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ABSTRACT

Optimization of directed acyclic graph (DAG) structures has many applications,
such as neural architecture search (NAS) and probabilistic graphical model learning.
Encoding DAGs into real vectors is a dominant component in most neural-network-
based DAG optimization frameworks. Currently, most popular DAG encoders
use an asynchronous message passing scheme which sequentially processes nodes
according to the dependency between nodes in a DAG. That is, a node must not
be processed until all its predecessors are processed. As a result, they are inher-
ently not parallelizable. In this work, we propose a Parallelizable Attention-based
Computation structure Encoder (PACE) that processes nodes simultaneously and
encodes DAGs in parallel. We demonstrate the superiority of PACE through
encoder-dependent optimization subroutines that search the optimal DAG structure
based on the learned DAG embeddings. Experiments show that PACE not only
improves the effectiveness over previous sequential DAG encoders with a signifi-
cantly boosted training and inference speed, but also generates smooth latent (DAG
encoding) spaces that are beneficial to downstream optimization subroutines.

1 INTRODUCTION

Directed acyclic graphs (DAGs) are ubiquitous in various real-world problems including neural
architecture search (Elsken et al., 2019; Wen et al., 2020), source code modeling (Allamanis et al.,
2018), structure learning of Bayesian networks (Koller & Friedman, 2009; Zhang et al., 2019), etc.
One key challenge in DAG optimization problems is that it is not easy to use gradient strategies
to quickly adjust the structure of a DAG towards the right direction due to the absence of gradient
information. Some earlier works propose to directly optimize the discrete DAG structure through
black-box optimization techniques such as reinforcement learning (Zoph & Le, 2016), evolutionary
algorithms (Liu et al., 2017), and Bayesian optimization (Kandasamy et al., 2018), which are
inherently less efficient. A more recent approach is to encode DAGs into some continuous space for
searching, and various DAG encoders are developed. In general, these DAG encoding schemes fall
into two categories: structure-aware encoding scheme (Ying et al., 2019; Wen et al., 2020; Shi et al.,
2020) and computation-aware (performance-aware) encoding scheme (Zhang et al., 2019; Thost &
Chen, 2021; Ning et al., 2020).

Due to the superior graph representation learning ability, graph neural networks (GNNs) have broadly
achieved state-of-art performance on various graph learning tasks, such as node classification (Velick-
ovic et al., 2018; Hamilton et al., 2017), graph classification (Xu et al., 2019; Zhang et al., 2018;
Duvenaud et al., 2015), and link prediction (Zhang & Chen, 2018; Zhang et al., 2020). Basically,
GNNs follow the message passing scheme (Gilmer et al., 2017) where each node aggregates node
features from its one-hop neighborhood repeatedly to update its own feature, and this aggregation
happens at all nodes simultaneously. However, Thost & Chen (2021) suggest that such a framework
cannot exploit the inductive bias of the computation dependency defined by DAGs, thus failing to
generate a smooth latent (DAG encoding) space beneficial to downstream optimization routines.

Hence, in order to model the dependency between nodes in DAGs, various GNNs specifically designed
for encoding DAGs, such as D-VAE (Zhang et al., 2019) and DAGNN (Thost & Chen, 2021), are
developed to inject the computation dependency between nodes into the representation learning
process. Instead of updating node features simultaneously, these DAG encoders are constructed
upon a gated recurrent unit (GRU) and will not update the representation of a node until all of

1



Under review as a conference paper at ICLR 2022

its predecessors are updated. One way to achieve this is to perform message passing sequentially
following a topological ordering of the nodes. Such an asynchronous message passing scheme
actually simulates how a real computation is performed along the DAG—the message passing order
respects the computation dependency defined by the DAG, thus better exploiting the inductive
bias. However, one key limitation of such DAG encoders is that the encoding process is inherently
sequential, precluding processing all nodes in parallel. Although DAGNN proposes a topological
batching trick to accelerate the training speed by partitioning nodes into disjoint batches where nodes
within a batch can be processed in parallel, the time complexity is still lower-bounded by the longest
path in the DAG and the fundamental constraint of the sequential computation nature still remains.

Numerous efforts have been made to reduce the sequential computation cost in sequence modeling
literature (Cho et al., 2014; Wu et al., 2016). For instance, ConvS2S (Gehring et al., 2017) utilizes
convolutional layers as building blocks to compute output representations at different positions, while
Transformer (Vaswani et al., 2017) proposes to inject the position (order) information into the model
through positional encoding, and then dependency between positions can be captured through the
attention mechanism (Bahdanau et al., 2015; Gehring et al., 2017) in parallel instead of resorting to
recurrent neural networks (RNNs). However, the success of these techniques relies on the inherent
linear order of symbols in the input/output sequences that automatically characterizes the dependency
between symbols. That is, the dependency between symbols is fully captured by their positions in
the sequence. Such a condition is not satisfied by nodes in a DAG G = (V,E) since each node can
have multiple predecessors instead of only one like in plain sequences, and the dependency between
nodes forms a (strong) partial order rather than a linear order. Thus, previous parallel sequence
modeling methods would fail in the representation learning of DAGs.

In this paper, we propose a novel Parallelizable Attention-based Computation structure Encoder,
PACE, to improve the computation efficiency over existing GRU-based DAG encoders. In order to
borrow the power of Transformer for sequence modeling to DAG modeling problems, we need to
design a positional encoding scheme specifically for DAGs which can fully capture the dependency
between nodes in a DAG before applying the pairwise self-attention mechanism. To achieve this, we
propose a GNN-based dag2seq framework which is proved to injectively map DAGs to sequences
of node embeddings. This means, we are able to fully recover the DAG structure from these
produced node embeddings, the same as the positional encoding in the original Transformer. After
that, a Transformer encoder (with mask operation) is applied to the node embedding sequence to
simultaneously learn representations for all nodes in the DAG through the self-attention mechanism.
This way, PACE incorporates the relational inductive bias (Battaglia et al., 2018; Xu et al., 2020)
carried by DAG structures into the encoding process, while eschewing the recurrence in previous
works thus greatly improving the parallelization and encoding efficiency.

