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Abstract—This paper proposes SAD-GS, a depth-supervised
Gaussian Splatting (GS) method that provides accurate 3D
geometry reconstruction by introducing a shape-aligned depth
supervision strategy. Depth information is widely used in
various GS applications, such as dynamic scene reconstruction,
real-time simultaneous localization and mapping, and few-shot
reconstruction. However, existing depth-supervised methods for
GS all focus on the center and neglect the shape of Gaussians
during the training. This oversight can result in inaccurate
surface geometry in the reconstruction and can harm down-
stream tasks like novel view synthesis, mesh reconstruction,
and robot path planning. To address this, this paper proposes a
shape-aligned loss, which aims to produce a smooth and precise
reconstruction by adding extra constraints to the Gaussian
shape. The proposed method is evaluated qualitatively and
quantitatively on two publicly available datasets. The evaluation
demonstrates that the proposed method provides state-of-the-
art novel-view rendering quality and mesh accuracy compared
to existing depth-supervised GS methods.

I. INTRODUCTION

GAUSSIAN Splatting (GS) [1] marks a recent paradigm
shift in the field of computer vision and novel view

synthesis. In several recent works, depth supervision is intro-
duced to GS to improve scene reconstruction accuracy when
applying GS to different use cases, such as dynamic scenes,
real-time systems, or few-shot reconstruction. For instance,
LiDARs have been integrated with GS to reconstruct highly
dynamic scenes for autonomous driving [2, 3]. RGBD (color
and depth) sensors are widely used in GS-based SLAM
to achieve real-time indoor reconstruction and pose estima-
tion [4, 5, 6, 7, 8]. Furthermore, due to the advancement
of monocular depth estimation, many few-shot GS systems
leverage monocular depth to reduce the number of input
images required to train a Gaussian splat [9, 10, 11, 12].

Despite the common use of depth information in GS,
current depth-supervised GS (DSGS) methods do not uti-
lize depth accurately. As a result, these methods often use
depth information for just initialization or with relatively
low training weight, continuing to rely on multi-view RGB
images to obtain precise 3D geometry. Specifically, after
projecting 3D Gaussians onto the image plane, current DSGS
methods only consider the mean position of the Gaussians
and ignore their shapes(Figure 1). This is usually acceptable
when synthesizing views from perspectives near training
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Fig. 1. The illustration of the comparison between proposed and prior
methods.

views. However, it implies the wrong 3D geometry that
overfits the designed loss function. This paper proposes a
shape-aligned depth-supervised method to obtain precise 3D
geometry. The accurate geometry is essential for downstream
tasks such acdeep learning data augmentation or robot path
planning and manipulation.

II. RELATED WORKS

A naive depth-supervised GS can be intuitively done by
using the depth point cloud as the initial means of Gaussians.
This method is used in [2, 13, 8] with dense point clouds
provided by LiDAR or an RGBD camera. However, no
geometry constraint from the depth measurement is applied
in this method, so the geometry still relies only on multi-
view RGB images. Also, this approach can easily overfit to
color input and, as a result, may offer shape-misaligned 3D
reconstruction. To solve this problem, the rendered depth loss
similar to NeRF is widely used in GS-based SLAMs using
RGBD cameras [6, 4, 5] or few-shot GS using monocular
depth estimation [9, 10, 11, 12]. To avoid the geometry
ambiguity problem of rendered depth loss as shown in Fig-
ure 2, [5] proposes a deleting step to degrade all Gaussians



Fig. 2. Illustration of different DSGS methods. The rendered depth loss uses
the Gaussian center as the depth of the entire Gaussian. The center loss uses
the difference between the Gaussian center and its nearest point in a sensed
point cloud for training. However, both existing methods ignore the Gaussian
shape in their loss functions. In contrast, the proposed SAD-GS achieves
shape-aligned Gaussians by penalizing surface-misaligned Gaussians by
sampled points (red cross).

before the ray terminates. However, the rendered depth uses
the depth of the Gaussian center as the depth of the entire
Gaussian. Thus, the rendered depth loss only constrains the
Gaussian mean position to fit the geometry, and the Gaussian
shape, including scale and orientation, is ignored. The shape-
misaligned Gaussians lead to rough surface reconstruction
and cause artifacts in the free space. Aside from training
with rendered depth loss, the center loss introduced in [3]
uses the distance between Gaussians to their nearest point
cloud as the loss to force the Gaussian mean to align with
the depth measurements. Yet, the alignment of the Gaussian
shape with the surface is still missing.

In this paper, we propose a simple yet efficient shape-
aligned loss that samples points near the sensed depth and
applies an L1 loss to penalize Gaussians with a surface-
misaligned shape. We demonstrate that the proposed loss
function leads to better 3D reconstruction than previous
DSGS loss functions. Figure 2 illustrates the difference
between methods.

Fig. 3. Illustration of our proposed strategy.

