
Under review as a conference paper at ICLR 2023

GOAL-SPACE PLANNING WITH SUBGOAL MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates a new approach to model-based reinforcement learning
using background planning: mixing (approximate) dynamic programming updates
and model-free updates, similar to the Dyna architecture. Background planning
with learned models is often worse than model-free alternatives, such as Double
DQN, even though the former uses significantly more memory and computation.
The fundamental problem is that learned models can be inaccurate and often
generate invalid states, especially when iterated many steps. In this paper, we avoid
this limitation by constraining background planning to a set of (abstract) subgoals
and learning only local, subgoal-conditioned models. This goal-space planning
(GSP) approach is more computationally efficient, naturally incorporates temporal
abstraction for faster long-horizon planning and avoids learning the transition
dynamics entirely. We show that our GSP algorithm can learn significantly faster
than a Double DQN baseline in a variety of situations.

1 INTRODUCTION

Planning with learned models in reinforcement learning (RL) is important for sample efficiency.
Planning provides a mechanism for the agent to simulate data, in the background during interaction,
to improve value estimates. Dyna (Sutton, 1990) is a classic example of background planning. On
each step, the agent simulates several transitions according to its model, and updates with those
transitions as if they were real experience. Learning and using such a model is worthwhile in vast or
ever-changing environments, where the agent learns over a long time period and can benefit from
re-using knowledge about the environment.

The promise of Dyna is that we can exploit the Markov structure in the RL formalism, to learn and
adapt value estimates efficiently, but many open problems remain to make it more widely useful.
These include that 1) one-step models learned in Dyna can be difficult to use for long-horizon planning,
2) learning probabilities over outcome states can be complex, especially for high-dimensional states
and 3) planning itself can be computationally expensive for large state spaces.

A variety of strategies have been proposed to improve long-horizon planning. Incorporating options
as additional (macro) actions in planning is one approach. An option is a policy coupled with a
termination condition and initiation set (Sutton et al., 1999). They provide temporally-extended
ways of behaving, allowing the agent to reason about outcomes further into the future. Incorporating
options into planning is a central motivation of this paper, particularly how to do so under function
approximation. Options for planning has largely only been tested in tabular settings (Sutton et al.,
1999; Singh et al., 2004; Wan et al., 2021). Recent work has considered mechanism for identifying
and learning option policies for planning under function approximation (Sutton et al., 2022), but as
yet did not consider issues with learning the models.

A variety of other approaches have been developed to handle issues with learning and iterating
one-step models. Several papers have shown that using forward model simulations can produce
simulated states that result in catastrophically misleading values (Jafferjee et al., 2020; van Hasselt
et al., 2019; Lambert et al., 2022). This problem has been tackled by using reverse models (Pan et al.,
2018; Jafferjee et al., 2020; van Hasselt et al., 2019); primarily using the model for decision-time
planning (van Hasselt et al., 2019; Silver et al., 2008; Chelu et al., 2020); and improving training
strategies to account for accumulated errors in rollouts (Talvitie, 2014; Venkatraman et al., 2015;
Talvitie, 2017). An emerging trend is to avoid approximating the true transition dynamics, and
instead learn dynamics tailored to predicting values on the next step correctly (Farahmand et al., 2017;

1

Under review as a conference paper at ICLR 2023

Farahmand, 2018; Ayoub et al., 2020). This trend is also implicit in the variety of techniques that
encode the planning procedure into neural network architectures that can then be trained end-to-end
(Tamar et al., 2016; Silver et al., 2017; Oh et al., 2017; Weber et al., 2017; Farquhar et al., 2018;
Schrittwieser et al., 2020). We similarly attempt to avoid issues with iterating models, but do so by
considering a different type of model.

Much less work has been done for the third problem in Dyna: the expense of planning. There is,
however, a large literature on approximate dynamic programming—where the model is given—that
is focused on efficient planning (see (Powell, 2009)). Particularly relevant to this work is restricting
value iteration to a small subset of landmark states (Mann et al., 2015). The resulting policy is
suboptimal, restricted to going between landmark states, but planning is provably more efficient.

The use of landmark states has also been explored in goal-conditioned RL, where the agent is given a
desired goal state or states. The first work to exploit the idea of landmark states was for learning and
using universal value function approximators (UVFAs) (Huang et al., 2019). The UVFA conditions
action-values on both state-action pairs as well as landmark states. The agent can reach new goals by
searching on a learned graph between landmark states, to identify which landmark to moves towards.
A flurry of work followed, still in the goal-conditioned setting (Nasiriany et al., 2019; Emmons et al.,
2020; Zhang et al., 2020; 2021; Aubret et al., 2021; Hoang et al., 2021; Gieselmann & Pokorny, 2021;
Kim et al., 2021; Dubey et al., 2021).

In this paper, we exploit the idea behind landmark states for efficient background planning in general
online reinforcement learning problems. The key novelty is a framework to use subgoal-conditioned
models: temporally-extended models that condition on subgoals. The models are designed to be
simpler to learn, as they are only learned for states local to subgoals and they avoid generating entire
next state vectors. We use background planning on subgoals, to quickly propagate (suboptimal)
value estimates for subgoals. We propose subgoal-value bootstrapping, that leverages these quickly
computed subgoal values, but mitigates suboptimality by incorporating an update on real experience.
We prove that dynamic programming with our subgoal models is sound (Proposition 2) and that
our modified update converges, and in fact converges faster due to reducing the effective horizon
(Proposition 3). We show in the PinBall environment that our Goal-Space Planning (GSP) algorithm
can learn significantly faster than Double DQN, and still reaches nearly the same level of performance.

2 PROBLEM FORMULATION

We consider the standard reinforcement learning setting, where an agent learns to make deci-
sions through interaction with an environment, formulated as Markov Decision Process (MDP)
(S,A,R,P). S is the state space and A the action space. R : S × A × S → R and the transition
probability P : S ×A× S → [0,∞) describes the expected reward and probability of transitioning
to a state, for a given state and action. On each discrete timestep t the agent selects an action At in
state St, the environment transitions to a new state St+1 and emits a scalar reward Rt+1.

The agent’s objective is to find a policy π : S × A → [0, 1] that maximizes expected return, the
future discounted reward Gt

.
= Rt+1 + γt+1Gt+1. The state-based discount γt+1 ∈ [0, 1] depends

on St+1 (Sutton et al., 2011), which allows us to specify termination. If St+1 is a terminal state, then
γt+1 = 0; else, γt+1 = γc for some constant γc ∈ [0, 1]. The policy can be learned using algorithms
like Q-learning (Sutton & Barto, 2018), which approximate the action-values: the expected return
from a given state and action.

We can incorporate models and planning to improve sample efficiency beyond these basic model-free
algorithms. In this work, we focus on background planning algorithms: those that learn a model
during online interaction and asynchronously update value estimates use dynamic programming
updates. The classic example of background planning is Dyna (Sutton, 1990), which performs
planning steps by selecting previously observed states, generating transitions—outcome rewards and
next states—for every action and performing a Q-learning update with those simulated transitions.

Planning with learned models, however, has several issues. First, even with perfect models, it can
be computationally expensive. Running dynamic programming can require multiple sweeps, which
is infeasible over a large number of states. A small number of updates, on the other hand, may be
insufficient. Computation can be focused by carefully selecting which states to sample transitions

2

Under review as a conference paper at ICLR 2023

Subgoals

Projection

Approximate Values

Goal-Space MDP

Planning

Abstraction

Figure 1: Goal-Space Planning in the Pinball
environment (see Section 4.1). The agent be-
gins with a set of subgoals (denoted in teal)
and learns a set of subgoal-conditioned models.
(Abstraction) Using these models, the agent
forms an abstract goal-space MDP where the
states are subgoals with options to reach each
subgoal as actions. (Planning) The agent plans
in this abstract MDP to quickly learn the values
of these subgoals. (Projection) Using learned
subgoal values, the agent obtains approximate
values of states based on nearby subgoals and
their values. These quickly updated approxi-
mate values are then used to speed up learning.

from—called search control—but how to do so effectively remains largely unanswered with only a
handful of works (Moore & Atkeson, 1993; Wingate et al., 2005; Pan et al., 2019).

The second difficulty arises due to errors in the learned models. In reinforcement learning, the
transition dynamics is represented with an expectation model E[S′|s, a] or a probabilistic model
P (s′|s, a). If the state space or feature space is large, then the expected next state or distribution over
it can be difficult to estimate, as has been repeatedly shown (Talvitie, 2017). Further, these errors
can compound when iterating the model forward or backward (Jafferjee et al., 2020; van Hasselt
et al., 2019). It is common to use an expectation model, but unless the environment is deterministic
or we are only learning the values rather than action-values, this model can result in invalid states and
detrimental updates (Wan et al., 2019).

In this work, we take steps towards the ambitious question: how can we leverage a separate com-
putational procedure (planning with a model) to improve learning in complex environments? More
specifically, we consider background planning for value-based methods. We address the two difficul-
ties with classic background planning strategies discussed above, by focusing planning on a set of
subgoals (abstract states) and changing the form of the model.

3 GOAL-SPACE PLANNING WITH SUBGOAL-CONDITIONED MODELS

At a high level, the Goal-Space Planning algorithm focuses planning over a set of given abstract
subgoals to provide quickly updated approximate values to speed up learning. To do so, the agent
first learns a set of subgoal-conditioned models, minimal models focused around planning utility.
These models then forms a temporally abstract goal-space MDP, with subgoals as states, and options
to achieve each subgoal as actions. Finally, the agent can update its policy based on these subgoal
values to speed up learning. Figure 1 provides a visual overview of this process.

3.1 DEFINING SUBGOALS

Assume we have a finite subset of subgoal vectors G. For example, g could correspond to a situation
where both the front and side distance sensors of a robot report low readings—what a person would
call being in a corner. This g could be represented using a two-dimensional vector, even if the sensory
space is 100-dimensional. In general, subgoals need not be instances of states (i.e., G 6⊂ S). As
another example, in Figure 1, we simply encode the nine subgoals—which correspond to regions
with a small radius—using a tabular encoding of nine one-hot vectors. Essentially, our subgoals
define a new state space in an abstract MDP, and these new abstract states (subgoals) can be encoded
or represented in different ways, just like in regular MDPs.

To fully specify a subgoal, we need a membership function m that indicates if a state s is a member
of subgoal g: m(s, g) = 1, and zero otherwise. Many states can be mapped to the same subgoal g.
For the above example, if the first two elements of the state vector s consist of the front and side
distance sensor, m(s, g) = 1 for any states where s1, s2 are less than some threshold ε. For a concrete
example, we visualize subgoals for the environment in our experiments in Figure 1.

3

Under review as a conference paper at ICLR 2023

Finally, we only reason about reaching subgoals from a subset of states, called initiation sets for
options (Sutton et al., 1999). This constraint is key for locality, to learn and reason about a subset of
states for a subgoal. We assume the existence of a (learned) initiation function d(s, g) that is 1 if s
is in the initiation set for g (e.g., sufficiently close in terms of reachability) and zero otherwise. We
discuss some approaches to learn this initiation function in Appendix C. But, here, we assume it is
part of the discovery procedure for the subgoals and first focus on how to use it.

For the rest of this paper, we presume we are given subgoals and initiation sets. We develop algorithms
to learn and use models, given those subgoals. We expect a complete agent to discover these subgoals
on its own, including how to represent these subgoals to facilitate generalization and planning. To
separate concerns, we focus on how the agent can leverage reasonably well-specified subgoals.

3.2 DEFINING SUBGOAL-CONDITIONED MODELS

For planning and acting to operate in two different spaces, we define four models: two used in
planning over subgoals (subgoal-to-subgoal) and two used to project these subgoal values back into
the underlying state space (state-to-subgoal). Figure 2 visualizes these two spaces.

The state-to-subgoal models are rγ : S × Ḡ → R and Γ : S × Ḡ → [0, 1], where Ḡ = G ∪ {sterminal}
if there is a terminal state (episodic problems) and otherwise Ḡ = G. An option policy πg : S ×A →
[0, 1] for subgoal g starts from any s in the initiation set, and terminates in g—in s̃ wherem(s̃, g) = 1.
The reward-model rγ(s, g) is the discounted rewards under option policy πg:

rγ(s, g) = Eπg [Rt+1 + γg(St+1)rγ(St+1, g)|St = s]

where the discount is zero upon reaching subgoal g

γg(St+1)
def
=

{
0 if m(St+1, g) = 1, namely if subgoal g is achieved by being in St+1

γt+1 else

The discount-model Γ(s, g) reflects the discounted number of steps until reaching subgoal g starting
from s, in expectation under option policy πg

Γ(s, g) = Eπg [m(St+1, g)γt+1 + γg(St+1)Γ(St+1, g)|St = s].

These state-to-subgoal will only be queried for (s, g) where d(s, g) > 0: they are local models.

To define subgoal-to-subgoal models,1 r̃γ : G × Ḡ → R and Γ̃ : G × Ḡ → [0, 1], we use the
state-to-subgoal models. For each subgoal g ∈ G, we aggregate rγ(s, g′) for all s where m(s, g) = 1.

r̃γ(g, g′)
def
= 1

z(g)

∑
s:m(s,g)=1 rγ(s, g′) and Γ̃(g, g′)

def
= 1

z(g)

∑
s:m(s,g)=1 Γ(s, g′) (1)

for normalizer z(g)
def
=
∑
s:m(s,g)=1m(s, g). This definition assumes a uniform weighting over the

states s where m(s, g) = 1. We could allow a non-uniform weighting, potentially based on visitation
frequency in the environment. For this work, however, we assume that m(s, g) = 1 for a smaller
number of states s with relatively similar rγ(s, g′), making a uniform weighting reasonable.

These models are also local models, as we can similarly extract d̃(g, g′) from d(s, g′) and only reason
about g′ nearby or relevant to g. We set d̃(g, g′) = maxs∈S:m(s,g)>0 d(s, g′), indicating that if there
is a state s that is in the initiation set for g′ and has membership in g, then g′ is also relevant to g.

