𝑝,𝑖 ≪ _𝑑𝑡,𝑗 . Since the

negative perturbation mainly contains the high-frequent noise cor-

responding to each spectral components, implying that 𝛼𝑖, 𝑗 < 𝛼𝑖+1, 𝑗
given _𝑖− < _𝑖+1− . Besides, the graph patterns are also disturbed

unevenly with _1 < _1− < ... < _𝑁 < _𝑁 − . We deduce that

1+∑𝑗 (𝛼𝑖,𝑗+𝛼2

𝑖,𝑗 ) (1+_𝑑𝑡,𝑗 )𝑔\ (_ 𝑗− )
𝑔\ (_𝑖 ) increases as _𝑖 decreases. Therefore,

the minimization of loss 8 ensures 𝜐𝑇
1
𝑥 > .. > 𝜐𝑇

𝑁
𝑥 given

∑
𝑖 𝜐
𝑇
𝑖
𝑥 =

1, thus validating the theorem 1. □

The theorem 1 provides an important clue for inductive fine-

tuning: the knowledge of the pre-training process is mainly concen-

trated on the low-frequent components, which makes it possible to

be transferred under the alignment of low-frequent space.

4.2 Inductive Graph Alignment Prompt
During the inductive fine-tuning stage, data gap is the most sig-

nificant challenge which can be attributed to two major sources:

(i) graph signal gap and (ii) graph structure gap. The graph signal

gap refers to differences in distribution between the fine-tuning

graph features and the pre-training ones, while the graph structure

gap indicates disparities in their structural properties. In this sub-

section, we focus on these challenges posed by inductive setting

and propose a novel graph prompt based method named Inductive

Graph Alignment Prompt(IGAP) to address these gaps.

4.2.1 Graph Signal Gap. To address the graph signal gap, we pro-

pose a graph signal prompt. We view this gap as a signal perturba-

tion and propose compensating for it by using a learnable graph

signal prompt. Specifically, for graph signal 𝑥𝑖 the compensation is

expressed as follows:

𝑥𝑖 = 𝑥𝑖 + 𝑝𝑖 (9)

Where 𝑝𝑖 represents the learnable prompt for 𝑥𝑖 . However, it’s

expensive if we employ a unique learnable prompt for each signal,
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which not only increases the prompt parameters but also raises

the risk of over-fitting problem. To mitigate complexity and avoid

over-fitting, we propose to utilize a set of graph signal prompts 𝑃𝑠 =

[𝑝𝑠1 , .., 𝑝𝑠𝐿 ]. The graph signal compensation is then transformed as

follows:

𝑥𝑖 = 𝑥𝑖 +
∑︁
𝑗

𝛼𝑖𝑗𝑝𝑠 𝑗 (10)

Where 𝛼𝑖
𝑗
is also a learnable parameter. By doing so, the complexity,

which originally scaled with 𝑂 (𝑁 × 𝐹 ) for a graph signal matrix of

size 𝑁 × 𝐹 , is reduced to 𝑂 (𝑁 × 𝐿 + 𝐿 × 𝐹 ) with 𝐿 ≪ 𝑁 .

4.2.2 Graph Structure Gap. The graph structure gap is essentially

the misalignment of spectral space between the pre-training graph

and the fine-tuning graph. The pre-trained GNNs cannot be directly

applied to the fine-tuning graph because the filters will be invalid in

the new space. Fine-tuning GNNs directly might not only compro-

mise the general knowledge but also lead to over-fitting problem.

Besides, with the pre-training graph data unavailable, there is no

reference for the direct alignment. To fully leverage the pre-trained

knowledge, we propose a simple yet effective alignment strategy

based on the characteristics of pre-training process. A theoretical

analysis is also provided to ensure the effectiveness.

Spectral Space Alignment: A Recessive Approach Accord-

ing to the theorem 1, pre-trained GNNs align graph signals more

with low-frequent components than high-frequent ones. Conse-

quently, it’s possible to align the basis of low-dimensional spec-

tral space corresponding to low-frequent components while main-

taining the main knowledge of the pre-trained GNNs. Supposing

the pre-training graph and the fine-tuning graph are denoted as

G𝑝𝑡 and G𝑓 𝑡 respectively. 𝑈𝑝𝑡 = [𝜐𝑝𝑡1 , 𝜐𝑝𝑡2 , .., 𝜐𝑝𝑡𝑁 ] ∈ 𝑅𝑁×𝑁
and

𝑈𝑓 𝑡 = [𝜐𝑓 𝑡1 , 𝜐𝑓 𝑡2 , .., 𝜐𝑓 𝑡𝑀 ] ∈ 𝑅𝑀×𝑀
are the eigenvectors of G𝑝𝑡 and

G𝑓 𝑡 respectively. We can reduce the spectral space dimension of

the pre-training graph into the fine-tuning one and only consider

the alignment of 𝐾-dimensional spectral subspace based by𝑈𝑝𝑡𝐾 =

[𝜐𝑝𝑡1 , ..., 𝜐𝑝𝑡𝐾 ] ∈ 𝑅𝑀×𝐾
and 𝑈𝑓 𝑡𝐾 = [𝜐𝑓 𝑡1 , ..., 𝜐𝑓 𝑡𝑘 ] ∈ 𝑅

𝑀×𝐾
. Since

𝑈𝑝𝑡𝐾 is inaccessible and we propose a recessive transformation

matrix prompt 𝑃𝑡 which is learnable:

𝑈𝑝𝑡𝐾 = 𝑃𝑡𝑈𝑓 𝑡𝐾 (11)

Subsequently, the fine-tuning graph signal can be projected into

the aligned spectral space, and the aligned low-frequent signal is

calculated as follows:

𝑍 = 𝑃𝑡𝑈𝑓 𝑡𝐾𝑔\ (Λ𝑓 𝑡 )𝑈
𝑇
𝑓 𝑡𝐾

𝑃𝑇𝑡 �̃� (12)

Where the pre-trained knowledged can be transferred recessively

to the fine-tuning stage.