To demonstrate the superiority of the proposed PACE model, we evaluate PACE against current
state-of-art DAG encoders as well as other general-purpose graph encoders for undirected graphs.
Experimental results show that PACE not only outperforms competitive baselines by generating
smooth latent spaces that capture the similarity between DAGs thus facilitating the downstream search
subroutines, but also significantly boosts the training and inference speed through parallelization.

2 BACKGROUNDS

2.1 PARALLELIZABLE SEQUENCE MODELS

Encoding the complexities and nuances of sequences plays a central role in various machine learning
tasks, including sentiment classification (Medhat et al., 2014), speech recognition (Abdel-Hamid
et al., 2014), and other natural language processing (NLP) tasks (Khan et al., 2016). For many years,
sequential models, such as recurrent neural networks (RNNs) (Medsker & Jain, 2001), were the
primal way to solve the sequence encoding problem. These models are computationally expansive
due to the sequential encoding process. Hence, many parallelizable sequence models are proposed,
including Transformer (Vaswani et al., 2017), BERT (Devlin et al., 2019), etc. Our proposed PACE
model is built upon the Transformer (encoder) architecture.

Transformer (Vaswani et al., 2017) is arguably the earliest translation model that solves the sequence-
to-sequence task without using sequence-aligned RNNs or convolutional architectures. Transformer
relates information from different positions in the sequence through the (masked) self-attention mech-
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Figure 1: Illustration of PACE. The input DAG is first injectively represented as a sequence through
the dag2seq framework, and then the sequence is fed into multiple stacked masked Transformer
encoder blocks. The operations of nodes (i.e. node types) are visualized as colors, and nodes in the
sequence is sorted according to the canonical label generated in the dag2seq framework.

anism to encode/decode the representation of items in the input/output sequence, and incorporates
the order of the items into the encoding/decoding process through a positional encoding mechanism.
Briefly, the positional encoding mechanism is an injective function fpe : N → Rd that represents
the positions (i.e. indices) of items in the sequence as d-dimensional vectors. Hence, it consistently
outputs a unique encoding for each position in the sequence. The Transformer architecture is inher-
ently parallelizable and could capture the long-term dependency with ease, thus is broadly applied
to sequence modeling tasks in following works (Dai et al., 2019; Al-Rfou et al., 2019; Devlin et al.,
2019; Lewis et al., 2020). Recently, Transformer has been widely used in image processing, and has
achieved the state-of-art performance on various image learning tasks, including object detection
(Carion et al., 2020) and image recognition (Dosovitskiy et al., 2020).

2.2 DAG ENCODING PROBLEM

A directed acyclic graph (DAG) G is represented as a pair (V,E) with V = {v1, v2, .., vn} denoting
the set of nodes andE ∈ V ×V denoting the set of directed edges. A DAG often carries a computation.
We use O to denote an (computational) operation dictionary. For instance, the operation dictionary O
for NAS-Bench-101 dataset contains five operations: “Input”, “Output”, “3× 3 convolution”, “1× 1
convolution”, and “3× 3 max-pool”. Let G = (V,E) be a DAG whose nodes represent operations in
O. Then the DAG G represents a computation structure in which dependencies between operations
are determined by directed edges in E. Hence, isomorphic DAGs define the same computation
structure. Then the objective of the DAG encoding problem is to develop encoders that can generate
embeddings to distinguish the computation structures defined by DAGs in the encoding space.

DAGs G = (V,E) show a close relation with partial order. For any two nodes vi, vj ∈ V , let � be a
binary relation such that vi � vj if and only if there is a directed path from vi to vj , then the binary
relation � defines a partial order on the node set V . Based on the partial order, sequential DAG
encoders, such as D-VAE (Zhang et al., 2019) and DAGNN (Thost & Chen, 2021), use GRU (Cho
et al., 2014) to recursively encode nodes in the input DAG, where a node is not encoded until all of its
predecessors (those nodes with a � relation with it) are encoded. Because of the possibly very long
dependency chains, these sequential DAG encoders inherently share the same limitations as RNNs,
such as the slow training and inference speed and the difficulty to capture long-term dependencies.

To address these limitations, it is intuitive to generalize Transformer to the DAG encoding problem,
since Transformer brings undoubtedly a huge improvement over the RNN-based sequence models.
However, Figure 2 illustrates that it can be ambiguous how to represent DAGs as sequences due to
the complex topological structure of DAGs. Let o : V → O be the function mapping each node in
G to an operation in O, and fpe be the original positional encoding function in Transformer. One
intuitive way to linearize a DAG into a sequence is to sort its nodes with a topological order, which is
also used in GRU-based DAG encoders. However, the topological orders of nodes in a DAG are often
not unique. For instance, graph G1 in Figure 2 has two different topological orders: v1, v2, v3, v4, v5
and v2, v1, v3, v4, v5, hence resulting in two different node sequences Seq1 and Seq2. Note that this
does not hurt GRU-based DAG encoders as they are invariant to which topological order is used.
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Figure 2: Illustration of the ambiguity
when applying sequence models (such
as Transformer) to the DAG encoding
problem.

To avoid the ambiguity of topological order, another ap-
proach is to sort nodes according to a canonical order
(i.e., node index in the canonical form of the DAG) as
suggested by Niepert et al. (2016). For example, let
v1, v2, v3, v4, v5 be the nodes sorted by a canonical or-
der. Then, we can linearize a DAG into a sequence
(o(v1), fpe(v1)), (o(v2), fpe(v2)), ...(o(vn), fpe(vn)), simi-
lar to how Transformer represents a sentence. Although
canonical order guarantees the generated sequence is unique
for the same DAG, different DAGs might have the same
sequence. For instance, DAGs G1 and G2 in Figure 2 are
not isomorphic, yet they will be represented as the same
sequence Seq2. This is because the positional encoding func-
tion fpe only captures node positions in the sequence but fails to encode the node dependencies,
causing a significant structural information loss.

In summary, it is not straightforward to generalize Transformer to DAGs. We need to design a smart
linearization method for DAGs which guarantees that the same DAG is transformed to the same
sequence, while different DAGs are always transformed to different sequences, in order to achieve a
lossless transformation.

