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Abstract

Fully connected Graph Transformers (GT) have rapidly become prominent in
the static graph community as an alternative to Message-Passing models, which
suffer from a lack of expressivity, oversquashing, and under-reaching. However,
in a dynamic context, by interconnecting all nodes at multiple snapshots with
self-attention,GT loose both structural and temporal information. In this work, we
introduce Supra-LAplacian encoding for spatio-temporal TransformErs (SLATE),
a new spatio-temporal encoding to leverage the GT architecture while keeping
spatio-temporal information. Specifically, we transform Discrete Time Dynamic
Graphs into multi-layer graphs and take advantage of the spectral properties of their
associated supra-Laplacian matrix. Our second contribution explicitly model nodes’
pairwise relationships with a cross-attention mechanism, providing an accurate edge
representation for dynamic link prediction. SLATE outperforms numerous state-of-
the-art methods based on Message-Passing Graph Neural Networks combined with
recurrent models (e.g. , LSTM), and Dynamic Graph Transformers, on 9 datasets.
Code is open-source and available at this link https://github.com/ykrmm/SLATE.

1 Introduction

Dynamic graphs are crucial for modeling interactions between entities in various fields, from social
sciences to computational biology [58, 16, 19, 20]. Link prediction on dynamic graphs is an all-
important task, with diverse applications, such as predicting user actions in recommender systems,
forecasting financial transactions, or identifying potential academic collaborations. Dynamic graphs
can be modeled as a time series of static graphs captured at regular intervals (Discrete Time Dynamic
Graphs, DTDG) [41, 54].

Standard approaches for learning representations on DTDGs combine Message-Passing GNNs (MP-
GNNs) with temporal RNN-based models [59, 39, 34]. In static contexts, Graph Transformers (GT)
[11, 51, 26] offer a compelling alternative to MP-GNNs that faced several limitations [53, 42]. Indeed,
their fully-connected attention mechanism captures long-range dependencies, resolving issues such
as oversquashing [1]. GTs directly connect nodes, using the graph structure as a soft bias through
positional encoding [37]. Incorporating Laplacian-based encodings in GTs provably enhances their
expressiveness compared to MP-GNNs [26, 11].
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Figure 1: SLATE is a fully connected transformer for dynamic link prediction, which innovatively
performs a joint spatial and temporal encoding of the dynamic graph. SLATE models a DTDG
as a multi-layer graph with temporal dependencies between a node and its past. Building the
supra-adjacency matrix of a randomly-generated toy dynamic graph with 3 snapshots (left) and
analysing the spectrum of its associated supra-Laplacian (right) provide fundamental spatio-temporal
information. The projections on eigenvectors associated with smaller eigenvalues (λ1) capture global
graph dynamics: node colors are different for each time step. Larger eigenvalues ( e.g. λmax), capture
more localized spatio-temporal information (see Appendix A.1).

Exploiting GTs on dynamic graphs would require a spatio-temporal encoding that effectively retains
both structural and temporal information. The recent works that have extended GTs to dynamic graphs
capture spatio-temporal dependencies between nodes by using partial attention mechanisms [31,
56, 47, 18]. Moreover, these methods also employ encodings which independently embed the graph
structure and the temporal dimension. Given that the expressiveness of GTs depends on an accurate
spatio-temporal encoding, designing one that interweaves time and position information could greatly
enhance their potential and performance.

The vast majority of neural-based methods for dynamic link prediction rely on node representation
learning [34, 55, 38, 59, 39]. Recent works enrich node embeddings with pairwise information for
a given node-pair using co-occurrence neighbors matching [60, 48] or cross-attention on historical
sub-graphs [47]. However these methods neglect the global information of the graph by sampling
different spatio-temporal substructures around targeted nodes.

Pioneering work in the complex network community has studied temporal graphs with multi-layers
models and supra-adjacency matrices [44, 25]. The spectral analysis of such matrices can provide
valuable structural and temporal information [8, 36]. However, how to adapt this formalism for
learning dynamic graphs with transformer architectures remains a widely open question.

In this work, we introduce Supra-LAplacian encoding for spatio-temporal TransformErs (SLATE), a
new unified spatio-temporal encoding which allows to fully exploit the potential of the GT architecture
for the task of dynamic link prediction. As illustrated on Figure 1, adapting supra-Laplacian matrices
to dynamic graph can provide rich spatio-temporal information for positional encoding. SLATE is
based on the following two main contributions:

• We bridge the gap between multi-layer networks and Discrete Time Dynamic Graphs
(DTDGs) by adapting the spectral properties of supra-Laplacian matrices for transformers
on dynamic graphs. By carefully transforming the supra-Laplacian matrices for DTDGs,
we derive a connected multi-layer graph that captures various levels of spatio-temporal
information. We introduce a fully-connected spatio-temporal transformer that leverages this
unified supra-Laplacian encoding.

• The proposed transfomer captures dependencies between nodes across multiple time steps,
creating dynamic representations.

To enhance link prediction, we introduce a lightweight edge representation module using
cross-attention only between the temporal representations of node pairs, precisely cap-
turing their evolving interactions. This results in a unique edge embedding, significantly
streamlining the prediction process and boosting both efficiency and accuracy.
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We conduct an extensive experimental validation of our method across 11 real and synthetic discrete-
time dynamic graph datasets. SLATE outperforms state-of-the-art results by a large margin. We also
validate the importance of our supra-Laplacian unified spatio-temporal encoding and the edge module
for optimal performances. Finally, SLATE remains efficient since it uses a single-layer transformer,
and we show impressive results on larger graph datasets, indicating good scalability, and limited
time-memory overhead.

2 Related work

Dynamic Graph Neural Networks on DTDGs. The standard approach to learn on DTDGs
[41, 54] involves using two separate spatial and temporal models. The spatial model is responsible
for encoding the structure of the current graph snapshot, while the temporal model updates the
dynamic either of the graph representations [39, 40, 59, 30, 28] or the graph model parameters
[34, 15]. Recently, ROLAND [59] introduced a generic framework to use any static graph model
for spatial encoding coupled with a recurrent-based (LSTM [17], RNN, GRU) or attention-based
temporal model. These above methods mainly use a MP-GNN as spatial model [23, 46, 58]. However,
MP-GNNs are known to present critical limitations: they struggle to distinguish simple structures like
triangles or cycles [33, 4], and fail to capture long-range dependencies due to oversquashing [1, 42].
To overcome these limitations, some works have adopted a fully-connected GT as spatial model,
benefiting from its global attention mechanism [6, 50, 61]. In [39], the local structure is preserved
by computing the attention on direct neighbors. In contrast to these works, SLATE uses a unique
spatio-temporal graph transformer model, greatly simplifying the learning process.

Graph Transformer. In static contexts, Graph Transformers have been shown to provide a com-
pelling alternative to MP-GNNs [11]. GTs [51, 37, 22, 57] enable direct connections between all
nodes, using the graph’s structure as a soft inductive bias, thus resolving the oversquashing issue. The
expressiveness of GTs heavily depends on positional or structural encoding [11, 32, 12, 3]. In [11],
the authors use the eigenvectors associated with the k-lowest eigenvalues of the Laplacian matrix,
which allows GTs to distinguish structures that MP-GNNs are unable to differentiate. Following
the success of Laplacian positional encoding on static graphs, SLATE uses the eigenvectors of the
supra-Laplacian of a multi-layer graph representation of DTDGs as spatio-temporal encoding.

Dynamic Graph Transformers. To avoid separately modelling structural and temporal information
as dynamic Graph Neural Networks usually do on DTDGs, recent papers have adopted a unified
model based on spatio-temporal attention [31, 18]. This novel approach make those models close
to transformer-based methods classically employed to learn on Continuous Time Dynamic Graphs
(CTDG) [52, 47, 49]. Among them, some preserve the local structure by computing attention
only on direct neighbors [52, 39], while others sample local spatio-temporal structures around
nodes [47, 31, 56, 18] and perform fully-connected attention. However, their spatio-temporal encoding
is still built by concatenating a spatial and a temporal encoding that are computed independently.
The spatial encoding is either based on a graph-based distance [47, 18] or on a diffusion-based
measure [31]. The temporal encoding is usually sinus-based [52, 49, 2] as in the original transformer
paper [45]. Another drawback of these methods [31, 47, 18, 49] is that they use only sub-graphs to
represent the local structure around a given node. Therefore, their representations of the nodes are
computed on different graphs and thus fail to capture global and long-range interactions. Contrary
to those approaches, our SLATE model uses the same graph to compute node representations in a
fully-connected GT between all nodes within temporal windows. It features a unified spatio-temporal
encoding based on the supra-Laplacian matrix.

