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Abstract001

Large language models (LLMs) are widely rec-002
ognized for their exceptional capacity to cap-003
ture semantics meaning. Yet, there remains no004
established metric to quantify this capability.005
In this work, we introduce a quantitative met-006
ric, Information Emergence (IE), designed007
to measure LLMs’ ability to extract semantics008
from input tokens. We formalize “semantics”009
as the meaningful information abstracted from010
a sequence of tokens and quantify this by com-011
paring the entropy reduction observed for a012
sequence of tokens (macro-level) and individ-013
ual tokens (micro-level). To achieve this, we014
design a lightweight estimator to compute the015
mutual information at each transformer layer,016
which is agnostic to different tasks and lan-017
guage model architectures. We apply IE in018
both synthetic in-context learning (ICL) sce-019
narios and natural sentence contexts. Exper-020
iments demonstrate informativeness and pat-021
terns about semantics. While some of these pat-022
terns confirm the conventional prior linguistic023
knowledge, the rest are relatively unexpected,024
which may provide new insights. Our codes025
are available at: https://anonymous.4open.026
science/r/Emergence/.027

1 Introduction028

One of the most elusive and captivating attributes029

of large language models (LLMs) is their ability to030

learn semantics from inputs across diverse domains031

(Chen, 2023; Chang et al., 2024; Minaee et al.,032

2024). However, it is unclear how to quantitatively033

measure the capability of LLMs in capturing se-034

mantics from texts.035

Numerous existing tasks indirectly reflect simi-036

lar capabilities through evaluating LLMs’ perfor-037

mances (e.g., accuracy) on a specific task, such as038

“instruction following” (Zeng et al., 2023), “search-039

ing” (Sun et al., 2023), and “reasoning” (Yang et al.,040

2024). Nevertheless, these evaluation methods rely041

on manually curating datasets and tasks tailoring042

different aspects, resulting in time-consuming and 043

domain-specific findings. In addition, these evalu- 044

ations typically focus on coarse-grained text, not 045

providing interpretations for the behavior of finer- 046

grained tokens. Lastly, existing evaluation metrics 047

which vary across different tasks can lead to var- 048

ied performances, and even contradicting conclu- 049

sions (Schaeffer et al., 2023). 050

In response to the above limitations, we pro- 051

pose a task-agnostic and closed-form metric, which 052

we refer to as Information Emergence (IE)1, de- 053

signed to reflect and deterministically quantify 054

the ability of LLMs to extract meaningful seman- 055

tics from input tokens. To begin with, we con- 056

struct a mathematical formalism capable of mod- 057

eling semantics. In essence, semantics naturally 058

emerge as a meaningfully organized ensemble of 059

tokens (Hilpert and Saavedra, 2020; Apidianaki, 060

2023). Consequently, tokens are considered mi- 061

croscopic (micro) observations with sophisticated 062

patterns in a sentence, whereas semantics repre- 063

sent macroscopic (macro) observations emerging 064

with more predictable behaviors. Inspired by infor- 065

mation theory (Bedau, 1997, 2008), we formalize 066

the model’s proficiency in semantics understanding, 067

i.e., information emergence, as the difference of the 068

entropy reduction between micro-level and macro- 069

level. In another word, a better model proficient 070

in deriving semantics from tokens, in compar- 071

ison to other models, ought to render a higher 072

entropy reduction for a global sequence than for 073

a single token. 074

To compute IE in transformer models, as dis- 075

cussed earlier, we need to mathematically measure 076

entropy reduction for both micro and macro lev- 077

els. Given the auto-regressive nature of the next- 078

token-prediction (NTP) mechanism, at any layer 079

l in transformer, the most micro-level transition 080

1The “Information Emergence" here and “Emergence" in
LLM-related research are two different notions, we discuss
their difference in Section 2.2 and Section 5.3.
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can be naturally framed as the probability ph0
l |h

