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Abstract

Recent advancements in large language models have significantly improved their
context windows, yet challenges in effective long-term memory management
remain. We introduce MemTree, an algorithm that leverages a dynamic, tree-
structured memory representation to optimize the organization, retrieval, and
integration of information, akin to human cognitive schemas. MemTree organizes
memory hierarchically, with each node encapsulating aggregated textual content,
corresponding semantic embeddings, and varying abstraction levels across the tree’s
depths. Our algorithm dynamically adapts this memory structure by computing
and comparing semantic embeddings of new and existing information to enrich the
model’s context-awareness. This approach allows MemTree to handle complex
reasoning and extended interactions more effectively than traditional memory
augmentation methods, which often rely on flat lookup tables. Evaluations on
benchmarks such as the Multi-Session Chat (MSC) and MultiHop RAG show that
MemTree significantly enhances performance in scenarios that demand structured
memory management.

Figure 1: MemTree (subset) developed on the MultiHop RAG [18]. MemTree updates its structured
knowledge when new information arrives, enhancing inference-time reasoning capabilities of LLMs.

1 Introduction

Despite recent advances in large language models (LLMs) where the context window has expanded
to millions of tokens [7, 6, 5], these models continue to struggle with reasoning over long-term
memory [11]. This challenge arises because LLMs rely primarily on a key-value (KV) cache of
past interactions, processed through a fixed number of transformer layers, which lack the capacity
to effectively aggregate extensive historical data. Unlike LLMs, the human brain employs dynamic
memory structures known as schemas, which facilitate the efficient organization, retrieval, and
integration of information as new experiences occur [2, 9]. This dynamic restructuring of memory is
a cornerstone of human cognition, allowing for the flexible application of accumulated knowledge
across varied contexts.
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Figure 2: Illustration of MemTree. MemTree represents knowledge schema via a dynamic tree. Both
parent and leaf nodes archive textual content, summarizing information relevant to their respective
levels. Upon receiving new information, the system begins traversal from the root node. If the new
information is semantically akin to an existing leaf node under the current node, it is routed to that
node. Conversely, if it diverges from all existing leaf nodes under the current node, a new leaf node is
created under the current node, concluding the traversal. During this process, all ancestor nodes will
integrate the new information into the higher-level summaries they maintain.

A prevalent method to address the limitations of long-term memory in LLMs involves the use of
external memory. [20] introduced the concept of utilizing external memory for the storage and
retrieval of relevant information. More recent approaches in LLM research have explored various
techniques to manage historical observations in databases, retrieving pertinent data for given queries
through vector similarity searches in the embedding space [15, 14, 22]. However, these methods
primarily utilize a lookup table for memory representation, which fails to capture the inherent
structure in data. Consequently, each past experience is stored as an isolated instance, lacking the
interconnectedness and integrative capabilities of the human brain’s schemas. This limitation becomes
increasingly problematic as the size of the memory grows or when relevant information is distributed
across multiple instances.

In this work, we introduce MemTree, an algorithm that mimics the schema-like structures of the
human brain by maintaining a dynamically structured memory representation during interactions.
Within MemTree, each memory unit is represented as a node within a tree, containing node-level
information and links to child nodes.

Upon encountering new information, MemTree updates its memory structure starting from the root
node. It evaluates at each node whether to instantiate a new child node or integrate the information
into an existing child node. This decision process is governed by a traversal algorithm that efficiently
adds new information with an insertion complexity of O(log N), where N denotes the number of
conversational interactions. This structure facilitates the aggregation of knowledge at parent nodes,
which evolve to capture high-level semantics as the tree expands. For knowledge retrieval, MemTree
computes the cosine similarity between node embeddings and the query embedding. This method
maintains the retrieval time complexity comparable to existing approaches, ensuring efficiency.