3 THE PACE MODEL

In this section, we describe the proposed Parallelizable Atention-based Computation structure
Encoder (PACE). The key component of PACE is a dag2seq framework, which leverages graph can-
onization procedure and a graph neural network to transform DAGs into sequences while preserving
the distinctiveness of different DAGs, so that the DAG encoding problem can be addressed efficiently
by applying Transformer to the sequences.

3.1 THE DAG2SEQ FRAMEWORK

Here we describe the proposed dag2seq framework. Let G = (V,E, o) be a labeled DAG (node
labels are operations in O), where V = {1, 2, ..., n} is the finite set of nodes, E is the set of directed
edges, and o : V → O is a function that associates to each node an operation in O. We denote
the canonical form of G as C(G) = (V C , EC , oC), which assigns to each labeled graph G an
isomorphic labeled graph C(G) that is a unique representation of its isomorphism class. That is, all
labeled graphs isomorphic to G will have the same canonical form C(G). Since G and C(G) are
isomorphic, there exists a bijection π : V → V C (note that V C = {1, 2, ..., n}) between the node
sets such that oC(π(i)) = o(i) for all i ∈ V and (π(i), π(j)) ∈ EC if and only if (i, j) ∈ E. The
graph canonization process assigns a new index π(i) to each node i. Based on the new indices π(i),
the proposed dag2seq computes the positional encoding of node j ∈ V (denoted as pj) as follows

aj = Agg(π(i), (i, j) ∈ E) (1)
pj = Combine(π(j), aj) (2)

where functions Agg and Combine follow the same definition as Graph Isomorphism Network
(GIN) (Xu et al., 2019). From Equations (1) and (2), we can see that dag2seq uses the canonical
indices as node features and applies a one-layer injective GNN to obtain the positional encoding of
each node. Note that (i, j) ∈ E is equivalent to (π(i), π(j)) ∈ EC . Hence, Equations (1) and (2)
can also be interpreted as applying a one-layer injective GNN on the canonical graph C(G) with the
true node indices of C(G) as node features. For notation convenience, we use π−1 : V C → V to
denote the inverse function of π. Then Theorem 3.1 describes how dag2seq generates sequences that
uniquely represent DAGs.

Theorem 3.1 Let G = (V,E, o) be a labeled DAG, and p1, p2, ..., pn be the positional encod-
ings generated by dag2seq. If functions Agg and Combine are injective, then the sequence
(o(π−1(1)), pπ−1(1)), (o(π

−1(2)), pπ−1(2)), ..., (o(π
−1(n)), pπ−1(n)) injectively encodes the com-

putation structures defined by DAGs.
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We prove Theorem 3.1 in Appendix A. The significance of Theorem 3.1 is that it provides a way to
injectively encode DAGs into sequences which fully preserves the node type information as well as
structure information of the original DAGs. In other words, two labeled DAGs will be encoded into
the same sequence if and only if they are isomorphic (their computation structures are the same).
Then advanced parallelizable encoders (such as the Transformer encoder) for sequence modeling
can be applied to the DAG encoding problem to improve the efficiency of the encoding process, thus
facilitating the downstream DAG optimization problems. Intuitively, the canonical form provides a
unified node indexing for isomorphic DAGs which initially may have different node orderings, while
the one-layer injective GNN encodes the direct predecessors of each node into its positional encoding.
Then it is not difficult to see that from the canonical indices of nodes and their direct predecessors as
well as the node types we can fully recover the original DAG. The one-layer GNN is parallelizable,
in contrast to the sequential GNNs used in previous works (Zhang et al., 2019; Thost & Chen, 2021).

It is also worth discussing the complexity of graph canonization. The graph canonization problem is
theoretically at least as computationally hard as the graph isomorphism problem, which is in NP but
not known to be solvable in polynomial time nor to be NP-complete. However, getting the canonical
form of graphs is not too difficult in practice, thanks to the well-known graph canonization tools such
as Nauty (McKay & Piperno, 2014). Empirically, such tools usually return the canonical form of a
reasonable-sized graph in seconds. Theoretically, Nauty has an average time complexity of O(n),
and polynomial-time graph canonization algorithms also exist for graphs of bounded degrees. We
also found in our experiments that graph canonization adds a negligible overhead.

3.2 THE TRANSFORMER IN PACE

With the dag2seq framework to injectively map DAGs to sequences, we next develop the attention-
based parallelizable encoder which consists of K stacked Transformer (encoder) blocks.

For each item (o(π−1(i)), pπ−1(i)) in the output sequence of dag2seq, o(π−1(i)) provides the opera-
tion information, while the positional encoding pπ−1(i) contains the structural information. Hence,
PACE concatenates the trainable embedding of operation o(π−1(i)) and the positional encoding
pπ−1(i) as the embedding ei of item i in the sequence.

ei = Concat(Emb(o(π−1(i))), pπ−1(i)) (3)

Then the sequence e1, e2, ..., en is fed into the first Transformer encoder block. Each transformer
encoder block performs the multi-head self-attention mechanism (Vaswani et al., 2017) to update
the embedding of each item in the sequence. We provide details of the multi-head self-attention
mechanism in Appendix C.

In the original transformer encoder blocks, the attention operations are not masked. In other words, for
any two items i and j in the sequence, the embedding of item i will be used to update the embedding
of item j. Such unmasked operation is reasonable as the positional encodings {pπ−1(i),∀i} have
already encoded the partial order between nodes. However, due to the complex dependencies a
DAG may encode, fully relying on the positional encodings to capture such dependencies might
not be enough. Therefore, we introduce a masked attention operation that helps better capture the
dependency between nodes in practice. The masked attention operation can be specified through a
binary mask matrix M as follows.

