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Abstract. We present a simple and effective pipeline for automatic de-
tection and segmentation of primary tumors and lymph nodes in FDG-
PET/CT for HECKTOR 2025 Task 1. The method starts with an anatomy-
aware pre-crop of the head-and-neck region to suppress irrelevant con-
text, followed by modality-specific intensity normalization with soft clamp-
ing. To mitigate cross-center domain shift, we apply single-subject, SSIM-
guided spectrum swapping (SSIMH) on CT in the frequency domain
without external references. For segmentation, we use a residual U-Net—
style SegResNet with deep supervision and a combined Dice + Cross-
Entropy loss. Training employs stratified five-fold cross-validation with
foreground-centered sampling to emphasize small lesions. At inference,
we use sliding-window tiling on the cropped volumes, lightweight post-
processing to remove small isolated components, and a five-model ensem-
ble by averaging per-voxel logits before softmax. On the official HECK-
TOR 2025 Task 1 test set, our approach achieves a GTVp Dice of 0.5779,
a GTVn aggregated Dice (DSCage) of 0.5280, and a GTVn aggregated
lesion-wise F'1 of 0.3207. The overall recipe is concise and reproducible,
providing a strong and transparent baseline for multi-center head-and-
neck PET/CT segmentation under domain shift. (Team name: BIGS2)
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1 Introduction and Task Motivation

Head and neck (H&N) cancers remain a major global burden and are prone to
loco-regional failure despite modern therapy [1-3]. PET captures glycolytic ac-
tivity while CT provides anatomy; their complementarity is crucial for accurate
delineation of primary tumors and nodal disease [4]. HECKTOR 2025 extends
prior editions with a larger, multi-center cohort (> 1200 patients across >11
centers) and refined metrics that emphasize both segmentation quality and le-
sion detection [5,7]. Task 1 targets fully automatic detection and segmentation
of the primary tumor (GTVp) and metastatic lymph nodes (GTVn) on pre-
treatment FDG-PET/CT, with evaluation combining instance-aware aggregated
Dice (DSC,gg) and lesion-level F1 at IoU > 0.3 to reward methods that both find
and delineate multiple lesions [6,7]. Standardized nomenclature (AAPM TG-
263) ensures consistency and clinical interoperability [7].
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2 Data Description

The dataset comprises paired pre-treatment FDG-PET and low-dose, non-contrast-
enhanced CT for each case, collected on combined PET/CT systems from multi-
ple centers [4, 5]. Expert-drawn voxel-wise annotations provide a single label map
with three classes: background (0), GTVp (1), and GTVn (2), following harmo-
nized guidelines and centralized quality control; TG-263 naming (GTVp, GTVn)
is adopted [7]. By design, imaging-defined targets may include contourable GTVn
even when TNM reports NO, reflecting clinical practice in radiotherapy planning.
The expanded 2025 cohort increases diversity and statistical power for bench-
marking multimodal, multi-lesion segmentation under realistic domain shifts [5,
7]. The dataset builds upon previous HECKTOR editions [4, 5] and is now re-
leased as a unified multi-centric PET/CT resource [10].

3 Methods

3.1 Pre-processing

Data preparation. We first resample both CT and PET volumes to an isotropic
resolution of 1x1x1 mm and register them to a common voxel grid. To restrict
the input to the clinically relevant head-and-neck (H&N) field-of-view while keep-
ing the procedure fully automatic, we adopt a simple anatomy-aware cropping
strategy: (i) detect the superior head boundary by applying a coarse PET thresh-
old to locate metabolically active cranial tissue; (ii) estimate a 2D H&N center in
the axial plane from the average foreground mask across superior slices; and (iii)
extract a fixed-size 200x200x 310 mm bounding box centered at this point. In
practice, this deterministic crop consistently covers the full H&N region across
the training cohort while reducing the typical volume size from ~500x500x900
to 200x200x 310 voxels and eliminating irrelevant anatomy such as the thorax
and couch.

Data normalization. After spatial standardization, we normalize CT and PET
independently and then concatenate them into a 2-channel input (CT,PET):

— CT: intensities are linearly mapped from a predefined HU window to [0,1]
and then passed through a sigmoid nonlinearity, which softly clamps outliers
while preserving local contrast.