III. METHOD

we introduce a shape-aligned depth supervision method
to reconstruct geometry. Figure 3 illustrates our proposed
strategy. We divide the distance along a ray into three regions.
The region nearest to a measured depth z is defined as the
margin, representing the tolerance of the Gaussian shape.
Beyond this is the sampling region, where we sample points
to penalize a Gaussian if it occupies this area. Finally, the
opacity reset region is situated beyond the sampling region
and serves to degrade all Gaussians within its boundaries.

A. Shape-aligned Depth Supervison

Sampled Points For Shape Constraint: First, we define
a ray r(t) = o+ td, where o is the sensor origin, d is the ray
direction, and t is the distance along the ray. We divide the
distance along the ray into three regions. First, with depth
measurement z along the ray, we mark the margin region as
Tmargin = [z − ϵ, z + ϵ], where ϵ is the tolerance distance.

To sample points from the sampling region, we define the
far and near bound of the sampling region as tfar = z +
ϵ + δ and tnear = z − ϵ − δ, where δ is the size of the
sampling region. We partition [tn, tf ] into N evenly-spaced
bins and then draw one sample uniformly at random from
within each bin using stratified sampling following [14]. We
further remove sample points located in the margin region.

Sampled Point Training: After we sample points for
shape supervision, we query the Gaussian splat to get the
estimated weight at those positions. To reduce the compu-
tational cost and avoid overhead gradient computation, we
voxelized the space with grid size M and computed each
weight for each sampled point only using the located voxel.
The weight of each point contributed by each Gaussian can
be computed by:

Gk(x) = αk exp
− 1

2 (x−µk)
TΣ−1

k (x−µk) (1)

The total weight of a point can be obtained by summing the
weight from individual Gaussians:

wi =
∑
k

Gk(xi) (2)

To make the sampled position have zero density, we define
the loss function as the L1 norm of wi. In our training step,
the loss function is the color loss combined with the shape-
aligned loss:

L = λcLcolor + Lalign (3)



Eval. Metrics Methods
Lc Ld Lcenter D/ Ld + D/ Ours

Full
PSNR (↑) 26.31 21.20 26.43 28.32 24.97 30.49
SSIM (↑) 0.90 0.81 0.90 0.92 0.89 0.95
LPIPS (↓) 0.12 0.19 0.12 0.10 0.13 0.07

Seen
PSNR (↑) 30.00 27.03 28.64 31.02 29.05 32.76
SSIM (↑) 0.93 0.91 0.92 0.94 0.93 0.96
LPIPS (↓) 0.08 0.09 0.09 0.07 0.09 0.05

TABLE I
Rendering Evaluation on Replica

Eval. Metrics Methods
Lc Ld Lcenter D/ Ld + D/ Ours

Full
PSNR (↑) 14.17 15.90 14.50 15.93 15.96 16.06
SSIM (↑) 0.70 0.74 0.71 0.74 0.74 0.77
LPIPS (↓) 0.24 0.21 0.23 0.19 0.21 0.12

Seen
PSNR (↑) 18.29 18.10 18.21 18.05 18.11 18.03
SSIM (↑) 0.82 0.82 0.82 0.83 0.83 0.83
LPIPS (↓) 0.11 0.11 0.11 0.10 0.12 0.09

TABLE II
Rendering Evaluation on TUM

Opacity Degrading Strategy: The densification step in
GS introduces randomness when new Gausians are added to
the scene. This can induce floating Gaussians located before
or after the sampling region. Inspired by the deleting strategy
introduced in [5], we also use an opacity degrading strategy
to address this issue. However, since we have the extra shape-
aligned constraint, we only need to apply the degradation
outside the sampling region, which makes it less aggressive.
We degrade the opacity by the factor of γ for the distance
that is closer or farther than the sampling region.

IV. EXPERIMENTS

This section evaluates the novel-view rendering and mesh-
ing quality of our method compared to prior DSGS methods
on single-shot RGBD reconstruction.

A. Experimental Setup

Baselines: We evaluate against DSGS methods used in
previous papers. Lc only uses a depth point cloud to initialize
Gaussians of the scene, which is the simplest way to incor-
porate depth information into the GS used in [2, 13, 8]. Ld

is adding rendered depth loss used in [6, 4, 5, 9, 10, 11, 12]
based on color loss. Lcenter is adding a term to minimize
the distance between Gaussians to the nearest points in the
depth point cloud. D/ is implementing only the deleting
strategy introduced in [5]. Next, Ld + D/ is the full method
used in [5].

Evaluation: To evaluate the performance of the pro-
posed SAD-GS, we conduct experiments on the simulated
Replica dataset [15] and the real-world indoor TUM-RGBD
dataset [16]. We evaluate the novel-view rendering perfor-
mance using the peak signal-to-noise ratio (PSNR), Struc-
tural Similarity (SSIM) [17], and LPIPS [18]. For the sim-
ulated Replica dataset, we further use accuracy, completion,
and Chamfer distance (CD) to evaluate the similarity between
the estimated and ground truth mesh.