We assessed the performance of MemTree, using two benchmarks: Multi-Session Chat (MSC) [14]
and MultiHop RAG [18]. In MSC, we explored both the standard format, which encompasses
15 conversation turns, and a modified long-context format that extends these conversations to 200
turns. We observed that while initially incorporating chat histories directly into GPT-4o shows
promising performance, it deteriorates as the number of conversation rounds increases. In contrast,
MemTree consistently maintains high performance as conversations progress, outperforming other
memory approaches such as MemoryStream [15] and MemGPT [14]. In MultiHop RAG, MemTree
demonstrates further performance advantages on queries that require comparative analysis and
temporal reasoning over the chat history. Additionally, despite being an online algorithm, MemTree
closely matches the performance of the offline algorithm RAPTOR [17], which relies on hierarchical
clustering and complete data access to build a structured knowledge base. Our qualitative analyses,
including visualizations of the learned tree structures, reveal that MemTree meaningfully captures the
semantics of the context.
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2 Related Work

Recent large language models (LLMs), such as GPT-4 [1], PaLM [3], and LLaMA [19], excel
in various natural language processing tasks but struggle with long-term memory and retrieving
information from past interactions. Researchers have explored leveraging external memory for long-
range reasoning in traditional RNNs [20, 16, 10, 12]. Building on these concepts, recent methods
aim to augment LLMs with enhanced memory capabilities.

Memory-Augmented LLMs [22] introduced MemoryBank, a long-term memory framework that
stores timestamped user dialogues and incorporates an exponential decay mechanism to gradually
forget outdated information. MemGPT [14] proposed automatic memory management by leveraging
LLM function-calling for tasks such as conversational agents and document analysis, providing a
schema for accessing and modifying a memory database. Similarly, [15] developed LLM-based
generative agents with memory streams that log experiences as textual descriptions with timestamps.
Retrieval functions select memories by calculating a weighted score based on recency, importance,
and relevance, with the latter two determined by prompting the LLM.

These approaches represent the most common solutions for enhancing LLMs with memory, relying
primarily on storing and managing information in tabular databases and retrieving relevant instances
through vector similarity search. However, as memory scales or information becomes dispersed
across multiple entries, the limitations of these unstructured memory representations become apparent,
leading to difficulties in effectively retrieving complex or scattered data.

Augmenting LLMs with Relation Triplets [13] proposed a triplet-based structured memory unit for
LLMs, where each triplet encodes a relationship between two arguments. Similarly, [4] introduced
a graph-based triplet representation for text-based games, where LLMs parse observations into
object-relation-object triplets to construct a semantic graph memory. During retrieval, the most
relevant triplets are selected via semantic search to support decision-making and planning. While
these methods are effective for tasks like storing individual relations [13] or constructing scene
graphs [4], triplet-based approaches operate at the object level, limiting their scalability to larger,
more complex datasets. Additionally, a strictly triplet-based structure struggles to generalize to more
generic information that doesn’t fit neatly into a triplet relational format.

Structured RAG Approaches As retrieval-augmented generation (RAG) continues to gain attention,
recent efforts have focused on enhancing traditional RAG approaches by incorporating structured
knowledge representations. These methods improve the navigation and summarization of large text
corpora, particularly in complex question-answering tasks. RAPTOR [17] organizes large text into
a recursive tree structure by clustering and summarizing text chunks at multiple layers, enabling
efficient retrieval that captures both high-level themes and detailed information. GraphRAG [8]
constructs a knowledge graph from entities and relationships extracted using LLMs, partitioning the
graph into modular communities. These communities are summarized independently, with responses
combined using a map-reduce approach to answer global queries. While these structured retrieval
methods show promise for large-scale text processing, they focus primarily on knowledge graphs and
static corpora, leaving the challenge of online memory retrieval largely unaddressed.

3 Methods

MemTree represents memory as a tree T = (V,E), where V is the set of nodes, and E ⊆ V × V is
the set of directed edges representing parent-child relationships. Each node v ∈ V is represented as:

v = [Cv, ev, pv, Cv, dv]

where:

• cv: the textual content aggregated at node v.

• ev ∈ Rd: an embedding vector derived using an embedding model femb(cv).

• pv ∈ V : the parent of node v.

• Cv ⊆ V : the set of children of node v, with edges directed from v to each u ∈ Cv .

• dv: the depth of node v from the root node v0.
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Note that the root node v0 serves as a structural node, containing neither content nor embedding, i.e.,
cv0 = ∅ and ev0 = ∅.