Why Align the 𝐾-Smallest Spectral Components? Here we

analyze the why the low-frequent spectral components alignment

can guarantee the effectiveness under the inductive setting. In the

spectral domain, the orthonormal spectral components describe

distinct graph smooth patterns and each graph spectral compo-

nent represents a specific graph smooth pattern. The graph signal

encompasses a comprehensive description of all these patterns.

Considering a normalized graph signal 𝑥 , we define the informative

level and the noise level corresponding to the smooth pattern 𝑖 as

𝜐𝑇
𝑖
𝑥 and 1 − 𝜐𝑇

𝑖
𝑥 respectively, since the more compatible between

the graph signal and the pattern, the more smooth patterns are

contained, and the less compatible between the graph signal and

the pattern, the more noise is contained. The spectral component

signal-to-noise ratio is defined as:

𝑆𝑝_𝑆𝑁𝑅(𝜐𝑖 ) =
𝜐𝑇
𝑖
𝑥

1 − 𝜐𝑇
𝑖
𝑥

(13)

The graph signal-to-noise ratio is represented as the average of all

the spectral component signal-to-noise ratios:

𝑆𝑁𝑅(𝑥) = 1

𝑁

∑︁
𝑖

𝜐𝑇
𝑖
𝑥

1 − 𝜐𝑇
𝑖
𝑥

(14)

This ratio describes the purity of useful patterns in the graph signal.

According to Theorem 1, we have 𝑆𝑝_𝑆𝑁𝑅(𝜐1) > 𝑆𝑝_𝑆𝑁𝑅(𝜐2) >
... > 𝑆𝑝_𝑆𝑁𝑅(𝜐𝑁 ). If we align all the components, it will induce

considerable noise. But if we choose less components, many useful

patterns will be lost and thus the performance will be compro-

mised. Therefore, we make a balance by aligning the 𝐾-smallest

components.

WhyDoes the Spectral SpaceHave LowDimension?According
to the theorem 1, the projections of the graph signal on the high-

frequent components are smaller, and these different components

are mutually orthogonal. Consequently, the information contained

in these high-frequent axes in the spectral space is relatively limited.

Hence, the spectral space actually has the compacted dimension.

4.2.3 Task Type Gap. During the fine-tuning stage, the task type

might also differ from the pre-training one. To preserve the gener-

alization ability of pre-trained GNNs, we propose aligning the task

types. We demonstrate that the main kinds of downstream tasks

like node classification, graph classification, and link prediction

can also be reformulated into the contrastive form. As the link pre-

diction task has been discussed above, here we focus on the node

classification task and graph classification task. The Cross-Entropy

loss of classification is:

𝐶𝐸 =
∑︁
𝑖

∑︁
𝑗

− 𝑦𝑖, 𝑗 𝑙𝑜𝑔(𝜎\ 𝑗 (𝑧𝑖 )) − (1 − 𝑦𝑖, 𝑗 )𝑙𝑜𝑔(1 − 𝜎\ 𝑗 (𝑧𝑖 ))

(15)

Where 𝑦𝑖, 𝑗 is label 𝑗 of the node 𝑖 , and if we view the parameters

of 𝜎\ 𝑗 as the label representation 𝑙 𝑗 , the loss in Equation 15 can be

transformed into:

𝐶𝐸 =
∑︁
𝑖

− 𝑙𝑜𝑔 𝑠𝑖𝑚(𝑙𝑖 , 𝑧𝑖 )
𝑠𝑖𝑚(𝑙 𝑗 , 𝑧𝑖 )

− 𝑙𝑜𝑔 𝑠𝑖𝑚(𝑙 𝑗 , 𝑧𝑖 ) (16)

The optimization in Equation 16 is equivalent to the optimization of

the InfoNCE loss 5. The graph classification task can be transformed

in the same way. For classification downstream task with 𝑑 labels,

we formulate the classification InfoNCE loss function as follows

using trainable label representations 𝑃𝑙 = [𝑝1, .., 𝑝𝑑 ]:

𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 = −
∑︁
𝑖

𝑙𝑜𝑔
𝑠𝑖𝑚(𝑝𝑖 , 𝑧𝑖 )∑
𝑗
𝑠𝑖𝑚(𝑝 𝑗 , 𝑧𝑖 ) (17)

The inductive fine-tuning optimization problem is expressed as:

𝑎𝑟𝑔𝑚𝑖𝑛
(𝑃𝑠 ,𝑃𝑡 ,𝑃𝑙 )

−
∑︁
𝑖

𝑙𝑜𝑔
𝑠𝑖𝑚(𝑝𝑖 , 𝑧𝑖 )∑
𝑗
𝑠𝑖𝑚(𝑝 𝑗 , 𝑧𝑖 )

∀𝑝 𝑗 ∈ 𝑃𝑙 ∀𝑧𝑖 ∈ 𝑍

𝑆.𝑇 . 𝑍 = 𝑃𝑡𝑈𝑓 𝑡𝑔\ (Λ𝑓 𝑡 )𝑈𝑇𝑓 𝑡𝑃
𝑇
𝑡 �̃�

(18)
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Where 𝑔\ is fixed, 𝑠𝑖𝑚(, ) is the similarity function and in this paper

we use cosine similarity.