0
l−1

081

for an isolated token h0l , whereas the macro-level082

transition can be formulated as phT
l |h0

l−1,h
1
l−1,...,h

T
l−1

083

across T tokens. We resort to the mutual infor-084

mation between successive transformer layers and085

adopt a practically effective estimation algorithm086

motivated by (Belghazi et al., 2018). Therefore, we087

can measure the IE value for any token at any trans-088

former layer, reflecting the strength of the LLM’s089

capability in extracting semantics from the histori-090

cal context.091

To validate the effectiveness of IE, we devise092

a suite of comprehensive experiments encompass-093

ing two different scenarios. In the first scenario,094

we curate a group of synthetic datasets under the095

ICL setting with different context domains. In096

the second scenario, we collect two wild datasets097

consisting of real-world natural language ques-098

tions/answers. Under both scenarios, we experi-099

ment with different LMs including GPT-2 (Rad-100

ford et al., 2019), GEMMA (Team et al., 2024),101

and OpenLlama (Computer, 2023). In alignment102

with our hypothesis, we show that IE offers a high-103

level informativeness through semantics faithful-104

ness and sensitivity - the richer the semantics, the105

higher the IE. Furthermore, we obtain 3 interesting106

findings: 1) IE increases token-by-token in natu-107

ral texts, whereas, in ICL-style texts, IE increases108

only when a new demonstration appears. 2) There109

is a strong correlation between specific hallucina-110

tion phenomenons and a high variance in IE scores.111

3) Distinctive patterns in IE have been observed112

between human-written and LLM-generated texts,113

revealing IE’s potential in automatically recognis-114

ing LLM generations.115

Overall, the main contributions could be summa-116

rized below:117

• We introduce IE, a novel, reasonably vali-118

dated, and task-agnostic metric to determin-119

istically quantify the semantic understanding120

capability of LLMs.121

• We introduce a light-weight implementation122

method for evaluating IE, which can be ap-123

plied to extremely large and closed-source124

LMs like GPT-4 (Achiam et al., 2023).125

• Empirical evidence demonstrates that IE can126

uncover previously unknown and essential pat-127

terns in areas such as ICL, Emergence, and128

hallucination.129

2 Related Work 130

2.1 Evaluation on LLM Capabilities 131

The prevalent body of research extensively mea- 132

sures the capabilities of LLMs across various tasks 133

by employing substantial benchmark datasets (Sri- 134

vastava et al., 2023; Wang et al., 2024; Zhu et al., 135

2024). Additionally, a significant amount of re- 136

search focuses on the performance of LLMs con- 137

cerning specific capabilities such as adaptability 138

to different domains (Afzal et al., 2024), human- 139

like cognition (opinions, attitudes, etc.) (Ma et al., 140

2024), followed with input instructions (Zeng et al., 141

2023), text searching capability (Sun et al., 2023), 142

and reasoning ability (Yang et al., 2024). In con- 143

trast to these studies, our work concentrates on an 144

essential yet abstract ability of LLMs - the ability 145

to extract semantics from tokens. 146

2.2 Information Emergence and Emergence 147

“Information Emergence” and “Emergence” are two 148

concepts with similar names but entirely different 149

meanings. Emergence is defined as a capability 150

that does not exist in smaller models but appears 151

in larger ones (Srivastava et al., 2023; Lu et al., 152

2023; Yu and Dong, 2022; Liu et al., 2024). Most 153

commonly, as the model size increases, the perfor- 154

mance on many tasks rapidly improves. IE is a 155

concept defined and validated in Information The- 156

ory (Bedau, 1997, 2008). It describes phenomena 157

observable at the macroscopic level but unobserv- 158

able at the microscopic level. 159

3 Method 160

3.1 How to Model Semantics in LLMs 161

In this paper, we identify the transformer block 162

as the fundamental unit for LMs2. Specifically, 163

we employ l = 0, 1, . . . , L − 1 to index trans- 164

former blocks within a language model, where 165

L represents the total number of blocks. For in- 166

stance, GPT-2 XL (1.6B parameters) comprises 12 167

blocks (L = 12), and Gemma-2B totals 18 blocks 168

(L = 18). For any transformer block l, given an 169

input sequence of token length T and hidden state 170

dimension D, the input representation is given by 171

Hl = {h0l , h1l , h2l , . . . , h
T−1
l } and the output repre- 172

sentation is Hl+1 = {h0l+1, h
1
l+1, h

2
l+1, . . . , h

T−1
l+1 }, 173

where H ∈ RT×D and ht ∈ R1×D. Without loss 174

of generality, we hypothesize that the multi-layer 175

blocks constitute a Markov process. 176

2We focus on decoder-only language models.
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Figure 1: The analogy of auto-regressive process in NTP
to Markov process. Taking the output representation of
token2 in Block 0 (h2

1) as an example, which receives
information from input representations of h0

0, h1
0, and

h2
0,satisfying p

h2
l+1|H

⩽t
l

= ph2
l+1|h

0
l ,h

1
l ,h

2
l
.

Hypothesis 1 (Markov Process Analogy). The177

auto-regressive process of NTP mechanism in multi-178

layer blocks undergoes a Markovian stochastic179

process following a transition probability of any180

htl+1 with pht
l+1|h

0
l ,h

1
l ,h

2
l ,...,h

t
l
, simply denoted by181

p
ht
l+1|H

⩽t
l

.182

To simplify the analogy for easier understand-183

ing, Figure 1 omits normalization layers, MLP lay-184

ers, and residual structures between transformer185

blocks, and thus the output of l-th block is directly186

considered as the input to l + 1-th block (Hl+1).187

However, in all our real implementations, we re-188

tain the exact transformer output at every layer, i.e.,189

hl+1 = hl + attention(hl) +MLP (hl).190

Accordingly, we could categorize token vari-191

ables within each sequence into two distinct cate-192

gories: microscopic (micro) variables and macro-193

scopic (macro) variables. A micro variable refers194

to a token which is solely influenced by a single to-195

ken as the input. For instance, h0 satisfies ph0
l+1|h

0
l
.196

Whereas macro variables aggregate information197

from all micro variables and thus encompass to-198

kens which are influenced by all the tokens within199

the sequence as the input. An example could be200

hT−1
l+1 which satisfies phT−1

l+1 |h0
l ,h

1
l ,...,h

T−1
l

.201

In summary, the NTP mechanism can be viewed202

as a behavior that increasingly coarsens from the203

most micro to the most macro scale and finally204

forms meaningful semantics. Hence, the macro205

level represents the semantics level and the micro206

level indicates the token level. Our defined IE207

commences with the discovery that the trans-208

mission probabilities of macro and micro vari-209

ables differ in dynamic processes. (instantiated210

in Example 1).211

Example 1. Given T binary tokens Hl =212

{h0l , h1l , . . . , h
T−1
l } ∈ {0, 1}T as inputs, for sim-213

plicity, we assume all variables are micro vari-214

ables: ∀htl+1 ∈ Hl+1 satisfies pht
l+1|h

t
l

(the sim- 215

plest Markov process, and in the subsequent part 216

of this Example, we use p to simply denote this tran- 217

sition probability). The output representations are 218

also binary, i.e., Hl+1 ∈ {0, 1}T . We assume an 219

evolution rule which enables the parity of the sum 220

of all output variables equal to the sum of all inputs 221

with probability γ. If Hl satisfies the uniform dis- 222

tribution, the evolution rule entails the probability 223

of the output Hl+1 : 224

p(Hl+1|Hl) =

{ γ
2T−1 , if ⊎T−1

t=0 htl+1 = ⊎
T−1
t=0 h

t
l

1−γ
2T−1 , otherwise

(1) 225

where ⊎T−1
t=0 h

t
l :=1 if

∑T−1
t=0 htl is even 226

and ⊎T−1
t=0 h

t
l :=0 if odd. For exam- 227

ple, if Hl={0, 0, 0}, Hl+1 can be one of 228

{0, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0} with proba- 229

bility γ, leading to γ
23−1 chance for each candidate 230

above. Each of the remaining value for Hl+1 has 231

probability 1−γ
23−1 . 232

With the assumption of micro dependency 233

pht
l+1|h

t
l
, we can derive the transition proba- 234

bility of a micro variable as p(htl+1=0|htl) = 235

p(htl+1=1|htl) = 0.5. Finally, let hma be the macro 236

variable with hma=⊎T−1
t=0 h

t. Then the transition 237

probability of a macro variable becomes: 238

p(hma
l+1|hma

l ) =

{
γ, when hma

l+1 = hma
l

1− γ, when hma
l+1 ̸= hma

l
(2) 239

and it is different from micro’s. 240

Example 1 elucidates an interesting phenomenon 241

of IE: The macro variable hma is not induced by 242

any individual micro variable but a collective of 243

them. As a result, it shows different phenomenon 244

from any micro variable3. 245

Furthermore, to quantify the difference in trans- 246

mission probabilities at the macro (semantics level) 247

and micro (token level) in dynamic processes, we 248

view it as a process of entropy reduction (Rosas 249

et al., 2020; Hoel et al., 2013, 2016) and employ 250

mutual information for modeling: 251

Definition 1 (Information Emergence in LLMs). 252

For any transformer block l, let hma
l be the macro 253

variable (hma
l satisfies p

hma
l+1|H

⩽T
l

) and let hmi
l 254

be the micro variable (hmi
l satisfies phmi

l+1|h
mi
l

), 255

MI(·, ·) represents the mutual information, thus 256

3In fact, researchers in dynamics have proposed the Su-
pervenience hypothesis (Bedau, 1997, 2008) to support this
conclusion, but this is beyond the scope of our discussion.
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the strength of IE in block l can be described as:257