Dynamic Link Prediction methods. For dynamic link prediction, many methods are based only
on node representations and use MLPs or cosine similarity to predict the existence of a link [39, 40,
38]. Recent approaches complement node representations by incorporating pairwise information.
Techniques like co-occurrence neighbors matching [60, 48] or cross-attention on historical sub-graphs
[47] are employed. However, these methods often overlook the global graph structure by focusing on
sampled spatio-temporal substructures. For instance, CAW-N [48] uses anonymous random walks
around a pair of nodes and matches their neighborhoods, while DyGformer [60] applies transformers
to one-hop neighborhoods and calculates co-occurrences. These localized approaches fail to capture
the broader graph context. TCL [47] is the closest to SLATE, using cross-attention between spatio-
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temporal representations of node pairs. TCL samples historical sub-graphs using BFS and employs
contrastive learning for node representation. However, it still relies on sub-graph sampling, missing
the full extent of the global graph information. In contrast, SLATE leverages the entire graph’s
spectral properties through the supra-Laplacian, incorporating the global structure directly into the
spatio-temporal encoding. This holistic approach allows SLATE to provide a richer understanding of
dynamic interactions, leading to superior link prediction performance.

3 The SLATE Method

In this section, we describe our fully-connected dynamic graph transformer model, SLATE, for link
prediction. The core idea in section 3.1 is to adapt the supra-Laplacian matrix computations for
dynamic graph transformer (DGTs), and to introduce our new spatio-temporal encoding based on its
spectral analysis. In section 3.2, we detail our full-attention transformer to capture the spatio-temporal
dependencies between nodes at different time steps. Finally, we detail our edge representation module
for dynamic link prediction in section 3.3. Figure 2 illustrates the overall SLATE framework.

(a)
(Sec. 3.1)

(b)
(Sec. 3.1)

(c)
(Sec. 3.2)

(d)
(Sec. 3.3)

Figure 2: The SLATE model for link prediction with dynamic graph transformers (DGTs). To
recover the lost spatio-temporal structure in DGTs, we adapt the supra-Laplacian matrix computation
to DGTs by making the input graph provably connected (a), and use its spectral analysis to introduce
a specific encoding for DGTs (b). (c) Applies a fully connected spatio-temporal transformer between
all nodes at multiple time-step. Finally, we design in (d) an edge representations module dedicated to
link prediction using cross-attention on multiple temporal representations of the nodes.

Notations. Let us consider a DTDG G as an undirected graph with a fixed number of N nodes
across snapshots, represented by the set of adjacency matrices A = {A1, ..., AT }. Its supra-graph,
the multi-layer network Ḡ = (V̄ , Ē), is associated to a supra-adjacency matrix Ā, obtained by
stacking Ai diagonally (see Eq. (7) in Appendix A.1). Then, the supra-Laplacian matrix L̄ is defined
as L̄ = I − D̄−1/2ĀD̄−1/2, where I is the identity matrix and D̄ is the degree matrix of Ḡ. Let
xu ∈ RF be the feature vector associated with the node u (which remains fixed among all snapshots).
Finally, let consider the random variable y ∈ {0, 1} such that y = 1 if nodes u and v are connected
and y = 0 otherwise.
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3.1 Supra-Laplacian as Spatio-Temporal Encoding

In this section, we cast Discrete Time Dynamic Graphs (DTDGs) as multi-layer networks, and use
the spectral analysis of their supra-graph and generate a powerful spatio-temporal encoding for our
fully-connected transformer.

DTDG as multi-layer graphs. If a graph is connected, its spectral analysis provides a rich information
of the global graph dynamics, as shown in Figure 1. The main challenge in casting DTDG as multi-
layer graphs relates to its disconnectivity, which induces as many zero eigenvalues as connected
components. DTDG have in practice a high proportion of isolated nodes per snapshot (see Figure 3 in
experiments), making the spectral analysis on the raw disconnected graph useless. Indeed, it mainly
indicates positions relative to isolated nodes, losing valuable information on global dynamics and
local spatio-temporal structures. We experimentally validate that it is mandatory to compute the
supra-Laplacian matrix on a connected graph to recover a meaningful spatio-temporal structure.

Supra-Laplacian computation. To overcome this issue and make the supra-graph connected, we
follow three steps: (1) remove isolated nodes in each adjacency matrix, (2) introduce a virtual node
in each snapshot to connect clusters, and (3) add a temporal self-connection between a node and
its past if it existed in the previous timestep. We avoid temporal dependencies between virtual
nodes to prevent artificial connections. These 3 transformation steps make the resulting supra-graph
provably connected. This process is illustrated in Figure 2a, and we give the detailed algorithm in
Appendix A.3.

Spatio-temporal encoding. With a connected Ḡ, the second smallest eigenvalue λ1 of the supra-
Laplacian L̄ is guaranteed to be non-negative (see proof in Appendix A.3), and its associated Fiedler
vector ϕ1 reveals the dynamics of Ḡ (Figure 1). In practice, similar to many static GT models
[26, 37, 12], we retrieve the first k eigenvectors of the spectrum of L̄, with k being a hyper-parameter.
The spectrum can be computed in O(k2N ′) and have a memory complexity of O(kN ′) where
N ′ is the size of Ā, and we follow the literature to normalize the eigenvectors and resolve sign
ambiguities [26]. The supra-Laplacian spatio-temporal encoding vector of the node u at time t is:

SLEu,t =

{
gθST(L̄u,t · [ϕ1, ϕ2, ..., ϕk]⊕ diag(Λ)) if ut is not isolated
gθST(0k ⊕ diag(Λ)) otherwise

}
(1)

where ⊕ denotes the concatenation operator. L̄u,t · [ϕ1, ϕ2, ..., ϕk] = [ϕu,t
1 , ϕu,t

2 , ..., ϕu,t
k ] contains

the projections of the node u at time t in the eigenspace spanned by the k first eigenvectors of L̄,
diag(Λ) contains the eigenvalues of L̄ (which are the same for all nodes) and gθST is a linear layer
allowing to finely adapt the supra-graph spectrum features to the underlying link prediction task.
Note that because we did not include isolated nodes in the computation of the supra-Laplacian, we
replace the eigenvector projections by a null vector 0k for these nodes. All the steps involved in
constructing our spatio-temporal encoding are illustrated in Figure 2b.

3.2 Fully-connected spatio-temporal transformer

In this section, we describe the architecture of our fully-connected spatio-temporal transformer, fθT ,
to construct node representations that captures long-range dependencies between the nodes at each
time step. We illustrate our fully-connected GT in Figure 2c. We employ a single transformer block,
such that our architecture remains lightweight. This is in line with recent findings showing that a
single encoder layer with multi-head attention is sufficient for high performance, even for dynamic
graphs [51].

The input representation of the node ut is the concatenation of the node embeddings (which remains
the same for each snapshot) and our supra-Laplacian spatio-temporal encoding:

zu,t = gθE(xu)⊕ SLEu,t (2)

where gθE is a linear projection layer and ⊕ denotes the concatenation operator. Then we stack all the
representations of each nodes at each time step within a time window of size w to obtain the input
sequence, Z ∈ R(Nw)×d, of the GT.
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The fully-connected spatio-temporal transformer, fθT , then produces a unique representation Z̃ ∈
R(Nw)×d for each node at each time-step :

Z̃ = fθT (Z). (3)

Surprisingly, considering all temporal snapshots did not yield better results in our experiments (see
Figure 4 in section 4.2).

Unlike previous DGT methods that sample substructures around each nodes [31, 56, 47], SLATE
leverages the full structure of the DTDG within the time window. This approach ensures that no
nodes are arbitrarily discarded in the representation learning process, as we use the same information
source Z for all nodes.

3.3 Edge Representation with Cross-Attention

In this section, we present our innovative edge representation module Edge. It is designed for efficient
dynamic link prediction and leverage the node representations learned by our fully-connected spatio-
temporal GT. We illustrated our module in Figure 2d. This module is composed of a cross-attention
model, fθXA , that captures pairwise information between the historical representation of two targeted
nodes followed by a classifier to determine the presence of a link.

For a link prediction at time t+1 on a given node pair (u, v), we aggregate all temporal representations
of u and v resulting in two sequences Z̃u,t = [z̃u,t−w, . . . , z̃u,t] and Z̃v,t = [z̃v,t−w, . . . , z̃v,t]. We
use these multiple embeddings to build a pairwise representation that captures dynamic relationships
over time. Then, the cross-attention module fθXA produces a pairwise representation of the sequence
Eu,v ∈ Rw×d :

Eu,v = fθXA(Z̃u,t, Z̃v,t). (4)

We obtain the final edge representation eu,v ∈ Rd by applying an average time-pooling operator and
we compute the probability that the nodes ut+1 and vt+1 are connected with:

p(y = 1| eu,v) = σ(MLP(eu,v)). (5)

SLATE differs from methods that enrich node and edge representations with pairwise information
by sampling substructures around each node [47, 60, 48, 18]. Instead, we first compute node
representations based on the same dynamic graph information contained in Z. Then, we capture
fine-grained dynamics specific to each link (u, v) through a cross-attention mechanism.

Our training resort to the standard Binary Cross-Entropy loss function. In practice, for a node u, we
sample a negative pair vneg and a positive pair vpos:

Lθ = BCE(p(y = 1|eu,vpos)) + BCE(p(y = 0|eu,vneg)). (6)

In this context, θ = {θXA, θT, θST, θE} represents all the parameters within the edge representation
module θXA, the fully-connected transformer θT , the spatio-temporal linear layer θST and the node
embedding parameters θE as illustrated in Figure 2.