5 EXPERIMENTS
In this section, we conduct experiments on both node classification

and graph classification tasks under three distinct settings: (i) trans-

ductive setting where the pre-training graph is directly used for

fine-tuning; (ii) semi-inductive setting where the pre-training graph

and the fine-tuning graph are distinct but share some overlap; (iii)

inductive setting where the pre-training graph and the fine-tuning

graph have no overlap.

Datasets Nodes Edges Attributes Classes

Citeseer 4,230 10,674 602 6

Amazon-Photo 7,650 238,162 745 8

CoraFull 19,793 126,842 8,710 70

CoraFull-F 2,995 16,316 8,710 7

Arxiv-P 91,605 421,382 128 24

Arxiv-F 6,337 13,364 128 6

Paper100M-P 86,428 728,614 128 26

Paper100M-F 16,892 104,732 128 10

Reddit-P 51,648 2,253,856 602 18

Reddit-F 8,680 390,616 602 7

Table 1: Statistics of the node classification datasets

Datasets Graphs Avg Nodes Avg Edges Tasks

Molhiv 41,127 25.5 54.9 1

Molmuv 93,087 24.2 52.6 17

Moltox21 7,831 18.6 38.6 12

Molbace 1,513 34.1 73.7 1

Molbbbp 2,039 24.1 51.9 1

Table 2: Statistics of the graph classification datasets

5.1 Datasets and Metrics
The settings of datasets and metrics are described as follows, more

details about the data process can be found in Appendix .1:

Node Classification: In the transductive setting, we use Citeseer

[2] and Amazon-Photo [32] for both pre-training and fine-tuning. In

the semi-inductive setting, we conduct experiments on two dataset

pairs [2, 37]: (CoraFull, CoraFull-F) and (Arxiv-P, Arxiv-F) where

CoraFull and Arxiv-P are used for pre-training while CoraFull-F

and Arxiv-F are used for fine-tuning. CoraFull-F is sampled from

CoraFull; Arxiv-P and Arxiv-F are sampled from Arxiv; Notably,

in the semi-inductive setting, the nodes selected for fine-tuning

are also part of the pre-training datasets. In the inductive setting,

we conduct experiments on two dataset pairs [12]: (Paper100M-P,

Paper100M-F) and (Reddit-P, Reddit-F) [1]. Paper100M-P and Reddit-

P are used for pre-training while Paper100M-F and Reddit-F are

used for fine-tuning. Paper100M-P and Paper100M-F are sampled

from Paper100M; Reddit-P and Reddit-F are sampled from Reddit;

In the inductive setting, there is no overlap between nodes and

labels. The information on these datasets can be found in Table

1. We sample 100 nodes per class for the training set in Citeseer,

Amazon-Photo, and CoraFull-F. For Arxiv-F, Paper100M-F, and

Reddit-F, we sample 150, 250, and 250 nodes respectively. For all

the fine-tuning datasets the remaining nodes are randomly split

as 2:8 for evaluation and testing. We use classification accuracy as

metrics. The statistics of these datasets can be found in Table 1.

Graph Classification: In the transductive setting, we conduct

experiments on Molhiv and Moltox21 [40]. In the semi-inductive

setting, we use Molhiv for pre-training and Molbace, Molbbbp

for fine-tuning. In the inductive setting, GNNs are pre-trained on

Molmuv and fine-tuned on Molbace and Molbbbp as there is no

overlap between datasets. For all these datasets, we use RDKit
3
[19]

to pre-process them as their official settings and we randomly split

these datasets as 4:2:4 for training, evaluation and testing. ROC-

AUC is employed as the evaluationmetric for all graph classification

datasets. The statistics of these datasets can be found in Table 2.

5.2 Baselines
To evaluate the effectiveness of our method, we compare it with

several state-of-the-art baselines, which can be categorized as fol-

lows:

Supervised Learning: We train GCN [18], GraphSAGE [12] and

GAT [35] from scratch on the fine-tuning graphs in the supervised

manner.

Pre-training+Fine-tuning: We pre-train GNNs in the pre-training

graphs then fine-tune them. The pre-training methods we use are

GraphCL [42] and DGI [36].

Pre-training+Prompt Fine-tuning: We pre-train the GNNs and

fine-tune them using graph prompts to bridge the task gap. The

graph prompt methods we use are GPPT [33], GraphPrompt [25],

and All-in-One [34].

5.3 Experimental Settings.
We present the settings of all these methods, the detail information

can be found in Appendix .2.

Model Settings. We use 2-layer GNN with 128 hidden neurons as

the backbone. For the supervised baselines, we append a 2-layer

Neural Network with Relu as the task head. For the graph pre-

training baselines, we pre-train GNNs with a head and replace it

with a new trainable head for fine-tuning, with the pre-trained

GNNs frozen. For the graph prompt baselines, we use the official

suggested templates to design prompts on the fine-tuning datasets.

We apply grid search to find the optimal model hyperparameters

for all these baselines. For IGAP, we set 𝐿 as 16 and 𝐾 as 32. We

use GraphCL as the pre-training framework and use a new 2-layers

Neural Network with ReLU as the task-specific head during fine-

tuning. Only the task-specific head and the prompts are trainable

with the GNNs frozen. For the graph classification tasks, we use

mean pooling to calculate graph representation for all the baselines.