MemTree utilizes this tree-structured representation to dynamically track and update the knowledge
exchanged between the user and the LLM. While less flexible than a generic graph architecture, the
tree structure inherently biases the model towards hierarchical representation. Additionally, trees
offer efficient complexity for insertion and traversal, making the algorithm suitable for real-time
online use cases.

When new information (converstaion) is observed, MemTree dynamically adapts by traversing the
existing structure, identifying the appropriate subtree for integration, and updating relevant nodes
(Section 3.1). This process, illustrated in Figure 1, ensures the proper integration of new information
while preserving the underlying context and hierarchical relationships within the memory. When
retrieving information from the memory, MemTree simply compares the embeddings of the query
message with the embeddings of each node in the tree, returning the most relevant nodes (Section 3.2).

3.1 Memory Update

The memory update procedure in MemTree is triggered upon observing new information (e.g., a new
conversation). This procedure ensures that the tree structure dynamically adapts and integrates new
data while maintaining a coherent hierarchical representation.

Attaching New Information by Traversing the Existing Tree To integrate new information, we
begin by creating a new node vnew with the textual content cvnew . Then we start tree traversal from the
root node. At each node v, MemTree evaluates the semantic similarity between the new information
cvnew and the children of the current node in the embedding space. This evaluation is performed
by computing the embedding evnew = femb(cvnew) for the new content cvnew and comparing it to the
embeddings of the child nodes C(v) of the current node v using cosine similarity.

This similarity evaluation drives the following decisions:

• Traverse Deeper: If a child node’s similarity exceeds a depth-adaptive threshold θ(dv), traversal
continues along that path. If multiple child nodes meet this criterion, the path with the highest
similarity score is chosen.

– Boundary: When traversal reaches a leaf node, the leaf is expanded to become a parent node,
accommodating both the original leaf node and vnew as children. The parent’s content is then
updated to aggregate both the original leaf node’s content and the new information cvnew . The
details of this aggregation process will be explained below.

• Create New Leaf Node: If all child nodes’ similarities are below the threshold θ(dv), vnew is
directly attached as a new leaf node under the current node.

The similarity threshold θ(d) is adaptive based on the node’s depth d, defined as:

θ(d) = θ0e
λd,

where θ0 is the base threshold, and λ controls the rate of increase with depth. This mechanism ensures
that deeper nodes, which represent more specific information, require a higher similarity for new data
integration, thereby preserving the tree’s hierarchical integrity. Further details, including specific
parameter values, are provided in the Appendix A.1.3.

Updating Parent Nodes Along the Traversal Path Once vnew is inserted, the content and embed-
dings of all parent nodes v along the traversal path are updated to reflect the new information. This is
achieved through a conditional aggregation function:

c′v ← Aggregate(cv, cnew | n),
where c′v is the updated content, and n = |C(v)| is the number of descendants of node v. The
aggregation function, implemented as an LLM-based operation, combines the existing content cv
with the new content cnew, conditioned on n. As n increases, the aggregation abstracts the content
further to balance the existing and new information (see Appendix A.1.2 for more details).

The embedding of the parent node is then updated as:

ev ← femb(c
′
v),
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ensuring that the parent node effectively represents both the new and existing information. This
process maintains the hierarchical organization of the memory as the tree expands, enabling MemTree
to adaptively and accurately represent the evolving conversation.

The complete memory update process is outlined in Algorithm 1.

3.2 Memory Retrieval

Efficient and effective retrieval of relevant information is crucial for ensuring that MemTree can
provide meaningful responses based on past conversations. Inspired by RAPTOR [17], we adopt the
collapsed tree retrieval method, which offers significant advantages over traditional tree traversal-
based retrieval.

Collapsed Tree Retrieval The collapsed tree approach enhances the search process by treating
all nodes in the tree as a single set. Instead of conducting a sequential, layer-by-layer traversal, this
method flattens the hierarchical structure, allowing for simultaneous comparison of all nodes. This
technique simplifies the retrieval process and ensures a more efficient search.