3.4 SLATE Scalability

The theoretical complexity of attention computation is O(N2) per snapshot, scaling to O((NT )2)
when considering all T snapshots. However, as shown in our experiments (Figure 4) and consistent
with recent works [21], a large temporal context is often unnecessary. By using a time window w
with w ≪ T (similar to other DGT architectures [31, 56]), we reduce complexity to O((Nw)2). For
predictions at time t+1, we focus only on snapshots from Gt−w to Gt. Ablation studies confirm that
smaller time windows deliver excellent results across various real-world datasets. We further leverage
FLASH Attention [9] to optimize memory usage and computation. Additionally, we incorporate
Performer [5], which approximates the softmax computation of the attention matrix, reducing the
complexity to O(Nw). This enables us to scale efficiently to larger graphs, as shown in Table 5,
while maintaining high performance (see Table 15) with manageable computational resources.

6



4 Experiments

We conduct extensive experiments to validate SLATE for link prediction on discrete dynamic graphs,
including state-of-the-art comparisons in section 4.1. In section 4.2, we highlight the benefits of our
two main contributions, the importance of connecting our supra-graph, and the ability of SLATE to
scale to larger datasets with reasonable time and memory consumption compared to MP-GNNs.

Implementation details. We use one transformer Encoder Layer [45]. For larger datasets, we
employ Flash Attention [9] for improved time and memory efficiency. Further details regarding
model parameters and their selections are provided in Table 8. We fix the token dimension at d = 128
and the time window at w = 3 for all our experiments. We use an SGD optimizer for all of our
experiments. Further details on hyper-parameters search, including the number of eigenvectors for
our spatio-temporal encoding, are in Appendix D.

4.1 Comparison to state-of-the-art

Since both the continuous and discrete communities evaluate on similar data, we compare SLATE to
state-of-the-art DTDG (Table 1) and CTDG (Table 2) models. Best results are in bold, second best
are underlined. More detailed results and analyses are presented in Appendix E.1.

Baselines and evaluation protocol. To compare the benefits of fully connected spatio-temporal
attention with a standard approach using transformers, we designed the ROLAND-GT model based
on the ROLAND framework [59]. This model follows the stacked-GNN approach [41], equipped
with the encoder fθT described in section 3 including static Laplacian positional encoding [11], and a
LSTM [17] updating the node embeddings.

We adhere to the standardized evaluation protocols for continuous models [60] and discrete mod-
els [55]. Our evaluation follows these protocols, including metrics, data splitting, and the datasets
provided. Results in Table 1 and Table 2 are from the original papers, except those marked with †.
We report the average results and standard deviations from five runs to assess robustness. Additional
results, including hard negative sampling evaluation, are in Appendix E.2.

Datasets. In Table 6 Appendix C, we provide detailed statistics for the datasets used in our exper-
iments. An in-depth description of the datasets is given in Appendix C. We evaluate on DTDGs
datasets provided by [60] and [55], we add a synthetic dataset SBM based on stochastic block model
[29], to evaluate on denser DTDG.

Table 1: Comparison to DTDG models on discrete data. ROC-AUC

Method HepPh AS733 Enron Colab SBM† Avg.

GCN† [23] 74.52 ± 0.80 96.65 ± 0.05 91.31 ± 0.45 88.28 ± 0.58 95.96 ± 0.32 89.34 ± 0.44
GIN† [53] 71.47 ± 0.56 93.53 ± 0.55 91.16 ± 1.17 85.38 ± 0.61 88.86 ± 0.46 86.08 ± 0.67

EvolveGCN [34] 76.82 ± 1.46 92.47 ± 0.04 90.12 ± 0.69 83.88 ± 0.53 94.21 ± 0.66 87.50 ± 0.68
GRUGCN [40] 82.86 ± 0.53 94.96 ± 0.35 92.47 ± 0.36 84.60 ± 0.92 92.55 ± 0.41 89.48 ± 0.51

DySat [39] 81.02 ± 0.25 95.06 ± 0.21 93.06 ± 0.97 87.25 ± 1.70 91.92 ± 0.39 89.67 ± 0.70
VGRNN [15] 77.65 ± 0.99 95.17 ± 0.62 93.10 ± 0.57 85.95 ± 0.49 93.88 ± 0.07 89.15 ± 0.55
HTGN [55] 91.13 ± 0.14 98.75 ± 0.03 94.17 ± 0.17 89.26 ± 0.17 94.80 ± 0.23 93.62 ± 0.15

ROLAND-GT† [59] 81.40 ± 0.45 94.75 ± 0.87 90.20 ± 1.12 82.95 ± 0.45 94.88 ± 0.31 88.83 ± 0.64

SLATE 93.21 ± 0.37 97.46 ± 0.45 96.39 ± 0.17 90.84 ± 0.41 97.69 ± 0.21 95.12 ± 0.32

Comparison to discrete models, on DTDG. Table 1 We showcases the performance of SLATE
against various discrete models on DTDG datasets, highlighting its superior performance across
multiple metrics and datasets. SLATE outperforms all state of the art models on the HepPh, Enron,
and Colab datasets, demonstrating superior dynamic link prediction capabilities. Notably, it surpasses
HTGN by +2.1 points in AUC on HepPh and +1.1 points in AP on Enron. Moreover, SLATE shows
a remarkable improvement of +7.6 points in AUC over EvolveGCN on Colab. It also performs
competitively on the AS733 dataset, with scores that are closely second to HTGN, demonstrating its
robustness across different types of dynamic graphs. What also emerges and validates our method
from this comparison is the average gain of +6.29 points by our fully connected spatio-temporal
attention model over the separate spatial attention model and temporal model approach, as used in
ROLAND-GT. We also demonstrate significant gains against sparse attention models like DySat, with
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an increase of +6.45. This study, conducted on the protocol from [55], emphasizes SLATE capability
in handling discrete-time dynamic graph data, offering significant improvements over existing models.

Table 2: Comparison to CTDG models on discrete data using [60] protocol (AUC).

Method CanParl USLegis Flights Trade UNVote Contact Avg.

JODIE [27] 78.21 ± 0.23 82.85 ± 1.07 96.21 ± 1.42 69.62 ± 0.44 68.53 ± 0.95 96.66 ± 0.89 82.01 ± 0.83
DyREP [43] 73.35 ± 3.67 82.28 ± 0.32 95.95 ± 0.62 67.44 ± 0.83 67.18 ± 1.04 96.48 ± 0.14 80.45 ± 1.10
TGAT [52] 75.69 ± 0.78 75.84 ± 1.99 94.13 ± 0.17 64.01 ± 0.12 52.83 ± 1.12 96.95 ± 0.08 76.58 ± 0.71
TGN [38] 76.99 ± 1.80 83.34 ± 0.43 98.22 ± 0.13 69.10 ± 1.67 69.71 ± 2.65 97.54 ± 0.35 82.48 ± 1.17

CAWN [48] 75.70 ± 3.27 77.16 ± 0.39 98.45 ± 0.01 68.54 ± 0.18 53.09 ± 0.22 89.99 ± 0.34 77.16 ± 0.74
EdgeBank [35] 64.14 ± 0.00 62.57 ± 0.00 90.23 ± 0.00 66.75 ± 0.00 62.97 ± 0.00 94.34 ± 0.00 73.50 ± 0.00

TCL [47] 72.46 ± 3.23 76.27 ± 0.63 91.21 ± 0.02 64.72 ± 0.05 51.88 ± 0.36 94.15 ± 0.09 75.11 ± 0.73
GraphMixer [7] 83.17 ± 0.53 76.96 ± 0.79 91.13 ± 0.01 65.52 ± 0.51 52.46 ± 0.27 93.94 ± 0.02 77.20 ± 0.36
DyGformer [60] 97.76 ± 0.41 77.90 ± 0.58 98.93 ± 0.01 70.20 ± 1.44 57.12 ± 0.62 98.53 ± 0.01 83.41 ± 0.51

SLATE 92.37 ± 0.51 95.80 ± 0.11 99.07 ± 0.41 96.73 ± 0.29 99.94 ± 0.05 98.12 ± 0.37 96.88 ± 0.26

Comparison to continuous models, on DTDG. Table 2 In dynamic link prediction, SLATE outper-
forms models focused on node (TGN, DyRep, TGAT), edge (CAWN), and combined node-pairwise
information (DyGFormer,TCL). Notably, it surpasses TCL by over 21 points in average, showcasing
the benefits of our temporal cross attention strategies. SLATE’s advantage stems from its global
attention mechanism, unlike the sparse attention used by TGAT, TGN, and TCL. By employing
fully-connected spatio-temporal attention, SLATE directly leverages temporal dimensions through its
Edge module. This strategic approach allows SLATE to excel, as demonstrated by its consistent top
performance and further evidenced in Appendix with hard negative sampling results (see Table 17 and
Table 16 in Appendix E.1). We demonstrate average results that are superior by 13 points compared
to the most recent model on DTDG, DyGFormer [60].

4.2 Model Analysis

Impact of different SLATE component. Table 3 presents the AUC results of different configurations
of SLATE on four datasets. This evaluation demonstrates the impact of our proposed spatio-temporal
encoding and the Edge module on dynamic link prediction performance.