Training Settings. For the pre-training and supervised learning

baselines, the learning rate is set as 0.0001. The maximum epoch

number is set to 500, saving checkpoint every 50 epochs. For the

3
Open-source cheminformatics; http://www.rdkit.org
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Methods

Transductive Semi-Inductive Inductive

Citeseer Amazon-Photo CoraFull-F Arxiv-F Paper100M-F Reddit-F

GCN 70.76% 90.62% 75.76% 86.26% 71.13% 89.48%

GraphSAGE 71.12% 89.88% 76.12% 86.08% 71.89% 88.25%

GAT 69.75% 90.09% 75.05% 86.47% 72.28% 88.12%

GraphCL+GCN 73.81% 91.14% 77.26% 84.73% 67.34% 85.50%

GraphCL+GraphSAGE 73.56% 91.61% 77.56% 85.05% 68.92% 86.33%

DGI+GCN 72.94% 90.36% 75.94% 84.32% 66.24% 85.23%

DGI+GraphSAGE 73.69% 90.45% 76.69% 85.56% 65.32% 85.55%

GPPT+GCN 73.10% 92.54% 76.10% 83.71% 68.88% 86.04%

GPPT+GraphSAGE 72.53% 91.89% 76.53% 84.80% 66.98% 85.61%

GraphPrompt+GCN 74.08% 92.22% 77.08% 84.58% 68.51% 85.67%

GraphPrompt+GraphSAGE 74.15% 92.18% 78.15% 83.16% 70.12% 84.29%

All-in-One+GCN 73.64% 92.24% 77.88% 85.63% 66.51% 85.10%

All-in-One+GraphSAGE 75.11% 91.82% 77.81% 85.06% 69.72% 86.85%

IGAP+GCN 74.44% 91.84% 79.46% 87.15% 72.16% 90.06%
IGAP+GraphSAGE 74.23% 92.78% 79.23% 87.69% 72.74% 90.35%

IGAP+GAT 74.55% 91.35% 78.55% 87.55% 73.68% 89.56%

Table 3: Performance of node classification task. The best two results are bold.

Methods

Transductive Semi-Inductive Inductive

Molhiv Moltox21 Molbace Molbbbp Molbace Molbbbp

GCN 0.7606 0.7298 0.7812 0.6523 0.7812 0.6523

GraphSAGE 0.7532 0.7310 0.7895 0.6458 0.7895 0.6458

GraphCL+GCN 0.7678 0.7330 0.7991 0.6651 0.7525 0.6389

GraphCL+GraphSAGE 0.7775 0.7418 0.7948 0.6605 0.7677 0.6456

GPPT+GCN 0.7563 0.7361 0.7763 0.6572 0.7717 0.6434

GPPT+GraphSAGE 0.7619 0.7366 0.7956 0.6626 0.7639 0.6466

All-in-One+GCN 0.7936 0.7447 0.7950 0.6788 0.7671 0.6550

All-in-One+GraphSAGE 0.7865 0.7529 0.7963 0.6819 0.7740 0.6562

IGAP+GCN 0.7886 0.7435 0.8041 0.6796 0.7902 0.6644
IGAP+GraphSAGE 0.7752 0.7472 0.8022 0.6837 0.7933 0.6629

Table 4: Performance of graph classification task. The best two results are bolded.

fine-tuning stage, the learning rate is set as 0.001. The maximum

epoch number is 100 for all the baselines and we save checkpoint

ever 10 epochs. We only report the best performance among all the

checkpoints for each baseline. For both stages, we use the Adam

[17] without weight decay as the optimizer.

5.4 Effectiveness
The node classification and graph classification results are presented

in Table 3 and Table 4 respectively. More baselines are tested in

Appendix .3. Here are the key observations:

Node Classification:

• Transductive Setting: Graph pre-training based meth-

ods outperform supervised learning methods because pre-

training allows GNNs to grasp more universal knowledge

and prevent over-fitting problem. Graph prompt based

methods outperform graph pre-training by narrowing down

the gap between pre-training and fine-tuning tasks. IGAP

achieves competitive performance compared to graph prompt

based methods as it also bridges the gap.

• Semi-inductive Setting: Graph pre-training and graph

prompt based methods outperform supervised methods in

some cases(e.g., CoraFull) but not in other(e.g., Arxiv). The

possible reason is that CoraFull-F is more compatible with

CoraFull but Arxiv-P and Arxiv-F have more gap. Graph

prompt based methods bridge the task type gap and thus

perform better than the pre-training based methods. Our

method achieves the best performance as it succeed in nar-

rowing down the data gap.

• Inductive Setting: Graph pre-training based methods per-

form worse than supervised learning, demonstrating that
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Method Paper100M-F Reddit-F

GraphSAGE 71.13% 88.25%

GraphCL 68.92% 86.33%

All-in-One 69.72% 86.85%

IGAP-GraphSAGE 72.74% 90.35%

IGAP(No 𝑃𝑠 ) 70.58% 88.26%

IGAP(No 𝑃𝑡 ) 68.67% 87.44%

IGAP(No 𝑃𝑙 , end2end) 72.01% 89.28%

Table 5: Different Prompt Influence in Inductive Setting.

the data gap will result in negative transfer to the down-

stream tasks. Graph prompt based methods also suffer sig-

nificantly because they fail to bridge the data gap. Our

method outperforms all the baselines, demonstrating its

success in bridging the data gap in the inductive setting.