Mi,j =

{
False, if there exists a path from i to j in C(G)
True, otherwise

(4)

In this mask matrix M , element Mi,j = True indicates that the effect of item i in updating the
embedding of item j will be masked out. When Mi,j = True, there is no (directed) path from node i
to node j in the canonical form C(G). In other words, we only allow j’s predecessors in C(G) (or
equivalently, π−1(j)’s predecessors in G) to participate in the updating of j’s embedding. Such a
masking operation has two benefits: 1) the structure information of the DAG is strengthened in the
masked self-attention, and 2) the partial order between operations in the computation structure is
exploited, which aligns with the logic of a real computation in the sense that the operation at some
node does not depend on its successor operations. We also empirically verify the effectiveness of the
masked attention operation in the ablation study. The mask matrix M can be efficienly computed
through the DFS algorithm or the Floyd algorithm, which we describe in Appendix B.
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3.3 TRAINING METHODOLOGY

We design two ways to train the PACE model. One is by training a variational autoencoder (VAE) for
DAGs that is able to encode and decode/generate DAGs into and from a latent space, like D-VAE and
DAGNN. On the other hand, since the proposed dag2seq transforms the DAG encoding problem to
the sequence encoding problem, pre-training techniques in NLP are also suitable for training PACE.

Without loss of generality, we assume that there is a single output node in each DAG that has no
successor. If not, we can add a virtual output node and add directed edges from all nodes whose
out-degree is 0 to the output node. When PACE is trained in a VAE architecture, we use a common
trick in standard Transformers by assuming that there are at most N nodes in the input DAG. If a
DAG has n < N nodes, we pad N − n end symbols to the end of the sequence generated by dag2seq.
Then PACE readouts the DAG encoding by concatenating the learned embeddings of the N symbols.
When PACE is trained in a pre-training architecture, similar to the sentiment classification task in
BERT, PACE takes the learned embedding of the output node as the DAG encoding.

Training PACE in a VAE architecture. In the PACE-VAE architecture, we take PACE as the
encoder, and connect the output of PACE with two fully connected (FC) layers to predict the mean
and variance of the approximated posterior distribution in the evidence lower bound (ELBO) (Kingma
& Welling, 2013). The decoder of PACE-VAE consists of K = 3 standard Transformer decoder
blocks of dimension dk. Given the latent vector z to decode, the decoder uses an FC layer to
reconstruct a vector of dimension N × dk, and the vector is then reshaped to a matrix Z of shape
(N, dk), which plays the same role as the “memory” matrix in a standard Transformer in NLP. Hence,
the encoder-decoder attention layer in each Transformer decoder block takes the decoded matrix Z
as the “Key” matrix and “Value” matrix, and uses the output from the previous self-attention layer
as the “Query” matrix. Similar to the standard Transformer, during the generation, the decoder of
PACE-VAE sequentially predicts nodes in G according to the learnt canonical order, and this process
is ended until a special symbol is predicted indicating the decoding process is completed. For each
generated node i in the decoding process, we do a softmax to select the operation of the node, and
use a binary classifier to predict the existence of an edge between node i and any node j < i. We
describe more details of PACE-VAE and its parallelizable training framework in Appendix D.

Training PACE in a pre-training architecture. After converting DAGs to sequences by the pro-
posed dag2seq framework, PACE is essentially a sequence modeling encoder. Yan et al. (2020)
validates that the pre-training architecture in NLP that generates embeddings without using accuracies
can better preserve the local structural relationship in the latent space. As such, PACE can also
take the masked language modeling (MLM) (Devlin et al., 2019; Yan et al., 2021) objective for
pre-training to capture the locality information of the computation structure defined by DAGs. For
each input DAG, we randomly select 20% nodes for masking and prediction, where 80% of them are
replaced with the [MASK] token and the remaining nodes are unchanged. The output embeddings
are used to predict the original node operations o(π−1(i)), and we train PACE by minimizing the
cross-entropy loss of the predicted node operations and the true node operations.

4 COMPARISON TO RELATED WORKS

Despite the great success of general-purpose GNNs in encoding undirected graphs, there have been
relatively fewer GNN works proposed to capture the inductive bias encoded by the dependency
between nodes in DAGs. S-VAE (Bowman et al., 2016) takes as input the sequence of node strings
which consist of the node type as well as the adjacency vector of each node, and then applies a
GRU-based RNN to the topologically sorted node sequence to encode a DAG. Following this idea,
D-VAE (Zhang et al., 2019) proposes a DAG-style message passing framework that sequentially
updates the DAG encoding following a topological order of nodes. For each node in a DAG, D-VAE
takes a gated summation aggregator to combine information from all its direct predeccessors, and
then a GRU is used to update the node embedding based on the aggregated information and node type.
Similar to the encoder of D-VAE, Thost & Chen (2021) propose DAGNN which also sequentially
aggregates node features. It differs from D-VAE in the sense that the aggregator is constructed
through the attention mechanism and it comes with a layer notion in the DAG encoding process.

The proposed PACE model is closely related to these DAG encoders. However, there is a noticeable
difference. Previous DAG encoders (i.e., S-VAE, D-VAE, DAGNN) share a major limitation that
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the sequential nature of the encoder precludes their parallelizability. In constrast, PACE adopts a
dag2seq framework that encodes the dependencies between nodes in the positional embeddings, and
then applies a transformer to the node sequence to encode a DAG parallelly.

5 EXPERIMENTS

In this section, we conduct experiments on popular DAG encoding datasets to validate the effec-
tiveness and efficiency of the proposed PACE model against state-of-art DAG encoders and other
general-purpose (undirected) graph encoders.

5.1 DATASETS AND METRICS

NA and BN. The NA dataset consists of approximately 19K neural architectures generated by the
software ENAS (Pham et al., 2018). Each architecture has its pre-computed weight-sharing (WS)
accuracy on CIFAR-10 (Krizhevsky et al., 2009), and includes 8 nodes with the first node as the
input node and the last node as the output node. The BN dataset consists of 200K Bayesian networks
randomly generated by the bnlearn package (Scutari, 2010). Each Bayesian network has 8 nodes
and is associated with a Bayesian Information Criterion (BIC) score that measures the architecture
performance on the Asia (Lauritzen & Spiegelhalter, 1988) dataset.