Encoding Edge Module Enron CanParl USLegis UNtrade

LapPE[11] + sinus-based [45] ✗ 89.18 ± 0.33 82.98 ± 0.71 85.22 ± 0.24 90.24 ± 1.05
SLATE ✗ 90.57 ± 0.27 89.45 ± 0.38 93.30 ± 0.29 94.01 ± 0.73

LapPE [11] + sinus-based [45] ✓ 90.75 ± 0.08 90.23 ± 0.41 87.50 ± 0.50 90.56 ± 0.69

SLATE ✓ 96.39 ± 0.18 92.37 ± 0.51 95.80 ± 0.11 96.73 ± 0.29

Table 3: Validation of different SLATE component. Results in AUC over 4 datasets.

First, we show the naive spatio-temporal encoding approach using the first k Laplacian eigenvectors
associated with the k lowest values [11] (Appendix A.4), combined with sinusoidal unparametrized
temporal encoding [45] (Appendix A.5), without the Edge module. The Laplacian is computed
sequentially on the w snapshots, then concatenated with the temporal encoding indicating the position
of the snapshot, with k = 12 for both SLATE and the naive encoding. The AUC scores across
all datasets are significantly lower, highlighting the limitations of this naive encoding method in
capturing complex spatio-temporal dependencies.

Replacing the baseline encoding with our proposed SLATE encoding, still without the Edge module,
results in significant improvements: +6.47 points on CanParl, +8.08 points on USLegis, and +3.77
points on UNtrade. These improvements demonstrate the effectiveness of our spatio-temporal
encoding. Adding the Edge module to the naive encoding baseline yields further improvements:
+7.25 points on CanParl and +1.57 points on Enron. However, it still falls short compared to the
enhancements provided by the SLATE encoding.

Finally, the complete model, SLATE with the Edge module, achieves the highest AUC scores across
all datasets: +9.39 points on CanParl and +10.58 points on USLegis. These substantial gains confirm
that integrating our unified spatio-temporal encoding and the Edge module effectively captures
intricate dynamics between nodes over time, resulting in superior performance.
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Dataset SLATE w/o trsf SLATE

Colab 85.03 ± 0.72 90.84 ± 0.41
USLegis 63.35 ± 1.24 95.80 ± 0.11
UNVote 78.30 ± 2.05 99.94 ± 0.05
AS733 81.50 ± 1.35 97.46 ± 0.45

Table 4: Importance of connectivity transfor-
mations steps to connect the supra-adjacency
matrix. AUC performance in dynamic link
prediction.

Figure 3: Average percentage of isolated
nodes per snapshot on real world dynamic
graphs data.

Critical role of supra-adjacency transformation. Here, we demonstrate the importance of the
transformation steps of the supra-adjacency matrix, as detailed in section 3.1, by removing isolated
nodes, adding virtual nodes, and incorporating temporal connections (Figure 2). Table 4 presents the
performance of SLATE with and without transformation (trsf) on four datasets. Without these critical
transformations, there is a systematic drop in performance, particularly pronounced in datasets with
a high number of isolated nodes, as shown in Figure 3 (27% in Colab, 53% in USLegis, 35% in
UNVote, and 59% in AS733). These results clearly highlight the significant improvements brought by
our proposed transformations. More detailed experiments regarding each transformation, particularly
on the importance of removing isolated nodes and adding a virtual node, are presented in Tables 12
and 13.

Models Mem. t / ep. Nb params.

EvolveGCN 46Go 1828s 1.8 M
DySAT 42Go 1077s 1.8 M
VGRNN 21Go 931s 0.4 M
ROLAND-GT w/o Flash OOM - 1.9 M
ROLAND-GT 44Go 1152s 1.9 M

SLATE w/o Flash OOM - 2.1 M
SLATE 48Go 1354s 2.1 M
SLATE-Performer 17Go 697s 2.1 M

Table 5: An analysis of model efficiency com-
paring the memory usage (Mem.), training
time per epoch (t/ep.) and the number of pa-
rameters (Nb params) on Flights dataset

Figure 4: Model performance based on the win-
dow size, w =∞ corresponds to considering all
snapshots. Results in average precision (AP).

Impact of the time-window size. We demonstrate in Figure 4 the impact of the time window
size on the performance of the SLATE model. A window size of 1 is equivalent to applying a
global attention transformer to the latest snapshot before prediction, and an infinite window size is
equivalent to considering all the snapshots for global attention. This figure highlights the importance
of temporal context for accurate predictions within dynamic graphs. We observe that, in most cases,
too much temporal context can introduce noise into the predictions. The USLegis, UNVote and
CanParl datasets are political graphs spanning decades (72 years for UNVote), making it unnecessary
to look too far back. For all of our main results in Table 2 and Table 1 we fix for simplicity w = 3.
However, our ablations have identified w = 4 as an optimal balance, capturing sufficient temporal
context without introducing noise into the transformer encoder and ensuring scalability for our model.
Therefore, SLATE performances could further be improved by more systematic cross-validation of
its hyper-parameters, e.g. w.

Model efficiency. The classic attention mechanism, with a complexity of O(N2), can be memory-
consuming when applied across all nodes at different time steps. However, using Flash-Attention [9]
and a light transformer architecture with just one encoder layer, we successfully scaled to the Flights
dataset, containing 13,000 nodes and a window size of w = 3. By using the Performer encoder
[5], which approximates attention computation with linear complexity, memory usage is reduced to
17GB. Our analysis shows that our model empirically matches the memory consumption of various
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DTDG architectures while maintaining comparable computation times (Table 5). Furthermore, it is
not over-parameterized relative to existing methods. We trained on an NVIDIA-Quadro RTX A6000
with 49 GB of total memory.

4.3 Qualitative results

We present qualitative results in Figure 5 comparing the graph and its spectrum before and after
applying the proposed transformation in SLATE. The projection is made on the eigenvector associated
with the first non-zero eigenvalue. Before transformation, the DTDG contains isolated nodes (7,
23 and 26) and two distinct clusters in the snapshot at t = 3. In this case, the projection is purely
spatial, as there are no temporal connections, and some projections also occur on isolated nodes due
to the presence of distinct connected components. After the proposed transformation into a connected
multi-layer graph, the projection captures richer spatio-temporal properties of the dynamic graph. By
connecting the clusters with a virtual node and adding temporal edges, our approach removes the
influence of isolated nodes and enables the construction of an informative spatio-temporal encoding
that better reflects the dynamic nature of the graph.

Figure 5: Projection of the eigenvector associated with the first non-zero eigenvalue on a toy
DTDG before and after transformation. On the left, the DTDG is unprocessed, showing only
spatial projections due to the lack of temporal connections. On the right, after applying the SLATE
transformation, the graph captures rich spatio-temporal properties, allowing for a more informative
spatio-temporal encoding

5 Conclusion

We have presented the SLATE method, an innovative spatio-temporal encoding for transformers on
dynamic graphs, based on supra-Laplacian analysis. Considering discrete-time dynamic graphs as
multi-layer networks, we devise an extremely efficient unified spatio-temporal encoding thanks to the
spectral properties of the supra-adjacency matrix. We integrate this encoding into a fully-connected
transformer. By modeling pairwise relationships in a new edge representation module, we show how
it enhances link prediction on dynamic graphs. SLATE performs better than previous state-of-the-art
approaches on various standard benchmark datasets, setting new state-of-the-art results for discrete
link prediction.

Despite its strong performances, SLATE currently operates in a transductive setting and cannot
generalize to unseen nodes. We aim to explore combinations with MP-GNNs to leverage the strengths
of local feature aggregation and global contextual information. On the other hand, SLATE scales
reasonably well to graphs up to a certain size but, as is often the case with transformers, future work
is required to scale to very large graphs.
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A Supra-Laplacian and other positional encoding

A.1 Spectral Theory on multi-layer networks

To leverage the benefits of fully-connected spatio-temporal attention across all nodes at multiple
timestamps, we encode the spatio-temporal structure by considering a DTDG as a multi-layer graph.
For a simple DTDG G = {G1, G2, G3}with a fixed number of nodes, we define the square symmetric
supra-adjacency matrix Ā ∈ RN×N as follows:

Ā =

(
A1 I 0
I A2 I
0 I A3

)
(7)

Then, we can utilize the rich spectral properties associated with its supra-Laplacian L̄ = D̄ − Ā.
Several studies have analyzed the spectrum of those multi-layer graphs [8, 10, 36]. Especially,
[36] demonstrated that ϕ1, the Fiedler vector, associated with the second smallest eigenvalue λ1,
known as the algebraic connectivity or Fiedler value, highlights structural changes between each
layer. For a DTDG, this provides valuable information about the graph’s dynamics over time. We
verified this property experimentally by generating a DTDG containing 3 snapshots of a random
Erdős-Rényi graph [13] with 10 nodes each and connecting them temporally according to Eq. (7) (see
illustration on Figure 1). We then project all nodes of the DTDG onto different vectors associated with
eigenvalues λi, with λ0 ≤ λ1 ≤ ... ≤ λmax. We observe that projecting onto ϕ1 provides dynamic
information, while projecting onto ϕi associated with larger eigenvalues λi reveals increasingly
localized structures. These properties strongly motivate the use of spectral analysis of a multi-layer
graph derived from a DTDG to achieve a unified spatio-temporal encoding.