Graph Classification:
• Transductive and Semi-inductive Settings: Graph pre-

training based methods outperform supervised learning,

indicating that the general pre-trained knowledge can miti-

gate the over-fitting problem. Graph prompt-basedmethods

narrowing down the task type gap and thus have some im-

provements. Our proposed method achieves better perfor-

mance compared with other graph prompt based methods.

• Inductive Setting: Graph pre-training and graph prompt-

based methods do not perform well because the pre-trained

knowledge cannot be directly applied to dissimilar fine-

tuning graphs. It’s worthy to note that there is less negative

effect compared to the node classification task in the induc-

tive setting, the main reason lies in: the molecular graphs

have relative simple graph patterns thus the knowledge are

easy to be transferred. Our proposed method achieves bet-

ter performance, illustrating the effectiveness of narrowing

down the data gap.

5.5 Ablation Study
To demonstrate the effectiveness of different prompt modules, we

conduct an ablation study in inductive node classification task and

the results are shown in Table 5, the graph classification results

can be found in Appendix .4. From the results, we find that the per-

formance significantly decreases without spectral space alignment,

indicating the crucial role of the alignment in inductive scenario.

Besides, no signal alignment also results in a decrease in perfor-

mance but is not as much as no space alignment, the possible reason

might be that the space alignment can compensate the graph signal

gap. At last, fine-tuning end-to-end has a minor impact on perfor-

mance. This might be attributed to that the general knowledge can

compensate for the task type gap.

5.6 Hyperparameter Study
We conduct experiments to test the influence of hyperparameters on

node classification task and more results can be found in Appendix

.5. We set the 𝐿 as 8, 16, 32, 64 and𝐾 as 16, 32, 64, 128 and the results

can be found in Table 6 and Table 7 respectively. We find small 𝐿

𝐿 Paper100M Reddit

8 71.96% 89.17%

16 72.74% 90.35%

32 72.93% 91.61%

64 71.99% 90.88%

Table 6: Influence of 𝐿.

𝐾 Paper100M Reddit

16 71.24% 89.46%

32 72.74% 90.35%

64 73.22% 90.59%

128 73.32% 90.25%

Table 7: Influence of 𝐾 .

(a) Visualization of GraphSage. (b) Visualization of IGAP.

(c) Visualization of GraphPrompt. (d) Visualization of GraphCL.

Figure 2: Visualization of Different Baselines on Reddit-F.

and 𝐾 will make the alignment difficult because of less parameters

but if we set 𝐿 and 𝐾 too large it will result in higher costs and

make it hard for fine-tuning with redundant parameters.

5.7 Visualization
We randomly sample 300 nodes from Reddit-F and visualize the rep-

resentations of different baselines by t-SNE, the results are shown in

Figure 2. GraphCL and GraphPrompt have difficult in discriminat-

ing some node classes because the pre-trained GNNs have compro-

mised performance in inductive scenario. IGAP has better cluster

property which corroborates the effectiveness of the alignment.

6 CONCLUSION
In this paper, we propose a novel graph prompt based method to

deal with the data gap in inductive fine-tuning. We first analyze the

essence of graph pre-training process under an unified framework.

Then for the inductive fine-tuning stage, we identify the two main

sources of the data gap: (i) graph signal gap and (ii) graph structure

gap. Based on the insight of graph pre-training, we propose to align

the graph signal and spectral space with the learnable prompts.

Theoretical analysis is also given to justify our method. Extensive

experiments shows the effectiveness in bridging the data gap under

the inductive setting.
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.1 Data Process
In this subsection we dilate the data process under different experi-

mental settings: (i) transductive setting, (ii) semi-inductive settings

and (iii) inductive settings. We conduct node classification and

graph classification tasks respectively.

Datasets Nodes Edges Attributes Classes

Citeseer 4,230 10,674 602 6

Amazon-Photo 7,650 238,162 745 8

CoraFull 19,793 126,842 8,710 70

CoraFull-F 2,995 16,316 8,710 7

Arxiv-P 91,605 421,382 128 24

Arxiv-F 6,337 13,364 128 6

Paper100M-P 86,428 728,614 128 26

Paper100M-F 16,892 104,732 128 10

Reddit-P 51,648 2,253,856 602 18

Reddit-F 8,680 390,616 602 7

Table 8: Statistics of the node classification datasets

The datasets process for node classification tasks can be de-

scribed as follows, whose statistic information can be found in

Table 8.

• Transductive Setting:We use Citeseer [2] and Amazon-

Photo [32] for the transductive experiments, where the

same dataset is used for pre-training and fine-tuning. In the

fine-tuning stage, we randomly sample 100 nodes per class

as the training set, and the remaining nodes are randomly

split as 2:8 for training evaluation and testing.

• Semi-Inductive Setting:We conduct graph pre-training

on two kinds of dataset: CoraFull and Arxiv-P [2, 37], then

we fine-tune the pre-trained models on the subgraphs cor-

responding to these two datasets: CoraFull-F and Arxiv-F.

Arxiv-P is randomly sampled from Arxiv which contains

the 24 node classes. Then for the fine-tuning subgraphs,

we randomly sample a part of classes in the pre-training

dataset and the subgraphs specifc to these classes are used

for fine-tuning. The class numbers of CoraFull-F and Arxiv-

F are 7 and 6 respectively. We randomly sample 100 and 150

nodes per class for the CoraFull-F and Arxiv-F fine-tuning

respectively. The remaining nodes are randomly split as 2:8

for training evaluation and testing.