A

B

X
Y

g

g’
r̃�(g, g0)

<latexit sha1_base64="RT8Gm6hEaZhFO30hfO8Vtyd1VtI=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbCIFaQkUtFl0Y3LCvYBTQiTySQdOjMJMxOhxC78FTcuFHHrb7jzb5y2WWjrgQuHc+7l3nuClBKpbPvbKC0tr6yuldcrG5tb2zvm7l5HJplAuI0SmoheACWmhOO2IoriXiowZAHF3WB4M/G7D1hIkvB7NUqxx2DMSUQQVFryzQNXERriXIx9N4aMwVp8Fp+c+mbVrttTWIvEKUgVFGj55pcbJihjmCtEoZR9x06Vl0OhCKJ4XHEziVOIhjDGfU05ZFh6+fT+sXWsldCKEqGLK2uq/p7IIZNyxALdyaAayHlvIv7n9TMVXXk54WmmMEezRVFGLZVYkzCskAiMFB1pApEg+lYLDaCASOnIKjoEZ/7lRdI5rzuN+sVdo9q8LuIog0NwBGrAAZegCW5BC7QBAo/gGbyCN+PJeDHejY9Za8koZvbBHxifPz4BlZc=</latexit>

�̃(g, g0)

<latexit sha1_base64="DS/p4QEGq7EDkE2JCczhXPEznMA=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxiBSmJVHRZdKHLCvYBTSiTyaQdOjMJMxOhhuKvuHGhiFv/w51/47TNQqsHLhzOuZd77wkSRpV2nC+rsLC4tLxSXC2trW9sbtnbOy0VpxKTJo5ZLDsBUoRRQZqaakY6iSSIB4y0g+HVxG/fE6loLO70KCE+R31BI4qRNlLP3vM0ZSHJvGvEORpX+if9o+OeXXaqzhTwL3FzUgY5Gj370wtjnHIiNGZIqa7rJNrPkNQUMzIueakiCcJD1CddQwXiRPnZ9PoxPDRKCKNYmhIaTtWfExniSo14YDo50gM1703E/7xuqqMLP6MiSTUReLYoShnUMZxEAUMqCdZsZAjCkppbIR4gibA2gZVMCO78y39J67Tq1qpnt7Vy/TKPowj2wQGoABecgzq4AQ3QBBg8gCfwAl6tR+vZerPeZ60FK5/ZBb9gfXwDc12Ukg==</latexit>

⇡g0

<latexit sha1_base64="WOgL0k4BRYnHD1UJS6YMAVo4UC0=">AAAB73icdVDJSgNBEK2JW4xb1KOXxiB6GmYmGRNvQS8eI5gFkiH0dHqSJj2L3T1CGPITXjwo4tXf8ebf2FkEFX1Q8Hiviqp6fsKZVJb1YeRWVtfWN/Kbha3tnd294v5BS8apILRJYh6Ljo8l5SyiTcUUp51EUBz6nLb98dXMb99TIVkc3apJQr0QDyMWMIKVljq9hPWz4em0XyxZpl1xbdtFlnledh2npknZKl9UHWSb1hwlWKLRL773BjFJQxopwrGUXdtKlJdhoRjhdFropZImmIzxkHY1jXBIpZfN752iE60MUBALXZFCc/X7RIZDKSehrztDrEbytzcT//K6qQpqXsaiJFU0IotFQcqRitHseTRgghLFJ5pgIpi+FZERFpgoHVFBh/D1KfqftBwdlOneVEr1y2UceTiCYzgDG6pQh2toQBMIcHiAJ3g27oxH48V4XbTmjOXMIfyA8fYJVNSQLw==</latexit>

Original MDP Subgoal abstraction

m(Y, g0) = 1

<latexit sha1_base64="SCTbVkQ5X+egz7ODMuETUuoO5o8=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0WsICEJqY0LoejGZQX7kDSUyXTaDp1kwsxEKKGf4caFIm79Gnf+jdOHoKIHLhzOuZd77wkTRqWyrA8jt7S8srqWXy9sbG5t7xR395qSpwKTBuaMi3aIJGE0Jg1FFSPtRBAUhYy0wtHV1G/dEyEpj2/VOCFBhAYx7VOMlJb8qHx3Ojg+gRfQ7hZLlmmfec55FVpmxfasqqeJ57iu7UDbtGYogQXq3eJ7p8dxGpFYYYak9G0rUUGGhKKYkUmhk0qSIDxCA+JrGqOIyCCbnTyBR1rpwT4XumIFZ+r3iQxFUo6jUHdGSA3lb28q/uX5qep7QUbjJFUkxvNF/ZRBxeH0f9ijgmDFxpogLKi+FeIhEggrnVJBh/D1KfyfNB3Tds3KjVuqXS7iyIMDcAjKwAZVUAPXoA4aAAMOHsATeDaU8Wi8GK/z1pyxmNkHP2C8fQLz6o/C</latexit>

m(X, g0) = 1

<latexit sha1_base64="tP2bBht0XS1PpZNC+0NSZZYY6QE=">AAAB8nicdVDLSsNAFJ34rPVVdelmsIgVJGRCauNCKLpxWcE+IA1lMp20QycPZiZCCf0MNy4UcevXuPNvnD4EFT1w4XDOvdx7T5ByJpVlfRhLyyura+uFjeLm1vbObmlvvyWTTBDaJAlPRCfAknIW06ZiitNOKiiOAk7bweh66rfvqZAsie/UOKV+hAcxCxnBSkteVOmcDU5O4SVEvVLZMtG5a1/UoGVWkWvVXE1c23GQDZFpzVAGCzR6pfduPyFZRGNFOJbSQ1aq/BwLxQink2I3kzTFZIQH1NM0xhGVfj47eQKPtdKHYSJ0xQrO1O8TOY6kHEeB7oywGsrf3lT8y/MyFbp+zuI0UzQm80VhxqFK4PR/2GeCEsXHmmAimL4VkiEWmCidUlGH8PUp/J+0bBM5ZvXWKdevFnEUwCE4AhWAQA3UwQ1ogCYgIAEP4Ak8G8p4NF6M13nrkrGYOQA/YLx9AvJej8E=</latexit>

Figure 2: Original and Abstract Space.

Let us consider an example, in Figure 2. The red states
are members of g (m(A, g) = 1) and the blue members
of g′ (m(X, g′) = 1,m(Y, g′) = 1). For all s in the
diagram, d(s, g′) > 0 (all are in the initiation set): the
policy πg′ can be queried from any s to get to g′. The
green path in the left indicates the trajectory under πg′
from A, stochastically reaching either X or Y , with
accumulated reward rγ(A, g′) and discount Γ(A, g′)
(averaged over reaching X and Y). The subgoal-to-

subgoal models, on the right, indicate g′ can be reached from g, with r̃γ(g, g′) averaged over both
rγ(A, g′) and rγ(B, g′) and Γ̃(g, g′) over Γ(A, g′) and Γ(B, g′), described in Equation (1).

1The first input is any g ∈ G, the second is g′ ∈ Ḡ, which includes sterminal. We need to reason about reaching
any subgoal or sterminal. But sterminal is not a real state: we do not reason about starting from it to reach subgoals.

4

Under review as a conference paper at ICLR 2023

3.3 GOAL-SPACE PLANNING WITH SUBGOAL-CONDITIONED MODELS

We can now consider how to plan with these models. Planning involves learning ṽ(g): the value for
different subgoals. This can be achieved using an update similar to value iteration, for all g ∈ G

ṽ(g) = maxg′∈Ḡ:d̃(g,g′)>0 r̃γ(g, g′) + Γ̃(g, g′)ṽ(g′) (Background Planning) (2)

The value of reaching g′ from g is the discounted rewards along the way, r̃γ(g, g′), plus the discounted
value in g′. If Γ̃(g, g′) is very small, it is difficult to reach g′ from g—or takes many steps—and so
the value in g′ is discounted by more. With a relatively small number of subgoals, we can sweep
through them all to quickly compute ṽ(g). With a larger set of subgoals, we can instead do as many
updates possible, in the background on each step, by stochastically sampling g.

We can interpret this update as a standard value iteration update in a new MDP, where 1) the set
of states is G, 2) the actions from g ∈ G are state-dependent, corresponding to choosing which
g′ ∈ Ḡ to go to in the set where d̃(g, g′) > 0 and 3) the rewards are r̃γ and the discounted transition
probabilities are Γ̃. Under this correspondence, it is straightforward to show that the above converges
to the optimal values in this new Goal-Space MDP, shown in Proposition 2 in Appendix B.

This goal-space planning approach does not suffer from typical issues with model-based RL. First,
the model is not iterated, but we still obtain temporal abstraction because the model itself incorporates
it. Second, we do not need to predict entire state vectors—or distributions over them—because we
instead input the outcome g′ into the function approximator. This may feel like a false success as
it potentially requires restricting ourselves to a smaller number of subgoals. If we want to use a
larger number of subgoals, then we may need a function to generate these subgoal vectors anyway—
bringing us back to the problem of generating vectors. However, this is likely easier as 1) the subgoals
themselves can be much smaller and more abstract, making it more feasibly to procedurally generate
them and 2) it may be more feasible maintain a large set of subgoal vectors, or generate individual
subgoal vectors, than producing relevant subgoal vectors from a given subgoal.

Now let us examine how to use ṽ(g) to update our main policy. The simplest way to decide how to
behave from a state is to cycle through the subgoals, and pick the one with the highest value.

vsub(s)
def
= maxg∈Ḡ:d(s,g)>0 rγ(s, g) + Γ(s, g)ṽ(g) (Projection Step) (3)

and take action a that corresponds to the action given by πg for this maximizing g. However, this
approach has two issues. First restricting to going through subgoals might result in suboptimal
policies. From a given state s, the set of relevant subgoals g may not be on the optimal path. Second,
the learned models themselves may have inaccuracies, or planning may not have been completed in
the background, resulting in ṽ(g) that are not yet fully accurate.

We instead propose to use vsub(s) within the bootstrap target for the action-values for the main policy.
For a given transition (St, At, Rt+1, St+1), either as the most recent experience or from a replay
buffer, the proposed subgoal-value bootstrapping update to parameterized q(St, At;w) uses TD error

δ
def
= Rt+1 + γt+1

(
(1− β) maxa′q(St+1, a

′;w)︸ ︷︷ ︸
Standard bootstrap target

+β vsub(St+1)︸ ︷︷ ︸
Subgoal value

)
− q(St, At;w) (4)

max

<latexit sha1_base64="rhZcRL7XZrigmGUL29uqSEmmsiU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48VTFtoQ9lsN+3S3U3Y3Ygl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3OZ+55EqzWL5YKYJDQQeSRYxgk0u9QV+GlRrbt2dA60SryA1KNAaVL/6w5ikgkpDONa657mJCTKsDCOczir9VNMEkwke0Z6lEguqg2x+6wydWWWIoljZkgbN1d8TGRZaT0VoOwU2Y73s5eJ/Xi810XWQMZmkhkqyWBSlHJkY5Y+jIVOUGD61BBPF7K2IjLHCxNh4KjYEb/nlVdK+qHuN+uV9o9a8KeIowwmcwjl4cAVNuIMW+EBgDM/wCm+OcF6cd+dj0Vpyiplj+APn8wcdp45M</latexit>

r�(S0, gj) + �(S0, gj)ṽ(gj)

<latexit sha1_base64="4zdDmzB5pHR0BwHGEYBhBbmM4rc=">AAACGHicbVC7TsMwFHXKq5RXgJHFokIUgUqCimCsYICxCPqQmipyXCc1tZPIdipVUT+DhV9hYQAh1m78De5jKC1HutLxOffK9x4vZlQqy/oxMkvLK6tr2fXcxubW9o65u1eTUSIwqeKIRaLhIUkYDUlVUcVIIxYEcY+Rute9Hfn1HhGSRuGT6sekxVEQUp9ipLTkmufCdQLEOSo8Hp8F7vMJPIXO3azgKMraJO0NCqOXa+atojUGXCT2lOTBFBXXHDrtCCechAozJGXTtmLVSpFQFDMyyDmJJDHCXRSQpqYh4kS20vFhA3iklTb0I6ErVHCszk6kiEvZ557u5Eh15Lw3Ev/zmonyr1spDeNEkRBPPvITBlUERynBNhUEK9bXBGFB9a4Qd5BAWOksczoEe/7kRVK7KNql4uVDKV++mcaRBQfgEBSADa5AGdyDCqgCDF7AG/gAn8ar8W58Gd+T1owxndkHf2AMfwE8/p4O</latexit>

r�(S0, gi) + �(S0, gi)ṽ(gi)

<latexit sha1_base64="aFrOQHxx2EgLpiC7I2ZQcQ9cwa8=">AAACGHicbVDLSsNAFJ34rPUVdelmsIgVpSZS0WXRhS4r2gc0IUym03boTBJmJoUS+hlu/BU3LhRx251/46TNorYeuHDmnHuZe48fMSqVZf0YS8srq2vruY385tb2zq65t1+XYSwwqeGQhaLpI0kYDUhNUcVIMxIEcZ+Rht+/S/3GgAhJw+BZDSPictQNaIdipLTkmRfCc7qIc1R8OjnvevQUnkHnflZwFGVtkgxGxfTlmQWrZE0AF4mdkQLIUPXMsdMOccxJoDBDUrZsK1JugoSimJFR3okliRDuoy5paRogTqSbTA4bwWOttGEnFLoCBSfq7ESCuJRD7utOjlRPznup+J/XilXnxk1oEMWKBHj6USdmUIUwTQm2qSBYsaEmCAuqd4W4hwTCSmeZ1yHY8ycvkvplyS6Xrh7LhcptFkcOHIIjUAQ2uAYV8ACqoAYweAFv4AN8Gq/Gu/FlfE9bl4xs5gD8gTH+BThCngs=</latexit>

r�(S0, gk) + �(S0, gk)ṽ(gk)