E(l) = MI(hma
l+1, h

ma
l )−

∑T−1
t=0 MI(hmi_t

l+1 , hmi_t
l )

T
(3)258

259

Definition 1 describes how to estimate IE. To260

illustrate, suppose an input sequence contains three261

tokens ‘large language model’, with their rep-262

resentations at the lth block denoted as Hl =263

{h0l , h1l , h2l }. To compute the mutual information264

at the micro level, we need to make sure each265

micro token is positioned at the beginning of266

the sequence to avoid the influence from other to-267

kens due to the auto-regressive nature of the NTP268

mechanism. Specifically, there are three micro269

variables ({hmi_0
l }L−1

l=0 , {hmi_1
l }L−1

l=0 , {hmi_2
l }L−1

l=0 )270

that correspond to ‘large’, ‘language’, and ‘model’271

respectively. When calculating {hmi_0
l }L−1

l=0 , we272

treat a single token as the input text (that is, the273

input is ‘large’). Similarly, the other two mi-274

cro variables are computed when ‘language’ and275

‘model’ are respectively treated as the input text.276

These modified inputs ensure that each micro277

variable only depends on itself in the previous278

block. Meanwhile, the macro variable {hma
l }

L−1
l=0279

is given by hma
l = h2l for the original input se-280

quence ‘large language model’. Finally, we have281

E(l) = MI(hma
l+1, h

ma
l )− 1

3(MI(hmi_0
l+1 , hmi_0

l ) +282

MI(hmi_1
l+1 , hmi_1

l ) +MI(hmi_2
l+1 , hmi_2

l )).283

From an information theory perspective, E(l) >284

0 indicates that when the function of transformer285

block l results in a higher reduction of uncertainty286

(entropy) on the whole sequence (macro variable)287

compared to the individual tokens (micro vari-288

ables), there is a higher chance of capturing the col-289

lective semantics. Consequently, IE can be briefly290

understood as “how confident with which a lan-291

guage model, based on previous tokens, defi-292

nitely predicts the next token with a lower en-293

tropy in semantics”.294

3.2 How to Estimate IE in LLMs?295

It is not feasible to directly compute the mutual296

information in Eq. 3 using Kullback-Leibler (KL)297

divergence, as the input lies in a high-dimensional298

continuous space. To address that, we resort to an299

approximation method using mean values proposed300

in Belghazi et al. (2018):301

DKL(P||Q) = lim sup
f :Ω→R

EP[f ]− log(EQ[e
f ]) (4)302

where f represents a function that maps Q to Gibbs 303

distribution by dG = 1
Z e

fdQ, where Z = EQ[e
f ]. 304

Naturally, f can be a neural model. Thereby, Equa- 305

tion 4 can be equivalently represented as optimiz- 306

ing the error function L: 307

L =
1

B

B∑
b=1

(fθ(x
b||yb))− log(

1

B

B∑
b=1

efθ(x
b||yi ̸=b))

(5) 308

where θ denotes the parameters for f , || denotes 309

the concatenation operation and B is the batch 310

size. x, y ∈ RD are two inputs for comput- 311

ing the mutual information MI(x, y). xb||yb 312

corresponds to sampling from the joint distribu- 313

tion PXY , while xb||yi ̸=b corresponds to sam- 314

pling from the marginal distribution PX and PY
4. 315

When L converges to the minimum L̂, we can 316

obtain the final estimated mutual information as 317

MI(x, y)=− loge2 ∗L̂. (More details and proofs 318

are shown in Belghazi et al. (2018).) 319

To get the IE value E(l) in Eq. 3, we com- 320

pute MI(hma
l+1, h

ma
l ) by replacing xb and yb in 321

Eq. 5 with hma
l+1,s and hma

l,s obtained by applying 322

the LM to the same input sequence s, whereas re- 323

placing yi ̸=b with hma
l,s′ using a different sequence 324

s′ ̸= s. Similar operations apply when comput- 325

ing MI(hmi_t
l+1 , hmi_t

l ). (Refer to Appendix A for a 326

complete algorithm for estimator.) 327

4 Implementation 328

Our algorithm requires that the number of samples 329

is sufficiently large (over 300k) to provide a good 330

estimate of the mutual information. Meanwhile, 331

the length of each sequence within a dataset should 332

be kept the same to facilitate position-wise observa- 333

tion and meaningful computation. Due to resource 334

constraints, our comparative analysis is limited to 335

GPT2-large (812M), GPT2-XL (1.61B), GEMMA 336

(2.51B), and OpenLlama (3B) models. Fortunately, 337

this parameter range is sufficient to observe varia- 338

tions and regularities of IE. For those LLMs with 339

extremely large size or closed resource (e.g., GPT- 340

4, Claude3, etc.), we design another efficient strat- 341

egy that enables their IE evaluations as shown in 342

Section 6.3. All computational experiments can 343

be conducted on one NVIDIA GeForce RTX 3090 344

GPU. The estimator f in Eq. 4 is a model of a 345

10-layer neural network comprising linear layers 346

4In our implementation, the batch size was increased to en-
compass the entirety of the sample set to ensure the rationality
of PXY , PX and PY .
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and leaky ReLU activation functions, where each347

linear layer’s output dimension was half of its input348

dimension. We set the batch size to 300,000, the349

learning rate to 1e-4, and polynomially decayed to350

1e-8 within 10k epochs. We examine the IE value351

of LLMs under two distinct settings: ICL with352

few-shot examples and natural sentences without353

demonstrations.354

4.1 ICL Scenario355

Since existing datasets (e.g., SST-2 (Socher356

et al., 2013), AGNews (Zhang et al., 2015), and357

EmoC (Chatterjee et al., 2019)) do not meet the358

requirement of the same sequence length, we syn-359

thesized a set of simple few-shot samples having360

token length and positions aligned across differ-361

ent sequences. We curate three different datasets362

encompassing three different domains, each con-363

taining sequences of few-shot single-token entities364

with commas:365

Country: We select 25 countries from the Vocabu-366

lary as entities, each represented by 1 token (e.g.,367

‘Canada’, ‘Russia’). Each shot consists of one en-368

tity followed by a comma, totaling 2 tokens. We369

constructed 25 ∗ 24 ∗ 23 ∗ 22 = 303, 6005 input370

sequences, each comprising 8 tokens (4 different371

shots), such as “France, Mexico, Egypt, Russia,”.372

Animal: Similarly, we select 16 animals as entities,373

and construct 16∗15∗14∗13∗12 = 524160 input374

sequences comprising 10 tokens (5 different shots),375

such as “Fox, Pig, Penguin, Rabbit, Cock,”.376

Color: We select 15 colors as entities, and con-377

struct 360360 samples comprising 10 tokens (5378

shots), such as “red, orange, yellow, green, blue,”.379

Furthermore, in Appendix E.4, we examined the380

performance of IE in the In-ICL scenario using381

the real-world dataset SST-2 (Socher et al., 2013).382

Although an accurate ICL pattern could not be ob-383

served due to the varying token lengths of each384

demonstration, the findings still align with those385

presented in Section 6.1.386

In the experiment, we observe that each entity,387

treated as a micro variable (i.e., the first token),388

produces similar mutual information across dif-389

ferent positions. Consequently, in this scenario,390

we only use the entity in the first position to com-391

pute the mutual information of micro variables392

(i.e., 1
T

∑T−1
t=0 MI(hmi_t

l+1 , hmi_t
l ) in Eqt 3 is re-393

placed by MI(h0l+1, h
0
l )). Moreover, E(l) also394

acts analogously in each block, so we utilize the395

5The number of shots is decided to ensure the number of
combinations in each category is over 300000.