• Inductive Setting: We conduct graph pre-training on two

kinds of dataset: Paper100M-P [12] and Reddit-P [1], then

we fine-tune the pre-trainedmodels on another two datasets:

Paper100M-F and Reddit-F. For the pre-training datasets,

Paper100M-P and Reddit-P are sampled from Paper100M

and Reddit based on the randomly selected classes. The

class numbers of Paper100M-P and Reddit-P are 26 and 18

respectively. As for the fine-tuning datasets, we randomly

sample another part of classes in the Paper100M and Reddit

without overlap with the pre-training classes. The graphs

specific to these classes are used for fine-tuning. The class

numbers of Paper100M-F and Reddit-F are 10 and 7 respec-

tively. We randomly sample 250 nodes per class for both

the Paper100M-F and Reddit-F fine-tuning. The remaining

nodes are randomly split as 2:8 for training evaluation and

testing.

Datasets Graphs Avg Nodes Avg Edges Tasks

Molhiv 41,127 25.5 54.9 1

Molmuv 93,087 24.2 52.6 17

Moltox21 7,831 18.6 38.6 12

Molbace 1,513 34.1 73.7 1

Molbbbp 2,039 24.1 51.9 1

Table 9: Statistics of the graph classification datasets

The datasets process for graph classification tasks can be de-

scribed as follows, whose statistic information can be found in

Table 9.

• Transductive Setting: We conduct experiments Molhiv

and Moltox21 [40], where the same dataset is used for pre-

training and fine-tuning. In the fine-tuning stage, we ran-

domly split these datasets as 4:2:4 for training, evaluation

and testing. RDKit
4
[19] is used to pre-process them as their

official settings.

• Semi-Inductive Setting:We conduct graph pre-training

on Molhiv and the fine-tune the pre-trained GNNs on Mol-

bace and Molbbbp. There is overleap between the pre-

training dataset and the fine-tuning ones because Molbace

and Molbbbp are the sub-datasets of Molhiv. In the fine-

tuning stage, we split Molbace and Molbbbp as 4:2:4 for

training, evaluation and testing and we also use RDKit to

pre-process them.

• Inductive Setting:We conduct graph pre-training on Mol-

muv and then we fine-tune the pre-trained GNNs on Mol-

bace and Molbbbp. There is no overlap between the pre-

training dataset and the fine-tuning ones. The process of

the fine-tuning datasets is the same as the semi-inductive

setting.

.2 Experimental settings
In this subsection we describe the experimental settings in detail.

Baseline Settings.We use 2-layer GNN with 128 hidden dimen-

sions for all the baselines as the backbone model. For the supervised

learning based methods [12, 18, 35] we use a 2-layer Neural Net-

work with Relu as the task-specific head. For the graph pre-training

based methods, we have the following settings: (i) For GraphCL

[42] we use feature perturbation, edge mask and subgraph mask as

the data augmentation. (ii) For DGI [36] we use the mean-pooling

as the readout function and 2-layer Neural Network with LeakRelu

as the representation head. Binary-Cross-Entropy loss is used as

the pre-training loss function. Signal shuffle is used as the negative

samples generation function as the paper suggests. After the pre-

training stage, the GNNs are frozen, and we use a new task-specific

head which is a 2-layer Neural Network for fine-tuning. For the

graph prompt based methods, we have the following settings: (i) For

GPPT [33] we adapt the official settings using learnable task tokens

4
Open-source cheminformatics; http://www.rdkit.org
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and structure tokens. Since in the semi-inductive and inductive set-

tings the pre-training graphs are unavailable, we use the training

nodes from fine-tuning graphs to construct the structure tokens.

(ii) For GraphPrompt [25] we use the learnable readout function to

reformulate the node classification task to the pre-training form

as the papper suggests, for the graph classification task we use the

mean-pooling as the graph representation function and reformulate

in the same way. (iii) For All-in-One [34], we reformulate the node

classification task and graph classification task into graph-level

task as the paper does. The prompt tokens and structure tokens are

designed in the same way as the paper on the inductive fine-tuning

datasets, we also use the meta-learning to initialize the prompt

parameters. We apply grid search to find the optimal model hy-

perparameters for each baseline. For IGAP, we set 𝐿 as 16 and 𝐾

as 32 as default. We use GraphCL as the pre-training framework

whose hyperparameters are decided through grid search. In the

inductive fine-tuning, we a new 2-layer Neural Network as the task

specific head for fine-tuning. We only train the head parameters

and the prompt parameters with the parameters of GNN frozen.

For all the baselines, we use mean-pooling to calculate the graph

representation for the graph classification tasks.

Experimental Settings. For the pre-training and supervised learn-
ing baselines, the learning rate is set as 0.0001 and the maximum

training epoch number is set as 500. We save checkpoint every 50

epochs for the supervised learning baselines and pre-training meth-

ods. The best performance of each supervised learning baseline

is used. For the graph fine-tuning and graph prompt fine-tuning,

we set the learning rate as 0.001 and we fine-tune the 100 epochs

with saving checkpoint every 10 epochs. We test the last 4 pre-

training checkpoints with all the 10 fine-tuning checkpoints for

every baseline(40 results in total for every method) and we only

report the best performance. For both stages we use Adam [17]

without weight decay as the optimizer.

.3 More Baselines Experiments
In this subsection we conduct node classification tasks and graph

classification tasks on more baselines, the baselines are descirbed

as:

Supervised Learning: We train GCN [18], GraphSAGE [12], GAT

[35] and GIN [41] from scratch on the fine-tuning graphs in a

supervised manner.