<latexit sha1_base64="S2hNdSEkiDEIbxmwI3Jy9iyFGkg=">AAACGHicbVDLSgMxFM34rPVVdekmWMSKUmekosuiC11WtA/olCGTybShSWZIMoUy9DPc+CtuXCjitjv/xvSxqK0HLpyccy+59/gxo0rb9o+1tLyyurae2chubm3v7Ob29msqSiQmVRyxSDZ8pAijglQ11Yw0YkkQ9xmp+927kV/vEaloJJ51PyYtjtqChhQjbSQvdyE9t404R4Wnk/O21z2FZ9C9nxVcTVlA0t6gMHp5ubxdtMeAi8SZkjyYouLlhm4Q4YQToTFDSjUdO9atFElNMSODrJsoEiPcRW3SNFQgTlQrHR82gMdGCWAYSVNCw7E6O5EirlSf+6aTI91R895I/M9rJjq8aaVUxIkmAk8+ChMGdQRHKcGASoI16xuCsKRmV4g7SCKsTZZZE4Izf/IiqV0WnVLx6rGUL99O48iAQ3AECsAB16AMHkAFVAEGL+ANfIBP69V6t76s70nrkjWdOQB/YA1/AUG6nhE=</latexit>

gi

<latexit sha1_base64="42XO07Z7Y748l6NPq70vC9ghOto=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmZCFr0FvXiMaBZIhtDT6Zk06ekZunuEMOQTvHhQxKtf5M2/sbMIrg8KHu9VUVXPTzhT2nHerdzK6tr6Rn6zsLW9s7tX3D9oqziVhLZIzGPZ9bGinAna0kxz2k0kxZHPaccfX878zh2VisXiVk8S6kU4FCxgBGsj3YQDNiiWHPu8XnZrNfSbuLYzRwmWaA6Kb/1hTNKICk04VqrnOon2Miw1I5xOC/1U0QSTMQ5pz1CBI6q8bH7qFJ0YZYiCWJoSGs3VrxMZjpSaRL7pjLAeqZ/eTPzL66U6OPMyJpJUU0EWi4KUIx2j2d9oyCQlmk8MwUQycysiIywx0Sadggnh81P0P2mXbbdiV68rpcbFMo48HMExnIILdWjAFTShBQRCuIdHeLK49WA9Wy+L1py1nDmEb7BePwDP944s</latexit>

gk

<latexit sha1_base64="5ONEzQz+z1XQF3JdEKtsvey7PyU=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiS2mnZXdOOyon1AG8pkOkmHTh7MTIQS+gluXCji1i9y5984TSuo6IELh3Pu5d57vIQzqSzrwyisrK6tbxQ3S1vbO7t75f2DjoxTQWibxDwWPQ9LyllE24opTnuJoDj0OO16k6u5372nQrI4ulPThLohDiLmM4KVlm6D4WRYrlhmw6k1qjbSpO5YVScnF07DRrZp5ajAEq1h+X0wikka0kgRjqXs21ai3AwLxQins9IglTTBZIID2tc0wiGVbpafOkMnWhkhPxa6IoVy9ftEhkMpp6GnO0OsxvK3Nxf/8vqp8utuxqIkVTQii0V+ypGK0fxvNGKCEsWnmmAimL4VkTEWmCidTkmH8PUp+p90zky7Zp7f1CrNy2UcRTiCYzgFGxxowjW0oA0EAniAJ3g2uPFovBivi9aCsZw5hB8w3j4B5yCOPA==</latexit>

S0

<latexit sha1_base64="pajwFsJh5sgT/00nh3jwcoxsoso=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjF6IrsGo0eiF4/44JEAIbPDLEyYnd3M9JqQDX/gxYPGePWPvPk3DrAHBSvppFLVne4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa65VPDpVC8jgIlb8Wa09CXvOmPbqZ+84lrIyL1iOOYd0M6UCIQjKKV7h9Oe8WSW3ZnIMvEy0gJMtR6xa9OP2JJyBUySY1pe26M3ZRqFEzySaGTGB5TNqID3rZU0ZCbbjq7dEJOrNInQaRtKSQz9fdESkNjxqFvO0OKQ7PoTcX/vHaCwVU3FSpOkCs2XxQkkmBEpm+TvtCcoRxbQpkW9lbChlRThjacgg3BW3x5mTTOy16lfHFXKVWvszjycATHcAYeXEIVbqEGdWAQwDO8wpszcl6cd+dj3ppzsplD+APn8wcRH40Q</latexit>

S

<latexit sha1_base64="ubwbK8cGZkWbMLWFFThCwgBxy5s=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALC9jN8=</latexit>

gj

<latexit sha1_base64="/tG7F9mO1gBoiYzD/oTAg+6AFIE=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0hsNe2t6MVjRVsLbSib7SZdu/lgdyOU0J/gxYMiXv1F3vw3btMKKvpg4PHeDDPzvIQzqSzrwygsLa+srhXXSxubW9s75d29joxTQWibxDwWXQ9LyllE24opTruJoDj0OL31xhcz//aeCsni6EZNEuqGOIiYzwhWWroOBneDcsUyG06tUbWRJnXHqjo5OXMaNrJNK0cFFmgNyu/9YUzSkEaKcCxlz7YS5WZYKEY4nZb6qaQJJmMc0J6mEQ6pdLP81Ck60soQ+bHQFSmUq98nMhxKOQk93RliNZK/vZn4l9dLlV93MxYlqaIRmS/yU45UjGZ/oyETlCg+0QQTwfStiIywwETpdEo6hK9P0f+kc2LaNfP0qlZpni/iKMIBHMIx2OBAEy6hBW0gEMADPMGzwY1H48V4nbcWjMXMPvyA8fYJ5ZyOOw==</latexit>

Figure 3: Computing vsub(S′)
to update the policy at S.

for some β ∈ [0, 1]. For β = 0, we get a standard Q-learning update.
For β = 1, we fully bootstrap off the value provided by vsub(St+1).
This may result in suboptimal values q(St, At;w), but should learn
faster because a reasonable estimate of value has been propagated
back quickly using goal-space planning. On the other hand, β = 0
is not biased by a potentially suboptimal ṽ(g), but does not take
advantage of this fast propagation. An interim β can allow for fast
propagation, but also help overcome suboptimality in the values.

We can show that the above update improves the convergence rate.
This result is intuitive: subgoal-value bootstrapping changes the

discount rate to γt+1(1 − β). In the extreme case of β = 1, we are moving our estimate towards
Rt+1 +γt+1vsub(St+1) for vsub not based on q without any bootstrapping: it is effectively a regression
problem. We prove this intuitive result in Proposition 3 in Appendix B. One other benefit of this
approach is that the initiation sets need not cover the whole space: we can have a state d(s, g) = 0
for all g. If this occurs, we simply do not use vsub and bootstrap as usual.

5

Under review as a conference paper at ICLR 2023

3.4 PUTTING IT ALL TOGETHER: THE FULL GOAL-SPACE PLANNING ALGORITHM

Policy

updateQ
via Eq 5

sample
action

Model

plan
via Eq 3

project
via Eq 4

Environment

�, r, �̃, r̃

<latexit sha1_base64="I1xhHI+Li9cYkRVsgWrw5SViKkQ=">AAACDHicbVDLSgMxFM3UV62vqks3wSK4KGVGKrosutBlBfuAzlDuZDJtaDIzJBmhDP0AN/6KGxeKuPUD3Pk3pu0stPVA4OScc0nu8RPOlLbtb6uwsrq2vlHcLG1t7+zulfcP2ipOJaEtEvNYdn1QlLOItjTTnHYTSUH4nHb80fXU7zxQqVgc3etxQj0Bg4iFjIA2Ur9ccW9ACKhiWcWuZjyg2VyZVPOrnJiUXbNnwMvEyUkF5Wj2y19uEJNU0EgTDkr1HDvRXgZSM8LppOSmiiZARjCgPUMjEFR52WyZCT4xSoDDWJoTaTxTf09kIJQaC98kBeihWvSm4n9eL9XhpZexKEk1jcj8oTDlWMd42gwOmKRE87EhQCQzf8VkCBKINv2VTAnO4srLpH1Wc+q187t6pXGV11FER+gYnSIHXaAGukVN1EIEPaJn9IrerCfrxXq3PubRgpXPHKI/sD5/AAbDmwM=</latexit>

S0

<latexit sha1_base64="pajwFsJh5sgT/00nh3jwcoxsoso=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjF6IrsGo0eiF4/44JEAIbPDLEyYnd3M9JqQDX/gxYPGePWPvPk3DrAHBSvppFLVne4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa65VPDpVC8jgIlb8Wa09CXvOmPbqZ+84lrIyL1iOOYd0M6UCIQjKKV7h9Oe8WSW3ZnIMvEy0gJMtR6xa9OP2JJyBUySY1pe26M3ZRqFEzySaGTGB5TNqID3rZU0ZCbbjq7dEJOrNInQaRtKSQz9fdESkNjxqFvO0OKQ7PoTcX/vHaCwVU3FSpOkCs2XxQkkmBEpm+TvtCcoRxbQpkW9lbChlRThjacgg3BW3x5mTTOy16lfHFXKVWvszjycATHcAYeXEIVbqEGdWAQwDO8wpszcl6cd+dj3ppzsplD+APn8wcRH40Q</latexit>

{
S
,A

,S
0,�

,R}

<latexit sha1_base64="eDmMXgrLjU15wtAg0RudcqupQ70=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCMERVgopgLLAwFkofUhNVjuu0Vu0ksh2kKsrCr7AwgBArn8HG3+C2GaDlSFc6Oude3XuPHzMqlW1/G4Wl5ZXVteJ6aWNza3vH3N1rySgRmDRxxCLR8ZEkjIakqahipBMLgrjPSNsf3Uz89iMRkkbhgxrHxONoENKAYqS01DMP3LRhwSsLNk4s6A4Q58iC927WM8t2xZ4CLhInJ2WQo94zv9x+hBNOQoUZkrLr2LHyUiQUxYxkJTeRJEZ4hAakq2mIOJFeOn0gg8da6cMgErpCBafq74kUcSnH3NedHKmhnPcm4n9eN1HBpZfSME4UCfFsUZAwqCI4SQP2qSBYsbEmCAuqb4V4iATCSmdW0iE48y8vktZZxalWzu+q5dp1HkcRHIIjcAoccAFq4BbUQRNgkIFn8ArejCfjxXg3PmatBSOf2Qd/YHz+ACd0lDg=</latexit>

A

<latexit sha1_base64="VLG3tZCiZVGlgrCQDyStd2yHkFI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo+oF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftMrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1dssjjycwCmcgwdXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AJV1jM0=</latexit>

update ṽ(g)

<latexit sha1_base64="luzoge/Y2lwP6G6qni/H4AOf3GI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BItQLyWRih6LXjxWsB/QhLLZTtqlm03Y3RRK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzgoQzpR3n2ypsbG5t7xR3S3v7B4dH5eOTtopTSbFFYx7LbkAUciawpZnm2E0kkijg2AnG93O/M0GpWCye9DRBPyJDwUJGiTaS52nGB5hNZtXhZb9ccWrOAvY6cXNSgRzNfvnLG8Q0jVBoyolSPddJtJ8RqRnlOCt5qcKE0DEZYs9QQSJUfra4eWZfGGVgh7E0JbS9UH9PZCRSahoFpjMieqRWvbn4n9dLdXjrZ0wkqUZBl4vClNs6tucB2AMmkWo+NYRQycytNh0RSag2MZVMCO7qy+ukfVVz67Xrx3qlcZfHUYQzOIcquHADDXiAJrSAQgLP8ApvVmq9WO/Wx7K1YOUzp/AH1ucP1QeRjg==</latexit>

�, r

<latexit sha1_base64="zptaDiVhOH4+/Cy6z/nCRUIE1WU=">AAAB73icbVDLSgNBEOyNrxhfUY9eFoPgQcKuRPQY9KDHCOYByRJ6J5NkyMzsOjMrhCU/4cWDIl79HW/+jZNkD5pY0FBUddPdFcacaeN5305uZXVtfSO/Wdja3tndK+4fNHSUKELrJOKRaoWoKWeS1g0znLZiRVGEnDbD0c3Ubz5RpVkkH8w4poHAgWR9RtBYqdW5RSHwTHWLJa/szeAuEz8jJchQ6xa/Or2IJIJKQzhq3fa92AQpKsMIp5NCJ9E0RjLCAW1bKlFQHaSzeyfuiVV6bj9StqRxZ+rviRSF1mMR2k6BZqgXvan4n9dOTP8qSJmME0MlmS/qJ9w1kTt93u0xRYnhY0uQKGZvdckQFRJjIyrYEPzFl5dJ47zsV8oX95VS9TqLIw9HcAyn4MMlVOEOalAHAhye4RXenEfnxXl3PuatOSebOYQ/cD5/AJaSj68=</latexit>

vsub(S0)

<latexit sha1_base64="RBvFuF+qq4whJ89/zO98ZsL6BDM=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRaxbkoiFV0W3bisaB/QhjCZTtqhk0mYuSnWEPwVNy4Ucet/uPNvnD4W2nrgwuGce7n3Hj/mTIFtfxu5peWV1bX8emFjc2t7x9zda6gokYTWScQj2fKxopwJWgcGnLZiSXHoc9r0B9djvzmkUrFI3MMopm6Ie4IFjGDQkmcepMPMSztAHyBViZ9lpbuTU88s2mV7AmuRODNSRDPUPPOr041IElIBhGOl2o4dg5tiCYxwmhU6iaIxJgPco21NBQ6pctPJ9Zl1rJWuFURSlwBrov6eSHGo1Cj0dWeIoa/mvbH4n9dOILh0UybiBKgg00VBwi2IrHEUVpdJSoCPNMFEMn2rRfpYYgI6sIIOwZl/eZE0zspOpXx+WylWr2Zx5NEhOkIl5KALVEU3qIbqiKBH9Ixe0ZvxZLwY78bHtDVnzGb20R8Ynz/J+5Vu</latexit>

Figure 4: Goal-Space Planning.