Figure 2: The increasement of IE, EM, Accuracy, and
loss for GPT2-XL in comparison to the previous token:
increasement = (value(t) − value(t − 1))/value(t),
where value(t) represents the value at token t. There-
fore, a positive increasement (> 0) indicates an increase
in the metric value, and a decrease vice versa.

mean of {E(l)}L−1
l=0 to show the IE (i.e., Ê(t) = 396

1
L

∑L−1
l=0 E(l)). 397

4.2 Natural Sentence Scenario 398

We randomly select 300,000 natural sequences, 399

each consisting of 8 tokens, from OpenOrca (Lian 400

et al., 2023) and OpenHermes (Teknium, 2023), 401

respectively. OpenOrca and OpenHermes are both 402

large-scale, multi-domain QA datasets. These se- 403

quences were selected to ensure that the first token 404

in each sequence is the beginning of a sentence. 405

In our experiments, we observe potential dis- 406

crepancies in mutual information for individual 407

tokens at different positions within a sentence (i.e., 408

micro mechanisms in different positions are not 409

consistent). These discrepancies are detailed in 410

Appendix C). Consequently, for the mutual infor- 411

mation of micro-level variables, we keep the same 412

as to Equation 3 which averages the micro MI at 413

each position and utilizes the mean of each layer’s 414

E(l) to show the IE. 415

5 Informativeness 416

5.1 Semantics Faithfulness 417

We have designed several experiments to substanti- 418

ate the semantics faithfulness of IE. Faithfulness 419

refers to the principle that as semantic richness 420

increases, IE should correspondingly rise. We ob- 421

served the change in IE and other popular metrics 422

(Exact Match, Accuracy, and model loss) with the 423

increase in the number of tokens, using the samples 424

from the OpenOrca dataset. Figure 2 demonstrates 425

the change in their values, with increasement > 0 426

representing the value increasing from that in the 427

previous token. Only IE consistently exhibits an 428

upward trend (i.e., > 0), which aligns with the 429
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intuition: what a sentence intends to convey is in-430

creasingly deterministic along with the increasing431

number of tokens. Moreover, the low variance (re-432

flected as the shaded area in Figure 2) in IE values433

exhibits commendable stability compared to other434

metrics.435

5.2 Semantics Sensitivity436

Subsequently, we aim to examine the seman-437

tics sensitivity of IE (Sensitivity implies that any438

change in semantics should trigger a corresponding439

shift in IE.), particularly its ability to reflect differ-440

ences when minor perturbations are introduced into441

the semantics. Consequently, we conducted a series442

of ablation studies to modulate certain factors (such443

as dataset size, attributes, tasks, and format) indi-444

vidually. We treat the performance of GPT2-XL on445

the “country” dataset as a baseline. Appendix D446

details the variations when different factors are447

changed. It was observed that IE increases with448

the model’s size. This corroborates the rationale449

that a model with a larger size generally has better450

capability to determine semantics. In addition, our451

study also identifies variations in IE against differ-452

ent tasks and prompts, which also resonates with453

findings from prior research (Lu et al., 2023; Yu454

and Dong, 2022; Liu et al., 2024).455

5.3 Connection to Emergence456

Moreover, we demonstrate that IE manifests a steep457

ascend within the parameter range of 108 to 1010458

across 8 arithmetic tasks, which is detailed in Ap-459

pendix B). Given the confines of computational460

resources, we were able to select 8 models within461

the parameter range of GPT2 (1∗108), GPT2-large462

(7 ∗ 108), GPT2-XL (1 ∗ 109), Gemma (2 ∗ 109),463

OpenLlama (3 ∗ 109), GPT-J (6 ∗ 109), Gemma464

(7 ∗ 109), and GPT-NeoX (2 ∗ 1010). In light of the465

existing evaluation work, Big-Bench (Srivastava466

et al., 2023), we discovered the emergent phenom-467

ena within the arithmetic tasks emerge within the468

parameters of [108, 1010]. Consequently, the asso-469

ciation between the performance and IE values of 8470

arithmetic tasks was investigated, as shown in Fig-471

ure 3. For model performance, we directly adopt472

the default settings of the Big-Bench benchmark.473

As for IE, we took the average of the IE values of474

the initial five output tokens to be the final result.475

An enhancement in task performance occurs476

once effective parameters reach 1010, thereby show-477

casing an emergence. The average IE experiences a478

substantial surge within the same parameter range479
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Figure 3: IE and Model Performance with model size
increasing in Arithmetic.

[109, 1010]. As a pioneering work proposing a 480

quantitative metric to reflect the level of semantics 481

deterministically, we believe our method could also 482

greatly benefit further research on Emergence. 483

6 Findings 484

6.1 IE Increases Only when A New 485

Demonstration Appears in ICL 486

Figure 4 illustrates that IE naturally becomes higher 487

with increased tokens. However, there is a strik- 488

ingly different trend between ICL and natural sce- 489

narios (containing natural sentences). In a natural 490

scenario, IE increases with each successive token 491

and achieves a rapid convergence (around the 6th 492

token), whereas, under the ICL scenario, IE only 493

increases when a new demonstration emerges (at 494

positions of the 2nd token, 4th token, 6th token), 495

but with a higher upper bound and requiring more 496

tokens to reach to the highest value. 497

We subsequently investigate how many demon- 498

strations are needed before IE ceases to increase. 499

Table 4 in the Appendix indicates that the three 500

ICL categories under study tend to saturate at the 501

7th demonstration (though this does not suggests 502

a generic ICL phenomenon). Moreover, we test 503
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(a) GPT2-large (812M) (b) GPT2-XL (1.6B)

(c) Gemma (2.51B) (d) OpenLlama (3B)

Figure 4: Ê(t) on ICL and natural scenarios with mean and variance.