— PET: values are standardized to zero mean and unit variance across the
cropped volume and similarly transformed by a sigmoid to dampen extreme
uptake values.

This modality-specific normalization stabilizes optimization across centers and
scanners while maintaining the relative CT/PET contrast that is crucial for joint
tumor and lymph-node delineation.



Head-and-Neck PET/CT Lesion Segmentation via SSIMH and SegResNet 3

Original CT Cropped CT
A A

Fig. 1. Example of the pre-processing pipeline on a CHUM case. Left: original CT in
scanner coordinates. Right: standardized head-and-neck crop after resampling to 1 mm
isotropic spacing. The crop removes irrelevant anatomy while preserving the full tumor
and nodal extent.

Domain adaptation via SSIMH. To mitigate inter-center appearance shifts,

we adopt the Spectrum Swapping-based Image-level Harmonization (SSIMH)
method [8,9]. SSIMH operates in the frequency domain: given a source CT vol-

ume X and a reference (target) CT volume X;, we compute their discrete cosine
transforms (DCT), F; = DCT(X;) and F; = DCT(X;). Let £2r(7) denote the
low-frequency band defined by a radius (threshold) 7; SSIMH replaces the source
low-frequency coeflicients with those of the reference,

Fi[Qup(7)] < Fi[f2ur(7)], Xg = IDCT(F),

thereby transferring scanner /site-specific intensity /style while preserving high-
frequency anatomical detail [8]. In practice, we apply SSIMH slice-wise with a 2D
DCT on axial slices for efficiency and robustness [9]. Unless otherwise specified,
we use the toolbox default 7 = 3 for the swapped low-frequency region. SSIMH
is training-free and is executed after cropping but before normalizations; PET
is left unchanged.

A qualitative example of SSIMH is shown in Fig. 2, demonstrating that low-
frequency scanner /style statistics are aligned to the reference while anatomical
high-frequency structures remain preserved.

Reference strategy. We fix a single reference subject from the training co-
hort and adapt each source CT to this reference (one-to-one harmonization). For
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Fig. 2. SSIMH harmonization example. (CHUP-000) From left to right: (1) reference
CT, (2) source CT before harmonization, (3) source CT after SSIMH, (4) intensity
difference map (after — before). SSIMH selectively transfers low-frequency scanner /site
appearance while preserving anatomical structures.

scenarios with multiple incoming scans per site, SSIMH also supports batch har-
monization by adapting all source scans to a chosen site/template reference [9].
This yields a consistent intensity/style space across centers while leaving struc-
tural contrast largely intact.

Notes. (1) SSIMH is conceptually different from SSIM-guided histogram match-
ing; our implementation follows frequency-domain spectrum swapping. (2) We
clip X/ to valid HU ranges and retain original voxel spacing/geometry so down-
stream resampling and segmentation are unaffected.

3.2 Network and Training

Architecture. We use SegResNet (residual U-Net) from MONAT as the back-
bone, with encoder—decoder residual blocks and deep supervision on decoder
scales.

Patch sampling. From each pre-cropped H&N volume, we sample 192x192x192
voxel patches. Sampling is biased toward lesions to emphasize detection:

— probability 0.45 to center on primary tumor,
— probability 0.45 to center on lymph nodes,
— probability 0.10 to sample background.

Data augmentation. We apply spatial augmentations to both CT and PET:
random affine transforms and random flips along all axes. For CT only, we apply
intensity augmentations (random scale, shift, Gaussian noise, and blur). PET
intensities are not perturbed.
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Paired FDG-PET/CT
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Resampling & registration
1x1x1 mm, shared voxel grid

head-top detection, center-line estimation,

Anatomy-aware H&N crop
fixed 200%200x310 mm ROI

SSIMH harmonization (CT only)

frequency-domain spectrum swapping

Modality-wise normalization
CT: HU rescale — [0,1] + sigmoid
PET: zero-mean, unit-variance + sigmoid
Concatenate to 2-channel input (CT, PET)

Patch extraction
192% voxel patches
lesion-aware sampling
(0.45 GTVp / 0.45 GTVn / 0.10 background)