The remaining piece is to learn the models and put it all to-
gether. Learning the models is straightforward, as we can
leverage the large literature on general value functions (Sut-
ton et al., 2011) and UVFAs (Schaul et al., 2015). There are
nuances involved in 1) restricting updating to relevant states
according to d(s, g), 2) learning option policies that reach
subgoals, but also maximize rewards along the way and 3) con-
sidering ways to jointly learn d and Γ. For space we include
these details in Appendix C.

The algorithm is visualized in Figure 4 (pseudocode in appx.
C.3). The steps of agent-environment interaction include:
1) take action At in state St, to get St+1, Rt+1 and γt+1;
2) query the model for rγ(St+1, g),Γ(St+1, g), ṽ(g) for all g

where d(St+1, g) > 0;
3) compute projection vsub(St+1) using Eq. (3) and step 2;
4) update the main policy with the transition and vsub(St+1),

using Eq. (4).
All background computation is used for model learning using a replay buffer and for planning to
obtain ṽ, so that they can be queried at any time on step 2.

4 EXPERIMENTS WITH GOAL-SPACE PLANNING

We investigate the utility of GSP, for 1) improving sample efficiency and 2) re-learning under non-
stationarity. We compare to Double DQN (DDQN) (Van Hasselt et al., 2016), which uses replay
and target networks. We layer GSP on top of this agent: the action-value update is modified to
incorporate subgoal-value bootstrapping. By selecting β = 0, we perfectly recover DDQN, allowing
us to test different β values to investigate the impact of incorporating subgoal values computed using
background planning.

4.1 EXPERIMENT SPECIFICATION

We test the agents in the PinBall environment (Konidaris & Barto, 2009), which allows for a variety
of easy and harder instances to test different aspects. The agent has to navigate a small ball to a
destination in a maze-like environment with fully elastic and irregularly shaped obstacles. The state
is described by 4 features: x ∈ [0, 1], y ∈ [0, 1], ẋ ∈ [−1, 1], ẏ ∈ [−1, 1]. The agent has 5 discrete
actions: increase/decrease ẋ, increase/decrease ẏ, and nothing. The agent receives a reward of -5 per
step and a reward of 10,000 upon termination at the goal location. PinBall has a continuous state
space with complex and sharp dynamics that make learning and control difficult. We used a harder
version of PinBall in our first experiment, shown in Figure 5, and simpler one for the non-stationary
experiment, shown in Figure 9, to allow DDQN a better chance to adapt under non-stationarity.

The hyperparameters are chosen based on sweeping for DDQN performance. We then fixed these
hyperparameters, and used them for GSP. This approach helps ensure they have similar settings, with
the primary difference due to incorporating subgoal-value bootstrapping. We used neural networks
with ReLU activations and ε = 0.1; details about hyperparameters are in Appendix F.

The set of subgoals for GSP are chosen to cover the environment in terms of (x, y) locations. For each
subgoal g with location (xg, yg), we set m(s, g) = 1 for s = (x, y, ẋ, ẏ) if the Euclidean distance
between (x, y) and (xg, yg) is below 0.035. Using a region, rather than requiring (x, y) = (xg, yg),
is necessary for a continuous state space. The agent’s velocity is not taken into account for subgoal
termination. The width of the region for the initiation function is 0.4. More details about the layout
of the environment, positions of these subgoals and initiation functions are shown in Figure 5.

6

Under review as a conference paper at ICLR 2023

0 500 1000 1500 2000 2500

0

10

20

30

40

50
GSP (β = 0.1)

Steps (x100)

DDQN

Approximate LAVI

Reward

Rate

Averaged

over

30 Runs

Figure 5: (left) The harder PinBall environment used in our first experiment. The dark gray shapes
are obstacles the ball bounces off of, the small blue circle the starting position of the ball (with
no velocity), and the red dot the goal (termination). Solid circles indicate the location and radius
of the subgoals (m), with wider initiation set visualized for two subgoals (pink and teal). (right)
Performance in this environment for GSP with β = 0.1, DDQN, and approximate LAVI, with the
standard error shown. Even just increasing to β = 0.1 allows GSP to leverage the longer-horizon
estimates given by the subgoal values, making it learn much faster than DDQN. Approximate LAVI
is able to learn quickly, but levels off at a suboptiomal performance, as expected.

4.2 EXPERIMENT 1: INVESTIGATING GSP WITH PRE-TRAINED MODELS

We first investigate the utility of the models after they have been learned in a pre-training phase.
The models use the same updates as they would when being learned online, and are not perfectly
accurate. Pre-training the model allows us to ask: if the GSP agent had previously learned a model in
the environment—or had offline data to train its model—can it leverage it to learn faster now? One of
the primary goals of model-based RL is precisely this re-use, and so it is natural to start in a setting
mimicking this use-case. We assume the GSP agent can do many steps of background planning,
so that ṽ is effectively computed in early learning; this is reasonable as we only need to do value
iteration for 9 subgoals, which is fast. We compare GSP with β = 0.1 against two baselines: DDQN
and approximate LAVI. DDQN is the model-free baseline which GSP builds on top of, and can also
be viewed as a version of Dyna when the replay buffer is viewed as a non-parametric model in the
PinBall environment (van Hasselt et al., 2019; Pan et al., 2018), with planning updates sampled based
on the agent’s prior state-action visitation distribution. Approximate LAVI is a modified version of
LAVI (Mann et al., 2015) that uses learned subgoal models, and is a version of GSP that fully relies
on subgoal values when performing its updates with β = 0. We selected β = 0.1 as it provided the
best tradeoff of the beta values but we find that β as small as 1e−3 was able to outperform DDQN.
The performance of GSP with different β can be found in Appendix I.

We see in Figure 5 that GSP learns much faster than DDQN, and reaches the same level of performance.
This is the result we should expect—GSP gets to leverage a pre-trained model, after all—but it is
an important sanity check that using models in this new way is effective. Of particular note is that
even just increasing β from 0 (which is DDQN) to β = 0.1 provides the learning speed boost without
resulting in suboptimal performance. Likely, in early learning, the suboptimal subgoal values provide
a coarse direction to follow, to more quickly update the action-values, which is then refined with
more learning. When the approximate subgoal models are fully relied upon on as with approximate
LAVI, we similarly get fast initial learning, but it plateaus at a more suboptimal point.

To further investigate the hypothesis that GSP more quickly changes its value function early in
learning, we visualize the value functions for both GSP and DDQN over time in Figure 6. After 2000
steps, they are not yet that different, because there are only four replay updates on each step and it
takes time to visit the state-space and update values by bootstrapping off of subgoal values. By step
6000, though, GSP already has some of the structure of the problem, whereas DDQN has simply
pushed down many of its values (darker blue).

To see whether GSP is feasible to apply to other problems, we also evaluated GSP in Lunar Lander
(Brockman et al., 2016), an environment where subgoal specification is not as obvious and environ-
ment dynamics cause the agent to frequently crash. We include those results in Appendix H, but note
that similar conclusions about comparisons between GSP and DDQN hold. We also compared GSP
to various Dyna-style planning algorithms, some of which also incorporates temporal abstraction, in
Appendix G and find that GSP is able to outperform these alternatives.

7

Under review as a conference paper at ICLR 2023

2000 6000 10000 22000 40000 100000

GSP

DDQN

Figure 6: (left) Visualizing the action-values for DDQN and GSP (β = 0.1) at various points in
training. (right) vsub obtained from using the learned subgoal-values in the projection step.

4.3 ACCURACY OF THE LEARNED MODELS

Figure 7: Learned state-to-
subgoal models. White indicates
d(s, g) = 0.

One potential benefit of GSP is that the models themselves may be
easier to learn, because we can leverage standard value function
learning algorithms. We visualize the models learned for the
previous experiment, as well as the resulting vsub, with details
about model learning in Appendix E.

In Figure 7 we see how learned state-to-subgoal models accurately
learn the structure. Each plot shows the learned state-to-subgoal
for one subgoal, visualized only for the initiation set d(s, g) > 0.
We can see larger discount and reward values predicted based on
reachability. However, the models are not perfect. We measured
model error and find it is reasonable but not very near zero (see
Appendix E). This result is actually encouraging: inaccuracies in
the model do not prevent useful planning.

It is informative to visualize vsub. We can see in Figure 6 that the general structure is correct, matching
the optimal path, but that it indeed looks suboptimal compared to the final values computed in Figure
6 by DDQN. This inaccuracy is likely due both to some inaccuracy in the models, as well as the fact
that subgoal placement is not optimal. This explains why GSP has lower values particularly in states
near the bottom, likely skewed downwards by vsub.

0 500 1000 1500 2000 2500
0

40

80

120

160 100k

75k

50k

Steps (x100)

Reward

Rate

Averaged

over

30 Runs

Figure 8: The impact on planning perfor-
mance using frozen models with differing
accuracy (shading shows standard error).

Finally, we test the impact on learning using less accurate
models. After all, the agent will want to start using its
model as soon as possible, rather than waiting for it to
become more accurate. We ran GSP using models learned
online, using only 50k, 75k and 100k time steps to learn
the models. We then froze the models and allowed GSP
to learn with them. We can see in Figure 8 that learning
with too inaccurate of a model—with 50k—fails, but
already with 75k performance improves considerably and
with 100k we are already nearly at the same level of
optimal performance as the pre-trained models. This
result highlights it should be feasible to learn and use
these models in GSP, all online.

4.4 EXPERIMENT 2: ADAPTING IN NONSTATIONARY PINBALL

Now we consider another typical use-case for model-based RL: quickly adapting to changes in the
environment. We let the agent learn in PinBall for 50k steps, and then switch the goal to a new
location for another 50k steps. Goal information is never given to the agent, so it has to visit the old
goal, realize it is no longer rewarding, and re-explore to find the new goal. This non-stationary setting
is harder for DDQN, so we use a simpler configuration for PinBall, shown in Figure 9.

We can leverage the idea of exploration bonuses, introduced in Dyna-Q+ (Sutton & Barto, 2018).
Exploration bonuses are proportional to the last time that state-action was visited. This encourages
the agent to revisit parts of the state-space that it has not seen recently, in case that part of the
world has changed. For us, this corresponds to including reward bonus rbonus in the planning and
projection steps: ṽ(g) = maxg′∈Ḡ:d̃(g,g′)>0r̃γ(g, g′) + Γ̃(g, g′)

(
ṽ(g′) + rbonus(g

′)
)

and vsub(s) =

8

Under review as a conference paper at ICLR 2023

A

B 0 200 400 600 800
0

50

100

150

200 GSP (β = 0.1)

DDQN

Steps (x100)

Reward

Rate

Figure 9: (left) The Non-stationary PinBall environment. For the first half of the experiment, the
agent terminates at goal A while for the second half, the agent terminates at goal B. (right) The
performance of GSP (β = 0.1) and DDQN in the environment. The mean of all 30 runs is shown as
the dashed line. The 25th and 75th percentile run for each algorithm are also highlighted. We see
that GSP with exploration bonus was able to adapt more quickly when the terminal goal switches
compared to the baseline DDQN algorithm where goal values are not used.

maxg∈Ḡ:d(s,g)>0rγ(s, g)+Γ(s, g)
(
ṽ(g) + rbonus(g)

)
. Because we have a small, finite set of subgoals,

it is straightforward to leverage this idea that was designed for the tabular setting. We use rbonus(g) =
1000 if the count for g is zero, and 0 otherwise. When the world changes, the agent recognizes that it
has changed, and resets all counts. Similarly, both agents (GSP and DDQN) clear their replay buffers.

The GSP agent can recognize the world has changed, but not how it has changed. It has to update
its models with experience. The state-to-subgoal models and subgoal-to-subgoal models local to
the previous terminal state location and the new one need to change, but the rest of the models are
actually already accurate. The agent can leverage this existing accuracy.

In Figure 9, we can see both GSP and DDQN drop in performance when the environment changes,
with GSP recovering much more quickly. It is always possible that an inaccurate model might actually
make re-learning slower, reinforcing incorrect values from the model. Here, though, updating these
local models is fast, allowing the subgoal values to also be updated quickly. Though not shown in the
plot, GSP without exploration bonuses performs poorly. Its model causes it to avoid visiting the new
goal region, so preventing the model from updating, because the value in that bottom corner is low.

5 CONCLUSION

In this paper we introduced a new planning framework, called Goal-Space Planning (GSP). GSP
provides a new approach to use background planning to improve action-value estimates, with
minimalist, local models and computationally efficient planning. We show in the PinBall environment
that these subgoal-conditioned models can be accurately learned using standard value estimation
algorithms and that GSP is robust to less accurate models (Section 4.3). We also find that GSP
can significantly improve the speed of learning over DDQN in both the PinBall environment and
outperforms several Dyna variants, including Dyna with options (Appendix G), and that GSP relearns
more quickly under non-stationarity than DDQN (Section 4.4). Additionally, we compared GSP
to DDQN in another environment, called Lunar Lander (Appendix H), both to highlight that the
conclusions extend and to demonstrate that it is straightforward to apply GSP to other problems.

This work introduces a new formalism, and many new technical questions along with it. We have
only tested GSP with pre-trained models and assumed a given set of subgoals. Our initial experiments
learning the models online, from scratch, indicate that GSP can get similar learning speed boosts.
Using a recency buffer, however, accumulates transitions only along the optimal trajectory, sometimes
causing the models to become inaccurate part-way through learning. An important next step is to
incorporate smarter model learning strategies. The other critical open question is in subgoal discovery.
We somewhat randomly selected subgoals across the PinBall environment, with a successful outcome;
such an approach is unlikely to work in many environments. In general, option discovery and subgoal
discovery remain open questions. One utility of this work is that it could help narrow the scope of the
discovery question, to that of finding abstract subgoals that help the agent plan more efficiently.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Arthur Aubret, Laetitia matignon, and Salima Hassas. DisTop: Discovering a Topological representa-
tion to learn diverse and rewarding skills. arXiv:2106.03853 [cs], 2021.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-Based Reinforcement
Learning with Value-Targeted Regression. In International Conference on Machine Learning,
2020.