whether increasing the number of tokens within504

each demonstration would maintain this "stepwise505

elevating" pattern. Figure 6 shows that the IE506

scores within each demonstration does not change507

when the length of each demonstration is increased508

to 5 tokens, 6 tokens, and 7 tokens. Hence, we can509

interpret ICL’s role in enhancing semantics deter-510

minability: ICL bolsters semantics determinabil-511

ity via demonstrations, where increasing the num-512

ber of demonstrations can increase the ability of513

capturing semantics beyond natural text, but even-514

tually saturates after a certain quantity. Concur-515

rently, disparate performances observed across the516

two datasets and three model families suggest that517

the domain of the training data and preprocessing518

methodologies are likely critical factors, as further519

supported by the evaluations of individual tokens520

at different sentence positions in Appendix C.521

Additionally, we demonstrate in Appendix E.4522

the changes in IE under real-world ICL scenarios,523

where each shot is no longer a simple word but524

a complete sentence. In such scenarios, we still525

observe the pattern of IE increasing with the ap-526

pearance of demonstrations, and we also observe527

the pattern of IE gradually increasing within each528

shot, similar to what is seen in natural text.529

6.2 Higher IE with Large Standard Deviation530

Corresponds to Certain Hallucination531

Figure 4 indicates that IE becomes unstable as the532

number of demonstrations increases6. To further533

6The complete record of every token’s mutual information
is detailed in Table 5, showing the example of GPT2-XL on
the Animal category.

IE value by each shot
Statistics shot1 shot2 shot3 shot4 shot5 shot6 shot7
value 4.013 8.34 12.95 26.81 61.59 82.49 71.52
SD <0.01 0.59 0.84 2.61 6.59 7.22 7.05

Accuracy of LLMs outputs given shots (%)
dataset shot1 shot2 shot3 shot4 shot5 shot6 shot7
country 0 54.15 74.29 88.47 46.21 21.59 22.68
animal 0 44.51 69.43 76.19 64.19 36.14 33.54
color 0 37.49 66.51 72.18 73.16 46.95 38.49

Accuracy in 4 complex pattern given shots (%)
pattern shot1 shot2 shot3 shot4 shot5 shot6 shot7
Asia 0.35 3.27 4.26 15.29 34.72 84.53 79.16
Europe 3.75 8.29 11.16 24.68 49.36 89.38 89.51
Size 4.59 2.94 6.43 7.29 7.16 26.46 34.19
Alphabet 0.11 1.26 1.47 39.16 69.17 54.91 18.67

Table 1: The relationship between the accuracy of GPT2-
XL outputs and IE by each shot in 3 categories.

study this observation, we explicitly report the IE 534

and standard deviation (s.d.) in Table 1 and com- 535

pute the accuracy7 of the generations spanning over 536

different numbers of shots. As can be seen from 537

rows 1-9 of Table 1, as IE ceases to grow and the 538

s.d. reaches peak, the LM displays a higher proba- 539

bility of generating inaccurate responses. From a 540

closer look, we discover that oftentimes, the LM 541

fails to generate new entities due to “error repe- 542

tition” (explanations and some examples can be 543

found in Appendix E.3). This is aligned with ex- 544

isting study (Zhang et al., 2023) related to hallu- 545

cination. Specifically, LLMs struggle to correct 546

themselves after generating an erroneous output, 547

resulting in stagnation and fluctuation in IE. 548

7We randomly sample a total of N = 1000 samples and
regard the generation to be correct if the generated entity
belongs to the corresponding domain of the dataset (country,
animal or color) and is not repetitive.
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Text+Estimator token0 token1 token2 token3 token4 token5 token6 token7 token8
Human+GPT2-XL 10.9 16.9 18.6 19.5 19.5 19.7 19.6 19.5 19.4
Human+GEMMA 9.5 16.8 22.4 24.3 24.0 25.3 24.6 25.0 25.9
GPT4+GPT2-XL 11.3 18.8 23.5 27.2 34.5 37.2 39.2 39.5 39.2
GPT4+GEMMA 12.1 20.5 25.1 31.6 36.3 39.9 40.4 39.5 40.6
Claude3-opus+GPT2-XL 12.6 21.8 26.6 29.5 36.8 39.8 42.6 45.2 45.3
Claude3-sonnet+GPT2-XL 11.4 17.4 24.8 28.5 32.5 36.5 36.1 36.2 36.2
Llama3 (70B)+GPT2-XL 11.2 18.1 23.6 24.5 28.5 32.6 36.5 36.8 36.6

Table 2: IE in texts generated from human and popular LLMs. “text” refers to the party that generates the text.
“Estimator” refers to the LM used to transform the text into representations and estimates the IE value using f
described in Section 3.2. Due to computation constraints, we only GPT2-XL and GENNA as estimators.