A.2 Supra-graph construction

Algorithm 1: Computation of supra-laplacian spectrum
Input: G, w,k, t+ 1
Output: ϕ,Λ
adjacencies← [ ]
for i from max(0, t− w) to t do

Ai ← GetAdjacency(Gi)
Ai ← RemoveIsolated(Ai)
Ai ← AddVirtualNode(Ai)
adjacencies.Append(Ai)

Ā ← BlockDiag(adjacencies)// Eq. (7)
Ā ← AddTempConnection(Ā)
// Add temporal self-connection only if nodes aren’t isolated
L̄ = I −D−1/2ĀD−1/2

ϕTΛϕ = GetKFirstEigVectors(L̄, k) // O(k2N)

In practice, when isolated nodes are removed, we obtain a mask of size N . This mask helps us
identify which nodes are isolated at each time step and determines whether their positional encoding
will be 0k or the projection on the basis of the k eigenvectors. The mask also guides us in adding
temporal connections between a node and its past, as isolated nodes do not have temporal connections.
In summary, the matrix Ā has a different size from N ×W because we remove isolated nodes and
add virtual nodes. The masks help us map the actual indices in G to the rows in Ā.

In Figure 6, we illustrate the process of transforming a random DTDG into a connected multi-layer
network. On the left, we see three independent snapshots, with several isolated nodes (6, 23, and 26)
and multiple clusters in the snapshot at t = 3. The proposed transformation in SLATE ensures that
the resulting multi-layer graph becomes fully connected by adding temporal connections, removing
isolated nodes, and introducing a virtual node to bridge the different clusters within each snapshot.
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Figure 6: Transformation of a random DTDG into a connected multi-layer network. The left
side shows independent snapshots with isolated nodes and disconnected clusters. The proposed
transformation (right) ensures connectivity by introducing temporal edges, removing isolated nodes,
and adding a virtual node to connect the clusters within each snapshot.

A.3 SupraLaplacian Positional Encoding

Proof of the positivity of λ1 when the graph is connected [14]

Theorem 1: The second smallest eigenvalue, λ1 (the Fiedler value), is strictly positive if and only if
the graph is connected.

Proof 1: Assume that the graph is not connected. This implies that it can be divided into at least two
disjoint connected components without any edges connecting them. For such a graph, it is possible to
construct a vector whose entries correspond to these connected components such that the product
ϕT
i L̄ϕi = 0, where ϕi is an eigenvector. This demonstrates that λ1 = 0. On the contrary, if λ1 > 0,

the only vector that satisfies ϕT
i L̄ϕi = 0 under normal conditions (non-zero ϕi) is the constant vector,

indicating that the graph cannot be divided without cutting edges, thus it is connected.

A.4 Laplacian Positional Encoding

Lt = I −D
−1/2
t AtD

−1/2
t = ϕT

t Λϕt (8)

LapPEt
i = (ϕt

i,1, ϕ
t
i,2, ..., ϕ

t
i,dpos

) (9)

Lt represents the Laplacian matrix of the graph Gt. It is obtained by decomposing the graph as the
product of eigenvectors ϕt and eigenvalues Λt. The Laplacian positional encoding defined in Eq. (9)
provides a unique positional representation of the node ui,t with respect to the k eigenvectors of Gt.

A.5 Unparameterized temporal encoding

timePE(t, k) =

sin
(

t
10000(2k/dtime)

)
if k is even

cos
(

t
10000((2k+1)/dtime)

)
if k is odd

(10)

In Eq. (10), t refers to the t-th snapshot of our DTDG G, and k is the dimension in our temporal
encoding vector of size dtime. This temporal is from [45]. To build the ROLAND-GT separate spatio-
temporal encoding we concatene the positional encoding LapPE (Eq. (9)) and the time encoding
(Eq. (10)).
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A.6 GCN Positional Encoding

We add in our comparison in Figure 7, the GCN positional encoding against our SLATE Model.
This encoding is derived from a 2-layer GCN as designed by Kipf and Welling [23]. This method
aggregates the local neighborhood information around a target node with message passing. We
use the node embedding as positional encoding to enhance the transformer’s awareness of the local
structural context. This approach aims to integrate structural insights into the transformer model. It is
inspired by the prevalent hybrid architectures combining MP-GNNs and transformers in static Graph
Transformers [37]. It reflects an evolving trend in graph neural network research, where the strengths
of both MP-GNNs in capturing local graph structures and transformers in modeling complex data
dependencies are leveraged to enhance model performance on graph-based tasks. However, in our
experiments, we found that SLATE significantly outperformed the GCN-based positional encoding.

B Baselines

Discrete Time Dynamic Graphs Link Prediction models We describe the DTDG models from
[55]:

• GIN and GAT [24] : We use static models [53, 46] to showcase the necessity of dynamic
model for efficient learning on dynamic graph. GAT is a sparse attention-based model, and
GIN is a MP-GNN model design to have a the maximal expressivity of 1−WL.

• GRUGCN [40] : GRUGCN is one of the first discrete dynamic graph GNN models. They
introduced the now standard approach which combines a GNN to process the snapshot, and
updating embeddings using a temporal model, in their case a GRU.

• EvolveGCN [34]: EvolveGCN is an innovative approach adapting the Graph Convolutional
Network (GCN) model for dynamically evolving graphs without relying on node embed-
dings, effectively capturing the dynamic nature of graph sequences through an RNN to
update GCN parameters.

• DySat [39] : DySAT use self-attention mechanisms to learn node representations in dynamic
graphs. It applies self-attention both structurally and temporally with separate module for
time and space, the space module is similar to GAT [46], and the temporal model is a 1-D
transformer.

• VGRNN [15] : VGRNN introduce node embedding techniques for dynamic graphs, focusing
on variational graph recurrent neural networks to capture temporal dynamics. They employ
latent variables for node representation, with SI-VGRNN advancing the model through
semi-implicit variational inference for better flexibility. The method is suited for sparse
graphs.

• HTGN [55]: They introduce a novel approach for embedding temporal networks through
a hyperbolic temporal graph network (HTGN), effectively utilizing hyperbolic space to
capture complex, evolving relationships and hierarchical structures in temporal networks.

• ROLAND [59]: ROLAND is a generic framework for graph representation learning on
DTDG. They allow to efficiently implement any static graph models combine with a RNN-
based temporal module.

Continuous Time Dynamic Graphs Link Prediction models We report the description of the
CTDG baselines provided in [60].

• JODIE [27]: Tailored for user-item interaction dynamics within bipartite networks, JODIE
utilizes dual recurrent neural networks to refresh user and item states, introducing a projec-
tion technique to predict future state trajectories.

• DyRep [43]: Introduces a recurrent mechanism for real-time node state updates, comple-
mented by a temporal attention module to assimilate evolving structural insights of dynamic
graphs effectively.

• TGAT [52]: Enhances node representations through the aggregation of temporal-topological
neighbor features, leveraging a local self-attention mechanism and time encoding to discern
temporal dynamics.
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• TGN [38]: TGN dynamically updates node memories during interactions using a sophisti-
cated mechanism comprising a message function, aggregator, and updater, thereby crafting
temporal node representations through an embedding module.

• CAWN [48]: Initiates by extracting causal anonymous walks per node to delve into network
dynamics and identity correlations, followed by encoding these walks with recurrent neural
networks to synthesize comprehensive node representations.

• EdgeBank [35]: Adopts a non-parametric, memory-centric strategy for dynamic link pre-
diction, maintaining a repository of interactions for memory updates and utilizing retention-
based prediction to distinguish between positive and negative links.

• TCL [47] : TCL applies contrastive learning to dynamic graph, using a transformer-based
architecture to capture temporal and topological information. It introduces a dual-stream
encoder for processing temporal neighborhoods and employs attention mechanisms for
semantic inter-dependencies, optimizing through mutual information maximization.

• DyGFormer [60]: DyGFormer introduces a novel transformer-based architecture for dy-
namic graph learning, focusing on first-hop interactions to derive node representations. It
employs a neighbor co-occurrence encoding scheme to capture node correlations and a
patching technique for efficient processing of long temporal sequences. This approach
ensures model effectiveness in capturing temporal dependencies and node correlations.

C Datasets

C.1 Datasets description

Table 6: Dataset statistics used in our experiments, with a horizontal bar separating datasets from
[60] and datasets from [55].

Datasets Domains Nodes Links Snapshots

CanParl Politics 734 74,478 14
USLegis Politics 225 60,396 12
Flights Transports 13,169 1,927,145 122
Trade Economics 255 507,497 32
UNVote Politics 201 1,035,742 72
Contact Proximity 692 2,426,279 8064

HepPh Citations 15,330 976,097 36
AS733 Router 6,628 13,512 30
Enron Mail 184 790 11
Colab Citations 315 943 10
SBM Synthetic 1000 4,870,863 50

• CanParl: Can. Parl. is a network that tracks how Canadian Members of Parliament (MPs)
interacted between 2006 and 2019. Each dot represents an MP, and a line connects them
if they both said "yes" to a bill. The line’s thickness shows how often one MP supported
another with "yes" votes in a year.