Andre Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel
Toyama, Jonathan hunt, Shibl Mourad, David Silver, and Doina Precup. The Option Keyboard:
Combining Skills in Reinforcement Learning. In Advances in Neural Information Processing
Systems, 2019.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement
learning with generalized policy updates. Proceedings of the National Academy of Sciences, 117
(48), 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Veronica Chelu, Doina Precup, and Hado P van Hasselt. Forethought and hindsight in credit
assignment. In Advances in Neural Information Processing Systems, 2020.

Rohit K. Dubey, Samuel S. Sohn, Jimmy Abualdenien, Tyler Thrash, Christoph Hoelscher, André
Borrmann, and Mubbasir Kapadia. SNAP:Successor Entropy based Incremental Subgoal Discovery
for Adaptive Navigation. In Motion, Interaction and Games, 2021.

Scott Emmons, Ajay Jain, Misha Laskin, Thanard Kurutach, Pieter Abbeel, and Deepak Pathak.
Sparse graphical memory for robust planning. In Advances in Neural Information Processing
Systems, 2020.

Amir-massoud Farahmand. Iterative Value-Aware Model Learning. In Advances in Neural Informa-
tion Processing Systems 31, 2018.

Amir-massoud Farahmand, Andre M S Barreto, and Daniel N Nikovski. Value-Aware Loss Function
for Model-based Reinforcement Learning. In International Conference on Artificial Intelligence
and Statistics, 2017.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. TreeQN and ATreeC:
Differentiable Tree-Structured Models for Deep Reinforcement Learning. In International Confer-
ence on Learning Representations, 2018.

Robert Gieselmann and Florian T. Pokorny. Planning-Augmented Hierarchical Reinforcement
Learning. IEEE Robotics and Automation Letters, 6(3), 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Successor
Feature Landmarks for Long-Horizon Goal-Conditioned Reinforcement Learning. In Advances in
Neural Information Processing Systems, 2021.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. In Advances in Neural Information Processing Systems, 2019.

Taher Jafferjee, Ehsan Imani, Erin Talvitie, Martha White, and Micheal Bowling. Hallucinating
Value: A Pitfall of Dyna-style Planning with Imperfect Environment Models. arXiv:2006.04363
[cs, stat], 2020.

Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, David Abel, and Doina Precup. What can I
do here? A Theory of Affordances in Reinforcement Learning. In International Conference on
Machine Learning, 2020.

10

Under review as a conference paper at ICLR 2023

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-Guided Subgoal Generation in Hierarchical
Reinforcement Learning. In Advances in Neural Information Processing Systems, 2021.

G.D. Konidaris and A.G. Barto. Skill discovery in continuous reinforcement learning domains using
skill chaining. In Advances in Neural Information Processing Systems, 2009.

Nathan Lambert, Kristofer Pister, and Roberto Calandra. Investigating Compounding Prediction
Errors in Learned Dynamics Models. arXiv:2203.09637 [cs], 2022.

Timothy A. Mann, Shie Mannor, and Doina Precup. Approximate Value Iteration with Temporally
Extended Actions. Journal of Artificial Intelligence Research, 53, 2015.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In International Conference on Machine Learning, 2001.

Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less time. Machine learning, 13(1), 1993.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with Goal-Conditioned
Policies. In Advances in Neural Information Processing Systems, 2019.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in Neural
Information Processing Systems, 2017.

Yangchen Pan, Muhammad Zaheer, Adam White, Andrew Patterson, and Martha White. Organizing
Experience: A Deeper Look at Replay Mechanisms for Sample-Based Planning in Continuous
State Domains. In International Joint Conference on Artificial Intelligence, 2018.

Yangchen Pan, Hengshuai Yao, Amir-Massoud Farahmand, and Martha White. Hill climbing on value
estimates for search-control in Dyna. In International Joint Conference on Artificial Intelligence,
2019.

Warren B. Powell. What you should know about approximate dynamic programming. Wiley
InterScience, 2009.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal Value Function Approxima-
tors. In International Conference on Machine Learning, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature, 588
(7839), 2020.

David Silver, Richard S Sutton, and Martin Müller. Sample-based learning and search with permanent
and transient memories. In International Conference on Machine Learning, 2008.

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degris. The Predictron:
End-To-End Learning and Planning. In International Conference on Machine Learning, 2017.

Satinder Singh, Andrew Barto, and Nuttapong Chentanez. Intrinsically Motivated Reinforcement
Learning. In Advances in Neural Information Processing Systems, 2004.

Martin Stolle and Doina Precup. Learning Options in Reinforcement Learning. In Abstraction,
Reformulation, and Approximation, 2002.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2), 1999.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In International Conference on Autonomous Agents and Multiagent
Systems, 2011.

11

Under review as a conference paper at ICLR 2023

Richard S Sutton, A R Mahmood, and Martha White. An emphatic approach to the problem of
off-policy temporal-difference learning. The Journal of Machine Learning Research, 2016.

Richard S. Sutton, Marlos C. Machado, G. Zacharias Holland, David Szepesvari, Finbarr Timbers,
Brian Tanner, and Adam White. Reward-Respecting Subtasks for Model-Based Reinforcement
Learning. arXiv:2202.03466 [cs], 2022.

R.S. Sutton. Integrated architectures for learning planning and reacting based on approximating
dynamic programming. In International Conference on Machine Learning, 1990.

Erik Talvitie. Model regularization for stable sample roll-outs. In Uncertainty in Artificial Intelligence,
2014.

Erik Talvitie. Self-Correcting Models for Model-Based Reinforcement Learning. In AAAI Conference
on Artificial Intelligence, 2017.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value Iteration Networks. In
Advances in Neural Information Processing Systems, 2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI conference on artificial intelligence, 2016.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? In Advances in Neural Information Processing Systems, 2019.

A Venkatraman, M Hebert, and J. Andrew Bagnell. Improving Multi-Step Prediction of Learned
Time Series Models. In AAAI Conference on Artificial Intelligence, 2015.

Yi Wan, Muhammad Zaheer, Adam White, Martha White, and Richard S. Sutton. Planning with
Expectation Models. In International Joint Conference on Artificial Intelligence, 2019.

Yi Wan, Abhishek Naik, and Richard S. Sutton. Average-Reward Learning and Planning with Options.
In Advances in Neural Information Processing Systems, 2021.

Theophane Weber, Sebastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter Battaglia, David Silver, and Daan Wierstra. Imagination-Augmented Agents
for Deep Reinforcement Learning. In Advances in Neural Information Processing Systems, 2017.

Martha White. Unifying task specification in reinforcement learning. In International Conference on
Machine Learning, 2017.

David Wingate, Kevin D Seppi, Cs Byu Edu, and Cs Byu Edu. Prioritization Methods for Accelerating
MDP Solvers. Journal of Machine Learning Research, 2005.

Lunjun Zhang, Ge Yang, and Bradly C. Stadie. World Model as a Graph: Learning Latent Landmarks
for Planning. In International Conference on Machine Learning, 2021.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. In Advances in Neural Information
Processing Systems, 2020.

12

Under review as a conference paper at ICLR 2023

A STARTING SIMPLER: GOAL-SPACE PLANNING FOR POLICY EVALUATION

To highlight the key idea for efficient planning, we provide an example of GSP in a simpler setting:
policy evaluation for learning vπ for a fixed deterministic policy π in a deterministic environment,
assuming access to the true models. The key idea is to propagate values quickly across the space by
updating between a subset of states that we call subgoals, g ∈ G ⊂ S, as visualized in Figure 10.
(Later we extend G 6⊂ S to abstract subgoal vectors that need not correspond to any state.) To do so,
we need temporally extended models between pairs g, g′ that may be further than one-transition apart.
For policy evaluation, these models are the accumulated rewards rπ,γ : S × S → R and discounted
probabilities Pπ,γ : S × S → [0, 1] under π:

rπ,γ(g, g′)
def
= Eπ[Rt+1 + γg′,t+1rπ,γ(St+1, g

′)|St = g]

Pπ,γ(g, g′)
def
= Eπ[1(St+1 = g′)γt+1 + γg′,t+1Pπ,γ(St+1, g

′)|St = g]

where γg′,t+1 = 0 if St+1 = g′ and otherwise equals γt+1, the environment discount. If we cannot
reach g′ from g under π, then Pπ,γ(g, g′) will simply accumulate many zeros and be zero. We can
treat G as our new state space and plan in this space, to get value estimates v for all g ∈ G

v(g) = rπ,γ(g, g′) + Pπ,γ(g, g′)v(g′) where g′ = argmaxg′∈ḠPπ,γ(g, g′)

where Ḡ = G ∪ {sterminal} if there is a terminal state (episodic problems) and otherwise Ḡ = G. It is
straightforward to show this converges, because Pπ,γ is a substochastic matrix (see Appendix A.1).

Once we have these values, we can propagate these to other states, locally, again using the closest g
to s. We can do so by noticing that the above definitions can be easily extended to rπ,γ(s, g′) and
Pπ,γ(s, g′), since for a pair (s, g) they are about starting in the state s and reaching g under π.

v(s) = rγ(s, g) + Pπ,γ(s, g)v(g) where g = argmaxg∈ḠPπ,γ(s, g). (5)
Because the rhs of this equation is fixed, we only cycle through these states once to get their values.

All of this might seem like a lot of work for policy evaluation; indeed, it will be more useful to
have this formalism for control. But, even here goal-space planning can be beneficial. Let assume a
chain s1, s2, . . . , sn, where n = 1000 and G = {s100, s200, . . . , s1000}. Planning over g ∈ G only
requires sweeping over 10 states, rather than 1000. Further, we have taken a 1000 horizon problem
and converted it into a 10 step one.2 As a result, changes in the environment also propagate faster.
If the reward at s′ changes, locally the reward model around s′ can be updated quickly, to change
rπ,γ(g, g′) for pairs g, g′ where s′ is along the way from g to g′. This local change quickly updates
the values back to earlier g̃ ∈ G.

A.1 PROOFS FOR THE DETERMINISTIC POLICY EVALUATION SETTING

We provide proofs here for the deterministic policy evaluation setting. We assume throughout that the
environment discount γt+1 is a constant γc ∈ [0, 1) for every step in an episode, until termination
when it is zero. The below results can be extended to the case where γc = 1, using the standard
strategy for the stochastic shortest path problem setting.

First, we want to show that given rπ,γ and Pπ,γ , we can guarantee that the update for the values for G
will converge. Recall that Ḡ = G ∪ {sterminal} is the augmented goal space that includes the terminal
state. This terminal state is not a subgoal—since it is not a real state—but is key for appropriate
planning.
Lemma 1. Assume that we have a deterministic MDP, deterministic policy π, γc < 1, a discrete set
of subgoals G ⊂ S , and that we iteratively update vt ∈ R|Ḡ| with the dynamic programming update

vt(g) = rπ,γ(g, g′) + Pπ,γ(g, g′)vt−1(g′) where g′ = argmax
g′∈Ḡ

Pπ,γ(g, g′) (6)

for all g ∈ G, starting from an arbitrary (finite) initialization v0 ∈ R|Ḡ|, with vt(sterminal) fixed at
zero. Then then vt converges to a fixed point.

2In this simplified example, we can plan efficiently by updating the value at the end in sn, and then updating
states backwards from the end. But, without knowing this structure, it is not a general purpose strategy. For
general MDPs, we would need smart ways to do search control: the approach to pick states from one-step
updates. In fact, we can leverage search control strategies to improve the goal-space planning step. Then we get
the benefit of these approaches, as well as the benefit of planning over a much smaller state space.

13

Under review as a conference paper at ICLR 2023

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

One-step Backup

Goal-Space Planning

Terminal

Terminal

Figure 10: Comparing one-step backup with Goal-Space Planning when subgoals are concrete states.
GSP first focuses planning over a smaller set of subgoals (in red), then updates the values of individual
states.

Proof. To analyze this as a matrix update, we need to extend Pπ,γ(g, g′) to include an additional row
transitioning from sterminal. This row is all zeros, because the value in the terminal state is always
fixed at zero. Note that there are ways to avoid introducing terminal states, using transition-based
discounting (White, 2017), but for this work it is actually simpler to explicitly reason about them and
reaching them from subgoals.

To show this we simply need to ensure that Pπ,γ is a substochastic matrix. Recall that

Pπ,γ(g, g′)
def
= Eπ[1(St+1 = g′)γt+1 + γg′,t+1Pπ,γ(St+1, g

′)|St = g]

where γg′,t+1 = 0 if St+1 = g′ and otherwise equals γt+1, the environment discount. If it is
substochastic, then ‖Pπ,γ‖2 < 1. Consequently, the Bellman operator

(Bv)(g) = rπ,γ(g, g′) + Pπ,γ(g, g′)ṽ(g′) where g′ = argmax
g′∈Ḡ

Pπ,γ(g, g′)

is a contraction, because ‖Bv1−Bv2‖2 = ‖Pπ,γv1−Pπ,γv2‖2 ≤ ‖Pπ,γ‖2‖v1−v2‖2 < ‖v1−v2‖2.

Because γc < 1, then either g immediately terminates in g′, giving 1(St+1 = g′)γt+1 +
γg′,t+1Pπ,γ(St+1, g

′) = γt+1 + 0 ≤ γc. Or, it does not immediately terminate, and 1(St+1 =
g′)γt+1 + γg′,t+1Pπ,γ(St+1, g

′) = 0 + γcPπ,γ(St+1, g
′) ≤ γc because Pπ,γ(St+1, g

′) ≤ 1. There-
fore, if γc < 1, then ‖Pπ,γ‖2 ≤ γc.

Proposition 1. For a deterministic MDP, deterministic policy π, and a discrete set of subgoals G ⊂ S
that are all reached by π in the MDP, given the ṽ(g) obtained from Equation 6, if we set

v(s) = rγ(s, g) + Pπ,γ(s, g)ṽ(g) where g = argmax
g∈Ḡ

Pπ,γ(s, g) (7)

for all states s ∈ S then we get that v = vπ .