However, this should not be confused with the549

power of ICL in exploiting more complex patterns550

effectively with more “shots” as the input. Differ-551

ent from the above observation, an increasing num-552

ber of shots tend to bring higher accuracies under553

more complex scenarios. As shown in rows 10-15554

of Table 1, we design four challenging tasks: ‘Asia’555

and ‘Europe’ only provide countries in Asia and Eu-556

rope, respectively, as input demonstrations; ‘Size’557

contains animals arranged by size from smaller to558

larger; ‘Alphabet’ sorts the entities alphabetically559

based on the first letter. The accuracy results indi-560

cate that LLMs require more shots to capture com-561

plex patterns compared to simple patterns. Thus,562

it prompts us to conjecture if the stagnation and563

fluctuations in the IE are associated with another564

hallucination: with excessive shots, LLMs may per-565

ceive more complex patterns beyond the surface566

(or even actual) appearance. In short, the corre-567

lation between IE s.d. and hallucination would568

offer novel insights into the future development of569

hallucination detection and mitigation.570

6.3 Texts Generated from LLMs and Humans571

Exhibit Different IE Values572

We seek to measure the differences in text gener-573

ated by larger language models compared to human574

texts, as well as the variations among these LLMs575

themselves. Specifically, we use questions from576

OpenHermes as inputs and collect responses by in-577

voking the APIs of GPT-4, Claude3-opus, Claude3-578

sonnet, and Llama3. These responses were sub-579

jected to the same data processing methods de-580

scribed in Section 4.2. To evaluate these extremely581

large and closed-source language models, we im-582

plement a 3-step strategy:583

Step 1: Collect the answers from these LLMs (or584

humans) via the questions from the OpenHermes.585

Step 2: Following the data processing in Sec-586

tion 4.2, we format these answers into input se-587

quences of 8 tokens and obtained their representa- 588

tions using smaller LMs (e.g., GPT-2, GEMMA). 589

Step 3: These representations were processed 590

through an estimator to calculate the mutual infor- 591

mation introduced in Section 3.2, thereby determin- 592

ing the IE values of these answers via Equation 3. 593

Table 2 illustrates an interesting phenomenon: 594

LLM-generated texts exhibited substantially 595

greater IE value than human texts. This observa- 596

tion is intuitive—given that LLMs aim to generate 597

tokens with the highest probability, naturally 598

resulting in greater entropy reduction. 599

Another observation is that the text generated 600

by different LLMs (GPT-4, Claude3, and Llama3) 601

displays variations in IE values. Significant dif- 602

ferences are observed not only in the maximum 603

strength of the IE but also in the patterns of growth. 604

Without actually computing the transformer repre- 605

sentations of the target LLMs, these findings open a 606

promising path to estimate the semantics capturing 607

capability from extremely large and closed-source 608

LMs without expensive computational costs. 609

7 Conclusion 610

In this paper, we mathematically model the entropy 611

of tokens and propose a quantitative metric, IE, 612

representing the LLM’s ability to obtain seman- 613

tics from tokens. Under the proposed low-resource 614

estimator, we corroborate that IE possesses seman- 615

tics faithfulness and sensitivity not found in other 616

metrics. Under the settings of ICL and natural 617

sentences, we conducted extensive experiments ex- 618

plaining why ICL provides different semantics with 619

natural text, as well as the intrinsic relationship be- 620

tween IE and hallucinations. Simultaneously, we 621

discovered that IE can be utilized to distinguish 622

whether the source of the text originates from hu- 623

mans or LLMs, particularly a simple and feasible 624

strategy for those of significantly large LMs. 625
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8 Limitations626

Position-wise Token: Given that mutual informa-627

tion intrinsically demands the distribution of two628

tokens to be valid, we require every token’s position629

to hold a specific meaning, such as representing the630

beginning or end of a sentence, the subject, predi-631

cate, and so forth. Hence, applying our estimator632

directly to existing tasks may result in a lack of633

interpretability as the token lengths and positions634

in the samples vary significantly.635

Sample Amount: To ensure the accuracy636

of joint and marginal distributions of high-637

dimensional continuous representations, a tremen-638

dous number of samples is essential. We are at-639

tempting more mechanistic alternative methods,640

hoping to reduce sample size requirements in the641

future.642

More Models and Tokens: It is evident that our643

experiments lack larger-sized models and analysis644

of long-length texts, especially for emergence and645

hallucination analysis. Given more computational646

resources, we would continue to expand these ex-647

periments.648
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A Algorithm for Estimating Mutual 771

Information 772

Algorithm 1 is employed to elucidate the entire 773

process of estimating mutual information. Simpli- 774

fied, the method involves two primary steps: Step 775

1 involves extracting representative samples from a 776

LLM, and Step 2 entails estimating the mutual in- 777

formation between these representation samples. 778

We denote the time required to estimate a pair 779

of representations (Hl,t and Hl+1,t) as α. Con- 780

sequently, the time complexity for estimating rep- 781

resentations from an LLM for a sequence ST = 782

token1, token2, ,̇tokenT − 1 across L block lay- 783

ers is denoted as O(LTα). 784

In practical implementations, α approximately 785

costs 40 minutes on one 3090 GPU, whereas sig- 786

nificant improvements on a 4090 GPU reduce this 787

time to about 20 minutes. 788

B Cases in Arithmetic Tasks 789

We have selected a total of 8 arithmetic tasks, as 790

illustrated in the caption of Figure 3. For these 791

tasks, we employed the 2-shots as the prompt tem- 792

plates for the ICL method. We randomly matched 793

different shots for each sample. A representative 794

example from each task is selected and presented 795

as follows: 796

1 digit addition: 797

“What is 1 plus 0? A: 1, What is 4 plus 4? A: 8, 798

What is 2 plus 7? A:” 799

1 digit division: 800

“What is 6 divided by 1? A: 6, What is 8 divided 801

by 4? A: 2, What is 3 divided by 3? A:” 802

1 digit multiplication: 803

“What is 1 times 8? A: 8, What is 5 times 0? A: 804

0, What is 6 times 7? A:” 805

1 digit subtraction: 806

“What is 5 minus 2? A: 3, What is 7 minus 6? A: 807

1, What is 9 minus 0? A:” 808

2 digit addition: 809

“What is 53 plus 97? A: 150, What is 89 plus 810

25? A: 114, What is 75 plus 63? A:” 811

2 digit division: 812

“What is 72 divided by 9? A: 8, What is 81 813

divided by 27? A: 3, What is 18 divided by 3? A:” 814

2 digit multiplication: 815

“What is 95 times 55? A: 5225, What is 92 times 816

88? A: 8096, What is 43 times 42? A:” 817

2 digit subtraction: 818

“What is 25 minus 14? A: 11, What is 55 minus 819

36? A: 19, What is 80 minus 38? A:” 820
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token-1…… token-2token-3token2token1token0

8.38 13.42 15.56 17.11 17.16 17.26with previous token

8.38 10.75 10.63 10.69 10.64 12.85wo. previous token

token-1…… token-2token-3token2token1token0

7.91 12.37 15.03 18.37 18.43 19.22with previous token

7.91 10.78 10.91 10.88 10.95 12.62wo. previous token

OpenOrca

OpenHermes

(a) GPT2-XL

token-1…… token-2token-3token2token1token0

10.53 17.27 20.17 21.27 21.66 22.41with previous token

10.53 10.65 10.49 10.58 10.48 10.62wo. previous token

token-1…… token-2token-3token2token1token0

9.59 16.80 22.28 25.31 25.33 25.54with previous token

9.59 9.66 9.62 9.48 9.67 9.61wo. previous token

OpenOrca

OpenHermes

(b) GEMMA

Figure 5: Mutual information of each token position in two datasets, taking GPT2-XL and GENNA as examples.