• UsLegis: USLegis is a Senate co-sponsorship network that records how lawmakers in the
US Senate interact socially. The strength of each connection indicates how many times two
senators have jointly supported a bill during a specific congressional session

• Flights: Flights is a dynamic flight network that illustrates the changes in air traffic through-
out the COVID-19 pandemic. In this network, airports are represented as nodes, and the
actual flights are represented as links. The weight of each link signifies the number of daily
flights between two airports.

• Trade: UNTrade covers the trade in food and agriculture products between 181 nations over
a span of more than 30 years. The weight assigned to each link within this dataset reflects
the cumulative sum of normalized import or export values for agricultural goods exchanged
between two specific countries.
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• UNVote: UNVote documents roll-call votes conducted in the United Nations General
Assembly. Whenever two nations cast a "yes" vote for an item, the link’s weight connecting
them is incremented by one.

• Contact: Contact dataset provides insights into the evolving physical proximity among
approximately 700 university students over the course of a month. Each student is uniquely
identified, and links between them indicate their close proximity. The weight assigned to
each link reveals the degree of physical proximity between the students

• Enron: Enron consists of emails exchanged among 184 Enron employees. Nodes represent
employees, and edges indicate email interactions between them. The dataset includes 10
snapshots and does not provide node or edge-specific information

• Colab: Colab represents an academic cooperation network, capturing the collaborative
efforts of 315 researchers from 2000 to 2009. In this network, each node corresponds to an
author, and an edge signifies a co-authorship relationship.

• HepPH: HepPh is a citation network focused on high-energy physics phenomenology,
sourced from the e-print arXiv website. Within this dataset, each node represents a research
paper, while edges symbolize one paper citing another. The dataset encompasses papers
published between January 1993 and April 2003, spanning a total of 124 months.

• AS733: AS733 represents an Internet router network dataset, compiled from the University
of Oregon Route Views Project. This dataset consists of 733 instances, covering the time
period from November 8, 1997, to January 2, 2000, with intervals of 785 days between data
points.

• SBM: SBM is a synthetic dynamic datasets generated with Stochastic Block Models methods.
It contains 1000 nodes and 50 snapshots. We added this datasets, because unlike most of
real world datasets, SBM is not a sparse graph.

C.2 Datasets split

For the datasets from [60], we follow the same graph splitting strategy, which means 70% of the
snapshots for training, 15% for validation, and 15% for testing. We use the same number of snapshots
as in HTGN [55], the value varies for each dataset (Table 7).

Datasets HepPh AS733 Enron Colab

l (number snapshots in test) 6 10 3 3
Table 7: l represents the number of snapshots in the test dataset. The DTDG is split temporally,
following [55]

D Implementation details and parameters search

For each of our experiments, we used a fixed embedding size of d = 128, a time window w = 3, and
a single layer of transformer Encoder. Additionally, for the calculation of our positional encoding
vectors, we consider that the graph is always undirected. In Table 8, we provide the remaining
hyperparameters that we adjusted based on the datasets. We selected these datasets by choosing
the hyperparameters that yielded the best validation performance in AP. k is the number of linearly
independent eigenvectors we retrieve, it’s important to note that d does not increase when dim_pe
grow because d′ = d− k. nhead_xa is the number of head inside the Edge Representation module
define in section 3.3. nhead_encoder is the number of head inside SLATE section 3, dim_ffn is
the dimension of the feed forward networks in SLATE and norm_first is a condition in SLATE to
weither or not applying a layer norm before the full attention.
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Parameters Search Range

k [4,6,10,12,14]
nhead_xa [1,2,4,8]

nhead_encoder [1,2,4,8]
dim_ffn [128,512,1024]

norm_first [True,False]
learning_rate [0.1,0.01,0.001,0.0001]
weight_decay [0,5e-7]

Table 8: Hyperparameter search range.

E Experiments: Additionnal results

E.1 AP results for DTDG models

We present additional results with Average Precision metrics to evaluate the dynamic link prediction
capibility of models. SLATE outperforms all other DTDG models across various datasets, achieving
the highest average precision (AP) scores. Specifically, SLATE surpasses the best-performing model,
HTGN, with significant improvements: +1.22 on HepPh, +1.09 on Enron, and +3.33 on SBM. This
highlights the effectiveness of our approach in dynamic link prediction tasks.

Table 9: Comparison to DTDG models on discrete data. AP
Method HepPh AS733 Enron Colab SBM Avg

GCN 73.67 ± 1.05 97.11 ± 0.01 91.00 ± 0.73 90.17 ± 0.25 94.57 ± 0.30 89.30 ± 0.47
GIN 70.55 ± 0.84 93.43 ± 0.47 89.47 ± 1.52 87.82 ± 0.52 85.64 ± 0.11 85.38 ± 0.69

EvolveGCN 81.18 ± 0.89 95.28 ± 0.01 92.71 ± 0.34 87.53 ± 0.22 92.34 ± 0.17 89.81 ± 0.33
GRUGCN 85.87 ± 0.23 96.64 ± 0.22 93.38 ± 0.24 87.87 ± 0.58 91.73 ± 0.46 91.09 ± 0.35

DySat 84.47 ± 0.23 96.72 ± 0.12 93.06 ± 1.05 90.40 ± 1.47 90.73 ± 0.42 91.07 ± 0.66
VGRNN 80.95 ± 0.94 96.69 ± 0.31 93.29 ± 0.69 87.77 ± 0.79 90.53 ± 0.14 89.85 ± 0.57
HTGN 89.52 ± 0.28 98.41 ± 0.03 94.31 ± 0.26 91.91 ± 0.07 94.71 ± 0.13 93.77 ± 0.15

ROLAND-GT 82.75 ± 0.31 93.66 ± 0.14 89.86 ± 0.29 85.03 ± 1.96 93.62 ± 0.28 88.98 ± 0.59

SLATE 90.74 ± 0.51 98.16 ± 0.36 95.40 ± 0.29 92.15 ± 0.28 98.04 ± 0.29 94.90 ± 0.34

E.2 Comparison state of the art: Hard Negative Sampling

We present a extensive set of results for our method in comparison to CTDG models in the task
of dynamic link prediction on discrete-time dynamic graphs in Table 17 and Table 16. Here,
we emphasize the effectiveness of our model when employing hard historical negative sampling.
Historical negative sampling technique (hist) was introduced in [35] to enhance the evaluation of a
model’s dynamic capability by selecting negatives that occurred in previous time-steps but are not
present at the current time for prediction. Inductive negative sampling evaluating the capability of
models to predict new links that never occured before. Our results demonstrate that our model excels
at distinguishing hard negative edges compared to other CTDG models, as evidenced by improved
performance in both AP and AUC metrics. SLATE also consistently outperforms other models using
the indudctive (ind) sampling method across multiple datasets, showcasing its superior capability
in capturing dynamic graph interactions. Notably, SLATE achieves significant improvements on
datasets such as USLegis and Trade, demonstrating its robustness and effectiveness in dynamic link
prediction tasks.

E.3 Model Analysis: Additional results

Figure 7 provides a comparison between SLATE spatio-temporal encoding and separate spatial and
temporal encodings, including the Laplacian [12] (Lap Eq. (8)) and GCN (Appendix A.6) encodings.
For calculating the spatial encoding, we selected two common strategies; the first involves using, as
we do, the first k eigenvectors of the Laplacian [12], but only for the current snapshot. Empirically,
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Table 10: Impact of Edge module on Dy-
namic Link Prediction task. ROC-AUC.

Datasets SLATE w/o Edge SLATE

CanParl 89.45 ± 0.38 92.37 ± 0.51
USLegis 93.30 ± 0.29 95.80 ± 0.11
Flights 99.04 ± 0.61 99.07 ± 0.41
Trade 94.01 ± 0.73 96.73 ± 0.29

UNVote 93.56 ± 0.68 99.94 ± 0.05
Contact 97.41 ± 0.10 98.12 ± 0.37

HepPh 90.44 ± 1.07 93.21 ± 0.37
AS733 96.84 ± 0.26 97.46 ± 0.45
Enron 90.57 ± 0.27 96.39 ± 0.18

COLAB 86.34 ± 0.34 90.84 ± 0.41

Figure 7: Comparison of SLATE encoding against
separate structural/positional encoding and time
encoding.

we found that the GCN encoding did not yield satisfying results, in contrast to the hybrid architecture
strategies widely used for static Graph Transformers [37].

We show in Table 10 SLATE, with its cross-attention mechanism for edge representation, significantly
enhances the predictive accuracy of the SLATE w/o Edge model. We show improvement across
various datasets, further emphasizing the importance of modeling temporal interactions explicitly,
we gain for example +6.4 points on UNVote, +2.6 points on USLegis and +5.8 points on Enron.
SLATE’s ability to capture intricate dynamics between two nodes across time dimensions results in
substantial performance gains, making it a valuable addition to our model architecture.