The retrieval process involves the following steps:

1. Query Embedding: Embed the query q using femb(q) to obtain eq .

2. Similarity Computation: Calculate cosine similarities between eq and all tree nodes.

3. Filtering: Exclude nodes with similarity scores below a threshold θretrieve.

4. Top-K Selection: Sort the remaining nodes by similarity and select the top-k most relevant nodes.

4 Experiments

4.1 Datasets

We evaluate the effectiveness of MemTree across various settings using three datasets: Multi-Session
Chat, Multi-Session Chat Extended and MultiHop RAG. These datasets were selected to represent
different interactive contexts—dialogue interactions and information retrieval from multiple texts,
respectively, providing a comprehensive test bed for our model.

• Multi-Session Chat (MSC): The dataset was introduced by [21]. In this work, we consider
the processed version provided by [14]. The dataset consists of 500 sessions, each featuring
approximately 15 rounds of synthetic dialogue between two agents. Each session includes follow-
up questions that challenge the model to retrieve and utilize information from prior dialogues
within the same session.

• Multi-Session Chat Extended (MSC-E): To test the performance for even longer conversation
rounds, we expanded MSC by generating an additional 70 sessions, each containing about 200
rounds of dialogue. In these extended sessions, a follow-up question follows each conversation
round, demanding more precise and timely information retrieval across the dialogues. We detail
the extension methodology in Appendix A.3.

• MultiHop RAG: This dataset comprises 609 distinct news articles across six categories [18]. It
includes 2,556 multi-hop questions requiring the integration of information from multiple articles
to formulate comprehensive answers. We consider three question types: inference, comparison,
and temporal reasoning, each adding a layer of complexity to the information retrieval process.

4.2 Baselines

We compare MemTree with three methods along with a naive baseline, which involves concatenating
all chat histories and feeding them into a large language model (LLM):

• MemoryStream: This baseline, proposed by [15], employs a flat lookup-table style memory that
logs chat histories through an embedding table. The primary distinction between MemTree and
this baseline is that MemTree utilizes a structured tree representation for the memory and models
high-level representations throughout the memory insertion process.

5



Table 1: Comparison of Naive Conversation History Combination vs. External Memory on the MSC
Dataset. Due to the dataset’s brevity (15 dialogue rounds with fewer than 1,000 tokens), naively
concatenating the entire history and sending it to GPT-4o delivers the best performance. Among
models that only send the query to GPT-4o, MemTree surpasses MemGPT and MemoryStream in
both accuracy and ROUGE scores.

Model Context Accuracy ⇑ ROUGE-L (R) ⇑
Results reported by [14]
GPT-4 Turbo Query + Full history summary 35 35
GPT-4 Turbo Query + Full history summary + MemGPT 93 82

Our results with GPT-4o and text-embedding-3-large
GPT-4o Query + Full history 95.6 88.0
GPT-4o Query + MemGPT [14] 70.4 68.6
GPT-4o Query + MemoryStream [15] 84.4 79.1
GPT-4o Query + MemTree (ours) 84.8 79.9

• MemGPT: [14] introduces a memory system designed to update and retrieve information efficiently.
It uses an OS paging algorithm to evict less relevant memory into external storage. However, like
MemoryStream, it does not format high-level representations. For our experiments, we utilized
the official MemGPT implementation available on GitHub (https://github.com/cpacker/
MemGPT).

• RAPTOR: This method [17] constructs a structured knowledge base using hierarchical clustering
over all available information. The key difference between MemTree and this baseline is that
MemTree operates as an online algorithm, updating the tree memory representation on-the-fly
based on incoming knowledge, while RAPTOR applies hierarchical clustering on a fixed dataset.

We employ OpenAI’s GPT-4o (version 2024-05-13) and text-embedding-3-large for all base-
lines and MemTree. This standardization ensures that any observed performance differences are
attributable to the memory management methodologies rather than variations in underlying model
capabilities or embeddings.

4.3 Implementation Details and Evaluation Metrics

Following previous work [14, 18], we evaluate MemTree through end-to-end question answering
performance. The experimental procedure for each query involves four steps:

1. Load the corresponding dialogue/history into the memory.
2. Retrieve the relevant information from the memory based on the given query.
3. Use GPT-4o to answer the query based on the retrieved information.
4. Evaluate the generated answer using one of the following two metrics: 1) Use GPT-4o to compare

the generated answer with the reference answer, resulting in a binary accuracy score; 2) Evaluate
the ROUGE-L recall (R) metric of the generated answer compared to the relatively short gold
answer labels, without involving the LLM judge.