C Mutual Information in the Natural821

Scenario822

We observed variations in the IE statistics of to-823

kens at different positions within a sentence. Con-824

sequently, we systematically evaluated tokens at825

various positions within a sentence, as illustrated826

in Figure 5. Specifically, token0, token1, and827

token2 were derived from the same sample set828

A from OpenOrca, while token-3, token-2, and829

token-1 were taken from another sample set B from830

OpenOrca. Sample set A ensured that token0 was831

the initial token of the sentence, while set B ensured832

that token-1 was the last token of the sentence. This833

allowed us to measure differences in IE statistics834

for tokens at the beginning, middle, and end of835

sentences across variable sentence lengths.836

Figure 5 presents an interesting phenomenon:837

taking GPT2-XL and GEMMA as examples, GPT2-838

XL exhibits distinct responses to tokens at different839

sentence positions—IE values increase at the begin-840

ning, stabilize in the middle, and rise again at the841

end. GEMMA, on the other hand, does not display842

such positional sensitivity. We hypothesize that843

this may be related to the different preprocessing844

methods used in the training data.845

D Ablation Study for Semantics846

Sensitivity847

To investigate the influence of different factors on848

IE value, we treat the performance of GPT2-XL849

on the “country” dataset as a baseline and imple-850

mented a series of variations. First, we replace851

GPT2-XL with other LMs, namely model1 using852

GPT2-large, model2 using GEMMA, and model3853

using OpenLlama. Second, we vary the dataset,854

forming data1 using “animal” dataset and data2855

using “color” dataset. In addition, we use can-856

didate to denote reduced candidates in the origi-857

nal “country” dataset (reducing the total number858

measure t0 t1 t2 t3 t4 t5 t6 t7
baseline 4.69 4.69 9.46 9.37 15.32 15.02 28.44 29.47
model1 4.64 4.69 9.44 9.45 15.09 14.67 27.59 28.67
model2 4.64 4.68 9.44 9.28 15.27 14.66 44.08 36.37
model3 4.69 4.68 9.47 9.45 15.29 15.54 52.28 85.61
token1 2.82 2.83 6.88 6.85 11.08 10.95 16.83 16.09
token2 3.60 3.60 7.36 7.29 11.15 11.08 15.86 14.96
candidate 3.26 3.26 7.22 7.22 11.44 11.35 17.15 17.33
fusion1 3.84 3.84 7..63 7.64 11.66 11.49 17.45 16.28
fusion2 3.45 3.45 7.26 7.05 11.05 11.06 16.45 16.59
space 4.69 4.69 9.46 9.37 15.32 15.02 22.44 5.19
prefix 4.69 4.69 9.46 9.46 15.32 15.34 37.85 41.05

Table 3: “Ablation Study” of how IE value changes with
different measures adopted. t0-t7 represent 1st - 8th
token.

of countries from 25 to 15), and fusion1, fusion2 859

to denote mixed candidates where fusion 1 mixes 860

data from “country” and “animal” domains, and 861

fusion 2 mixes data from “country”, “animal”, and 862

“color” domains. Last, we alter the input sequence, 863

forming space by replacing the entity in the 4th 864

shot with space+entity8. prefix prepends a comma 865

to the original first token. 866

As shown in Table 3, Differences in model IE 867

become apparent only when a sufficient number 868

of shots are provided. Statistically, models with 869

larger parameter sizes exhibit higher IE. However, 870

differences in data are apparent starting from the 871

first shot, likely related to the domain of training 872

data (token1, token2). Furthermore, depleting the 873

diversity of shots effectively reduces the IE values 874

in ICL (candidate). Lastly, the format of the prompt 875

significantly influences IE, explaining LLMs’ sen- 876

sitivity to certain perturbations (space, prefix). 877

E Supplementary Materials for Finding 1 878

E.1 Limit Number of Shots 879

In Section 4.1, we expanded the 3 categories into 880

input sequences containing 10 shots (20 tokens 881

8In the GPT-2 tokenizer, space+entity is treated as a new
token.
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Shot Length: 
5 tokens

Shot Length: 
6 tokens

Shot Length: 
7 tokens

Figure 6: Ê(t) with inputs of 18 tokens, consisting of 3 shots in 5 tokens, 6 tokens, 7 tokens, respectively.

Model categories shot3 shot4 shot5 shot6 shot7

GPT2-large
country ↑5.67 ↑12.95 ↑2.75 ↑0.33 ↑1.04
animal ↑4.24 ↑6.06 ↑9.52 ↑0.39 ↓1.44
color ↑4.88 ↑4.82 ↑6.39 ↑1.24 ↑0.22

GPT2-XL
country ↑5.86 ↑13.12 ↑3.56 ↑1.75 ↑0.32
animal ↑4.21 ↑5.75 ↑8.21 ↑1.15 ↑0.61
color ↑3.82 ↑4.61 ↑7.06 ↑1.74 ↑0.54

Gemma
country ↑6.33 ↑22.16 ↓2.86 ↑3.21 ↓3.54
animal ↑4.09 ↑6.24 ↑8.45 ↑36.51 ↓2.14
color ↑4.65 ↑5.16 ↑7.81 ↑16.49 ↑1.21

OpenLlama
country ↑6.33 ↑45.26 ↑7.54 ↑4.65 ↓3.15
animal ↑4.95 ↑7.54 ↑35.16 ↑2.16 ↑3.26
color ↑4.39 ↑5.27 ↑27.56 ↑11.42 ↑2.51

Table 4: ∆Ê(t) compared to the previous token. The
red represents Ê(t) decreases compared to the previous
token.

each). Table 4 illustrates the changes in IE value882

for each shot relative to its predecessor within these883

sequences. The IE value of 4 different LLMs gen-884

erally approached their upper limits by the 6th and885

7th shots. It is important to note that these results886

only indicate the existence of an upper limit to the887

contribution of shot quantity to IE in ICL. They888

do not imply that the 6th and 7th shot universally889

represents the upper limit for all ICL tasks.890

E.2 Shot Length891

To examine the IE value associated with shot892

lengths, we designed a shot format pertinent to893

sentiment analysis as follows:894

“[entity] sentiment: [label],”895

where “[entity]" represents emotional words896

such as “happy,”, “thrill”, “offended”, etc., and897

“[label]" options include “positive” or “negative,”898

specifically chosen based on the category of “[en-899

tity]”. The token length of “[entity]" was em-900

ployed to control the overall length of the shot;901

for instance, when “[entity]" consists of single-902

token words like “anger,” “love,” etc., the entire903

shot spans 5 tokens, whereas for two-token words904

like “hopeful,” “resentful,” etc., the shot extends905

to 6 tokens. Consequently, we generated 300,000 906

input samples, each 18 tokens in length, compris- 907

ing 3 shots with lengths of 5 tokens, 6 tokens, and 908

7 tokens respectively. 909

Figure 6 corroborates our hypothesis: within 910

each shot, all tokens share a uniform IE value. This 911

observation supports another intuitive viewpoint 912

of ICL: an LLM gains greater confidence in the 913

correctness of its predictions only when a new shot 914

is introduced. 915

E.3 Cases of Inaccurate Generations with 916

Excessive Shots 917

In Table 1 we found 2 types of erroneous repetition, 918

we listed some cases of them from GPT2-XL, in 919

which blue text indicates the shots as prompt, the 920

green text indicates correct entities and red text 921

indicates wrong entities: 922

Case 1: The sequence breakdown was precipi- 923

tated by the output of an incorrect entity. 924

“Ukraine, Mexico, Russia, Australia, New 925

Zealand, United Kingdom, United States, Canada, 926

United States of America, United States of America, 927

United States of America, United States of Amer- 928

ica” 929

Case 2: Due to a loop spaning the shots, no new 930

entities were generated. 931

“Canada, France, Turkey, Iran, Russia, Ukraine, 932

United Kingdom, United States, Canada, Germany, 933

United States, Canada, Germany, United States, 934

Canada, Germany, United States, Canada, Ger- 935

many” 936

E.4 IE in ICL Scenarios with Real-world 937

Dataset: SST-2 938

Given that the ICL synthetic datasets (country, 939

animal, color) involved in this paper are all toy 940

datasets, they can clearly reflect the changing pat- 941

terns of IE under ICL scenarios, but real-world 942

12



Shot 1

Shot 2

Shot 3

Shot 4

Figure 7: Ê(t) with inputs from SST-2 datasets, consisting of 3 shots.