Impact of the time-pooling function. In Table 11, we present the performance of the time-pooling
function used in section 3.3, across the US Legis, UN Vote, and Trade datasets, with the time window
set to w = 3. Using k = 3 corresponds to averaging over all snapshots within the window, whereas
k = 1 focuses exclusively on the last element of Euv. The results indicate that averaging (mean
pooling) consistently outperforms max pooling, irrespective of the k value. For our primary analysis,
we therefore adopt k = 3.

Table 11: Comparison of SLATE for several time pooling methods (random sampling), on USLegis,
UNVote and Trade.

Pool USLegis UNvote Trade
AUC AP AUC AP AUC AP

Max 93.03 88.68 87.92 87.72 93.37 93.32
Avg. k = 3 94.50 89.67 99.72 99.75 96.71 96.88
Avg. k = 2 95.35 92.17 99.69 99.67 96.76 96.93
Avg. k = 1 94.67 91.28 99.59 99.44 96.78 96.97

Detailed analysis of the DTDG-to-multi-layer transformation in SLATE We provide a closer
examination of the performance of SLATE under various transformations applied to the DTDG during
its conversion into a multi-layer graph. The Table 12 demonstrates the negative effect of retaining
isolated nodes, which leads to a significant drop in performance on both the Colab and USLegis
datasets. By removing these nodes and focusing on the spectrum associated with the first non-zero
eigenvalue, SLATE achieves a substantial performance improvement.

The Table 13 highlights the importance of introducing a virtual node (VN) that connects clusters
within each snapshot. Without the VN, the model underperforms, as shown in the results for the
Enron dataset. This confirms that each transformation step, from removing isolated nodes to adding
temporal connections and VNs, plays a critical role in enhancing the quality of the spatio-temporal
encoding.

AUC : Impact of time window on multiple models The analysis in Table 14 demonstrates that
the impact of the time window on model performance is consistent across different types of models,
including our transformer-based approach and two MP-GNNs (EGCN and DySAT). Interestingly, we
observe that a relatively short time window produces optimal results for all models on the UNVote
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Models Colab USLegis

SLATE with isolated nodes 86.73 66.57
SLATE 90.84 95.80

Table 12: Performance impact in AUC of
keeping isolated nodes on Colab and USLegis
datasets. Removing isolated nodes and focus-
ing on the first non-zero eigenvalue spectrum
leads to a significant performance boost.

Models AP AUC

SLATE w/o VN 93.74 95.18
SLATE 95.40 96.39

Table 13: Effect of introducing a virtual node
(VN) on the Enron dataset. The addition of
the VN improves SLATE’s performance in
terms of both AP and AUC.

dataset, which spans 72 snapshots. Specifically, both EGCN and DySAT achieve their highest AUC
with W = 4, while SLATE achieves peak performance at W = 2. This indicates that capturing
spatio-temporal dynamics does not necessarily require long temporal windows, and in fact, shorter
windows can often lead to better performance by focusing on more immediate temporal interactions.

Model Nb param. W = 1 W = 2 W = 3 W = 4 W = 5 W =∞
EGCN 1.8M 86.96 86.48 86.74 87.66 85.26 86.74
DySAT 1.8M 83.93 81.90 86.15 88.71 80.08 77.04
SLATE 2.1M 96.68 99.73 98.74 95.90 95.79 92.24

Table 14: Effect of time window size on AUC for different models. Shorter windows provide optimal
results across all models.

E.4 More qualitative analysis

We conduct a fine-grained analysis of the impact of not processing the DTDG correctly. Figure 8
demonstrates that without temporal connections, the result is purely spatial projections with no
spatio-temporal information, as the three snapshots remain independent. Figure 9 illustrates the
effect of retaining isolated nodes while adding temporal connections. Keeping these nodes leads to
multiple disconnected components in the graph, where many projections focus solely on the isolated
nodes, neglecting the core structure of the DTDG. This issue is further intensified by the fact that we
consider only the k eigenvectors associated with the first non-zero eigenvalue, limiting the ability to
capture the full spatio-temporal dynamics.

Figure 8: Effect of missing temporal connections in a DTDG. Without temporal edges, the figure
illustrates that the projections are purely spatial, and the three snapshots remain independent, with no
spatio-temporal interaction captured.

E.5 Scalability

In Table 5, we demonstrate that Performer [5] significantly reduces memory consumption and
speeds up training time per epoch. Moreover, as shown in Table 15, using Performer an efficient
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Figure 9: Effect of retaining isolated nodes in a DTDG with added temporal connections. The
figure shows that keeping isolated nodes results in multiple disconnected components, where many
projections focus on these nodes, obscuring the overall spatio-temporal structure of the graph.

approximation of the attention matrix with linear complexity—does not significantly degrade the
results compared to the standard Transformer encoder. Performer is a highly advantageous solution
for scaling to larger graphs while maintaining the benefits of dynamic graph transformers. Its linear
complexity allows it to handle larger datasets efficiently, without sacrificing performance.

Models AS733 USLegis UNtrade

SLATE-Transformer 97.46 ± 0.45 95.80 ± 0.11 96.73 ± 0.29
SLATE-Performer 95.39 ± 0.61 95.14 ± 0.84 96.21 ± 0.77

Table 15: AUC performance comparison between SLATE using a standard Transformer encoder
([45]) and a Performer encoder ([5])
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Table 16: Comparison to CTDG models on discrete data. ROC-AUC

NSS Method CanParl USLegis Flights Trade UNVote Contact

rns

JODIE 78.21 ± 0.23 82.85 ± 1.07 96.21 ± 1.42 69.62 ± 0.44 68.53 ± 0.95 96.66 ± 0.89
DyREP 73.35 ± 3.67 82.28 ± 0.32 95.95 ± 0.62 67.44 ± 0.83 67.18 ± 1.04 96.48 ± 0.14
TGAT 75.69 ± 0.78 75.84 ± 1.99 94.13 ± 0.17 64.01 ± 0.12 52.83 ± 1.12 96.95 ± 0.08
TGN 76.99 ± 1.80 83.34 ± 0.43 98.22 ± 0.13 69.10 ± 1.67 69.71 ± 2.65 97.54 ± 0.35

CAWN 75.70 ± 3.27 77.16 ± 0.39 98.45 ± 0.01 68.54 ± 0.18 53.09 ± 0.22 89.99 ± 0.34
EdgeBank 64.14 ± 0.00 62.57 ± 0.00 90.23 ± 0.00 66.75 ± 0.00 62.97 ± 0.00 94.34 ± 0.00

TCL 72.46 ± 3.23 76.27 ± 0.63 91.21 ± 0.02 64.72 ± 0.05 51.88 ± 0.36 94.15 ± 0.09
GraphMixer 83.17 ± 0.53 76.96 ± 0.79 91.13 ± 0.01 65.52 ± 0.51 52.46 ± 0.27 93.94 ± 0.02
DyGformer 97.76 ± 0.41 77.90 ± 0.58 98.93 ± 0.01 70.20 ± 1.44 57.12 ± 0.62 98.53 ± 0.01

SLATE 92.37 ± 0.51 95.80 ± 0.11 99.07 ± 0.41 96.73 ± 0.29 99.94 ± 0.05 98.12 ± 0.37

hist

JODIE 62.44 ± 1.11 67.47 ± 6.40 68.97 ± 1.87 68.92 ± 1.40 76.84 ± 1.01 96.35 ± 0.92
DyREP 70.16 ± 1.70 91.44 ± 1.18 69.43 ± 0.90 64.36 ± 1.40 74.72 ± 1.43 96.00 ± 0.23
TGAT 70.86 ± 0.94 73.47 ± 5.25 72.20 ± 0.16 60.37 ± 0.68 53.95 ± 3.15 95.39 ± 0.43
TGN 73.23 ± 3.08 83.53 ± 4.53 68.39 ± 0.95 63.93 ± 5.41 73.40 ± 5.20 93.76 ± 1.29

CAWN 72.06 ± 3.94 78.62 ± 7.46 66.11 ± 0.71 63.09 ± 0.74 51.27 ± 0.33 83.06 ± 0.32
EdgeBank 63.04 ± 0.00 67.41 ± 0.00 74.64 ± 0.00 86.61 ± 0.00 89.62 ± 0.00 92.17 ± 0.00

TCL 69.95 ± 3.70 83.97 ± 3.71 70.57 ± 0.18 61.43 ± 1.04 52.29 ± 2.39 93.34 ± 0.19
GraphMixer 79.03 ± 1.01 85.17 ± 0.70 70.37 ± 0.23 63.20 ± 1.54 52.61 ± 1.44 93.14 ± 0.34
DyGformer 97.61 ± 0.40 90.77 ± 1.96 68.09 ± 0.43 73.86 ± 1.13 64.27 ± 1.78 97.17 ± 0.05

SLATE 88.71 ± 0.43 90.69 ± 0.50 76.83 ± 0.69 92.14 ± 0.38 98.62 ± 0.49 94.29 ± 0.09

ind

JODIE 52.88 ± 0.80 59.05 ± 5.52 69.99 ± 3.10 66.82 ± 1.27 73.73 ± 1.61 94.47 ± 1.08
DyREP 63.53 ± 0.65 89.44 ± 0.71 71.13 ± 1.55 65.60 ± 1.28 72.80 ± 2.16 94.23 ± 0.18
TGAT 72.47 ± 1.18 71.62 ± 5.42 73.47 ± 0.18 66.13 ± 0.78 53.04 ± 2.58 94.10 ± 0.41
TGN 69.57 ± 2.81 78.12 ± 4.46 71.63 ± 1.72 66.37 ± 5.39 72.69 ± 3.72 91.64 ± 1.72