On NA and BN, following the experimental setting used in (Zhang et al., 2019; Thost & Chen,
2021), the PACE model is evaluated under a VAE architecture, and we take 90% NA/BN data as the
training set and hold out the rest for testing. To make a fair comparison, we evaluate the quality of
DAG encoders by measuring the prediction performance and the downstream search performance
as suggested by Zhang et al. (2019). Briefly, a sparse Gaussian Process (SGP) regression model
(Snelson & Ghahramani, 2005) is trained to predict the DAG performance from its encoding, and we
use rooted mean square error (RMSE) and Pearson correlation (Pearson’r) as metrics to evaluate the
prediction performance. When evaluating the downstream search performance, we perform Bayesian
optimization (BO) in the DAG encoding space based on the SGP regression model, and compare the
performance of the best searched architecture.

NAS101 and NAS301. NAS101 (NAS-Bench-101) and NAS301 (NAS-Bench-301) are two well-
known neural architecture search (NAS) benchmark datasets. NAS101 (Ying et al., 2019) consists
of approximately 420K neural architectures with pre-computed validation and test accuracies on
CIFAR-10, where each architecture has up to 7 nodes and 9 edges with the first node as the input
and the last node as output node. NAS301 (Siems et al., 2020) is a surrogate benchmark for DARTS
(Liu et al., 2018b). Following Liu et al. (2018a); Yan et al. (2021), we randomly sample 1M neural
architectures, where each architecture contains at most 15 nodes.

On NAS101 and NAS301, the PACE model is trained with the pre-training architecture using
the MLM objective. Since better prediction performance of DAG encoders always facilitates the
downstream search performance, we implement two popular BO-based downstream search methods,
DNGO (Snoek et al., 2015) and DNGO-LS (Yan et al., 2021), and compare the downstream search
performance of different encoders. For NAS101, following the original work of Ying et al. (2019), we
take regret as the metric to evaluate the downstream performance, where the regret is the difference
between the test accuracy of the (offline) optimal neural architecture and the test accuracy of the best
searched neural architecture (after 20 rounds). For NAS301, since we do not have an oracle for the
optimal neural architecture, we use the test accuracy of the best searched neural architecture, instead.

5.2 BASELINES AND MODEL CONFIGURATION

On NA and BN, we compare PACE to all baselines used in DAGNN: D-VAE, S-VAE (Bowman et al.,
2016), GCN (Zhang et al., 2019), GraphRNN (You et al., 2018), DeepGMG (Li et al., 2018). On
NAS101 and NAS301, we compare PACE with three undirected graph encoders: GIN (Xu et al.,
2019), GAT (Velickovic et al., 2018), GCN (Kipf & Welling, 2016), and current state-of-art DAG
encoders: S-VAE, D-VAE, DAGNN.

The PACE model always uses 3 Transformer encoder blocks to boost the training and inference speed.
We use an embedding layer of dimension 64 to map node types to node type embeddings. The output
dimension of the 1-layer GNN in our dag2seq framework is also 64. On NA and BN, we concatenate
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Table 1: Predictive performance on NA and BN.
NA BN

Evaluation Metric RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑
PACE 0.254 ± 0.002 0.964 ± 0.001 0.115 ± 0.004 0.994 ± 0.001
DAGNN 0.264 ± 0.004 0.964 ± 0.001 0.122 ± 0.004 0.991 ± 0.000
D-VAE 0.384 ± 0.002 0.920 ± 0.001 0.281 ± 0.004 0.964 ± 0.001
S-VAE 0.478 ± 0.002 0.873 ± 0.001 0.499 ± 0.006 0.873 ± 0.002
GraphRNN 0.726 ± 0.002 0.669 ± 0.001 0.779 ± 0.007 0.634 ± 0.001
DeepGMG 0.478 ± 0.002 0.873± 0.001 0.843 ± 0.007 0.555 ± 0.003
GCN 0.832 ± 0.001 0.527 ± 0.001 0.599 ± 0.006 0.809 ± 0.002

Table 2: Downstream search performance on NA and BN.
Model PACE DAGNN D-VAE S-VAE
(NA) Test accuracy ↑ 95.08 95.06 94.80 92.79
(BN) Optimized BIC score ↑ -11107.29 -11107.29 −11125.75 −11125.77

the positional encoding and node type embedding as the node features fed into the first Transformer
encoder block. On NAS101 and NAS301, we use the summation of positional encoding and node
type embedding, instead. All the experiments are done on NVIDIA Tesla P100 12GB GPUs.

5.3 EXPERIMENTAL RESULTS

NA and BN. According to Table 1, PACE achieves the smallest RMSE and the largest Pearson’s
r on both NA and BN, indicating that PACE generates the smoothest searching space that captures
the locality of DAGs. Furthermore, we notice that the improvement is more significant on NA. One
possible reason is that DAGs in NA always have a Hamiltonian path which introduces relatively
long-term dependency between nodes. Since the attention mechanism in PACE could capture the long-
term dependency better compared to RNN-based DAG encoders, PACE can preserve the similarity
of DAGs better in the learned DAG embeddings. Furthermore, as Table 2 shows, PACE detects
architectures with the best performance on both NA and BN. Such an observation indicates that the
smooth DAG embedding space can facilitate the downstream searching subroutines. In addition, we
also visualize the optimal detected architectures in Appendix E. Finally, in analogy to D-VAE, we
also compare the reconstruction accuracy and the generation performance (i.e., the proportions of
valid/ unique/ novel architectures in the generated DAGs) of the tested DAG autoencoders. It turns
out that PACE still achieves the best performance, and the results are presented in Appendix F.

NAS101 and NAS301. Table 3 presents the results on NAS101 and NAS301. PACE significantly
outperforms undirected graph encoders and other DAG encoders on each dataset and each searching
method. Similar to PACE, DAGNN and GAT also use the attention mechanism to model the
dependencies (relations) between nodes. However, the attention mechanism in these encoders is only
applied to nodes and their direct predecessors (DAGNN) or adjacent nodes (GAT), hence making
it hard to capture the long-term dependency between nodes. On the contrary, PACE allows all
predecessor nodes to participate in the attention mechanism while encoding the neighbors through
positional encoding, which enables PACE to learn long-term dependencies as well as short-term
dependencies with ease, thus capturing the similarity of computation structure defined by DAGs more
efficiently and more effectively.

