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ABSTRACT

In this paper, we focus on the problem of minimizing a continuously differen-
tiable convex objective function, minx f(x). Recently, Malitsky (2020); Ala-
caoglu et al. (2023) developed an adaptive first-order method, GRAAL. This
algorithm computes stepsizes by estimating the local curvature of the objective
function without any line search procedures or hyperparameter tuning, and attains
the standard iteration complexity O(L∥x0 − x∗∥2/ϵ) of fixed-stepsize gradient
descent for L-smooth functions. However, a natural question arises: is it pos-
sible to accelerate the convergence of GRAAL to match the optimal complexity
O(

√
L∥x0 − x∗∥2/ϵ) of the accelerated gradient descent of Nesterov (1983)? Al-

though some attempts have been made by Li & Lan (2025); Suh & Ma (2025), the
ability of existing accelerated algorithms to adapt to the local curvature of the
objective function is highly limited. We resolve this issue and develop GRAAL
with Nesterov acceleration, which can adapt its stepsize to the local curvature at
a geometric, or linear, rate just like non-accelerated GRAAL. We demonstrate
the adaptive capabilities of our algorithm by proving that it achieves near-optimal
iteration complexities for L-smooth functions, as well as under a more general
(L0, L1)-smoothness assumption (Zhang et al., 2019).

1 INTRODUCTION

First-order, or gradient, optimization methods are highly popular in many practical applications due
to their simplicity and scalability. However, the key limitation of these methods is that they require
the choice of the stepsize parameter. In this paper, we focus on developing efficient gradient methods
that can adjust the stepsize at each iteration in an adaptive manner. Formally speaking, we consider
the following optimization problem:

min
x∈Rd

f(x), (1)

where Rd is a finite-dimensional Euclidean space, and f(x) : Rd → R is a convex continuously
differentiable objective function. We assume that problem (1) has a solution x∗ ∈ Rd.

1.1 GRADIENT METHODS

The simplest and most fundamental example of first-order methods is gradient descent (GD). This
algorithm performs iterations to find an approximate solution to problem (1) according to the fol-
lowing update rule:

xk+1 = xk − η∇f(xk), (2)

where η > 0 is the stepsize. Despite its simplicity, GD and its variants are widely used in practice,
especially for solving large-scale problems that often appear, for instance, in machine learning. It is
well-known (Polyak, 1963; Nesterov et al., 2018; Drori & Teboulle, 2014) that in the case where the
objective function f(x) is L-smooth, i.e., the gradient ∇f(x) is L-Lipschitz, GD with the stepsize
η = 1/L achieves the following iteration complexity:

K = O
(
L∥x0 − x∗∥2/ϵ

)
⇒ f(xK)− f(x∗) ≤ ϵ. (3)

In addition, in his seminal work, Nesterov (1983) proposed a modification of GD that implements
acceleration via momentum. This accelerated gradient descent (AGD) achieves substantially im-
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proved iteration complexity:

K = O
(√

L∥x0 − x∗∥2/ϵ
)

⇒ f(xK)− f(x∗) ≤ ϵ. (4)

It was shown that AGD is an optimal algorithm. That is, the complexity in eq. (4) cannot be improved
by any first-order optimization method due to the lower complexity bounds of Nesterov et al. (2018).

1.2 ADAPTIVE METHODS

One of the main issues with the standard GD and AGD is that they require tuning the stepsize η.
In particular, they require knowledge of the gradient Lipschitz constant L to achieve the iteration
complexities in eqs. (3) and (4). A typical approach to addressing this issue is to use a time-varying
stepsize ηk in eq. (2), which is computed at each iteration according to a certain adaptive rule.

Line search. The simplest way to compute the stepsize ηk is to use line search (or backtracking), an
iterative procedure that finds ηk satisfying a certain objective function value decrement condition.
It was originally proposed by Goldstein (1962); Armijo (1966), and its modern variant for GD and
AGD was analyzed by Nesterov (2013). Unfortunately, line search makes the iterations of gradient
methods more expensive as it requires the computation of the gradient ∇f(x) and/or function value
f(x) multiple times without making any “progress”. Hence, it is rarely used in practice.

AdaGrad-type methods. An alternative approach is to use the following stepsizes ηk in eq. (2):

ηk = η ·
(∑k

i=0∥∇f(xi)∥2
)−1/2

, (5)

where η > 0 is a positive parameter. The resulting algorithm is called AdaGrad and was originally
developed by Duchi et al. (2011); McMahan & Streeter (2010). It is well known that AdaGrad
has the complexity of GD in eq. (3) for L-smooth functions (Levy et al., 2018). Moreover, this
algorithm is universal: it can also achieve the corresponding complexities of GD for non-smooth but
Lipschitz functions, or in the case where only stochastic estimates of the gradients are available, all
with a single choice of the parameter η ∝ ∥x0 − x∗∥ (Levy et al., 2018; Li & Orabona, 2019;
Orabona, 2023). In addition, accelerated variants of AdaGrad are available (Levy et al., 2018;
Cutkosky, 2019; Kavis et al., 2019; Rodomanov et al., 2024; Kreisler et al., 2024; Kovalev, 2025),
as well as parameter-free variants (Cutkosky & Orabona, 2018; Orabona & Pál, 2021; Defazio &
Mishchenko, 2023; Mishchenko & Defazio, 2023; Ivgi et al., 2023; Khaled et al., 2023; Kreisler
et al., 2024), which do not require tuning the parameter η. Unfortunately, AdaGrad-type methods
have a significant drawback: the stepsize ηk in eq. (5) is non-increasing. Hence, it cannot truly
adapt to the local curvature of the objective function, which may limit its performance in many
applications (Defazio et al., 2022).

Local curvature estimation. In this paper, we focus on a different approach to computing the
stepsize ηk by estimating the local curvature, i.e., the local gradient Lipschitz constant. To the best
of our knowledge, the first such algorithm that has strong convergence guarantees, GRAAL, was
proposed by Malitsky (2020). It is a modification of GD, which uses the following stepsize rule at
each iteration:

ηk+1 = min
{
(1 + γ)ηk,

νλ2
k+1

ηk−1

}
, (6)

where λk+1 > 0 is a certain finite-difference estimate of the local inverse gradient Lipschitz constant
at the current iteration, and γ, ν > 0 are positive constants. Alacaoglu et al. (2023) showed that
GRAAL can achieve the iteration complexity in eq. (3) for L-smooth functions. Moreover, Malitsky
& Mishchenko (2020) established the same result for AdGD, the vanilla GD with a stepsize rule
similar to eq. (6):

ηk+1 = min
{
ηk
√

1 + γηk

ηk−1
, νλk+1

}
. (7)

Overall, GRAAL and AdGD demonstrate attractive results, both theoretically and experimentally,
on a range of practical optimization problems (Alacaoglu et al., 2023; Malitsky & Mishchenko,
2020).

1.3 MAIN CONTRIBUTION: GRAAL WITH NESTEROV ACCELERATION

Motivated by the attractive theoretical and practical results for GRAAL and AdGD, we pose the
following natural research question:
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Q1. Is it possible to develop an algorithm that incorporates Nesterov acceleration and can truly
adapt to the local curvature of the objective function, as GRAAL and AdGD do?