Sliding-window inference
on 200x200x310 mm crop
ROI 192 with overlap

Spatial (CT & PET): affine, flips

Data augmentation
CT-only intensity: scale, shift, noise, blur

Post-processing
remove small isolated components
GTVn distance prior to GTVp

3D SegResNet backbone
residual U-Net with deep supervision

Compound loss
Dice + Cross-Entropy Final outputs
summed over all heads 3D masks for GTVp & GTVn

Evaluation: Dice, DSCagg, lesion-wise F1

Fig.3. Overview of the proposed pipeline for HECKTOR 2025 Task 1: shared
pre-processing (blue), training pipeline (green), and inference/ensemble with post-
processing (orange).

Objective and optimization. The training loss is Dice 4+ Cross-Entropy
computed at the main output and summed over all deep-supervision heads.
Optimization uses standard stochastic gradient descent variants (e.g., Adam/AdamW)
with cosine or step-decay scheduling; exact hyper-parameters are provided in
code (omitted here for brevity).

Cross-validation protocol. We perform 5-fold cross-validation with strati-
fication by center and lesion presence where possible. Model selection is based on
mean validation performance over folds. The final submission can be an ensemble
(averaging logits) across the five fold-specific models.

4 Inference and Post-processing

At inference, we run sliding-window evaluation on the 200x200x310 mm crop
using ROI size 192x192x192 with overlap and Gaussian blending. We take
argmax over classes to obtain labels. We apply minimal post-processing: (i)
connected-component “island” removal for both classes, discarding components
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smaller than a voxel-count threshold; and (ii) a distance-based prior on lymph
nodes. Specifically, we compute a 3D Euclidean distance transform of the pre-
dicted GTVp and remove any GTVn component whose minimum surface-to-
surface distance to GTVp exceeds a fixed threshold. This suppresses anatomi-
cally implausible, isolated node predictions far from the primary tumor while
preserving contiguous or nearby nodal disease. No test-time augmentation is
used unless specified.

5 Training and Validation Protocol

All experiments were conducted using the MONAI framework implemented in
PyTorch. Prior to model training, CT and PET volumes were resampled to
an isotropic resolution of 1 mm and cropped to a standardized head-and-neck
field-of-view of 200 x 200 x 310 mm using the official HECKTOR neck-cropping
procedure. To mitigate inter-center variability, CT volumes were additionally
harmonized with SSIM-based histogram matching, while both modalities were
normalized using a sigmoidal intensity transform.

We adopted the 3D SegResNet architecture with deep supervision as the
segmentation backbone. Training samples were generated by extracting 1923
voxel patches according to a lesion-aware sampling strategy that oversamples
tumor regions and challenging hard negatives (probabilities: 0.45/0.45/0.10).
Data augmentation included spatial transformations applied to both CT and
PET (random affine, elastic deformation, and flipping), supplemented with CT-
specific intensity perturbations to reflect modality characteristics. Optimization
was performed using a compound loss combining Dice and Cross-Entropy terms
summed across all supervision scales.

Model development followed a 5-fold cross-validation scheme, with early stop-
ping based on the validation loss to prevent overfitting. Consistent with the
HECKTOR 2025 evaluation protocol, model performance was assessed using
lesion-wise detection F1 score, Dice similarity coefficient for primary tumors
and lymph nodes, surface-distance—based measures, and the aggregated Dice
(DSCagqe) computed across all predicted lesions.

6 Results

On the internal validation split of HECKTOR, 2025 Task 1, our method achieved:
GTVp Dice = 0.8393, GTVn aggregated Dice (DSC,gs) = 0.7657, and
GTVn aggregated lesion-wise F1 = 0.5455. Unless otherwise noted, these
metrics were computed after sliding-window inference on the standardized 200 x
200 x 310 mm head-and-neck crop with minimal post-processing and five-fold
logit ensembling.

On the official HECKTOR 2025 Task 1 test set, our method obtained: GTVp
Dice = 0.5779, GTVn aggregated Dice (DSC,gs) = 0.5280, and GTVn
aggregated lesion-wise F1 = 0.3207. Test-set predictions were generated
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using the same pre-processing, SegResNet backbone, and ensemble configuration
as in validation.