Pre-training+Fine-tuning: We pre-train GNNs in the pre-training

graphs then fine-tune them. The pre-training methods we use are

GraphCL [42], DGI [36], GCA [46] and GPT-GNN[14].

Pre-training+Prompt Fine-tuning: We pre-train the GNNs and

fine-tune them using graph prompts to bridge the task gap. The

graph prompt methods we use are GPPT [33], GraphPrompt [25],

and All-in-One [34].

Graph Transfer Learning: Although graph transfer learning is

not fit for the inductive setting, we provide the pre-training datasets

in the fine-tuning stage to testify some sate-of-the-art graph trans-

fer learning baselines. The baselines we use include: DANE[44],

UDA-GCN [39]. Notably, these methods are proposed for node

representation alignment thus not fit for the graph classification

tasks.

As for the newly added baselines, the layer number of GIN is

set as 2 and the 2-layer Neural Network is used as the reduce func-

tion. The training setting is the same as the GCN. As for GCA and

GPT-GNN, the hyperparameters are also decided by grid search

and the pre-training setting is the same as GraphCL. For DANE

and UDA-GCN, we provide the pre-training datasets for their align-

ment. We use their official training strategies and search the best

hyperparameters. We pre-train 500 epochs and fine-tune 300 epochs

for DANE and UDA-GCN. We save the model checkpoint ever 50

epochs, we report the best performance among all the checkpoints.

The experimental results are shown in Table 10 and Table 11.

Node Classification Task. For the node classification task, we

have the following observations:

• Transductive setting: As the observation in the experi-

mental results, graph pre-training based methods and graph

prompt based methods perform better than the supervised

learning based methods, which means the general knowl-

edge can mitigate over-fitting problem. Transfer learning

based methods do not perform as well as the pre-training

based methods, the possible reason lies that the domain

adaptation hurts some general knowledge. Our methods

perform achieves comparable performance with the prompt

based methods.

• Semi-Inductive setting: Graph pre-training based meth-

ods perform better than the supervised learning basedmeth-

ods on CoraFull-F mainly because the fine-tuning dataset

has less gap with the pre-training one. But the performance

will deteriorate as the gap increase(e.g. Arxiv-F). GPT-GNN

performs worse than other pre-training baselines, it’s be-

cause GPT-GNN is more sensitive to the structural pertur-

bation. Graph prompt based methods achieve the improved

performance compared to the pre-training baselines mainly

because they narrow down the task type gap. Transfer

learning based methods perform better than the prompt

based methods because theymake use of the patterns of pre-

training graphs to align some of the representations. Our

proposed method achieves the best performance, showing

the success in bridging the data gap.

• Inductive setting: Graph pre-training based methods and

graph prompt based methods perform worse than the su-

pervised learning, which demonstrates that the data gap

will lead to negative transfer. The transfer learning based

methods achieve comparable performance with the super-

vised methods because they make use of the pre-training

graph and revise the unmatched graph patterns, but hurts

the generalization ability. Our proposed method achieves

better performance than all the baselines which shows the

effectiveness of narrowing down the data gap.

Graph Classification Task. For the graph classification task, we

have the following observations:

• Transductive settingAnd Semi-Inductive Settings:Graph
pre-training based methods and graph prompt base meth-

ods perform better than the supervised baselines because

the pre-trained knowledge improve the downstream tasks

and avoid over-fitting when fine-tuning. However, GPT-

GNN perform not as well as other pre-training baselines,
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Methods

Transductive Semi-Inductive Inductive

Citeseer Amazon-Photo CoraFull-F Arxiv-F Paper100M-F Reddit-F

GCN 70.76% 90.62% 75.76% 86.26% 71.13% 89.48%

GraphSAGE 71.12% 89.88% 76.12% 86.08% 71.89% 88.25%

GAT 69.75% 90.09% 75.05% 86.47% 72.28% 88.12%

GIN 71.59% 90.56% 75.03% 86.13% 71.24% 89.20%

GraphCL+GCN 73.81% 91.14% 77.26% 84.73% 67.34% 85.50%

GraphCL+GraphSAGE 73.56% 91.61% 77.56% 85.05% 68.92% 86.33%

DGI+GCN 72.94% 90.36% 75.94% 84.32% 66.24% 85.23%

DGI+GraphSAGE 73.69% 90.45% 76.69% 85.56% 65.32% 85.55%

GCA+GCN 72.46% 90.34% 76.70% 84.33% 68.96% 86.58%

GCA+GraphSAGE 73.19% 91.33% 77.32% 84.82% 68.56% 86.07%

GPT-GCN 72.50% 89.56% 74.11% 81.89% 63.41% 83.34%

GPT-GraphSAGE 71.61% 90.51% 74.78% 82.62% 62.42% 83.25%

GPPT+GCN 73.10% 92.54% 76.10% 83.71% 68.88% 86.04%

GPPT+GraphSAGE 72.53% 91.89% 76.53% 84.80% 66.98% 85.61%

GraphPrompt+GCN 74.08% 92.22% 77.08% 84.58% 68.51% 85.67%

GraphPrompt+GraphSAGE 74.15% 92.18% 78.15% 83.16% 70.12% 84.29%

All-in-One+GCN 73.64% 92.24% 77.88% 85.63% 66.51% 85.10%

All-in-One+GraphSAGE 75.11% 91.82% 77.81% 85.06% 69.72% 86.85%

DANE+GCN 72.02% 90.33% 77.81% 85.21% 88.96% 87.45%

DANE+GraphSAGE 72.22% 90.17% 77.37% 85.35% 89.68% 88.10%

UDA-GCN 71.80% 89.67% 77.65% 85.83% 71.27% 89.61%

UDA-GraphSAGE 71.55% 89.14% 77.49% 85.30% 72.15% 89.28%

IGAP+GCN 74.44% 91.84% 79.46% 87.15% 72.16% 90.06%
IGAP+GraphSAGE 74.23% 92.78% 79.23% 87.69% 72.74% 90.35%