Unfortunately, to the best of our knowledge, there is no positive and comprehensive answer to this
question. Malitsky & Mishchenko (2020) proposed an accelerated version of AdGD, which showed
strong experimental results. However, it is only a heuristic and does not have any theoretical con-
vergence guarantees whatsoever. In addition, Li & Lan (2025) developed AC-FGM and Suh & Ma
(2025) developed AdaNAG, which can be seen as attempts to incorporate Nesterov acceleration into
GRAAL/AdGD with theoretical guarantees. However, the abilities of AC-FGM and AdaNAG to
adapt to the local curvature of the objective function are highly limited, as we will discuss later.

In this paper, we provide a positive answer to Question 1 and make the following contributions:

(i) In Section 2, we develop Accelerated GRAAL (Algorithm 1) for solving problem (1),
which incorporates Nesterov acceleration and utilizes a generalized version of the step-
size update rules in eqs. (6) and (7). We also provide a theoretical convergence analysis of
this algorithm.

(ii) In Section 3, we show that Algorithm 1 achieves the optimal iteration complexity in eq. (4)
for L-smooth functions up to additive logarithmic factors, without the requirement of hy-
perparameter tuning or any additional line search procedures.

(iii) In Section 4, we demonstrate the adaptive capabilities of Algorithm 1 by showing that it
achieves the iteration complexity in eq. (4) under the more general (L0, L1)-smoothness of
the objective function, up to constant additive factors that do not depend on the precision ϵ.

The important feature of Algorithm 1 is that it can adapt the stepsize ηk to the local curvature at
a geometric, or linear, rate, just like the standard non-accelerated GRAAL. In contrast, AC-FGM
and AdaNAG allow only sublinear growth of the stepsize, so their adaptive abilities are insufficient.
In particular, Algorithm 1 is the first adaptive algorithm that can achieve near-optimal iteration
complexity for (L0, L1)-smooth functions, while there are no such results for AC-FGM or AdaNAG,
to the best of our knowledge. More details are available in Sections 3.2 and 4.2.

1.4 RELATED WORK

More adaptive stepsizes: Barzilai-Borwein and Polyak. The idea of computing stepsizes using
estimates of the local gradient Lipschitz constant was previously used by Barzilai & Borwein (1988),
who proposed the following stepsize rule:

ηk+1 = ⟨xk+1−xk,∇f(xk+1)−∇f(xk)⟩
∥∇f(xk+1)−∇f(xk)∥2 . (8)

Unfortunately, GD with this rule provably works only in the case where the objective function f(x)
is quadratic (Raydan, 1993; Dai & Liao, 2002), and may not work otherwise (Burdakov et al., 2019).
Polyak (1969) suggested using GD with the following stepsize rule:

ηk+1 = f(xk+1)−f(x∗)
∥∇f(xk+1)∥2 . (9)

Similar to AdaGrad, GD with this rule was shown to be universal (Hazan & Kakade, 2019). How-
ever, it requires a tight estimate of the optimal objective function value f(x∗), which is rarely avail-
able in practice.

Optimization for (L0, L1)-smooth functions. The (L0, L1)-smoothness assumption was pro-
posed by Zhang et al. (2019) as a generalization and a more realistic alternative to the standard
L-smoothness. The convergence of gradient methods under this assumption has been extensively
studied in the literature (Zhang et al., 2020; Chen et al., 2023). Gorbunov et al. (2024) showed that
AdGD can achieve the iteration complexity of non-accelerated GD in eq. (3) up to additive con-
stant factors without the requirement of hyperparameter tuning or line search. Additionally, several
accelerated algorithms with theoretical guarantees are available (Li et al., 2023; Gorbunov et al.,
2024; Vankov et al., 2024). However, all these algorithms are non-adaptive, and only Vankov et al.
(2024) managed to achieve the optimal iteration complexity in eq. (4) up to additive constant factors,
with the requirement of a substantially more complex small-dimensional relaxation oracle (Nesterov
et al., 2021). It is also worth mentioning the concurrent work of Tyurin (2025), who managed to
achieve the complexity in eq. (4) up to additive constant factors. However, their algorithm requires
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the tuning of several parameters and is, therefore, also non-adaptive. Additionally, the initial version
of our paper appeared online prior to the work of Tyurin (2025), with only the results from Section 4
missing, which we were finalizing at that time.

2 ADAPTIVE GRADIENT METHOD WITH NESTEROV ACCELERATION

2.1 ALGORITHM DEVELOPMENT

In this section, we develop Accelerated GRAAL for solving problem (1). Below, we briefly describe
the key ideas used in the development of the algorithm. After assembling these ideas, we obtain the
resulting Algorithm 1.

Local curvature estimator. As discussed in Section 1.2, the stepsize rule in eq. (6) used in GRAAL
requires an estimate of the inverse local gradient Lipschitz constant λ. When the objective function
is convex, given two points x, z ∈ Rd, we can consider the following two options for computing λ:

Option I: λ = ∥x−z∥
∥∇f(x)−∇f(z)∥ , Option II: λ =

2Df (x,z)
∥∇f(x)−∇f(z)∥2 . (10)

GRAAL was originally developed for solving monotone variational inequalities (VI). Hence, it uses
Option I, which works for this more general problem class, with the gradient ∇f(x) replaced by
the monotone operator. However, it turns out that Option II can better exploit the properties of the
objective function f(x). Hence, we use Option II and, for convenience, define Λ(x; z) as follows:

Λ(x; z) =

{
2Df (x;z)

∥∇f(x)−∇f(z)∥2 ∇f(x) ̸= ∇f(z)

+∞ ∇f(x) = ∇f(z)
. (11)

It is worth noting that Li & Lan (2025); Suh & Ma (2025) also used Option II in AC-FGM and
AdaNAG, respectively.

Nesterov acceleration. To incorporate Nesterov acceleration in Algorithm 1, we use its recent
interpretation by Kovalev & Borodich (2024). The idea is that at the iteration k of a gradient method,
we replace the objective function f(x) with the function fk(x) : Rd → R, defined as follows:

fk(x) = α−1
k · f(αkx+ (1− αk)xk), where αk ∈ (0, 1], xk ∈ Rd. (12)

In the case where GD is used, that is, xk+1 = xk − ηk∇fk(xk), we can choose αk = 2/(k +
2) and xk+1 = αkxk+1 + (1 − αk)xk, which gives the STM algorithm (Gasnikov & Nesterov,
2016), a variant of AGD. However, we use the definition in eq. (12) as it substantially simplifies the
development of Algorithm 1.

GRAAL extrapolation. We use the extrapolation step of GRAAL in combination with the inter-
pretation of Nesterov acceleration above. It can be summarized as follows:

xk+1 = xk − ηk∇fk(x̂k), x̂k+1 = xk+1 + θ(xk+1 − xk), (13)

where θ > 0 is the extrapolation parameter. GRAAL uses extrapolation for two reasons. First, the
vanilla gradient method does not work for VI as it diverges even on simple bilinear min-max prob-
lems (Daskalakis et al., 2017). Hence, the extragradient method (Korpelevich, 1976; Mishchenko
et al., 2020) or methods with extrapolation (Daskalakis et al., 2017; Malitsky & Tam, 2020; Ko-
valev et al., 2022) are typically used. Second, and more importantly, to the best of our knowledge,
the particular type of extrapolation used by GRAAL plays a key role in its adaptive capabilities.
In particular, it is an open question whether our results can be obtained with a different baseline
algorithm.