The detailed prompts for steps 3 and 4 can be found in Appendix A.2. Other implementation details
for MemTree can be found in Appendix A.1.

5 Results

5.1 Multi-Session Chat

We present the MSC results in Table 1. For the naive baseline, directly providing the full history
to GPT-4o yields the best result, achieving an accuracy of 96%. This outcome is expected, given
that the entire dialogue consists of only 15 rounds and fewer than one thousand tokens. However,
providing a summary of the chat history significantly drops performance to 35%, even for the more

6

https://github.com/cpacker/MemGPT
https://github.com/cpacker/MemGPT


Table 2: Accuracy on MSC-E. The MSC-E dataset extends the original MSC dataset from 15 dialogue
rounds to 200, serving as a more suitable test bed for evaluating the capability of memory algorithms
in reasoning over long-context histories. Both MemoryStream and MemTree outperform the naive full
history baseline, underscoring the necessity of external memory for effective long-context reasoning.
We present the overall accuracy and provide a detailed breakdown based on the positions (dialogue
round index) of the supporting evidence. For standard deviations, refer to Figure 4.

Model Context Position of the supporting evidence Overall
0-40 40-80 80-120 120-160 160-200

GPT-4o Query + Full history 84.5 78.3 75.5 74.4 76.7 78.0
GPT-4o Query + MemoryStream 78.5 81.0 81.0 81.4 81.8 80.7
GPT-4o Query + MemTree (ours) 82.1 82.1 82.3 82.3 84.2 82.5

Table 3: Accuracy on MultiHop RAG. We report the results on three query types: (1) Inference
queries, which require reasoning from retrieved information to provide answers; (2) Comparison
queries, which involve evaluating evidence within the retrieved data to compare different entities or
values; and (3) Temporal queries, which analyze time-related information to determine the sequence
of events. MemTree outperforms MemoryStream by a large margin on both comparison and temporal
queries, closing the gap to the offline method RAPTOR.

Model Context Inference Comparison Temporal Overall
GPT-4o Human Annotated Evidence 98.4 80.1 55.5 79.2

Offline method
GPT-4o RAPTOR 96.5 76.5 66.0 81.0

Online method
GPT-4o MemoryStream 96.0 64.8 59.3 74.7
GPT-4o MemTree (ours) 95.0 74.1 65.3 79.4

powerful GPT-4 Turbo model [14]. This decline occurs because the summary may not cover the
topics the query is addressing. To directly compare the performance of different memory management
algorithms, we consider the setting where only the query and the retrieved information are provided
to the LLM. In this scenario, MemTree surpasses both MemStream and MemGPT.1

5.2 Multi-Session Chat Extended

Table 2 presents the results on MSC-E. We observe that both MemoryStream and MemTree achieve
better overall accuracy than the naive baseline, which directly uses the full history. This illustrates the
importance of having an external memory system as the conversation history grows. When we break
down the accuracies based on the positions of the supporting evidence within the entire dialogue,
we find that the naive baseline performs best when the evidence is presented early on, likely due to
position bias [11]. It is worth noting that since MemTree updates the memory sequentially based on
the order of the dialogue, it inherently favors more recent conversations over older ones. This bias is
demonstrated in Table 2, where the accuracy increases from 82.1 to 84.2. Nevertheless, MemTree
consistently outperforms MemoryStream across all positions (see Figure 4 for a visualization).

5.3 MultiHop RAG

Table 3 summarizes the end-to-end performance of MultiHop RAG with different memory retrieval
algorithms. All methods perform exceptionally well on inference-style questions, which primarily
focus on fact-checking based on a document, achieving over 95% accuracy. MemTree slightly under-
performs compared to MemoryStream in this category by less than one percentage point. However,
when evaluating performance on questions that require the comparison of different documents or

1The MemGPT GitHub codebase has been modified, and we were unable to reproduce the results.