CAWN 72.93 ± 1.78 76.45 ± 7.02 69.70 ± 0.75 71.73 ± 0.74 52.75 ± 0.90 87.68 ± 0.24
EdgeBank 61.41 ± 0.00 68.66 ± 0.00 81.10 ± 0.00 74.20 ± 0.00 72.85 ± 0.00 85.87 ± 0.00

TCL 69.47 ± 2.12 82.54 ± 3.91 72.54 ± 0.19 67.80 ± 1.21 52.02 ± 1.64 91.23 ± 0.19
GraphMixer 70.52 ± 0.94 84.22 ± 0.91 72.21 ± 0.21 66.53 ± 1.22 51.89 ± 0.74 90.96 ± 0.27
DyGformer 96.70 ± 0.59 87.96 ± 1.80 69.53 ± 1.17 62.56 ± 1.51 53.37 ± 1.26 95.01 ± 0.15

SLATE 93.74 ± 0.08 90.23 ± 0.29 76.98 ± 1.64 91.45 ± 0.39 92.78 ± 0.06 94.03 ± 0.43
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Table 17: Comparison to CTDG models on discrete data. Average Precision .

NSS Method CanParl USLegis Flights Trade UNVote Contact

rns

JODIE 69.26 ± 0.31 75.05 ± 1.52 95.60 ± 1.73 64.94 ± 0.31 63.91 ± 0.81 95.31 ± 1.33
DyREP 66.54 ± 2.76 75.34 ± 0.39 95.29 ± 0.72 63.21 ± 0.93 62.81 ± 0.80 95.98 ± 0.15
TGAT 70.73 ± 0.72 68.52 ± 3.16 94.03 ± 0.18 61.47 ± 0.18 52.21 ± 0.98 96.28 ± 0.09
TGN 70.88 ± 2.34 75.99 ± 0.58 97.95 ± 0.14 65.03 ± 1.37 65.72 ± 2.17 96.89 ± 0.56

CAWN 69.82 ± 2.34 70.58 ± 0.48 98.51 ± 0.01 65.39 ± 0.12 52.84 ± 0.10 90.26 ± 0.28
EdgeBank 64.55 ± 0.00 58.39 ± 0.00 89.35 ± 0.00 60.41 ± 0.00 58.49 ± 0.00 92.58 ± 0.00

TCL 68.67 ± 2.67 69.59 ± 0.48 91.23 ± 0.02 62.21 ± 0.03 51.90 ± 0.30 92.44 ± 0.12
GraphMixer 77.04 ± 0.46 70.74 ± 1.02 90.99 ± 0.05 62.61 ± 0.27 52.11 ± 0.16 91.92 ± 0.03
DyGformer 97.36 ± 0.45 71.11 ± 0.59 98.91 ± 0.01 66.46 ± 1.29 55.55 ± 0.42 98.29 ± 0.01

SLATE 92.44 ± 0.25 92.66 ± 0.41 98.61 ± 0.44 96.91 ± 0.23 99.91 ± 0.09 97.68 ± 0.13

hist

JODIE 51.79 ± 0.63 51.71 ± 5.76 66.48 ± 2.59 61.39 ± 1.83 70.02 ± 0.81 95.31 ± 2.13
DyREP 63.31 ± 1.23 86.88 ± 2.25 67.61 ± 0.99 59.19 ± 1.07 69.30 ± 1.12 96.39 ± 0.20
TGAT 67.13 ± 0.84 62.14 ± 6.60 72.38 ± 0.18 55.74 ± 0.91 52.96 ± 2.14 96.05 ± 0.52
TGN 68.42 ± 3.07 74.00 ± 7.57 66.70 ± 1.64 58.44 ± 5.51 69.37 ± 3.93 93.05 ± 2.35

CAWN 66.53 ± 2.77 68.82 ± 8.23 64.72 ± 0.97 55.71 ± 0.38 51.26 ± 0.04 84.16 ± 0.49
EdgeBank 63.84 ± 0.00 63.22 ± 0.00 70.53 ± 0.00 81.32 ± 0.00 84.89 ± 0.00 88.81 ± 0.00

TCL 65.93 ± 3.00 80.53 ± 3.95 70.68 ± 0.24 55.90 ± 1.17 52.30 ± 2.35 93.86 ± 0.21
GraphMixer 74.34 ± 0.87 81.65 ± 1.02 71.47 ± 0.26 57.05 ± 1.22 51.20 ± 1.60 93.36 ± 0.41
DyGformer 97.00 ± 0.31 85.30 ± 3.88 66.59 ± 0.49 64.41 ± 1.40 60.84 ± 1.58 97.57 ± 0.06

SLATE 84.38 ± 0.81 83.53 ± 1.64 75.09 ± 1.17 84.05 ± 0.98 96.85 ± 0.27 93.58 ± 0.16

ind

JODIE 48.42 ± 0.66 50.27 ± 5.13 69.07 ± 4.02 60.42 ± 1.48 67.79 ± 1.46 93.43 ± 1.78
DyREP 58.61 ± 0.86 83.44 ± 1.16 70.57 ± 1.82 60.19 ± 1.24 67.53 ± 1.98 94.18 ± 0.10
TGAT 68.82 ± 1.21 61.91 ± 5.82 75.48 ± 0.26 60.61 ± 1.24 52.89 ± 1.61 94.35 ± 0.48
TGN 65.34 ± 2.87 67.57 ± 6.47 71.09 ± 2.72 61.04 ± 6.01 67.63 ± 2.67 90.18 ± 3.28

CAWN 67.75 ± 1.00 65.81 ± 8.52 69.18 ± 1.52 62.54 ± 0.67 52.19 ± 0.34 89.31 ± 0.27
EdgeBank 62.16 ± 0.00 64.74 ± 0.00 81.08 ± 0.00 72.97 ± 0.00 66.30 ± 0.00 85.20 ± 0.00

TCL 65.85 ± 1.75 78.15 ± 3.34 74.62 ± 0.18 61.06 ± 1.74 50.62 ± 0.82 91.35 ± 0.21
GraphMixer 69.48 ± 0.63 79.63 ± 0.84 74.87 ± 0.21 60.15 ± 1.29 51.60 ± 0.73 90.87 ± 0.35
DyGformer 95.44 ± 0.57 81.25 ± 3.62 70.92 ± 1.78 55.79 ± 1.02 51.91 ± 0.84 94.75 ± 0.28

SLATE 93.42 ± 0.75 95.21 ± 0.51 79.03 ± 0.95 92.87 ± 0.62 93.74 ± 0.29 94.52 ± 0.86
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper focuses on a unified spatio-temporal encoding based on the spectrum
of the supra-Laplacian, as developed in section 3.1. We also introduce a fully-connected
architecture utilizing this spatio-temporal encoding section 3.2 for the task of link prediction
section 3.3. Each of these claims is validated in Table 3, as well as the claim of better
SLATE performance against state-of-the-art methods in Tables 1 and 2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of SLATE in the conclusion section 5, where we
list multiple negative points of our work and suggest possible improvements, particularly in
terms of better scalability and evaluating SLATE on other graph or node-based tasks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We state in our section 3.1 that a connected graph has its second eigenvalue
strictly positive. We include this proof and its source in Appendix Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a comprehensive overview of our model in Figure 2. Detailed
discussions of our architecture can be found in sections 3.2 and 3.3. Also, algorithm of our
supra-Laplacian computation is in Appendix A.3. Implementation specifics are outlined in
the implementation details section of section 4 and further elaborated in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

27



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code of SLATE is provided at this link: https://github.com/ykrmm/SLATE.
Our code is designed to be comprehensible, ensuring that all presented results are repro-
ducible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The selection of datasets, their splitting, and descriptions are presented in
Appendix C. We use the same evaluation protocols as papers well-recognized by the com-
munity [60, 55]. Hyperparameter optimization is detailed in Appendix D, and the optimizer
settings are described at the beginning of section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Following the protocols we are based on, all results in the paper, including
those from ablation studies, are averaged over 5 runs with the standard deviation reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The analysis of the time-memory efficiency of our model is presented in
Table 5, where we also compare it with other state-of-the-art models. We also detailed the
number of parameters of SLATE.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres strictly to the NeurIPS Code of Ethics. Our study does
not involve sensitive data or unethical practices, and we have followed all relevant guidelines
to ensure ethical compliance throughout our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our model is a discriminative model for link prediction on academic datasets,
which do not contain any private or sensitive information.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t release new data or harmful generative models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: We properly cite all the datasets and baselines used in our paper. Each dataset
and model is credited to its original creators, and we adhere to the specified licenses and
terms of use. The evaluation protocols we employ are based on established standards from
previous works, ensuring compliance with the original authors’ conditions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our paper introduces new assets, including code implementations and datasets
for DTDG. Detailed documentation is provided alongside these assets, following structured
templates that include information about training and licensing.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not conduct research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not conduct research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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