Problem: choosing αk. Although it may seem that the tools described above are already enough to
obtain Algorithm 1, one issue remains. The interpretation of Kovalev & Borodich (2024) combined
with the GRAAL step in eq. (13) suggests that one should choose xk+1 = αkx̂k + (1 − αk)xk.
However, this would require that the parameters αk satisfy the following inequality:1

ηk/αk ≤ ηk−1/αk−1 + ηk. (14)

1More details on eq. (14) are available in the works of Kovalev & Borodich (2024); Kovalev (2025).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Accelerated GRAAL
1: input: x0 ∈ Rd, η0 > 0, K ∈ {1, 2, . . .}
2: parameters: θ, γ, ν > 0 satisfying eq. (19)
3: α0 = β0 = 1, H0 = H−1 = η−1 = η0, x̃0 = x0 = x0

4: for k = 0, 1, . . . ,K − 1 do
5: αk+1 = (1+γ)ηk

Hk+(1+γ)ηk

6: xk+1 = xk − ηk∇f(x̃k) ▷ gradient step
7: xk+1 = βkx̃k + (1− βk)xk ▷ additional coupling step
8: x̂k+1 = xk+1 + θ(xk+1 − xk) ▷ GRAAL extrapolation
9: x̃k+1 = αk+1x̂k+1 + (1− αk+1)xk+1 ▷ Nesterov acceleration/STM

10: λk+1 = min{Λ(xk+1; x̃k),Λ(xk+1; x̃k+1)} ▷ local curvature estimator

11: ηk+1 = min
{
(1 + γ)ηk,

νHk−1λk+1

ηk−1

}
, Hk+1 = Hk + ηk+1 ▷ adaptive stepsize

12: βk+1 = ηk+1

αk+1Hk+1

13: output: xK ∈ Rd

The best option is to choose αk such that eq. (14) becomes an equality. However, this is impossible:
computing ηk requires an estimate of the local curvature, which requires the computation of the
gradient ∇fk(x̂k) and its use in eq. (11), which in turn requires knowing αk in advance. Alterna-
tively, one could follow the approach of Li & Lan (2025) and Suh & Ma (2025) used in AC-FGM
and AdaNAG, respectively, and simply predefine αk ∝ 2/(k + 2), just like in AGD. However,
this requires additional restrictions on the stepsize ηk and vastly limits the adaptation capabilities of
AC-FGM, as we will discuss in Section 3.2.

Solution: additional coupling step. The key idea to resolve the issue above is to avoid the inequal-
ity in eq. (14) by defining xk+1 differently, using an additional coupling step:

xk+1 = βkx̃k + (1− βk)xk, x̃k = αkx̂k + (1− αk)xk, (15)

where βk ∈ (0, 1]. Consequently, instead of requiring the inequality eq. (14), we choose the param-
eters βk to satisfy the following relation:2

ηk/(αkβk) = ηk−1/(αk−1βk−1) + ηk = · · · = Hk, where Hk =
∑k

i=0ηi. (16)

Hence, we choose βk = ηk/(αkHk) and avoid additional restrictions on the stepsize ηk. The only
remaining question is how to ensure βk ≤ 1. The answer is that we choose αk = (1+γ)ηk−1

Hk−1+(1+γ)ηk−1
.

Indeed, in Lemma 1, we prove that βk ∈ (0, 1] by utilizing the inequality ηk ≤ (1 + γ)ηk−1, which
is implied by our stepsize rule in eq. (17). Moreover, our choice of αk is implementable as it does
not require knowledge of ηk, and, in contrast to AC-FGM and AdaNAG, it is adaptive because it
is not based on any predefined sequence, but rather uses the adaptive stepsizes ηk−1 and their sum
Hk−1.

Adaptive stepsize. We use the following adaptive stepsize ηk in our algorithm:

ηk+1 = min
{
(1 + γ)ηk,

νHk−1λk+1

ηk−1

}
, (17)

where λk+1 = min{Λ(xk+1; x̃k),Λ(xk+1; x̃k+1)} is the local curvature estimator. This rule is
primarily implied by the convergence analysis in the proof of Theorem 1 in Appendix A.3. It can
also be seen as a generalization of the stepsize rules in eqs. (6) and (7) for GRAAL and AdGD,
respectively.

2.2 CONVERGENCE ANALYSIS

We start the convergence analysis with the following two lemmas. In Lemma 1, we show that
βk ∈ (0, 1] as discussed in the previous Section 2.1. In Lemma 2, we use the additional coupling
step from line 7 and the convexity of the objective function f(x) to obtain some useful inequalities.
Lemma 1 (↓). λk, ηk, Hk > 0, αk ∈ (0, 1), and βk ∈ (0, 1] for all k ∈ {1, . . . ,K}.

2More details on eq. (16) are available in the proof of Theorem 1 in Appendix A.3.
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Lemma 2 (↓). The following inequalities hold for all k ∈ {1, . . . ,K − 1}:
f(xk)− f(x̃k) ≤ 1

βk
(f(xk)− f(xk+1)), Df (xk; x̃k−1) ≤ Df (xk−1; x̃k−1). (18)

Now, we obtain the main convergence result in Theorem 1. Note that Algorithm 1 requires the
universal constant parameters θ, γ, ν > 0 to satisfy eq. (19). However, it is easy to verify that such
parameters exist. Using Theorem 1, we also obtain the upper bound on the functional suboptimality
and distance to the solution of problem (1) in Corollary 1.
Theorem 1 (↓). Let parameters θ, γ, ν > 0 satisfy the following relations:

4νθ(1 + γ)2 = γ, 1 + 2γ + 2γθ2

(1+θ)2 ≤ θ
(1+θ) +

θ2

(1+θ)2 . (19)

Then, the following inequality holds for all x ∈ Rd and k ∈ {1, . . . ,K − 1}:

Ψk+1(x) ≤ Ψk(x)− γθ
2 η2k∥∇f(x̃k)∥2 − 1

4(1+γ)ηk Df (xk; x̃k), (20)

where Ψk(x) is defined as follows:

Ψk(x) =
1
2∥xk−x∥2+Hk−1(f(xk)−f(x))+ θηkηk−1

λk
Df (xk−1; x̃k−1)+

γθ
2 ∥xk−xk−1∥2. (21)

Corollary 1 (↓). The following inequality holds for all x ∈ Rd and K ≥ 1:
1
2∥xK − x∥2 +HK−1(f(xK)− f(x)) ≤ 1

2∥x0 − x∥2 + (1+γθ)
2 η20∥∇f(x0)∥2. (22)

It is important to highlight that the results in Theorem 1 and Corollary 1 are general and do not
require any additional assumptions on the objective function other than convexity and continuous
differentiability. Consequently, they do not imply any non-asymptotic convergence results for Al-
gorithm 1. However, in Sections 3 and 4, we will establish particular iteration complexities in the
cases where the objective function is L-smooth and (L0, L1)-smooth, respectively.