Proof. For a deterministic environment and deterministic policy this result is straightforward. The
term Pπ,γ(s, g) > 0 only if g is on the trajectory from s when the policy π is executed. The term
rγ(s, g) consists of deterministic (discounted) rewards and ṽ(g) is the true value from g, as shown in
Lemma 6 (namely ṽ(g) = vπ(g)). The subgoal g is the closest state on the trajectory from s, and
Pπ,γ(s, g) is γtc where t is the number of steps from s to g.

14

Under review as a conference paper at ICLR 2023

B PROOFS FOR THE GENERAL CONTROL SETTING

In this section we assume that γc < 1, to avoid some of the additional issues for handling proper
policies. The same strategies apply to the stochastic shortest path setting with γc = 1, with additional
assumptions.

Proposition 2. [Convergence of Value Iteration in Goal-Space] Assuming that Γ̃ is a substochastic
matrix, with v0 ∈ R|Ḡ| initialized to an arbitrary value and fixing vt(sterminal) = 0 for all t, then
iteratively sweeping through all g ∈ G with update

vt(g) = max
g′∈Ḡ:d̃(g,g′)>0

r̃γ(g, g′) + Γ̃(g, g′)vt−1(g′) (8)

convergences to a fixed-point.

Proof. We can use the same approach typically used for value iteration. For any v0 ∈ R|Ḡ|, we can
define the operator

(Bgv)(g)
def
= max
g′∈Ḡ:d̃(g,g′)>0

r̃γ(g, g′) + Γ̃(g, g′)ṽ(g′)

First we can show that Bg is a γc-contraction. Assume we are given any two vectors v1, v2. Notice
that Γ̃(g, g′) ≤ γc, because for our problem setting the discount is either equal to γc or equal to zero
at termination. Then we have that for any g ∈ Ḡ

|(Bgv1)(g)− (Bgv2)(g)|
=
∣∣∣ max
g′∈Ḡ:d̃(g,g′)>0

r̃γ(g, g′) + Γ̃(g, g′)v1(g′)− max
g′∈Ḡ:d̃(g,g′)>0

r̃γ(g, g′) + Γ̃(g, g′)v2(g′)
∣∣∣

≤ max
g′∈Ḡ:d̃(g,g′)>0

|r̃γ(g, g′) + Γ̃(g, g′)v1(g′)− (r̃γ(g, g′) + Γ̃(g, g′)v2(g′))|

= max
g′∈Ḡ:d̃(g,g′)>0

|Γ̃(g, g′)(v1(g′)− v2(g′))|

≤ max
g′∈Ḡ:d̃(g,g′)>0

γc|v1(g′)− v2(g′)|

≤ γc‖v1 − v2‖∞
Since this is true for any g, it is true for the max over g, giving

‖Bgv1 −Bgv2‖∞ ≤ γc‖v1 − v2‖∞.
Because the operator Bg is a contraction, since γc < 1, we know by the Banach Fixed-Point Theorem
that the fixed-point exists and is unique.

Now we analyze the update to the main policy, that incorporates the subgoal value estimates into
the bootstrap target. We assume we have a finite number of state-action pairs n, with parameterized
action-values q(·;w) ∈ Rn represented as a vector with one entry per state-action pair. Value iteration
to find q∗ corresponds to updating with the Bellman optimality operator

(Bq)(s, a)
def
= r(s, a) +

∑
s′

P (s′|s, a)γ(s′) max
a′∈A

q(s′, a′) (9)

On each step, for the current qt
def
= q(·;wt), if we assume the parameterized function class can

represent Bqt, then we can reason about the iterations of w1,w2, . . . obtain when minimizing
distance between q(·;wt+1) and Bqt, with

q(s, a;wt+1) = (Bq(·;wt))(s, a)

Under function approximation, we do not simple update a table of values, but we can get this equality
by minimizing until we have zero Bellman error. Note that q∗ = Bq∗, by definition.

In this realizability regime, we can reason about the iterates produced by value iteration. The
convergence rate is dictated by γc, as is well known, because

‖Bq1 −Bq2‖∞ ≤ γc‖q1 − q2‖∞

15

Under review as a conference paper at ICLR 2023

Specifically, if we assume |r(s, a)| ≤ rmax, then we can use the fact that 1) the maximal return is no
greater than Gmax

def
= rmax

1−γc , and 2) for any initialization q0 no larger in magnitude than this maximal
return we have that ‖q0 − q∗‖∞ ≤ 2Gmax. Therefore, we get that

‖Bq0 − q∗‖∞ = ‖Bq0 −Bq∗‖∞ ≤ γc‖q0 − q∗‖∞
and so after t iterations we have

‖qt−q∗‖∞ = ‖Bqt−1−Bq∗‖∞ ≤ γc‖qt−1−q∗‖∞ ≤ γ2
c‖qt−2−q∗‖∞ . . . ≤ γtc‖q0−q∗‖∞ = γtcGmax

We can use the exact same strategy to show convergence of value iteration, under our subgoal-value
bootstrapping update. Let rsub(s, a)

def
=
∑
s′ P (s′|s, a)vsub(s′), assuming vsub : S → [−Gmax, Gmax]

is a given, fixed function. Then the modified Bellman optimality operator is

(Bβq)(s, a)
def
= r(s, a) + βrsub(s, a) + (1− β)

∑
s′

P (s′|s, a)γ(s′) max
a′∈A

q(s′, a′) (10)

Proposition 3 (Convergence rate of tabular value iteration under subgoal bootstrapping). The fixed
point q∗β = Bβq∗β exists and is unique. Further, for q0, and the corresponding w0, initialized such
that |q0(s, a;w0)| ≤ Gmax, the value iteration update with subgoal bootstrapping qt = Bβqt−1 for
t = 1, 2, . . . satisfies

‖qt − q∗β‖∞ ≤ (1− β)tγtc
rmax + βGmax

1− (1− β)γc

Proof. First we can show that Bβ is a γc(1− β)-contraction. Assume we are given any two vectors
q1, q2. Notice that γ(s) ≤ γc, because for our problem setting it is either equal to γc or equal to zero
at termination. Then we have that for any (s, a)

|(Bβq1(s, a)− (Bβq2)(s, a)| = |(1− β)
∑
s′

P (s′|s, a)γ(s′)[max
a′∈A

q1(s′, a′)−max
a′∈A

q2(s′, a′)]|

≤ (1− β)γc
∑
s′

P (s′|s, a)|[max
a′∈A

q1(s′, a′)−max
a′∈A

q2(s′, a′)]|

≤ (1− β)γc
∑
s′

P (s′|s, a) max
a′∈A

|q1(s′, a′)− q2(s′, a′)|

≤ (1− β)γc
∑
s′

P (s′|s, a) max
s′∈S,a′∈A

|q1(s′, a′)− q2(s′, a′)|

≤ (1− β)γc
∑
s′

P (s′|s, a)‖q1 − q2‖∞

= (1− β)γc‖q1 − q2‖∞
Since this is true for any (s, a), it is true for the max, giving

‖Bβq1 −Bβq2‖∞ ≤ (1− β)γc‖q1 − q2‖∞.
Because the operator is a contraction, since (1 − β)γc < 1, we know by the Banach Fixed-Point
Theorem that the fixed-point exists and is unique.

Now we can also use contraction property for the convergence rate. Notice first that we can consider
r̃(s, a)

def
= r(s, a) + βrsub(s, a) as the new reward, with maximum value rmax + βGmax. Further, the

new discount is (1− β)γc. Consequently, the maximal return is rmax+βGmax
1−(1−β)γc

.

‖qt − q∗β‖∞ = ‖Bβqt−1 −Bβq∗β‖∞ ≤ (1− β)γc‖qt−1 − q∗‖∞ . . . ≤ (1− β)tγtc‖q0 − q∗‖∞

≤ (1− β)tγtc
rmax + βGmax

1− (1− β)γc

This rate is dominated by ((1− β)γc)
t, and for β near 1 gives a much faster convergence rate than

β = 0. We can determine after how many iteration this term overcomes the increase in the upper
bound on the return. In other words, we want to know how big t needs to be to get

(1− β)tγtc
rmax + βGmax

1− (1− β)γc
≤ γtcGmax.

16

Under review as a conference paper at ICLR 2023

Rearranging terms, we get that this is true for

t > log

(
rmax + βGmax

Gmax(1− (1− β)γc)

)
/ log

(
1

1− β

)
.

For example if rmax = 1, γc = 0.99 and β = 0.5, then we have that t > 1.56. If we have that
rmax = 10, γc = 0.99 and β = 0.5, then we get that t ≥ 5. If we have that rmax = 1, γc = 0.99 and
β = 0.1, then we get that t ≥ 22.

C LEARNING THE SUBGOAL MODELS AND CORRESPONDING OPTION
POLICIES

Now we need a way to learn the models, rγ(s, g) and Γ(s, g). These can both be represented as
General Value Functions (GVFs) (Sutton et al., 2011), and we leverage this form to use standard
algorithms in reinforcement learning to learn them. We start by assuming that we have πg and discuss
learning it after understanding learning these models.

C.1 MODEL LEARNING

The data is generated off-policy—according to some behavior b rather than from πg . We can either use
importance sampling or we can learn the action-value variants of these models to avoid importance
sampling. We describe both options here, but in our experiments using the action-value variant since
it avoids importance sampling and the need to have the distribution over actions under behavior b.

Model Update using Importance Sampling We can update rγ(·, g) with an importance-sampled
temporal difference (TD) learning update ρtδt∇rγ(St, g) where ρt =

πg(a|St)
b(a|St) and

δrt = Rt+1 + γg,t+1rγ(St+1, g)− rγ(St, g)

The discount model Γ(s, g) can be learned similarly, because it is also a GVF with cumulant
m(St+1, g)γt+1 and discount γg,t+1. The TD update is ρtδΓ

t where

δΓ
t = m(St+1, g)γt+1 + γg,t+1Γ(St+1, g)− Γ(St, g)

All of the above updates can be done using any off-policy GVF algorithm, including those using
clipping of IS ratios and gradient-based methods, and can include replay.

Model Update without Importance Sampling Overloading notation, let us define the action-value
variants rγ(s, a, g) and Γ(s, a, g). We get similar updates to above, now redefining

δrt = Rt+1 + γg,t+1rγ(St+1, πg(St+1), g)− rγ(St, At, g)

and using update δt∇rγ(St, At, g). For Γ we have

δΓ
t = m(St+1, g)γt+1 + γg,t+1Γ(St+1, πg(St+1), g)− Γ(St, At, g)

We then define rγ(s, g)
def
= rγ(s, πg(s), g) and Γ(s, g)

def
= Γ(s, πg(s), g) as deterministic functions of

these learned functions.

Restricting the Model Update to Relevant States Recall, however, that we need only query these
models where d(s, g) > 0. We can focus our function approximation resources on those states. This
idea has previously been introduced with an interest weighting for GVFs (Sutton et al., 2016), with
connections made between interest and initiation sets (White, 2017). For a large state space with
many subgoals, using goal-space planning significantly expands the models that need to be learned,
especially if we learn one model per subgoal. Even if we learn a model that generalizes across
subgoal vectors, we are requiring that model to know a lot: values from all states to all subgoals. It is
likely such a models would be hard to learn, and constraining what we learn about with d(s, g) is
likely key for practical performance.

17

Under review as a conference paper at ICLR 2023

The modification to the update is simple: we simply do not update rγ(s, g),Γ(s, g) in states s where
d(s, g) = 0.3 For the action-value variant, we do not update for state-action pairs (s, a) where
d(s, g) = 0 and πg(s) 6= a. The model will only ever be queried in (s, a) where d(s, g) = 1 and
πg(s) = a.

Learning the relevance model d We assume in this work that we simply have d(s, g), but we can
at least consider ways that we could learn it. One approach is to attempt to learn Γ for each g, to
determine which are pertinent. Those with Γ(s, g) closer to zero can have d(s, g) = 0. In fact, such
an approach was taken for discovering options (Khetarpal et al., 2020), where both options and such a
relevance function are learned jointly. For us, they could also be learned jointly, where a larger set of
goals start with d(s, g) = 1, then if Γ(s, g) remains small, then these may be switched to d(s, g) = 0
and they will stop being learned in the model updates.

Learning the subgoal-to-subgoal models Finally, we need to extract the subgoal-to-subgoal
models r̃γ , Γ̃ from rγ ,Γ. The strategy involves updating towards the state-to-subgoal models,
whenever a state corresponds to a subgoal. In other words, for a given s, if m(s, g) = 1, then for a
given g′ (or iterating through all of them), we can update r̃γ using

(rγ(s, g′)− r̃γ(g, g′))∇r̃γ(g, g′)

and update Γ̃ using

(Γ(s, g′)− Γ̃(g, g′))∇Γ̃(g, g′).

Note that these updates are not guaranteed to uniformly weight the states where m(s, g) = 1. Instead,
the implicit weighting is based on sampling s, such as through which states are visited and in the
replay buffer. We do not attempt to correct this skew, as mentioned in the main body, we presume
that this bias is minimal. An important next step is to better understand if this lack of reweighting
causes convergence issues, and how to modify the algorithm to account for a potentially changing
state visitation.

C.2 A GENERAL ALGORITHM FOR LEARNING OPTION POLICIES

Finally, we need to learn the option policies πg. In the simplest case, it is enough to learn πg that
makes rγ(s, g) maximal for every relevant s (i.e., d(s, g) > 0). We can learn the action-value variant
rγ(s, a, g) using a Q-learning update, and set πg(s) = argmaxa∈A rγ(s, a, g), where we overloaded
the definition of rγ . We can then extract rγ(s, g) = maxa∈A rγ(s, a, g), to use in all the above
updates and in planning. In our own Pinball Experiment, this strategy is sufficient for learning πg .

More generally, however, this approach may be ineffective because maximizing environment reward
may be at odds with reaching the subgoal in a reasonable number of steps (or at all). For example, in
environments where the reward is always positive, maximizing environment reward might encourage
the option policy not to terminate.4 However, we do want πg to reach g, while also obtaining the best
return along the way to g. For example, if there is a lava pit along the way to a goal, even if going
through the lava pit is the shortest path, we want the learned option to get to the goal by going around
the lava pit. We therefore want to be reward-respecting, as introduced for reward-respecting subtasks
(Sutton et al., 2022), but also ensure termination.