Experimental Details. To initialize GS, we divide
the space into voxels with size V (m), then compute the
mean and covariance for each voxel. In experiments, we use

Fig. 4. Rendering from bird-eye-view on Replica. Our method shows the
crisp rendering from an extremely different perspective, while other methods
produce unpleasant artifacts.

Fig. 5. Rendering from a zoomed-in view on TUM. Our method offers
the best novel-view synthesis quality.

initialization V = 0.05, spatial voxel M = 1, ϵ = 0.03,
and δ = 0.05. For GS configurations, we set the opacity
reset interval to 1000 and run 2000 and 2200 iterations
on Replica on TUM separately. We also follow the coarse
meshing method used in SuGAR [19] to build the mesh.

B. Rendering Evaluation

For novel view rendering evaluation, we use all frames in
a sequence and exclude the training view. We render images
from unseen views and then compare the rendered images
with captured images. The Full evaluation means the entire
images rendered from testing views are evaluated. This eval-
uation can reflect the artifacts generated outside the field-of-
view (FOV). On the other hand, the Seen evaluation means
only evaluating the seen region. This evaluation focuses on
the reconstruction within the FOV. To generate the seen mask
for each frame, we simply project the depth point cloud from
the training frame to each testing view. Then, image erosion
and dilation steps are applied to filter noises in masks. On the
TUM dataset, we further apply an extra erosion step to shrink
the seen mask. Because the depth image captured from the
RGBD sensor is noisy, the projected mask can also include
unseen regions. We found applying an extra erosion step can
largely reduce the problem.

Replica Table I compares rendering performance to the
prior DSGS methods. Our method outperforms all existing
DSGS methods in both Full and Seen mode. Our method
performs better than other methods in the Full mode. This
is because we generate fewer artifacts outside the FOV. As
shown in Figure 4, our method has a crisp boundary at the



Fig. 6. Qualitative comparison on mesh reconstruction on Replica.

Fig. 7. Qualitative comparison on mesh reconstruction on TUM.

edge of the FOV and produces less noise in occluded regions.
In the Seen mode evaluation, our method provides the best
rendering quality by constructing shape-aligned Gaussians,
which leads to less noise and smoother surfaces. Figure 8
shows that our method is more robust to view changes
compared to previous methods.

TUM Table II shows the rendering performance on the
real-world TUM dataset. The overall performance on TUM
is worse than Replica due to the noisy RGBD depth mea-
surements. Our method still surpasses all existing methods
in the Full with reduced noise.

Our PSNR value in the Seen evaluation is not the best
compared to others. We assume this is also due to the noisy
RGBD depth measurement. Since our method better fits the
input depth data, our reconstruction is a bit deformed from
ground truth geometry. In contrast, other methods construct
more fuzzy geometry. This makes our method look worse
when computing PSNR, which is based on MSE and requires
pixel alignment. However, for metrics like SSIM and LPIPS
that evaluate overall quality, our method offers performance
that is better or equivalent to others. We also found that the
performance of our method and others is less different on
TUM. We suppose this is because most of the testing views
are close to the training view, while the proposed method
offers more significant improvement at extreme view change,
as shown in Figure 8. Figure 5 demonstrates rendered results
with a large view change.

C. Mesh Evaluation

Table III shows quantitative evaluation for mesh recon-
struction performance on Replica. Our shape-aligned method
offers the best geometry accuracy and completion against
existing methods. Also, the mesh evaluation shows the same
trend as that of the rendering evaluation. This indicates the
importance of geometry to novel view rendering. The visu-

Fig. 8. PSNR of rendered images from novel views with different
translation and rotation view change levels.

alized meshes on Replica and TUM are shown in Figure 6
and Figure 7. The figure demonstrates that our method can
significantly improve the estimated geometry of surfaces by
aligning the shape of Gaussians with the surface.

Eval. Metrics Methods
Lc Ld Lcenter D/ Ld + D/ Ours

Full
Acc. 0.148 0.241 0.118 0.078 0.168 0.034

Comp. 0.035 0.030 0.030 0.030 0.033 0.016
CD 0.183 0.271 0.148 0.109 0.202 0.050

Seen
Acc. 0.093 0.074 0.072 0.065 0.077 0.027

Comp. 0.030 0.031 0.032 0.030 0.035 0.027
CD 0.123 0.105 0.105 0.095 0.111 0.054

TABLE III
Mesh Evaluation on Replica

V. CONCLUSION

This paper introduces a shape-aligned, depth-supervised
approach for GS. Previous research only pays attention to the
positioning of Gaussians, which leads to inaccurate surface
geometry. Our proposed loss constrains Gaussian shapes
and yields a surface-aligned reconstruction. Our method’s
effectiveness is demonstrated qualitatively and quantitatively,
through testing on two public datasets. It surpasses previous
DSGS methods in novel-view synthesis and mesh accuracy
on a single-shot RGBD reconstruction.
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