3 CONVERGENCE ANALYSIS FOR L-SMOOTH FUNCTIONS

3.1 MAIN RESULT

In this section, we establish the iteration complexity of Algorithm 1 in the case where the objective
function f(x) is L-smooth for L > 0. That is, the gradient ∇f(x) is L-Lipschitz:

∥∇f(x)−∇f(z)∥ ≤ L∥x− z∥ for all x, z ∈ Rd. (23)
We start with the following two lemmas. Lemma 3 provides a lower bound on the curvature esti-
mates λk. This lemma is standard, and its proof is given, for instance, by Nesterov et al. (2018,
Theorem 2.1.5). Lemma 4 bounds the growth of the cumulative sum Hk of the stepsizes ηk.
Lemma 3. λk ≥ 1/L for all k ∈ {1, . . . ,K}.
Lemma 4 (↓). Hk−1 ≤ Hk ≤ (2 + γ)Hk−1 for all k ∈ {0, . . . ,K}.

Now, we are ready to establish the lower bound on the cumulative sum Hk of the stepsizes ηk in the
following Theorem 2. Using this bound, we establish the iteration complexity of Algorithm 1 for
L-smooth functions in Corollary 2.
Theorem 2 (↓). Let constants c,m ∈ R be defined as follows:

c = min

{ √
ν

3(2+γ) ,
√
νγ

16 4
√

γ(1+γ)5(2+γ)3

}
, m =

⌈
max

{
2, ln1+γ

[
4c2

γη0L

]}⌉
. (24)

Then, the following inequality holds for all k ∈ {0, . . . ,K}:√
Hk ≥ c√

L
· (k −m). (25)

Corollary 2. Let η0L ≤ 1. Then, to reach the precision f(xK)− f(x∗) ≤ ϵ, the following number
of iterations of Algorithm 1 is sufficient:

K = O
(
1 +

√
L∥x0 − x∗∥2/ϵ+ ln

[
1

η0L

])
. (26)

Note that the complexity result in Corollary 2 requires the initial stepsize η0 to satisfy the inequality
η0 ≤ 1/L. However, we can simply choose η0 to be very small, say 10−10, as suggested by Malitsky
& Mishchenko (2020) for AdGD. This will only result in a small logarithmic additive factor in the
iteration complexity as implied by Corollary 2.
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3.2 COMPARISON WITH AC-FGM AND ADANAG

AC-FGM. Li & Lan (2025, Corollary 1) use the following adaptive stepsize rule for AC-FGM:

ηk+1 = min
{

k+1
k ηk,

1
8kλk+1

}
. (27)

This rule implies that the stepsize growth is restricted by the inequality ηk+1 ≤ (1 + 1/k)ηk. As
mentioned in Section 2.1, this restriction substantially limits the ability of AC-FGM to adapt to the
curvature of the objective function. In particular, the result of Li & Lan (2025, Corollary 1) implies
the following iteration complexity, provided η0 ≤ 0.4/L:

K = O
(√

max{1, 1/(η0L)} · L∥x0 − x∗∥2/ϵ
)

⇒ f(xK)− f(x∗) ≤ ϵ. (28)

This matches the optimal complexity in eq. (4), if we choose η0 = 0.4/L. However, if we choose
the initial stepsize to be too small, i.e., η0 ≪ 0.4/L, the complexity result in eq. (28) will be worse
than the optimal one by a factor of 1/

√
η0L. In other words, the stepsize rule in eq. (27) cannot

adapt to a “bad” choice of the initial stepsize η0 due to stepsize growth restrictions. Li & Lan (2025)
even had to use a line search at the first iteration of AC-FGM to find a “good” initial stepsize η0 and
achieve the optimal complexity in eq. (4).

AdaNAG. Suh & Ma (2025) uses a stepsize rule in AdaNAG, which is not substantially different
from eq. (27). Consequently, they encounter issues similar to AC-FGM. The difference is that they
do not use a line search at the first iteration, but rather estimate η0 using Option I in eq. (10), which
implies the following iteration complexity:

K = O
(
max{1, η0L} ·

√
L∥x0 − x∗∥2/ϵ

)
⇒ f(xK)− f(x∗) ≤ ϵ. (29)

This result may be significantly worse than the optimal one in eq. (4) if the initial stepsize estimate
is too large, i.e., η0L ≫ 1. Moreover, similar to AC-FGM, the growth of the stepsize in AdaNAG is
also substantially restricted, which can limit its performance, for instance, under the more realistic
(L0, L1)-smoothness assumption.

Algorithm 1 vs AC-FGM and AdaNAG. In contrast to AC-FGM and AdaNAG, our stepsize rule
in eq. (17) allows the geometric growth of the stepsize ηk+1 ≤ (1 + γ)ηk. Hence, Algorithm 1
can adapt even to a very small choice of the initial stepsize η0 at the cost of a small logarithmic
additive factor in the iteration complexity, as indicated by Corollary 2. In addition, as we will discuss
in Section 4, the geometric growth of the stepsize is crucial for adaptation under the (L0, L1)-
smoothness assumption, where the local gradient Lipschitz constant may change at an exponential
rate. It is also worth mentioning that Li & Lan (2025, Corollary 2) and Suh & Ma (2025, Theorem 6)
tried to resolve the issues with the stepsize growth restrictions in AC-FGM and AdaNAG by using
different stepsize rules. However, they could not properly justify the efficiency of these new stepsize
rules and provably achieve geometric growth of the stepsize.

4 CONVERGENCE ANALYSIS FOR (L0, L1)-SMOOTH FUNCTIONS

In this section, we establish the iteration complexity of Algorithm 1 in the case where the objective
function f(x) is (L0, L1)-smooth for L0, L1 > 0. That is, the objective function f(x) is twice
continuously differentiable and the following inequality holds:

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ for all x ∈ Rd. (30)

This assumption was proposed by Zhang et al. (2019) and is primarily motivated by experiments
suggesting that the norm of the Hessian correlates with the gradient norm of the objective functions
in deep neural networks. Note that the requirement for twice continuous differentiability may be re-
laxed by using the following equivalent condition for continuously differentiable objective functions
(Vankov et al., 2024, Lemma 2.5):

∥∇f(x)−∇f(z)∥ ≤ (L0 + L1∥∇f(x)∥) · 1
L1

(exp(L1∥x− z∥)− 1). (31)

It is also important to highlight that (L0, L1)-smoothness implies L-smoothness with L = L0. The
reverse is obviously not true: (L0, L1)-smoothness is much more general and allows the exponen-
tial growth of the objective function and local gradient Lipschitz constant (Gorbunov et al., 2024,
Lemma 2.1; Vankov et al., 2024, Lemma 2.5).
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4.1 MAIN RESULT

We start the convergence analysis of Algorithm 1 with Lemma 5, which refines the previously ob-
tained results in Theorem 1 and Corollary 1. Furthermore, in Lemmas 6 and 7, we establish lower
bounds on the estimate λk of the local inverse gradient Lipschitz constant.
Lemma 5 (↓). The following inequalities hold for all K ≥ 1:

∥x̃K−1 − x∗∥ ≤ D, ∥xK−1 − x∗∥ ≤ D,
∑K

i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
≤ D2, (32)

where D ≥ 0 is defined as follows:

D2 = max
{

1
γθ , 2(1 + γ), (1 + 2θ)2

}(
∥x0 − x∗∥2 + (1 + γθ)η20∥∇f(x0)∥2

)
. (33)

Lemma 6 (↓). λk ≥ λmin for all k ∈ {1, . . . ,K}, where λmin > 0 is defined as follows:

λmin = 1
L0

exp(−3L1D). (34)

Lemma 7 (↓). The following inequality holds for all k ∈ {1, . . . ,K}:

λk ≥ 4

9max{2L0, 2L1∥∇f(x̃k)∥, 2L1∥∇f(x̃k−1)∥, 9L2
1 Df (xk, x̃k), 9L2

1 Df (xk−1, x̃k−1)}
. (35)

Next, we define the sets of indices T1(k), T2(k), T3(k), T4(k) as follows:

T1(k) =
{
1 ≤ i ≤ k : ηi =

νHi−2λi

ηi−2
and λi ≥ 2

9L0

}
,

T2(k) =
{
1 ≤ i ≤ k : ηi =

νHi−2λi

ηi−2
and λi <

2
9L0

}
,

T3(k) =
{
1 ≤ i ≤ k : ηi <

νHi−2λi

ηi−2
and (l(i) ∈ T1(k) or i− l(i) > m)

}
,

T4(k) =
{
1 ≤ i ≤ k : ηi <

νHi−2λi

ηi−2
and l(i) ∈ T2(k) ∪ {0} and i− l(i) ≤ m

}
,

(36)

where m is a positive integer, and the integer function l(k) is defined as follows:

l(k) = max{i : i ∈ T1(k) ∪ T2(k) ∪ {0}}. (37)

It is not hard to verify that these sets of indices are pairwise disjoint and that ∪4
j=1Tj(k) =

{1, . . . , k}. Moreover, the sizes of the sets T2(k) and T4(k) are bounded as shown in the following
Lemma 8.
Lemma 8 (↓). The following inequalities hold for all k ∈ {1, . . . ,K}:

|T4(k)| ≤ m+m|T2(k)|, |T2(k)| ≤ 1 + 81(1+γ)2

2min{ν,ν2} · L2
1D2. (38)

Now, we establish the key lower bound on the cumulative sum Hk of the stepsizes ηk in the following
Theorem 3. Using this bound, we establish the iteration complexity of Algorithm 1 for (L0, L1)-
smooth functions in Corollary 3.
Theorem 3 (↓). Let c > 0 and m > 0 be defined as follows:

c = min

{ √
2ν

9(2+γ) ,
√
νγ

24 4
√

4γ(1+γ)5(2+γ)3

}
, m =

⌈
max

{
1, ln1+γ

[
4c2

γη0L0

]
, 4 ln1+γ

[
2

9L0λmin

]}⌉
. (39)

Then, the following inequality holds for all k ∈ {0, . . . ,K}.√
Hk ≥ c√

L0
· (k − |T2(k)| − |T4(k)| − 1). (40)

Corollary 3 (↓). Let η0L0 exp(L1∥x0 − x∗∥) ≤ 1. Then, D = O(∥x0 − x∗∥), and to reach the
precision f(xK)− f(x∗) ≤ ϵ, the following number of iterations of Algorithm 1 is sufficient:

K = O
(
1 +

√
L0D2/ϵ+ L3

1D3 +
(
1 + L2

1D2
)
ln
[

1
η0L0

])
. (41)

Similar to Corollary 2 for the L-smooth case, Corollary 3 requires the initial stepsize η0 to satisfy
the inequality η0L0 exp(L1∥x0 − x∗∥) ≤ 1. We can ensure this inequality without any line search
or hyperparameter tuning, simply by choosing a very small initial stepsize η0. Choosing the initial
stepsize η0 too small will only result in an additive constant factor

(
1 + L2

1D2
)
ln

[
1

η0L0

]
, which

does not depend on the precision ϵ and has a logarithmic dependence on η0.
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Table 1: Comparison of the iteration complexities for solving problem (1) under the convexity and
(L0, L1)-smoothness; universal constants are omitted; D = ∥x0 − x∗∥; the initial functional gap is
bounded as f(x0)− f(x∗) ≤ O(L0D2 exp(L1D)), where necessary; optimality is considered up to
additive constants.

Reference Optimal Adaptive

Li et al. (2023)
√

L0D2

ϵ ×
(
1 + L2

1D2
)
exp(O(1)L1D) ✘ ✘

Gorbunov et al. (2024)
√

L0D2

ϵ ×
√

1 + L1D exp(L1D) ✘ ✘

Vankov et al. (2024)
√

L0D2

ϵ + (L1D)5/3 ✔ ✘

Tyurin (2025)
√

L0D2

ϵ + (L1D)2 ✔ ✘

Corollary 3
√

L0D2

ϵ + (L1D)3 ✔ ✔

Iteration Complexity

4.2 COMPARISON WITH EXISTING RESULTS

Accelerated methods for (L0, L1)-smooth functions. As mentioned in Section 1.4, there are sev-
eral existing accelerated algorithms with theoretical guarantees for minimizing convex (L0, L1)-
smooth functions. To compare these results with Algorithm 1, we use a particular choice of the
initial stepsize η0 = 1

L0
exp(−L1∥x0 − x∗∥) in Corollary 3. The comparison is summarized in

Table 1. The algorithms of Li et al. (2023); Gorbunov et al. (2024) are neither adaptive nor optimal.
The algorithms of Vankov et al. (2024); Tyurin (2025) are near-optimal as they match the complex-
ity in eq. (4) up to additive constants, just like Algorithm 1. The result of Vankov et al. (2024) has
a slightly better additive constant (L1D)5/3. However, neither of the algorithms of Vankov et al.
(2024); Tyurin (2025) is adaptive: the algorithm of Vankov et al. (2024) requires solving a one-
dimensional auxiliary optimization subproblem at each iteration, and the algorithm of Tyurin (2025)
requires tuning several parameters. In contrast, Algorithm 1 does not require any hyperparameter
tuning or line search to achieve near-optimal complexity, as discussed in the previous Section 4.1.

AdGD for (L0, L1)-smooth functions. Gorbunov et al. (2024) established the iteration complexity
O
(
L0D2/ϵ+ (L1D)6

)
for the AdGD algorithm under the (L0, L1)-smoothness assumption.3 This

result is unsurprisingly worse than ours in Corollary 3 due to the lack of acceleration. In addition,
Gorbunov et al. (2024) did not prove that the constant D is bounded as D = O(∥x0 − x∗∥). In
fact, D also contains the initial objective function gap f(x0) − f(x∗), and hence, it may have an
exponential dependency on the initial distance ∥x0 − x∗∥.

AC-FGM and AdaNAG. As previously discussed in Section 3.2, we allow the geometric growth
of the adaptive stepsize in Algorithm 1, which is crucial for obtaining the near-optimal complexity
result in Corollary 3. Indeed, the estimates of the local curvature λk can scale exponentially in
the worst case according to Lemma 6, but can grow up to O(1/L0) when the algorithm reaches a
certain region near the solution x∗. Hence, the growth of the stepsize at a geometric rate or faster is
necessary to avoid exponential factors in the iteration complexity. In contrast, Li & Lan (2025); Suh
& Ma (2025) do not provide any convergence guarantees for (L0, L1)-smoothness for AC-FGM and
AdaNAG. In addition, as previously discussed, the rate of stepsize growth in AC-FGM and AdaNAG
is far below geometric. Hence, we conjecture that it is not possible to reach near-optimal complexity
with these algorithms.