5.4 COMPUTATIONAL COST

A key advantage of PACE is the parallelizable DAG encoding process, so we compare the compu-
tational cost of PACE to GRU-based DAG encoders (D-VAE and DAGNN). We use a single GPU
for each experiment, and Figure 3 shows our results. On datasets NA and BN, PACE, D-VAE and
DAGNN are all trained with the VAE architecture. As all models are trained in the same manner,
both the training and inference time can reflect the DAG encoding speed. Hence we compare the
average training time per epoch and the total required training epochs to reach optimal performance
to evaluate the computational cost. Figure 3 (a) and (b) show that PACE requires significantly

8
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Table 3: Experimental results on NAS101 and NAS301.
NAS101 (Regret) NAS301 (Acc)

Search Method DNGO (%) ↓ DNGO-LS (%) ↓ DNGO (%) ↑ DNGO-LS (%) ↑
PACE 0.391 ± 0.241 0.278 ± 0.178 94.507 ± 0.165 94.547 ± 0.145
DAGNN 0.445 ± 0.224 0.448 ± 0.127 94.445 ± 0.219 94.433 ± 0.156
D-VAE 0.439 ± 0.203 0.430 ± 0.222 94.453 ± 0.148 94.428 ± 0.131
S-VAE 0.458 ± 0.175 0.451 ± 0.225 94.332 ± 0.183 94.371 ± 0.203
GIN 0.593 ± 0.177 0.518 ± 0.201 94.451 ± 0.224 94.411 ± 0.198
GAT 0.597 ± 0.269 0.509 ± 0.187 94.430 ± 0.171 94.421 ± 0.202
GCN 0.627 ± 0.161 0.538 ± 0.233 94.448 ± 0.149 94.404 ± 0.160
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Figure 3: Computational cost.

less training time per epoch than D-VAE and DAGNN, while reaching optimal performance with
fewer epochs on average. On NAS101 and NAS301, as PACE uses a different training method (i.e.,
pre-training), we compare the overall training time and the average inference time per epoch to
make a fair comparison. Figure 3 (c) and (d) indicate that PACE takes about 1

4 average training time
and roughly 1

4 average inference time compared to GRU-based DAG encoders (D-VAE, DAGNN).
Overall, PACE significantly reduces the computational cost against previous DAG encoders.

5.5 ABLATION STUDY

In the ablation study, we demonstrate the effectiveness of our proposed dag2seq (positional encoding)
framework and the attention mask in PACE. From Table 4, we have the following observations: 1) In
general, PACE trained with attention mask outperforms the one without attention mask, indicating
that the attention mask helps better capture the inductive bias of DAGs. Nevertheless, even without
attention mask, PACE still performs relatively well because the dag2seq framework also captures the
node dependencies. 2) We also find that the dag2seq framework is vital for the performance of PACE.
Without dag2seq, PACE (without mask) almost completely fails at the NA dataset. This verifies the
importance of dag2seq for solving the ambiguity issue of DAG encoding illustrated in Figure 2.

Table 4: Ablation study.
NA BN NAS101 (Regret) NAS301 (Acc)

Model configuration RMSE ↓ Pearson’s r ↑ RMSE ↓ Pearson’s r ↑ DNGO (%) ↓ DNGO-LS (%) DNGO (%) ↑ DNGO-LS (%) ↑
Model1: dag2seq & Mask 0.254 0.964 0.115 0.9942 0.391 0.278 94.507 94.547
Model2: dag2seq & No Mask 0.255 0.967 0.119 0.9941 0.479 0.368 94.501 94.505
Model3: No dag2seq & No mask 0.981 0.001 0.368 0.9318 0.600 0.498 94.467 94.401

6 CONCLUSION

In this paper, we have proposed PACE, a novel DAG encoder based on Transformer. Unlike traditional
RNN-based DAG encoders which sequentially encode DAG nodes, PACE is fully parallelizable,
thus having a much better encoding speed. PACE incorporates the strong inductive bias through a
node-dependency-aware positional encoding framework, dag2seq, and a masked self-attention mech-
anism. Experiments demonstrate that PACE not only generates smooth latent (DAG encoding) space
beneficial to the downstream search, but also boosts the training and inference time significantly.

9
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7 REPRODUCIBILITY STATEMENT

The main theoretical contribution of our paper comes from Theorem 3.1. Clear explanations and
complexity analysis is provided in Section 3.1, while the complete proof of the Theorem is available
in Appendix A. Furthermore, our proposed DAG encoder, PACE, incorporates the mask operation
in the multi-head self-attention mechanism, hence we describe algorithms to get the mask matrix
in Appendix B, and mathematically formulate the masked multi-head self-attention mechanism
in Appendix C. In addition, as PACE can be trained in a novel VAE architecture that supports
parallelizable training, we thoroughly explain the VAE architecture in Appendix D. All datasets (i.e.
NA, BN, NAS101, NAS301) used in our experiments are public and we provide clear explanations of
these datasets in Section 5.1. Our source code, which includes details of necessary data preprocessing,
is provided in the supplementary materials, and we will make it public on Github in the future.
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A PROOF OF THEOREM 3.1

LetG1 = (V1, E1, o1) andG2 = (V2, E2, o2) be two labelled graphs, thenG1 andG2 are isomorphic
(i.e.G1 and G2 represent the same computation structure.) if and only if their canonical form are
identical, i.e. C(G1) = C(G2). Note that it means equality between the canonical forms, not
isomorphism. Let C(G1) = (V C1 , E

C
1 , o

C
1 ) and C(G2) = (V C2 , E

C
2 , o

C
2 ), then there exists bijections

π1 : V1 → V C1 and π2 : V2 → V C2 , and we use π−1
1 : V C1 → V1 and π−1

2 : V C2 → V2 to denote their
inverse functions. Hence, we have C(G1) = C(G2) if and only if (1) oC1 (i) = oC2 (i) for ∀i; and (2)
(i, j) ∈ EC1 ⇔ (i, j) ∈ EC2 for ∀i, j.
Next, we will prove Theorem 3.1 by equivelantly showing that the sequence
(o(π−1(1)), pπ−1(1)), (o(π