IGAP+GAT 74.55% 91.35% 78.55% 87.55% 73.68% 89.56%

Table 10: Performance of node classification task. The best two results are bold.

the possible reason is that GPT-GNN relies too much on the

graph structure information while the molecular graphs

have relative monotonous graph patterns compared to the

large social networks. Our method can achieve competi-

tive and even better performance compared with the graph

prompt based methods.

• Inductive setting: Graph pre-training based methods and

graph prompt based methods perform not as well as the

supervised learning methods because the disparate graph

patterns might invalidate some of the pre-training knowl-

edge. GPT-GNN perform much worse for the same reason

mentioned before. Our proposed method achieves better

performance as it mitigates the influence of data gap.

.4 Ablation Study For Inductive Graph
Classification

In this subsection we conduct ablation study on inductive graph

classification tasks, the results are shown in Table 12. From the

results we find the similar observations with the node classification

tasks. The performance will decrease a lot without spectral space

and graph signal alignment but it has less influence when no label

prompt, the reason might lie in that the transferred knowledge

compensate the influence of task type. Particularly, we find the

influence of no spectral space alignment is not as significant as the

node classification tasks, it mainly because the graph patterns in

molecular graph are more compatible among different datasets as

the graph is relative small.

.5 Hyperparameter Study For Inductive Graph
Classification

In this subsection we conduct hyperparameter study on inductive

graph classification tasks, the results are shown in Table 13 and

Table 14 respectively. From the results we find that the small 𝐿 will

have negative influence on the performance of inductive graph fine-

tuning but large 𝐿 have limited improvement, which is consistent

with the observations of the node classification tasks. Besides,𝐾 has

less influence on graph classification tasks which mainly because

the molecular graphs have relative compatible graph patterns.
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Methods

Transductive Semi-Inductive Inductive

Molhiv Moltox21 Molbace Molbbbp Molbace Molbbbp

GCN 0.7606 0.7298 0.7812 0.6523 0.7812 0.6523

GraphSAGE 0.7532 0.7310 0.7895 0.6458 0.7895 0.6458

GAT 0.7523 0.7160 0.7891 0.6439 0.7747 0.6536

GIN 0.7561 0.7289 0.7844 0.6426 0.7886 0.6582

GraphCL+GCN 0.7678 0.7330 0.7991 0.6651 0.7525 0.6389

GraphCL+GraphSAGE 0.7775 0.7418 0.7948 0.6605 0.7677 0.6456

DGI+GCN 0.7517 0.7276 0.7764 0.6495 0.7331 0.6119

DGI+GraphSAGE 0.7579 0.7258 0.7627 0.6508 0.7315 0.6077

GCA+GCN 0.7618 0.7367 0.7805 0.6544 0.7452 0.6280

GCA+GraphSAGE 0.7532 0.7374 0.7854 0.6571 0.7489 0.6325

GPT+GCN 0.7410 0.7205 0.7509 0.6319 0.7211 0.5975

GPT+GraphSAGE 0.7345 0.7217 0.7646 0.6261 0.7150 0.6019

GPPT+GCN 0.7563 0.7361 0.7763 0.6572 0.7717 0.6434

GPPT+GraphSAGE 0.7619 0.7366 0.7956 0.6626 0.7639 0.6466

GraphPrompt+GCN 0.7654 0.7389 0.7755 0.6637 0.7603 0.6339

GraphPrompt+GraphSAGE 0.7767 0.7429 0.7861 0.6610 0.7615 0.6396

All-in-One+GCN 0.7936 0.7447 0.7950 0.6788 0.7671 0.6550

All-in-One+GraphSAGE 0.7865 0.7529 0.7963 0.6819 0.7740 0.6562

IGAP+GCN 0.7886 0.7435 0.8041 0.6796 0.7902 0.6644
IGAP+GraphSAGE 0.7752 0.7472 0.8022 0.6837 0.7933 0.6629

Table 11: Performance of graph classification task. The best two results are bolded.

Method Molbace Molbbbp

GraphSAGE 0.7895 0.6458

GraphCL 0.7677 0.6456

All-in-One 0.7740 0.6562

IGAP-GraphSAGE 0.7933 0.6629

IGAP(No 𝑃𝑠 ) 0.7732 0.6409

IGAP(No 𝑃𝑡 ) 0.7696 0.6445

IGAP(No 𝑃𝑙 , end2end) 0.7812 0.6615

Table 12: Different Prompt Influence in Inductive Setting On Graph Classification.

𝐿 Molbace Molbbbp

8 0.7876 0.6556

16 0.7933 0.6629

32 0.7912 0.6698

64 0.7945 0.6631

Table 13: Influence of 𝐿.

𝐾 Molbace Molbbbp

16 0.7915 0.6590

32 0.7933 0.6629

64 0.7926 0.6638

128 0.7957 0.6634

Table 14: Influence of 𝐾 .
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