3Note that Gorbunov et al. (2024) incorrectly reported their result as Õ
(
L0D2/ϵ+ (L1D)4

)
.
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Appendix
A PROOFS FOR SECTION 2

A.1 PROOF OF LEMMA 1

First, we can show that λk > 0 for all k ∈ {1, . . . ,K}. Otherwise, if λk = 0, there exist
x, z ∈ Rd such that Λ(x, z) = 0 due to the definition of λk on line 10. Hence, Df (x; z) = 0
according to eq. (11). From the convexity of the function f(x), it follows that Df (x; z) ≥ 0. Hence,
x minimizes the function Df (·; z), and by the first-order optimality conditions, ∇x Df (x; z) =
∇f(x) − ∇f(z) = 0. This implies Λ(x; z) = +∞ according to eq. (11), which contradicts the
possibility of λk = 0.

Next, using the fact that λk > 0 and lines 3 and 11, it is easy to show that ηk, Hk > 0 for all
k ∈ {−1, . . . ,K}. Hence, the inclusions αk ∈ (0, 1) and βk ∈ (0,+∞) are obvious due to their
definitions on lines 5 and 12. Finally, we can upper-bound βk+1 as follows:

βk+1
(a)
=

ηk+1

αk+1Hk+1

(b)
=

ηk+1

Hk + ηk+1
· Hk + (1 + γ)ηk

(1 + γ)ηk

(c)
≤ (1 + γ)ηk

Hk + (1 + γ)ηk
· Hk + (1 + γ)ηk

(1 + γ)ηk
= 1,

where (a) uses line 12; (b) uses lines 5 and 11; (c) uses the inequality ηk+1 ≤ (1 + γ)ηk implied by
line 11 and the monotonicity of the function t 7→ t/(1 + t).

A.2 PROOF OF LEMMA 2

We can upper-bound f(xk+1) as follows:

f(xk+1)
(a)
= f(βkx̃k + (1− βk)xk)

(b)
≤ βkf(x̃k) + (1− βk)f(xk),

where(a) uses line 7; (b) uses Lemma 1 and the convexity of f(x). After rearranging, we obtain the
first desired inequality. Furthermore, we can upper-bound Df (xk, x̃k−1) as follows:

Df (xk; x̃k−1)
(a)
= Df (βk−1x̃k−1 + (1− βk−1)xk−1; x̃k−1)

(b)
≤ (1− βk−1)Df (xk−1; x̃k−1) + βk−1 Df (x̃k−1; x̃k−1)

(c)
≤ Df (xk−1; x̃k−1)

where (a) uses line 7; (b) and (c) use uses Lemma 1 and the convexity of Df (·; x̃k−1), which is
implied by the convexity of f(x). This proves the second desired inequality.

A.3 PROOF OF THEOREM 1

For all k ∈ {1, . . . ,K − 1}, we obtain the following:

1
2∥xk+1 − x∥2 = 1

2∥xk − x∥2 − 1
2∥xk+1 − xk∥2 + ⟨xk+1 − xk, xk+1 − x⟩

= 1
2∥xk − x∥2 − 1

2∥xk+1 − xk∥2 + ⟨xk+1 − xk, xk+1 − x̂k+1⟩
+ ⟨xk+1 − xk, x̂k+1 − x̂k + x̂k − x⟩
(a)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 + ⟨xk+1 − xk, x̂k+1 − x̂k + x̂k − x⟩

(b)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

+ ηk⟨∇f(x̃k), x− x̂k⟩
(c)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

+ ηk⟨∇f(x̃k), x− x̃k⟩+ (1−αk)ηk

αk
⟨∇f(x̃k), xk − x̃k⟩

(d)
≤ 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩
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+ ηk(f(x)− f(x̃k)) +
(1−αk)ηk

αk
(f(xk)− f(x̃k)−Df (xk; x̃k))

= 1
2∥xk − x∥2 −

(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

− ηk(f(xk)− f(x)) + ηk

αk
(f(xk)− f(x̃k))− (1−αk)ηk

αk
Df (xk; x̃k)

(e)
≤ 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

− ηk(f(xk)− f(x)) + ηk

αkβk
(f(xk)− f(xk+1))− (1−αk)ηk

αk
Df (xk; x̃k)

(f)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

− ηk(f(xk)− f(x)) +Hk(f(xk)− f(xk+1))− (1−αk)ηk

αk
Df (xk; x̃k)

(g)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

+Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− (1−αk)ηk

αk
Df (xk; x̃k),

where (a) uses line 8; (b) uses line 6; (c) uses line 9; (d) uses the convexity of function f(x); (e)
uses Lemma 2; (f) uses line 12; (g) uses line 11. Furthermore, we get the following:
1
2∥xk+1 − x∥2

≤ 1
2∥xk − x∥2 −

(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩ − ηk⟨∇f(x̃k−1), x̂k+1 − x̂k⟩

(a)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩

+ ηk

ηk−1
⟨xk − xk−1, x̂k+1 − x̂k⟩

(b)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩

+ ηk

θηk−1
⟨x̂k − xk, x̂k+1 − x̂k⟩

= 1
2∥xk − x∥2 −

(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩

+ ηk

2θηk−1
(∥x̂k+1 − xk∥2 − ∥x̂k − xk∥2 − ∥x̂k+1 − x̂k∥2)

(c)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩

+ ηk

2θηk−1
((1 + θ)2∥xk+1 − xk∥2 − θ2∥xk − xk−1∥2 − ∥x̂k+1 − x̂k∥2)

(d)
≤ 1

2∥xk − x∥2 + (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 + ηk∥∇f(x̃k)−∇f(x̃k−1)∥∥x̂k+1 − x̂k∥

− (1−αk)ηk

αk
Df (xk; x̃k) +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x)),

where (a) uses line 6; (b) and (c) use line 8; (d) uses the Cauchy-Schwarz inequality. Next, we get
1
2∥xk+1 − x∥2

≤ 1
2∥xk − x∥2 + (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− (1−αk)ηk

αk
Df (xk; x̃k) +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 + ηk∥∇f(x̃k)−∇f(x̃k−1)∥∥x̂k+1 − x̂k∥

(a)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2
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− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

αk
Df (xk; x̃k)

+ ηk∥∇f(x̃k)−∇f(xk)∥∥x̂k+1 − x̂k∥+ ηk∥∇f(xk)−∇f(x̃k−1)∥∥x̂k+1 − x̂k∥
(b)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

αk
Df (xk; x̃k)

+ ηk

√
2
λk

Df (xk; x̃k)∥x̂k+1 − x̂k∥+ ηk

√
2
λk

Df (xk; x̃k−1)∥x̂k+1 − x̂k∥
(c)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

αk
Df (xk; x̃k)

+ ηk

√
2
λk

Df (xk; x̃k)∥x̂k+1 − x̂k∥+ ηk

√
2
λk

Df (xk−1; x̃k−1)∥x̂k+1 − x̂k∥
(d)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