−1(2)), pπ−1(2)), ..., (o(π
−1(n)), pπ−1(n)) can guarantee the distinctness

of canonical forms C(G). For the notation convenience, let function f(π(j), {π(i), (i, j) ∈ E}) =
Combine(π(j),Agg(π(i), (i, j) ∈ E)) be the composition of function Agg and Combine, then it is
injective if and only if both Agg and Combine are injective. Forthermore, we use Seq1 to denote
the sequence (o1(π

−1
1 (1)), pπ−1

1 (1)), (o1(π
−1
1 (2)), pπ−1

1 (2)), ..., (o1(π
−1
1 (n)), pπ−1

1 (n)), and Seq2 to

denote the sequence (oo2(π
−1
2 (1)), pπ−1

2 (1)), (o2(π
−1
2 (2)), pπ−1

2 (2)), ..., (o2(π
−1
2 (n)), pπ−1

2 (n)).

So far, we know C(G1) 6= C(G2)⇔ there (1) exist i such that oC1 (i) 6= oC2 (i), or (2) exist i, j such
that (i, j) ∈ EC1 but (i, j) 6∈ EC2 (equivalently, (i, j) 6∈ EC1 but (i, j) ∈ EC2 ).

Now, let’s prove C(G1) 6= C(G2)⇒ Seq1 6= Seq2.

• (1) For the first case, π1, π2 are the bijections that map G1 and G2 to their canonical forms,
then we have:

o1(π
−1
1 (i)) = oC1 (π1(π

−1
1 (i)))

= oC1 (i)

o2(π
−1
2 (i)) = oC2 (π2(π

−1
2 (i)))

= oC2 (i)

Since oC1 (i) 6= oC2 (i), then we get o1(π−1
1 (i)) 6= o2(π

−1
2 (i)). indicating that Seq1 6= Seq2.

• (2) For the second case, according to the definition of canonical form, we know that
(π−1

1 (i), π−1
1 (j)) ∈ E1 ⇔ (i, j) ∈ EC1 (similarly,(π−1

2 (i), π−1
2 (j)) ∈ E2 ⇔ (i, j) ∈ EC2 ).

As such, we get:

pπ−1
1 (j) = f(π1(π

−1
1 (j)), {π1(π−1

1 (s)), (π−1
1 (s), π−1

1 (j)) ∈ E1})

= f(j, {s, (s, j) ∈ EC1 })
pπ−1

2 (j) = f(π2(π
−1
2 (j)), {π2(π−1

2 (s)), (π−1
2 (s), π−1

2 (j)) ∈ E1})

= f(j, {s, (s, j) ∈ EC2 })

Then, since (i, j) ∈ EC1 but (i, j) 6∈ EC2 , we have {s, (s, j) ∈ EC1 } 6= {s, (s, j) ∈ EC2 }.
Since function f is injective, then we have pπ−1

1 (j) 6= pπ−1
2 (j). Hence, Seq1 6= Seq2

In the end, let’s prove the other direction, i.e. Seq1 6= Seq2⇒ C(G1) 6= C(G2). When Seq1 6= Seq2,
there must (1) exist i such that o1(π−1

1 (i)) 6= o2(π
−1
2 (i)), or (2) exist j such that pπ−1

1 (j) 6= pπ−1
2 (j).

• (1) For the first case, as previous analysis, we have

oC1 (i) = o1(π
−1
1 (i))

oC2 (i) = o2(π
−1
2 (i))

Hence, we can get oC1 (i) 6= oC2 (i), which indicates C(G1) 6= C(G2).
• (2) For the second case, according to previous analysis, we know that:

pπ−1
1 (j) = f(j, {s, (s, j) ∈ EC1 })

pπ−1
2 (j) = f(j, {s, (s, j) ∈ EC2 })
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Since f is injective, pπ−1
1 (j) 6= pπ−1

2 (j) implies that {s, (s, j) ∈ EC1 } 6= {s, (s, j) ∈ EC2 },
which indicates that there exists i such that (i, j) ∈ EC1 but (i, j) 6∈ EC2 (or (i, j) 6∈ EC1 but
(i, j) ∈ EC2 ). Henceforth, we get C(G1) 6= C(G2).

B MASK MATRIX

Here we provide two potential ways to get the mask matrix in PACE. Following the same notation as
the main paper, we use C(G) = (V C , EC , oC) to denote the canonical form of the input DAG G.

DFS Algorithm This algorithm takes the canonical form C(G) as input and performs the DFS
algorithm on the graph to explore all the nodes of the graph. Before we start the deep first search, we
traverse all edges in EC to find the direct-successors of each node i, and then put them in a set S(i).
Then, for each node i, we perform the DFS to get a dependent set D(i, and we have Mi,j = False if
and only if j ∈ D(i).

Algorithm 1 DFS Algorithm
1: Initialization: D(i) = {}; Visited = [False for i ∈ V C ]; a source (start) node i, T = [i] (T is a

stack).
2: Visited[i] = True
3: while |T | > 0 do
4: j = T [−1]
5: delete j from T
6: for k in S(j) do
7: if Visited[k] = Flase then
8: put k in D(i)
9: Visited[k] = True

10: put k in T
11: end if
12: end for
13: end while

Floyd Algorithm The Floyd algorithm is originally proposed to for finding shortest paths in directed
weighted graphs. Here, we initialize the edge weights to be 1, and implement the Floyd algorithm to
find the distance dist(i, j) (i.e. length of the shortest directed path) between each node pair i, j in
C(G). Then we have Mi,j = False if and only if dist(i, j) > 0.