We can consider a spectrum of option policies that range from the policy that reaches the goal
as fast as possible to one that focuses on environment reward. We can specify a new reward for

3More generally, we might consider using emphatic weightings (Sutton et al., 2016) that allow us to
incorporate such interest weightings d(s, g), without suffering from bootstrapping off of inaccurate values in
states where d(s, g) = 0. Incorporating this algorithm would likely benefit the whole system, but we keep things
simpler for now and stick with a typical TD update.

4It is not always the case that positive rewards result in option policies that do not terminate. If there is a
large, positive reward at the subgoal in the environment, Even if all rewards are positive, if γc < 1 and there is
larger positive reward at the subgoal than in other nearby states, then the return is higher when reaching this
subgoal sooner, since that reward is not discounted as many steps. This outcome is less nuanced for negative
reward. If the rewards are always negative, on the other hand, then the option policy will terminate, trying to find
the path with the best (but still negative) return.

18

Under review as a conference paper at ICLR 2023

learning the option: R̃t+1 = cRt+1 + (1− c)(−1). When c = 0, we have a cost-to-goal problem,
where the learned option policy should find the shortest path to the goal, regardless of reward along
the way. When c = 1, the option policy focuses on environment reward, but may not terminate
in g. We can start by learning the option policy that takes the shortest path with c = 0, and the
corresponding rγ(s, g),Γ(s, g). The constant c can be increased until πg stops going to the goal, or
until the discounted probability Γ(s, g) drops below a specified threshold.

Even without a well-specified c, the values under the option policy can still be informative. For
example, it might indicate that it is difficult or dangerous to attempt to reach a goal. For this work,
we propose a simple default, where we fix c = 0.5. Adaptive approaches, such as the idea described
above, are left to future work.

The resulting algorithm to learn πg involves learning a separate value function for these rewards. We
can learn action-values (or a parameterized policy) using the above reward. For example, we can
learn a policy with the Q-learning update to action-values q̃

(
cRt+1 + c− 1 + γg,t+1 max

a′
q̃(St+1, a

′, g)− q̃(St, At, g)

)
∇q̃(St, At, g)

Then we can set πg to be the greedy policy, πg(s) = argmaxa∈A q̃(s, a, g).

C.3 PSEUDOCODE PUTTING IT ALL TOGETHER

We summarize the above updates in pseudocode, specifying explicit parameters and how they are
updated. The algorithm is summarized in Algorithm 1, with a diagram in Figure 4. An online update
is used for the action-values for the main policy, without replay. All background computation is used
for model learning using a replay buffer and for planning with those models. The pseudocode assumes
a small set of subgoals, and is for episodic problems. We provide extensions to other settings in
Appendix C.4, including using a Double DQN update for the policy update. We also discuss in-depth
differences to existing related ideas, including landmark states, UVFAs, and Goal-conditioned RL in
Appendix D.

Note that we overload the definitions of the subgoal models. We learn action-value variants
rγ(s, a, g; θr), with parameters θr, to avoid importance sampling corrections. We learn the
option-policy using action-values q̃(s, a; θπ) with parameters θπ, and so query the policy using
πg(s; θ

π)
def
= argmaxa∈A q̃(s, a, g; θπ). The policy πg is not directly learned, but rather defined

by q̃. Similarly, we do not directly learn rγ(s, g); instead, it is defined by rγ(s, a, g; θr). Specif-
ically, for model parameters θ = (θr, θΓ, θπ), we set rγ(s, g; θ)

def
= rγ(s, πg(s; θ

π), g; θr) and
Γ(s, g; θ)

def
= Γ(s, πg(s; θ

π), g; θΓ). We query these derived functions in the pseudocode.

Finally, we assume access to a given set of subgoals. But there have been several natural ideas already
proposed for option discovery, that nicely apply in our more constrained setting. One idea was to
use subgoals that are often visited by the agent (Stolle & Precup, 2002). Such a simple idea is likely
a reasonable starting point to make a GSP algorithm that learns everything from scratch, including
subgoals. Other approaches have used bottleneck states (McGovern & Barto, 2001).

Algorithm 1 Goal-Space Planning for Episodic Problems

Assume given subgoals G and relevance function d
Initialize table v ∈ R|G|, main policy w, model parameters θ = (θr, θΓ, θπ), θ̃ = (θ̃r, θ̃Γ)
Sample initial state s0 from the environment
for t ∈ 0, 1, 2, ... do

Take action at using q (e.g., ε-greedy), observe st+1, rt+1, γt+1

ModelUpdate(st, at, st+1, rt+1, γt+1)
Planning()
MainPolicyUpdate(st, at, st+1, rt+1, γt+1)

19

Under review as a conference paper at ICLR 2023

Algorithm 2 MainPolicyUpdate(s, a, s′, r, γ)

vsub ← maxg∈Ḡ:d(s,g)>0 rγ(s, g; θ) + Γ(s, g; θ)ṽ(g)

δ ← r + γβvsub + γ(1− β) maxa′ q(s
′, a′;w)− q(s, a;w)

w← w + αδ∇wq(s, a;w)

Algorithm 3 Planning()

for n iterations, for each g ∈ G do
ṽ(g)← maxg′∈Ḡ:d(g,g′)>0 r̃γ(g, g′; θ̃r) + Γ̃(g, g′; θ̃Γ)ṽ(g′)

Algorithm 4 ModelUpdate(s, a, s′, r, γ)

Add new transition (s, a, s′, r, γ) to buffer B
for g′ ∈ Ḡ, for multiple transitions (s, a, r, s′, γ) sampled from B do

γg′ ← γ(1−m(s′, g′))
// Update option policy
δπ ← 1

2 (r − 1) + γg′ maxa′∈A q̃(s′, a′, g′; θπ)− q(s, a, g′; θπ)
θπ ← θπ + απδπ∇q(s, a, g′; θπ)
// Update reward model and discount model
a′ ← πg′(s

′; θπ)
δr ← r + γg′rγ(s′, a′, g′; θr)− rγ(s, a, g′; θr)
δΓ ← m(s′, g)γ + γg′Γ(s′, a′, g′; θΓ)− Γ(s, a, g′; θΓ)
θr ← θr + αrδr∇rγ(s, a, g′; θr)
θΓ ← θΓ + αΓδΓ∇Γ(s, a, g′; θΓ)
// Update goal-to-goal models using state-to-goal models
for each g such that m(s, g) > 0 do

θ̃r ← θ̃r + α̃r(rγ(s, g′; θ)− r̃γ(g, g′; θ̃r))∇r̃γ(g, g′; θ̃r)
θ̃Γ ← θ̃Γ + α̃Γ(Γ(s, g′; θ)− Γ̃(g, g′; θ̃r))∇Γ̃(g, g′; θ̃Γ)

C.4 EXTENDING GSP TO DEEP RL

It is simple to extend the above pseudocode for the main policy update and the option policy update
to use Double DQN (Van Hasselt et al., 2016) updates with neural networks. The changes from the
above pseudocode are 1) the use of a target network to stabilize learning with neural networks, 2)
using polyak averaging to interpolate between the target network and the main network’s weights, 3)
changing the one-step bootstrap target to the DDQN equivalent, 4) adding a replay buffer for learning
the main policy, and 5) changing the update from using a single sample to using a batch update.
Because the number of subgoals is discrete, the equations for learning θ̃r and θ̃Γ does not change.
We summarize these changes for learning the main policy in Algorithm 5 and for learning subgoal
models in Algorithm 6.

Algorithm 5 MainPolicyDDQNUpdate(s, a, s′, r, γ)

Add experience (s, a, s′, r, γ) to replay buffer Dmain

for nmain mini-batches do
Sample batch Bmain = {(s, a, r, s′, γ)} from Dmain

vsub(s) = maxg∈Ḡ:d(s,g)>0 rγ(s, g; θ) + Γ(s, g; θ)ṽ(g)

Y (r, s′, γ) = r + γβvsub + γ(1− β)q(s′,maxa′ q(s
′, a′;w),wtarget)

L = 1
|Bmain|

∑
(s,a,r,s′,γ)∈Bmain(Y (r, s′, γ)− q(s, a;w))2

w← w + α∇wL
wtarget ← ρw + (1− ρ)wtarget

20

Under review as a conference paper at ICLR 2023

Algorithm 6 ModelDDQNUpdate(s, a, s′, r, γ)

Add new transition (s, a, s′, r, γ) to buffer Dmodel

for g′ ∈ Ḡ do
for nmodel mini-batches do

Sample batch Bmodel = {(s, a, r, s′, γ)} from Dmodel

γg′ ← γ(1−m(s′, g′))
// Update option policy
a′ ← argmaxa′∈A q̃(s

′, a′, g′; θπ)
δπ(s, a, s′, r, γ)← 1

2 (r − 1) + γg′ q̃(s
′, a′, g′; θπtarg)− q(s, a, g′; θπ)

θπ ← θπ + απ∇θπ 1
|Bmodel|

∑
(s,a,r,s′,γ)∈Bmodel(δ

π(s, a, s′, r, γ))2

θπtarg ← ρmodelθ
π + (1− ρmodel)θπtarg

// Update reward model and discount model
δr(s, a, r, s′, γ)← r + γg′(γ, s

′)rγ(s′, a′, g′; θrtarg)− rγ(s, a, g′; θr)
δΓ(s, a, r, s′, γ)← m(s′, g)γ + γg′(γ, s

′)Γ(s′, a′, g′; θΓ
targ)− Γ(s, a, g′; θΓ)

θr ← θr − αr∇θr 1
|Bmodel|

∑
(s,a,r,s′,γ)∈Bmodel(δ

r)2

θΓ ← θΓ − αΓ∇θΓ 1
|Bmodel|

∑
(s,a,r,s′,γ)∈Bmodel(δ

Γ)2

θrtarg ← ρmodelθ
r + (1− ρmodel)θrtarg

θΓ
targ ← ρmodelθ

Γ + (1− ρmodel)θΓ
targ

// Update goal-to-goal models using state-to-goal models
. . . same as in prior pseudocode.

C.5 OPTIMIZATIONS FOR GSP USING FIXED MODELS

It is possible to reduce computation cost of GSP when learning with a fixed model. When the subgoal
models are fixed, vsub for an experience sample does not change over time as all components that are
used to calculate vsub are fixed. This means that the agent can calculate vsub when it first receives the
experience sample and save it in the buffer, and use the same calculated vsub whenever this sample is
used for updating the main policy. When doing so, vsub only needs to be calculated once per sample
experienced, instead of with every update. This is beneficial when training neural networks, where
each sample is often used multiple times to update network weights.

An additional optimization possible on top of caching of vsub in the replay buffer is that we can batch
the calculation of vsub for multiple samples together, which can be more efficient than calculating
vsub for a single sample every step. To do this, we create an intermediate buffer that stores up to some
number of samples. When the agent experiences a transition, it adds the sample to this intermediate
buffer rather than the main buffer. When this buffer is full, the agent calculates vsub for all samples in
this buffer at once and adds the samples alongside vsub to the main buffer. This intermediate buffer is
then emptied and added to again every step. We set the maximum size for the intermediate buffer to
1024 in our experiments.

D CONNECTIONS TO UVFAS AND GOAL-CONDITIONED RL

There is a large and growing literature on goal-conditioned RL (GCRL). This is a problem setting
where the aim is to learn a policy π(a|s, g) that can be (zero-shot) conditioned on different possible
goals. The agent learns for a given set of goals, with the assumption that at the start of each episode
the goal state is explicitly given to the agent. After this training phase, the policy should generalize
to previously unseen goals. Naturally, this idea has particularly been applied to navigation, having
the agent learn to navigate to different states (goals) in the environment. Many GCRL approaches
leverage UVFAs (Schaul et al., 2015).

This setting bears a strong resemblance to what we do in this work, but is notably different. Our
models can be seen as goal-conditioned models—part of the solution—for planning in the general RL
setting. GCRL, on the other hand, is a problem setting. Many approaches do not consider planning,
but instead focus on effectively learning the goal-conditioned value functions or policies.

21

Under review as a conference paper at ICLR 2023

There is more work, however, using landmark states and planning, for GCRL. In addition to the goal
given for GCRL, the landmark states can be treated as interim subgoals and UVFA models learned
for these as well (Huang et al., 2019). Planning is done between landmarks, using graph-based search.
The policy is set to reach the nearest goal (using action-values with cost-to-goal rewards of -1 per
step) and learned distance functions between states and goals and between goals. These models are
like our reward and discount models, but tailored to navigation and distances.

The idea of learning models that immediately apply to new subtasks, using successor features, is
like GCRL but goes beyond navigation. The option keyboard involves encoding options (or policies)
as vectors that describe the corresponding (pseudo) reward (Barreto et al., 2019). This work has
been expanded more recently, using successor features (Barreto et al., 2020). New policies can
then be easily obtained for new reward functions, by linearly combining the (basis) vectors for the
already learned options. No planning is involved in this work, beyond a one-step decision-time choice
amongst options.

E ADDITIONAL DETAILS ON LEARNING SUBGOAL MODELS

This section describes implementation details for learning subgoal models in the PinBall environment
and errors observed in the learned models.

To ensure that we provide sufficient variety of data to learn the model accurately, when learning
the subgoal models, the agent is randomly initialized in the environment at a valid state, ran in the
environment for 20 steps with a random policy, then randomly reset again. To ensure that the agent
gets sufficient experience near goal states, we initialize the agent, with a 0.01 probability, at states
where m(s, g) = 1 for any g with added jitter sampled from U(−0.01, 0.01) for each feature. The
model is trained for 300k steps in this data gathering regime.

We restrict model update to relevant states in our experiments. Because the only relevant experience
for learning rγ and Γ are samples where d(s, g) > 0, we maintain a separate buffer for each subgoal
g for learning rγ(s, g) and Γ(s, g) such that all experience within that buffer are relevant. We require
10k samples in the buffer of each subgoal before learning for the corresponding rγ and Γ begins, so
that mini-batches are always drawn from a sufficiently diverse set of samples.