7



In an October 2023 friendly match, the 
U.S. Men's National Team (USMNT) 
faced Germany and suffered a 3-1 defeat 
… Concurrently, the U.S. women's team 
has appointed Emma Hayes as the new 
head coach …

Uber's Q3 2023 earnings report highlights 
a significant turnaround in profitability, 
transitioning from a $1.2 billion net loss 
last year to a net income of $219 million 
…

The housing market is facing a downturn, 
with existing home sales plunging to levels 
seen during the Great Recession. This 
decline is driven by reduced affordability 
…

Emma Hayes, the highly successful coach 
of Chelsea Women, has been appointed as 
the 10th full-time head coach of the U.S. 
Women's National Soccer Team 
(USWNT) …

In a friendly match on October 14, 2023, 
the USA men's national soccer team 
(USMNT) faced Germany and suffered a 
3-1 defeat at Rentschler Field in 
Hartford. Despite the loss, there were 
notable individual performances …

The particulars around timing and the 
plan moving forward have been one of the 
areas of discussion between Hayes and her 
representatives, Chelsea and US Soccer, 
that has continued through the start of 
November. Unless the situation changes 
drastically, Hayes will only have two 
camps, including four friendlies, with the 
USWNT ahead of the 2024 Olympics in 
Paris. She'll miss three international 
windows between Tuesday’s 
announcement and her planned start date, 
including the 2024 CONCACAF Gold 
Cup in February and March. US Soccer 
has a plan in place for the transition.

In his first 45 minutes of international football under Gregg Berhalter since the World Cup fallout, Gio 
Reyna was his usual self, drawing the attention of German defenders and proving visionary with his 
passing. He combined with Folarin Balogun on a number of occasions on the counter, which is a link-up 
that US fans have been begging for more of. Reyna was only fit for 45 minutes of play here as he returns 
from a leg injury, but it's no coincidence that Germany truly secured midfield dominance when he came off 
the field.

In their recent 3-1 defeat to Germany, the USMNT 
displayed a blend of offensive promise and defensive 
shortcomings. Christian Pulisic, with a stunning goal and 
high pass completion rate, and Tim Weah's speed and link-
up play, were offensive highlights. Gio Reyna also 
contributed creatively. However, the defensive side was 
problematic …

Figure 3: Visualization of the Learned MemTree Structure on the MultiHop RAG Dataset. Due to
space limitations, we display only a small subtree from the entire tree (a larger subtree is depicted in
Figure 1). As we traverse deeper into the tree, the content stored in the nodes becomes increasingly
specific. For instance, the three blue nodes shown in the bottom right corner begin with a general
summary of the USMNT’s 3-1 defeat to Germany, then branch into specific insights on individual
performances and team dynamics, and ultimately delve into a detailed analysis of Gio Reyna’s impact
during the match. Note that all intermediate contents in the parent nodes are generated by MemTree
during the node update step. This hierarchical organization demonstrates how MemTree efficiently
stores and retrieves information, progressing from overarching concepts to specific details.

temporal reasoning, MemTree excels. It outperforms MemoryStream by 9.35 percentage points on
comparison-style questions and by 6.01 percentage points on temporal-style questions. Notably, its
performance is only slightly below the offline method RAPTOR, which assumes access to the full set
of information, by 2 percentage points (see Figure 5 for a visualization of Table 3).

Another observation from the table is that while humans can annotate evidence fairly accurately
for inference and comparison-style questions, the annotated evidence for temporal questions is less
precise. This results in worse performance than the model-derived memory for temporal questions.

We also visualize the learned memory tree in Figure 1 and Figure 3. The hierarchical structure learned
by the model corresponds to their semantic hierarchies, and the intermediate parent nodes effectively
capture high-level information during the memory insertion process.

6 Conclusion

MemTree effectively addresses the long-term memory limitations of large language models by
emulating the schema-like structures of the human brain through a dynamic tree-based memory
representation. This approach enables efficient integration and retrieval of extensive historical data,
as demonstrated by its superior performance on Multi-Session Chat (MSC) and MultiHop RAG
benchmarks. Our evaluations reveal that MemTree consistently maintains high performance and
demonstrates human-like knowledge aggregation by capturing the semantics of the context within its
tree memory structure. This advancement offers a promising solution for enhancing the reasoning
capabilities of LLMs in handling long-term memory.
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A Appendix

A.1 MemTree Details

Further details and parameter settings for our approach are outlined below. Unless otherwise specified,
these settings are consistent across all experiments presented in the paper.