Algorithm 2 Floyd Algorithm
Initialization: dist(i, j) = 1 if (i, j) ∈ EC else 0

2: for i ∈ V C do
for j ∈ V C do

4: for k ∈ V C do
if dist(j, k) > dist(j, i) + dist(i, k) then

6: dist(j, k) = dist(j, i) + dist(i, k)
end if

8: end for
end for

10: end for

C MULTI-HEAD SELF-ATTENTION MECHANISM

Here we introduce the multi-head (masked) self-attention attention mechanism in the Transformer
encoder blocks of PACE. For notation convenience, we use Hk to denote the output representation
of the kth Transformer encoder block, and use H0 to denote the input (i.e. the representation of the
sequence generated by dag2seq) to the first Transformer encoder block. Furthermore, we denote the
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number of heads in the self-attention mechanism as h, and the embedding dimension (of each item in
the sequence) as d. Then the Transformer encoder blocks update representation Hk as following.

Hj
k = softmax(

Qjk(K
j
k)
T

d
)V jk for j = 1, 2, ...h (5)

Hk+1 = feed-forward(‖hj=1H
j
k) (6)

where Qjk = HkW
j
k,q, K

j
k = HkW

j
k,k, V jk = HkW

j
k,v are the query matrix, key matrix, value

matrix, respectively (i.e. W j
k,q,W

j
k,k,W

j
k,v are trainable parameter matrices); ‖ represents the

concatenation operation; Feed-forward is a one-layer MLP. When we introduce the mask operation
into the Transformer encoder block. let M be the mask matrix from the Floyd algorithm or the BFS
algorithm, then we use following equation to replace equation 5 in the Transformer encoder block.

Hj
k = softmax(

Qjk(K
j
k)
T +−∞ ∗M
d

)V jk for j = 1, 2, ...h (7)

D MORE DETAILS ABOUT PACE IN THE VAE ARCHITECTURE

In the section, we describe the decoder of PACE-VAE. Figure 4 illustrates the overall architecture. In
the main paper, we have introduced how PACE maps input DAGs to the latent space, here we focus
on the decoder of PACE-VAE.

Figure 4: The illustration of PACE in the VAE architecture (PACE-VAE)

Similar to PACE, the decoder is constructed upon the Transformer decoder block. Each Transformer
decoder block consists of a masked multi-head self-attention layer (i.e. Euqtion 7), a multi-head
attention layer (i.e. Equation 5 except that the key matrix and value matrix are computed from
points z in the latent space), and a feed-forward layer (i.e. Equation 6). The decoder takes a
MLP as the embedding layer to generate node type embeddings as PACE. In analogous to the
dag2seq framework in PACE, the decoder also uses a GNN to generate the positional encoding based
on the learnt canonical order of nodes. Then the node embeddings and positional encodings are
concatenated and then fed into multiple consecutive Transformer decoder blocks to predict the node
representations, which is used to predict the node types and the existence of edges. In analogous to
the standard Transformer decoder, the decoder performs the shift right trick (i.e. the ith outputed
node representation corresponds to the i+1th node in the sequence) and adds a start symbol node (i.e.
the black node in Figure 4) at the beginning of the node sequence. Specifically, the canonical label
of the start symbol node is different from any possible canonical label in the dag2seq framework to
distinguish it’s position. For instance, DAG in the searching space contains at most N nodes, then the
canonical order of the start symbol node can be 0 or N +1. Let oi denote the output representation of
node i in the sequence, then it is used to predict the type of node i+1 in the sequence through a MLP.
Similarly, for any j < i, we use another MLP, which takes the concatenation of oj and oi as input, to
predict the existence of an directed edge from node j + 1 to node i+ 1 in the sequence. Note that the
canonical order can be generated from the topological sort by breaking ties using canonicalization
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tools, such as Nauty. Thus, for each node i in the sequence, any dependent node j of this node must
be arranged in a prior position in the sequence (i.e. j < i). In the end, based on these predictions
(node representations), we can perform the teacher forcing to train the VAE.

E VISUALIZATION OF DETECTED OPTIMAL ARCHITECTURES ON NA AND BN

Figure 5: Best architectures on NA and BN detected by PACE.

In this section, we visualize the optimal architectures detected by Bayesian optimization (over the
latent DAG encoding space generated by PACE) on datasets NA and BN. Figure 5 illustrates our
results. On dataset BN, we find that the detected optimal Bayesian network structure is almost the
same as the ground truth (Figure 2 of (Lauritzen & Spiegelhalter, 1988)). In the ground truth, there is
another directed edge from node A (visit to Asia ?) to node T (Tuberculosis).

F RECONSTRUCTION ACCURACY AND GENERATION PERFORMANCE
COMPARISON

Table 5: Recon. accuracy, valid prior, uniqueness, novelty and overall (ave) performance %

NA BN

Methods Accuracy ↑ Valid ↑ Unique ↑ Novel ↑ Overall ↑ Accuracy ↑ Valid ↑ Unique ↑ Novel ↑ Overall ↑
PACE 99.97 98.16 57.77 100.00 88.98 99.99 99.96 45.10 98.50 85.88
DAGNN 99.97 99.98 37.36 100.00 84.33 99.96 99.89 37.61 98.16 83.91
D-VAE 99.96 100.00 37.26 100.00 84.31 99.94 98.84 38.98 98.01 83.94
S-VAE 99.98 100.00 37.03 99.99 84.25 99.99 100.00 35.51 99.70 83.80
GraphRNN 99.85 99.84 29.77 100.00 82.37 96.71 100.00 27.30 98.57 80.65
GCN 5.42 99.37 41.48 100.00 61.57 99.07 99.89 30.53 98.26 81.94

Models parameterized with neural networks contribute to the inductive biases of the deep generative
models (Zhang et al., 2016; Keskar et al., 2017), thus the quality of the DAG encoder can be
characterized by the reconstruction accuracy (Accuracy) and the generation performance (i.e. the
proportions of valid/ unique/ novel architectures in generated DAGs.) of the corresponding VAE.

The reconstruction accuracy, prior validity, uniqueness and novelty are calculated in the same way
as Zhang et al. (2019). Empirical results are presented in Table 5, and we take the average of these
four measurements to characterize the overall performance of the deep generative model (i.e. VAE),
which also measures the quality of the DAG encoder. We find that PACE performs similarly well
in reconstruction accuracy, prior validity and novelty with D-VAE, DAGNN and S-VAE, while
significantly improving the uniqueness. Hence, PACE achieves the best overall performance and
generates more diverse DAG architectures.
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