Similarly, a sample is only relevant for updating Γ̃ and r̃γ if m(s, g) > 0 for some g, but this might
not be true for samples stored in the buffers for learning Γ and rγ . To be able to obtain a batch
of samples where all samples are relevant for learning Γ̃ and r̃γ , the agent uses another buffer that
exclusively stores samples where m(s, g) > 0 to learn Γ̃ and r̃γ .

We mentioned in Appendix C.1 that we take the simple approach to restricting model updates to states
where d(s, g) = 1. However, this means an update could bootstrap off inaccurate estimates when
learning from a sample (s, a, r, s′) if d(s, g) > 0 but d(s′, g) = 0. In PinBall, this occurs when the
agent starts within the relevance area for a subgoal but taking an action moves the agent outside of it.
We attempt to alleviate this issue in practice by changing the estimation target for those state-action
pairs to be the minimum possible target in the environment. Because we co-learn the option policy
with rγ(s, a, g), we set this minimum value to 1

1−γ rmin. If the network can learn this target well,
then the learned option policy will not leave the relevance area.

We also address the issue that for some fixed d, it is possible that not all states where d(s, g) > 0
could reach the subgoal. This can negatively affect the quality of vsub as our algorithm assumes that
goal g is reachable from state s via the option policy if d(s, g) > 0. While this source of error did not
seem to affect GSP in our experiments, it might be important in other environments, so we describe
the modification to address this problem here. From these states, the agent should not consider these
subgoals when doing background planning (g′ is not reachable from g despite d̃(g, g′) = 1) and
projection (g′ is not reachable from s despite d(s, g′) = 1). We check for these states by seeing if
the learned Γ(s, g) is near 0, which indicates that it is either very difficult or impossible to reach g
from s. For states with Γ(s, g) very near 0, we can set d(s, g) = 0 for the purpose of background
planning and projection, but not for learning Γ(s, g) as it might be initialized to a low value. In our
experiments, we set this threshold to 0.

22

Under review as a conference paper at ICLR 2023

200

0

100

150

50

0.8

0.0

0.4

0.6

0.2

Absolute Error

Figure 11: A heatmap of the absolute error of Γ and rγ for two different subgoal models learned at
various (x, y). While the absolute error from states near subgoals can be quite low, they increase
substantially as the state gets further away. White indicates that d(s, g) = 0.

E.1 ERROR OF LEARNED SUBGOAL MODELS

To better understand the accuracy of our learned subgoal models, we performed roll-outs of the learned
option policy at different (x,y) locations (with 0 velocity) across the environment and compared the
true rγ and Γ with the estimated values. Figure 11 shows a heatmap of the absolute error of the
model compared to the ground truth, with the mapping of colors on the right. The models learned
tend to be more accurate closer to the goal, and less accurate further away. The absolute error of Γ
can be as low as 0.01 close to the goal, but increase to 0.2 and higher further away. Similarly, the
absolute error for rγ can be as low as below 10 near goals, but can increase over 100 further away.
While the magnitudes of errors are not unreasonable, they are also not very near zero. This results is
encouraging in that inaccuracies in the model do not prevent useful planning.

F ADDITIONAL EXPERIMENT DETAILS

This section provides additional details for the PinBall environment, the various hyperparameters
used for DDQN and GSP, and the hyperparameters sweeps performed. The experiments described
in the main body, along with the hyperparameter sweeps, used approximately 10.7 CPU days on an
Apple M1 chip.

The pinball configuration that we used is based on the "slightly harder configuration" found at
http://irl.cs.brown.edu/pinball/. The Python implementation of PinBall was taken
from https://github.com/amarack/python-rl, which was released under the GPL-
3.0 license. We have modified the environment to support additional features such as changing
terminations, visualizing subgoals, and various bug fixes.

Network Architecture We used neural networks for learning the main policy, Γ, and rγ . For
experiment 1, we used a neural network with hidden layers [256, 256, 128, 128, 64, 64] for the main
policy and [256, 256, 128, 128, 64, 64, 32, 32] for Γ and rγ . For experiment 2, we used a neural
network with hidden layers [128, 128, 64, 64] for the main policy and [128, 128, 128, 128, 64, 64] for
Γ and rγ . We used ReLU activation function for each layer aside from the output layer. The network’s
bias weights are initialized to 0.001 and other weights were initialized using He uniform initialization
(He et al., 2015). Each network output a vector of length 5, one for each action.

23

Under review as a conference paper at ICLR 2023

F.1 EXPERIMENT HYPERPARAMETERS

For both experiments, we used the Adam optimizer for training both the main policy and the subgoal
models. We used the default hyperparameters for Adam except the step-size (b1 = 0.9, b2 =
0.999, ε = 1e−8). The main policy was trained with 4 mini-batches per step with batch size of 16,
while the subgoal models were trained with 1 mini-batch per step with the same batch size. We used
ε-greedy exploration strategy, with ε fixed to ε = 0.1 in our experiments.

For experiment 1, γ = 0.99, απ = αr = αΓ = 5e−4, and ρmodel = 0.4. For experiment 2, γ = 0.95,
απ = αr = αΓ = 1e−3, and ρmodel = 0.1. We selected the learning rate for Adam and the polyak
averaging rate ρ for updating the main policy in each experiment using the methodology described in
the section below.

F.2 HYPERPARAMETER SWEEP METHODOLOGY

For experiment 1, we swept the baseline DDQN algorithm for polyak averaging rate ρ ∈
[0.0125, 0.025, 0.05, 0.1] and learning rate in [1e−3, 5e−4, 3e−4, 1e−4] across 4 seeds. We found
that ρ = 0.025 and learning rate of 5e−4 had the highest average reward rate in our sweep and used
them when running both DDQN and GSP across seeds in the experiment.

For experiment 2, we swept DDQN for polyak averaging rate ρ ∈ [1.0, 0.8, 0.4, 0.2, 0.1, 0.05, 0.025]
and learning rate in [1e−2, 5e−3, 1e−3, 5e−4] for 8 seeds. We find that ρ = 0.05 and learning
rate of 1e−3 had the highest average reward rate out of all configurations swept and used these
hyperparameters for all DDQN runs in the experiment. For GSP, we used ρ = 0.8 and learning rate
of 1e−3.

G COMPARING GSP TO OTHER DYNA ALTERNATIVES

In this section, we compare GSP against other basic background planning algorithms. Namely, we
compare against DDQNx2, a DDQN agent that is given double the amount of computational budget
per step compared to our baseline algorithm, and Dyna with options (Dyno), a natural alternative to
use option model for background planning.

As mentioned in Section 4, DDQN can be viewed as a background planning algorithm when the replay
buffer is viewed as a non-parametric model. Providing DDQN with double the number of mini-batch
updates attempts to answer the question of what if GSP’s background planning resources was instead
dedicated to additional one-step updates. Note that in this experiment, our DDQNx2 implementation
took 50% additional wall-clock time to run when compared to our GSP implementation.

Dyna with options (Dyno) is a basic algorithm that incorporates option models into Dyna such that
the agent learns about both action values and option values Q :→ S × A ∪ O. Dyno’s behaviour
policy then includes both actions and options. If an option πj is selected when taking a greedy action
according to Q, then the first action given by πj is executed. The model in Dyna needs to include
option models, which allows the agent to reason about accumulated rewards under an option, and
outcome states after executing an option. Otherwise, the framework is identical to Dyna. It is a simple,
elegant extension on Dyna that allows for planning with temporal abstraction. However, this approach
has several limitations. One limitation is that as we include new options—more abstraction—our
value function needs to reason over more actions. Our proposed algorithm, GSP, allows the agent to
obtain the benefits of abstraction, without modifying the form of the policy. Another limitation is
that the model in Dyna is the standard state-to-state model. Though Dyna with options has not been
extended to function approximation — somewhat surprisingly — the natural extension suffers from
similar problems of model errors and the use of expectation models as standard Dyna.

We compare DDQNx2, Dyno, and GSP in the simple PinBall environment. For Dyno, we use the
same subgoal-conditioned models pre-trained for GSP as options models and set the predicted next
state of each option to (xg, yg, 0, 0). We found Dyna with options difficult to get working. Instead,
we used a modified version that only plans over options. This avoids learning and using primitive
action models. We see in Figure 12 that this modified variant actually outperformed DDQN initially,
but leveled off at a suboptimal level of performance and overall learned slower than GSP. We also

24

Under review as a conference paper at ICLR 2023

DDQN

GSP (β = 0.1)

DDQNx2

Dyna + Options

Steps (x100)

Reward

Rate

Averaged

over

30 Runs

Figure 12: (left) The simple PinBall environment. (right) The performance of Dyna with options
(Dyno), DDQNx2, DDQN, and GSP (β = 0.1) in the simple PinBall environment. Dyno learned
slower than GSP and converged to a lower performance point when compared to GSP. DDQNx2,
despite requiring an additional 50% wall-clock time when compared to GSP, learned at a slower rate
but converged to the same optimal peformance.

find that DDQNx2 performed better than DDQN, but was unable to perform better than GSP despite
requiring more wall-clock time, highlighting GSP’s computational efficiency.

H EXPERIMENTS WITH LUNAR LANDER

To see how GSP can be applied to other problems, we ran GSP in the Lunar Lander environment
(Brockman et al., 2016). The environment specification follow OpenAI Gym’s LunarLaner-v2
environment. We provide the agent with 9 subgoals, with one terminal subgoal when the agent
lands safely on the landing pad and the rest of the subgoals laid throughout the environment at
different (x,y) locations in an arrow-like fashionx. As the (x,y) coordinates are continuous, we take
a similar approach of defining a small region around each coordinate to for subgoal termination,
and define a larger initiation area around each subgoal. We show the non-terminal subgoals in
Figure 13. We compare GSP, DDQN, DDQNx4 (DDQN with 4x the amount of planning steps),
and approximate LAVI. We evaluated GSP with β = 0.01 as we found it to be the best performing
β ∈ [0.001, 0.01, 0.05] in our experiments.

We see in Figure 13 that GSP outperforms DDQN, DDQNx4, and approximate LAVI. Overall, we
found that subgoal-conditioned models are more difficult to learn in Lunar Lander, with the learned
reward models and discount model having an average absolute error of around 5 and 0.1 respectively
from 200 monte-carlo rollouts of the policy in the environment. This aligns with the poor performance
of approximate LAVI and the lower value of β that was found to be good for GSP. Surprisingly,
DDQNx4 performed worse than GSP and DDQN despite performing 4 times the number of batch
updates that DDQN performs per step. We hypothesize that this is because the increased number of
updates causes the agent to fit to a suboptimal solution based on insufficient data, thus making the
rate of improvement slower.

I INVESTIGATING GSP WITH DIFFERENT BETA

In subgoal-value bootstrapping (Equation 4), the hyperparameter β represents the tradeoff between
fully using the quickly updated but approximate subgoal values vsub(s) and the standard bootstrap
target. We investigate the impact of β in the harder pinball environment shown in Figure 5. We ran
GSP with β ∈ [0.0, 1e−3, 0.1, 0.5, 1.0]. Note that β = 0.0 is equivalent to DDQN, and β = 1.0 is
equivalent to approximate LAVI. We see in Figure 14 that with β = 0.5 and β = 1.0, GSP gets
similar fast initial learning, but converges to a lower final performance. For β = 1e−3 very close to 0,
we see that performance is more like DDQN. But even for such a small β we get improvements.

25

Under review as a conference paper at ICLR 2023

GSP (β = 0.01)

DDQN

DDQNx4

Approximate LAVI

Steps (x1e6)

Average return

(Past 100 episodes)

Figure 13: (left) The locations of non-terminal subgoals in Lunar Lander, shown with light green
circles. (right) Mean return over 30 independent runs of the past 100 epsides of GSP, DDQN,
DDQNx4, and approximate LAVI in Lunar Lander. GSP learned more quickly than DDQN and
DDQNx4 and converged to the same level of performance. The performance of approximate LAVI
quickly plateaued as it was unable to overcome the suboptimality of the learned subgoal models.

0 500 1000 1500 2000 2500

0

10

20

30

40

50
β = 0.1β = 0.5

Steps (x100)

β = 1e-3

β = 1.0

β = 0.0Reward

Rate

Averaged

over

30 Runs

Figure 14: Performance in the harder PinBall environment for GSP with a variety of β, with the
standard error shown. Even just increasing to β from 0 to 0.1 allows GSP makes it learn much faster
than DDQN by leveraging learned subgoal values. Once β is at 1, where it fully bootstraps off of
potentially suboptimal subgoal values, GSP still learns quickly but arrives at a suboptimal policy.

26

	Introduction
	Problem Formulation
	Goal-Space Planning with Subgoal-Conditioned Models
	Defining Subgoals
	Defining Subgoal-Conditioned Models
	Goal-Space Planning with Subgoal-Conditioned Models
	Putting it All Together: The Full Goal-Space Planning Algorithm

	Experiments with Goal-Space Planning
	Experiment Specification
	Experiment 1: Investigating GSP with Pre-trained Models
	Accuracy of the Learned Models
	Experiment 2: Adapting in Nonstationary PinBall

	Conclusion
	Starting Simpler: Goal-Space Planning for Policy Evaluation
	Proofs for the Deterministic Policy Evaluation Setting

	Proofs for the General Control Setting
	Learning the Subgoal Models and Corresponding Option Policies
	Model Learning
	A General Algorithm for Learning Option Policies
	Pseudocode putting it all together
	Extending GSP to Deep RL
	Optimizations for GSP using Fixed Models

	Connections to UVFAs and Goal-Conditioned RL
	Additional Details on Learning Subgoal Models
	Error of Learned Subgoal Models

	Additional Experiment Details
	Experiment Hyperparameters
	Hyperparameter Sweep Methodology

	Comparing GSP to other Dyna Alternatives
	Experiments with Lunar Lander
	Investigating GSP with Different Beta