αk
Df (xk; x̃k) +

(1−αk)ηk

2αk
Df (xk; x̃k)

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 + θηkηk−1

λk
Df (xk−1; x̃k−1) +

ηk

2θηk−1
∥x̂k+1 − x̂k∥2

= 1
2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− (1−αk)ηk

4αk
Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

4αk
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

(e)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

4αk
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

where (a) uses the triangle inequality; (b) uses line 10 and eq. (11); (c) uses Lemma 2; (d) uses
Young’s inequality; (e) uses lines 5 and 11. Furthermore, we obtain the following:

1
2∥xk+1 − x∥2

≤ 1
2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − (1−αk)λk+1

4θαkηk+1
· θηk+1ηk

λk+1
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

(a)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − 1

4νθ(1+γ) ·
θηk+1ηk

λk+1
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

(b)
= 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − (1+γ)

γ · θηk+1ηk

λk+1
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

≤ 1
2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)
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+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − θηk+1ηk

λk+1
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

(c)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ 2(1+θ)2αkηk

(1−αk)λk
∥xk+1 − xk∥2 + 2θ2αkηk

(1−αk)λk
∥xk − xk−1∥2

≤ 1
2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
+ 4θαkηk

(1−αk)λk
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 + 2θ2αkηk

(1−αk)λk
∥xk − xk−1∥2

(d)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
(1 + γ) + 4θαkηk

(1−αk)λk
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 + 2θ2αkηk

(1−αk)λk
∥xk − xk−1∥2

(e)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
(1 + γ) + 4νθ(1 + γ)2 − θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 + 2νθ2(1 + γ)2∥xk − xk−1∥2

(f)
= 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
1 + 2γ − θ

(1+θ) −
θ2

(1+θ)2

)
∥xk+1 − xk∥2 + γθ

2 ∥xk − xk−1∥2

(g)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)− γθ∥xk+1 − xk∥2 + γθ

2 ∥xk − xk−1∥2

(h)
= 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)− γθ

2 ∥xk+1 − xk∥2 + γθ
2 ∥xk − xk−1∥2

− γθη2
k

2 ∥∇f(x̃k)∥2 − ηk

4(1+γ) Df (xk; x̃k)m

where (a) and (e) use lines 5 and 11; (b), (f) and (g) use eq. (19); (c) uses line 8 and the inequality
∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2; (d) uses the inequality ηk ≤ (1 + γ)ηk−1 implied by line 11; (h) desc.
It remains to use the definition Ψk(x) in eq. (21).

A.4 PROOF OF COROLLARY 1

We can upper-bound 1
2∥xK − x∥2 +HK−1(f(xK)− f(x)) as follows:

1
2∥xK − x∥2 +HK−1(f(xK)− f(x))

(a)
≤ ΨK(x)

(b)
≤ Ψ1(x)

(c)
≤ 1

2∥x1 − x∥2 +H0(f(x1)− f(x)) + θηkηk−1

λk
Df (x0; x̃0) +

γθ
2 ∥x1 − x0∥2

(d)
= 1

2∥x1 − x∥2 + η0(f(x0)− f(x)) + γθ
2 ∥x1 − x0∥2

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(e)
= 1

2∥x0 − x∥2 + (1+γθ)η2
0

2 ∥∇f(x0)∥2 − η0⟨∇f(x0), x0 − x⟩+ η0(f(x0)− f(x))

= 1
2∥x0 − x∥2 + (1+γθ)η2

0

2 ∥∇f(x0)∥2 − η0 Df (x, x0)

(f)
≤ 1

2∥x0 − x∥2 + (1+γθ)η2
0

2 ∥∇f(x0)∥2,

where (a) and (c) use eq. (21); (b) uses Theorem 1; (d) uses lines 3 and 7; (e) use lines 3 and 6; (f)
uses the convexity of f(x).
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B PROOFS FOR SECTION 3

B.1 PROOF OF LEMMA 4

For k = 0 we have Hk = Hk−1. The inequality Hk ≥ Hk−1 is obvious for k ≥ 1 due to line 11.
Furthermore, we can upper-bound Hk for k ≥ 1 as follows:

Hk
(a)
= Hk−1 + ηk

(b)
≤ Hk−1 + (1 + γ)ηk−1

(c)
≤ (2 + γ)Hk−1,

where (a), (b) and (c) use line 11.

B.2 PROOF OF THEOREM 2

We prove the statement of Theorem 2 by induction over K. The base case, K = m, is obvious.
Now, we assume that eq. (25) holds for all k ∈ {0, . . . ,K}, where K ≥ m, and prove eq. (25) for
k = K + 1. We consider the following cases:

Case 1. (1 + γ)ηKηK−1 ≥ νHK−1λK+1.
Case 2. (1 + γ)ηKηK−1 < νHK−1λK+1.

Case 2a. ηK = η0(1 + γ)K .
Case 2b. ηK < η0(1 + γ)K .

Case 1. Here we have ηK+1 = νHK−1λk+1

ηK−1
and obtain the following inequality:√

HK+1 = 1√
HK+1+

√
HK−2

(HK+1 −HK−2) +
√
HK−2

(a)
≥ 1

2
√

HK+1

(HK+1 −HK−2) +
√
HK−2

(b)
≥ 1

2
√

HK+1

(ηK+1 + ηK−1) +
√

HK−2

(c)
≥

√
ηK+1ηK−1

HK+1
+
√

HK−2

(d)
≥

√
νHK−1

LHK+1
+

√
HK−2

(e)
≥

√
ν

(2+γ)
√
L
+

√
HK−2

(f)
≥

√
ν

(2+γ)
√
L
+ c√

L
· (K − 2−m)

(g)
≥ c√

L
· (K + 1−m),

where (a) uses the inequality HK−2 ≤ HK+1 for K ≥ m ≥ 2; (b) uses line 11; (c) uses Young’s
inequality; (d) uses the assumption ηK+1 = νHK−1λk+1

ηK−1
(Case 1) and Lemma 3; (e) uses Lemma 4;

(f) uses the induction hypothesis in eq. (25); (g) uses the inequality 3c√
L

≤
√
ν

(2+γ)
√
L

implied by
eq. (24). This proves Case 1.

Case 2a. In this case, it is easy to verify that ηk = η0(1 + γ)k for all k ∈ {0, . . . ,K + 1}. Hence,
we can lower-bound HK+1 as follows:

HK+1
(a)
=

∑K+1
k=0 η0(1 + γ)k = η0

γ

(
(1 + γ)K+2 − 1

)
= η0(1+γ)m

γ

(
(1 + γ)K+2−m − 1

(1+γ)m

)
≥ η0(1+γ)m

γ

((
(1 + γ)(K−m+2)/2

)2

− 1

)
(b)
≥ η0(1+γ)m

γ

((
1 + γ

2 (K −m+ 2)
)2 − 1

)
≥ η0γ(1+γ)m

4 (K −m+ 2)
2 (42)

(c)
≥ c2

L (K + 2−m)2 ≥ c2

L (K + 1−m)2,
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where (a) uses line 11 and the relation ηk = η0(1 + γ)k above; (b) uses the inequality K ≥ m and
Bernoulli’s inequality; (c) uses the inequality (1 + γ)m ≥ 4c2

γη0L
implied by eq. (24). This proves

Case 2a.