A.1.1 MemTree Algorithm

The following outlines the algorithmic procedure for incrementally updating and restructuring
the memory representation in MemTree. This approach ensures that new information is efficiently
integrated into the existing memory hierarchy while dynamically adjusting based on content similarity
and structural depth.

Parameters:

• c: the textual content stored at a node or introduced as new information.
• e: the embedding vector representing the content, generated by an embedding function femb.
• v: a node in the memory tree, which contains content, embeddings, and connections to other

nodes. Note that the root is a structural node and does not hold content.
• d: the depth of a node in the tree.

Algorithm 1 Adding New Information to MemTree
Require: New information cnew, root node v0, threshold function θ(d)

1: enew ← femb(cnew)
2: INSERTNODE(v0, enew, cnew, 0)
3: procedure INSERTNODE(v, enew, cnew, d)
4: if v is a leaf then
5: Expand v into a parent
6: Create and attach child node vleaf with original content
7: end if
8: Compute similarity si = sim(enew, ei) for each child vi of v
9: vbest ← argmax(si), smax ← max(si)

10: if smax ≥ θ(d) then
11: cv ← Aggregate(cv, cnew)
12: ev ← femb(cv)
13: INSERTNODE(vbest, enew, cnew, d+ 1)
14: else
15: Create and attach new child node vchild with cnew
16: end if
17: end procedure

A.1.2 Aggregate Operation

When new information is added, the content of parent nodes along the traversal path is updated
through a conditional aggregation. This process combines the existing content of the parent node
with the new content, factoring in the number of its descendants. The aggregation operation is
implemented using the following prompt:

You will receive two pieces of information: New Information is
detailed, and Existing Information is a summary from {n_children}
previous entries. Your task is to merge these into a single,
cohesive summary that highlights the most important insights.
- Focus on the key points from both inputs.
- Ensure the final summary combines the insights from both pieces of
information.
- If the number of previous entries in Existing Information is
accumulating (more than 2), focus on summarizing more concisely,
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only capturing the overarching theme, and getting more abstract in
your summary.
Output the summary directly.
[New Information]
{new_content}
[Existing Information (from {n_children} previous entries)]
{current_content}
[ Output Summary ]

A.1.3 Adaptive Similarity Threshold

The adaptive similarity threshold ensures that deeper nodes, representing more specific information,
require higher similarity for new data integration, while shallower nodes are more abstract and accept
broader content. This mechanism preserves the tree’s hierarchical integrity by adjusting selectivity
based on the node’s depth. The threshold is computed as:

threshold = base_threshold× exp

(
rate× current_depth

max_depth

)
where:

• base_threshold = 0.4

• rate = 0.5

• current_depth is the depth of the current node.
• max_depth is the maximum depth of the tree.

A.1.4 Retrieval

For the MSC experiment, the retrieval system returns the top k = 3 similar dialogues from 15-round
conversations, with a context length of 1000 tokens for all models. In the MSC-E dataset, due to
longer conversations, the retrieval returns the top k = 10 similar dialogues, with a context length of
8192 tokens to accommodate the models with full-chat history. This setting is similarly applied to the
Multihop RAG experiment, where longer contexts are required.

A.2 Further Experimental Detials

A.2.1 Evaluation Metrics

Predicted Response Generation: To assess retrieval performance, we configure the LLM to generate
a response to the query based solely on the retrieved content using the following prompt:

Write a high-quality short answer for the given question using only
the provided search results (some of which might be irrelevant).
[ Question ]
{query}
[ Search Results ]
{retrieved_content}
[ Output ]

Binary Accuracy Evaluation: To measure binary accuracy across all experiments, we employed the
following prompt, instructing the model to evaluate the predicted response against the ground-truth
answer:

Your task is to check if the predicted answer appropriately responds
to the query in a similar way as the ground-truth answer.
Instructions:
- Output ’1’ if the predicted answer addresses the query similarly
to the ground-truth answer. - Output ’0’ if it does not. - Only
output either ’0’ or ’1’. No explanations or extra text.
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[ Query ]
{query}
[ Ground-Truth Answer ]
{gt_answer}
[ Predicted Answer ]
{predicted_answer}
[ Output ]