ICL datasets often face more complex situations.943

To investigate the performance of IE in real-world944

datasets under ICL scenarios, we constructed an in-945

put template containing three demonstrations using946

the SST-2 dataset (Socher et al., 2013): "[review 1],947

The emotion of this sentence is [label1], [review 2],948

The emotion of this sentence is [label2], [review 3],949

The emotion of this sentence is [label3], [review 4],950

The emotion of this sentence is". Here, [review] and951

[label] are random text samples and correspond-952

ing sentiment labels (positive or negative) from the953

SST-2 dataset, respectively.954

Unlike the ICL toy datasets in the main text, in955

this ICL scenario, each demonstration has sufficient956

semantics (it can be considered that each demon-957

stration contains a natural text scenario). Figure 7958

shows the specific changes in IE, from which we959

can identify two patterns:960

1. Each shot brings a new improvement to961

IE: This is consistent with the pattern we observed962

in ICL toy datasets - that is, IE in ICL scenarios963

increases with the appearance of new demonstra-964

tions.965

2. The IE within each shot is slowly increasing966

and tends to stabilize: This is consistent with967

the pattern we observed in natural text scenarios.968

Since each [review] in the SST-2 dataset contains a969

sentence with natural text, a pattern corroborating970

with natural text will appear within each shot.971

Additionally, due to the inability to effectively972

align token positions (for example, some [reviews]973

only require 20 tokens, while others need 50 to-974

kens), each shot will exhibit significant variance975

and characteristics of an uneven upward trend.976

layer token0 token1 token2 token3 token4 token5 token6 token7
1 2.83 2.83 6.89 6.50 10.68 9.24 14.16 11.53
2 2.83 2.83 6.90 6.91 11.08 11.10 16.70 16.79
3 2.83 2.83 6.89 6.88 11.17 11.17 16.93 16.00
4 2.83 2.83 6.89 6.88 11.08 11.06 16.74 16.58
5 2.83 2.83 6.89 6.89 11.13 11.11 16.94 15.88
6 2.83 2.83 6.88 6.89 11.16 11.16 18.89 17.11
7 2.84 2.83 6.89 6.88 11.15 11.14 16.97 17.08
8 2.83 2.83 6.88 6.88 11.12 11.19 16.86 17.42
9 2.83 2.83 6.90 6.88 11.20 11.17 16.92 15.97
10 2.83 2.83 6.88 6.88 11.08 11.14 16.97 16.51
11 2.83 2.83 6.88 6.88 11.04 11.05 17.05 16.19

Table 5: Mutual information of GPT2-XL in Animal
category. Red represents the highest value in this block.

layer token0 token1 token2 token3 token4 token5 token6 token7
1 8.40 13.71 16.01 17.33 17.21 17.67 17.95 17.29
2 8.36 13.77 15.76 17.06 17.08 17.72 17.68 18.00
3 8.44 13.75 16.09 17.10 17.82 17.69 17.84 18.04
4 8.44 14.20 16.07 17.29 17.45 17.74 18.51 17.81
5 8.39 13.50 16.32 16.83 17.82 17.98 18.26 18.14
6 8.41 13.69 16.03 16.99 17.58 17.82 17.52 18.33
7 8.41 13.68 16.06 17.00 18.32 17.72 17.69 18.19
8 8.40 13.80 15.97 17.26 17.61 17.73 17.52 18.44
9 8.35 13.69 15.95 17.17 17.21 17.54 17.47 18.03
10 8.41 13.57 16.30 16.57 17.46 17.85 17.85 17.51
11 8.34 13.37 16.02 15.93 17.30 17.24 17.27 16.91

Table 6: Mutual information of GPT2-XL in OpenOrca
dataset. Red represents the highest value in this block.

F Detailed Mutual Information Tables 977

Tables 5 and 6 present the performance of GPT2- 978

XL on the Animal category and OpenOrca datasets, 979

respectively. Although “shots” and “natural sen- 980

tences” demonstrate different patterns, they share 981

a common characteristic: mutual information in- 982

creases with token length, aligning well with the 983

NTP mechanism. 984
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Algorithm 1 Estimating Mutual Information

Require: : A set of input tokens U ∈ RS∗T ,
where S denotes the total number of samples
and T represents the number of token in each
sample. A LLM fτ with L layer of blocks and
hidden state dimension D. A estimator fθ.

Ensure: : Mutual Information M ∈ RL∗T .
procedure 1 Extracting Representation H ∈
RS∗L∗T∗D from LLM
Initialization: H = ∅
for each sample s in S do

H ← H + fτ (Us)
end for
procedure 2 Estimating Mutual Information M
Initialization: M = ∅, l = 0, t = 0,
while l < L and t < T do

Ix ← Hl,t(Hl,t ∈ RS∗D)
Iy ← Hl+1,t(Hl+1,t ∈ RS∗D)
Shuffle Hl+1,t in the dimension S
Iy∗ ← Hl+1,t(Hl+1,t ∈ RS∗D)
input1← Ix||Iy
input2← Ix||Iy∗
Initialization: Mtmp = 0
for Epoch i < 10k do
output1← fθ(input1)
output2← fθ(input2)
L = 1

S

∑S
s=1(output1) −

log( 1S
∑S

s=1(output2)
L backpropagation
if Mtmp == 0 then

Mtmp ← −loge2L
else if Mtmp ̸= 0 then

if Mtmp < −loge2L then
Mtmp ← −loge2L

end if
end if

end for
l← l + 1, t← t+ 1
Ml,t ←Mtmp

end while
return M

14


	Introduction
	Related Work
	Evaluation on LLM Capabilities
	Information Emergence and Emergence

	Method
	How to Model Semantics in LLMs
	How to Estimate IE in LLMs?

	Implementation
	ICL Scenario
	Natural Sentence Scenario

	Informativeness
	Semantics Faithfulness
	Semantics Sensitivity
	Connection to Emergence

	Findings
	IE Increases Only when A New Demonstration Appears in ICL
	Higher IE with Large Standard Deviation Corresponds to Certain Hallucination
	Texts Generated from LLMs and Humans Exhibit Different IE Values

	Conclusion
	Limitations
	Algorithm for Estimating Mutual Information
	Cases in Arithmetic Tasks
	Mutual Information in the Natural Scenario
	Ablation Study for Semantics Sensitivity
	Supplementary Materials for Finding 1
	Limit Number of Shots
	Shot Length
	Cases of Inaccurate Generations with Excessive Shots
	IE in ICL Scenarios with Real-world Dataset: SST-2

	Detailed Mutual Information Tables