Table 1. Performance of the proposed method on the internal validation split and the
official HECKTOR 2025 Task 1 test set.

Split GTVp Dice 1+ GTVn DSCage T GTVn Lesion-F1 1
Validation (BIGS2) 0.8393 0.7657 0.5455
Test (BIGS2) 0.5779 0.5280 0.3207

Figure 4 summarizes the validation—test gap for the three challenge metrics,
highlighting the impact of domain shift on lymph-node detection.

Validation vs Test Performance (HECKTOR 2025 Task 1)

. Validation
- Test
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Fig. 4. Comparison of validation and test performance on HECKTOR 2025 Task 1.

In addition to the quantitative metrics, we provide a qualitative visualization
of our model’s prediction on a representative CHUM case in Fig. 5. The tripla-
nar view shows that the model is able to localize both the primary tumor and
involved lymph nodes, while most failure modes occur in small or low-uptake
nodal regions, consistent with the lesion-wise F1 results.

7 Discussion and Interpretation

The primary tumor (GTVp) Dice of 0.8393 reflects accurate voxel-wise delin-
eation in metabolically and morphologically conspicuous regions. For lymph
nodes (GTVn), the aggregated Dice of 0.7657 indicates good overlap quality,
while the aggregated lesion-wise F1 of 0.5455 highlights residual challenges in
small or low-contrast nodal detection. This pattern—higher voxel-wise overlap
than lesion-level detection—is consistent with the known difficulty of identifying
small, scattered nodes in multi-center PET/CT. The anatomy-aware crop and
foreground-biased sampling likely aided GTVp delineation; SSIMH was designed



8 S. Huang et al.

Axial (z = 31)
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Fig. 5. Qualitative prediction example on case CHUM-001. The triplanar visualization
overlays the predicted segmentation (red: GTVp, green: GTVn) onto the original CT
volume. The model delineates the primary tumor clearly, while small, isolated nodal
regions remain challenging.

to mitigate inter-center CT appearance shifts and stabilize nodal overlap, though
lesion discovery remains the bottleneck reflected by F1.

8 Limitations and Future Work

First, fixed-size crops may be sub-optimal for extreme anatomies or cases where
the primary tumor or nodal disease extends close to the superior or inferior
bounds of the field-of-view; adaptive or anatomy-conditioned cropping could
further reduce misses near volume boundaries.

Second, SSIMH currently uses a single reference subject for harmonization,
which may not fully capture the diversity of acquisition protocols and scanner
characteristics in all centers. Center-aware or multi-reference strategies could
provide more robust harmonization without sacrificing structural fidelity.

Third, the pronounced drop in GTVn lesion-wise F1 from validation to test
indicates that lesion-level detection for small nodes remains the main limitation.
Future work will focus on improving nodal recall without inflating false positives,
for example, via hard-negative mining, cascaded detection-and-segmentation
schemes, or integrating uncertainty estimation into training and inference.

Finally, we have not yet explored test-time augmentation, more advanced en-
sembling strategies, or foundation-model initialization for PET /CT, all of which
may further enhance generalization in multi-center settings.

9 Conclusion

We presented a compact, reproducible baseline for HECKTOR 2025 Task 1 using
a MONAI SegResNet backbone combined with anatomy-aware pre-processing
and SSIMH-based CT harmonization. The pipeline is intentionally simple—
standardized resampling and head-and-neck cropping, frequency-domain CT har-
monization, modality-specific normalization, lesion-aware patch sampling, and
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a five-model ensemble with minimal post-processing—yet achieves competitive
performance on a challenging multi-center PET/CT segmentation task.

On the official HECKTOR 2025 test set, the method achieved a GTVp Dice
of 0.5779, a GTVn aggregated Dice (DSC,g,) of 0.5280, and a GTVn aggregated
lesion-wise F1 of 0.3207. These results indicate strong voxel-level segmentation
for primary tumors and reasonable nodal overlap, while highlighting lesion-level
detection for small nodes as a key area for improvement. We release this recipe
as a transparent, easily reproducible baseline for future work on robust head-
and-neck PET/CT segmentation and domain adaptation in large multi-center
cohorts.
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