A.3 MSC-E Data Generation

Building on the MSC dataset from [14], we extend each conversation to 200 rounds using the
following iterative process. A sliding window of the most recent 8 turns is maintained, and for each
step, the next 2 rounds of dialogue are generated using the prompt below. This approach allows for a
natural progression of conversation while keeping the context manageable for the model:

Generate a continuation of the conversation between Alex and Bob.
Follow these guidelines:

1. Alternate strictly between Alex and Bob, starting with Alex.
2. Alex should speak exactly {n_rounds} times, and Bob should speak

exactly {n_rounds} times.
3. Each turn should consist of 1-3 sentences.
4. Ensure that each response flows logically and organically from

the previous turn, avoiding forced transitions or unnatural
questions.

5. Focus on developing rapport between the characters. Use a mix
of statements, reactions, and occasional questions to maintain a
conversational tone.

6. Allow the conversation to transition smoothly between topics,
keeping it casual and coherent.

[ Conversation History ]
{recent_chat_hist}
[ Generated Dialogue ]

Output Example: Below is an excerpt from the MSC-E dataset, showcasing one session of a
conversation that spans 200 rounds in total.

Alex: Hi! How are you doing tonight?
Bob: I’m doing great. Just relaxing with my two dogs.
Alex: Great. In my spare time I do volunteer work.
Bob: That’s neat. What kind of volunteer work do you do?

...

Alex: That would be great! I’d love to try some of your Thai
recipes. Cooking can be such a creative outlet, don’t you think?
Bob: Absolutely, it’s like a culinary adventure in your own kitchen.
Speaking of adventures, have you planned any trips lately, maybe to
explore new cuisines firsthand?
Alex: Not yet, but I’ve been dreaming of a trip to Italy to indulge
in the food and scenery. How about you, any travel plans on the
horizon?
Bob: I’ve been thinking about visiting Japan. I’m fascinated by
their culture and, of course, the sushi! It would be an amazing
experience to see it all in person.
Alex: Japan sounds incredible! The blend of traditional and modern
aspects in their culture is so intriguing. You’ll have to share
your experiences if you go.
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A.4 MSC-E Query Generation

To generate queries and ground-truth responses for evaluating memory retrieval quality, we apply the
following prompt to subsets of the conversation history. The generated questions will help assess
how effectively the memory captures and retrieves information from various points in the dialogue:

Based on the conversation between "Alex" and "Bob" below, generate
{n_q} unique questions that "Bob" can ask "Alex," derived from the
information "Alex" has shared. Each question should be directly
answerable using the conversation’s content.
Output a JSON array where each element is an object with the
following keys:
- "question": The question for Alex.
- "response": The corresponding answer derived directly from Alex’s
information.
Ensure the output is valid JSON. Only output the JSON array.
[Conversation]
{chat_hist}
[Output]

A.5 Further Experimental Results

A.5.1 MSC-E: Accuracy vs Position of Evidence

We present accuracy results on the MSC-E dataset, focusing on how performance varies based on
the position of supporting evidence within the dialogue. This analysis demonstrates the model’s
ability to effectively retrieve and utilize information from different points in extended conversations,
highlighting its robustness in scenarios where a memory component is essential for maintaining
context.

Figure 4: Accuracy on MSC-E.

A.5.2 Multihop RAG: Accuracy vs Query Type

We present results across three query types: (1) Inference queries, requiring reasoning from retrieved
information; (2) Comparison queries, which involve evaluating and comparing evidence within the
retrieved data; and (3) Temporal queries, analyzing time-related information to determine event
sequences.

Here, we compare online and offline methods (shaded in gray). In addition to the methods presented
in the main paper, two offline approaches—RAG [18] and GraphRAG [8]—are described in the
appendix. Note that MemoryStream embeds its memory table using LLM-generated keys that
summarize content upon data insertion, while RAG directly embeds based on content. GraphRAG
constructs a knowledge graph from LLM-extracted entities and relationships, partitioning the graph
into modular communities and summarizing them independently. Responses are then combined using
a map-reduce approach to answer global queries. Also, note that offline methods must be rebuilt from
scratch to incorporate new information and cannot support real-time memory updates like MemTree.
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Figure 5: Accuracy on MultiHop RAG
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