Case 2b. In this case, there exists l ∈ {1, ...,K} such that ηl < (1 + γ)ηl−1. We choose the largest
such index l ∈ {1, ...,K}. This implies the following relations:

ηl =
νHl−2λl

ηl−2
and ηk = (1 + γ)k−lηl for all k ∈ {l, . . . ,K + 1}. (43)

Hence, we can upper-bound HK+1 as follows:

HK+1
(a)
= Hl−1 +

∑K−l+1
i=0 ηl(1 + γ)i = Hl−1 +

ηl

γ ((1 + γ)K−l+2 − 1)

(b)
≤

(
1 + (1+γ)K−l+3−(1+γ)

γ

)
Hl−1 ≤ (1+γ)K−l+3

γ Hl−1

(44)

where (a) uses the above relation; (b) uses the inequalities ηl ≤ (1 + γ)ηl−1 and ηl−1 ≤ Hl−1

implied by line 11. Furthermore, we can lower-bound ηl as follows:

ηl
(a)
= νHl−2λl

ηl−2

(b)
≥ νHl−2λl

Hl−Hl−3

(c)
≥ νHl−2

L(Hl−Hl−3)
, (45)

where (a) uses the relation above; (b) uses lines 3 and 11, where we define H−2 = H0; (c) uses
Lemma 3. Next, we obtain the following inequality:(√

HK+1 −
√
Hl−3

)2 (a)
≥

(√
HK+1 −

√
Hl−1

)(√
Hl −

√
Hl−3

)
= HK+1−Hl−1√

HK+1+
√

Hl−1

· Hl−Hl−3√
Hl+

√
Hl−3

(b)
≥ HK+1−Hl−1

2
√

HK+1

· Hl−Hl−3

2
√
Hl

(c)
= ηl((1+γ)K−l+2−1)

2γ
√

HK+1

· Hl−Hl−3

2
√
Hl

(d)
≥ νHl−2((1+γ)K−l+2−1)

4γL
√

HK+1Hl

(e)
≥ νHl−2

4L
√

γ(1+γ)Hl−1Hl

· (1+γ)K−l+2−1√
(1+γ)K−l+2

≥ νHl−2

4L
√

γ(1+γ)Hl−1Hl

· ((1 + γ)(K−l)/2+1 − 1)

(f)
≥ ν

4L
√

γ(1+γ)(2+γ)3
· ((1 + γ)(K−l)/2+1 − 1), (46)

where (a) uses the inequalities Hl−3 ≤ Hl−1 and Hl ≤ HK+1; (b) uses the inequalities HK+1 ≥
Hl−1 and Hl ≥ Hl−3; (c) and (e) use eq. (44); (d) use eq. (45); (f) uses Lemma 4. Next, we take
the square root of both sides and obtain the following:√

HK+1 −
√
Hl−3 ≥

√
ν

2 4
√

γ(1+γ)(2+γ)3L2
·
√
(1 + γ)(K−l)/2+1 − 1

(a)
≥

√
ν

2 4
√

γ(1+γ)(2+γ)3L2
·
(
(1 + γ)(K−l+2)/4 − 1

)
=

√
ν

2 4
√

γ(1+γ)5(2+γ)3L2
·
(
(1 + γ)(K−l)/4+3/2 − (1 + γ)

)
(b)
≥

√
νγ

2 4
√

γ(1+γ)5(2+γ)3L2
·
(
1
4 (K − l) + 1

2

)
(c)
≥

√
νγ

2 4
√

γ(1+γ)5(2+γ)3L2
·
(
1
8 (K − l) + 1

2

)
=

√
νγ

16 4
√

γ(1+γ)5(2+γ)3L2
· (K − l + 4) (47)

(d)
≥ c√

L
(K − l + 4),
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where (a) uses the inequality
√
a ≥

√
a+ b −

√
b for a, b ≥ 0; (b) uses Bernoulli’s inequality; (c)

uses the inequality K ≥ l; (d) uses eq. (24). Finally, we obtain the following:√
HK+1 ≥

√
Hl−3 +

c√
L
(K − l + 4)

(a)
≥ c√

L
(K + 1−m),

where (a) uses the induction hypothesis in eq. (25) for k = l − 3, which also holds for l = 1 due to
the definition H−2 = H0. This proves Case 2b.
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C PROOFS FOR SECTION 4

C.1 PROOF OF LEMMA 5

Step 1. We can upper-bound
∑K

i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
as follows:∑K

i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
≤ max

{
2
γθ , 4(1 + γ)

}∑K
i=1

(
γθ
2 η2i ∥∇f(x̃i)∥2 + 1

4(1+γ)ηi Df (xi; x̃i)
)

(a)
≤ max

{
2
γθ , 4(1 + γ)

}∑K
i=1(Ψi(x

∗)−Ψi+1(x
∗))

(b)
≤ max

{
2
γθ , 4(1 + γ)

}
Ψ1(x

∗)

(c)
≤ max

{
1
γθ , 2(1 + γ)

}(
∥x0 − x∗∥2 + (1 + γθ)η20∥∇f(x0)∥2

)
,

where (a) uses Theorem 1; (b) uses the fact that Ψ1(x
∗) ≥ 0, which is implied by eq. (21); (c) is

obtained similarly to the proof of Corollary 1 in Appendix A.4.

Step 2. Next, we prove the following inequality for all k ∈ {0, . . . ,K} by induction:

max{∥x̃k − x∗∥, ∥xk − x∗∥} ≤ (1 + 2θ) max
k=0,...,K

∥xk − x∗∥. (48)

The base case k = 0 is obvious due to line 3. For k ≥ 1 we can upper-bound ∥xk − x∗∥ as follows:

∥xk − x∗∥ (a)
= βk−1∥x̃k−1 − x∗∥+ (1− βk−1)∥xk−1 − x∗∥
(b)
≤ (1 + 2θ) max

k=0,...,K
∥xk − x∗∥,

where (a) uses line 7, the triangle inequality, and Lemma 1; (b) uses the induction hypothesis in
eq. (48) for k − 1. Next, we can upper-bound ∥x̃k − x∗∥ as follows:

∥x̃k − x∗∥
(a)
≤ αk∥x̂k − x∗∥+ (1− αk)∥xk − x∗∥
(b)
≤ αk∥x̂k − x∗∥+ (1− αk)(1 + 2θ) max

k=0,...,K
∥xk − x∗∥

(c)
≤ αk(1 + θ)∥xk − x∗∥+ αkθ∥xk−1 − x∗∥+ (1− αk)(1 + 2θ) max

k=0,...,K
∥xk − x∗∥

≤ (1 + 2θ) max
k=0,...,K

∥xk − x∗∥,

where (a) uses line 9 and the triangle inequality; (b) uses the inequality obtained above; (c) uses
line 8 and the triangle inequality. This proves eq. (48). Next, using eq. (48) and Corollary 1, we
obtain the following inequality for k ∈ {0, . . . ,K}:

max
{
∥x̃k − x∗∥2, ∥xk − x∗∥2

}
≤ (1 + 2θ)2

(
∥x0 − x∗∥2 + (1 + γθ)η20∥∇f(x0)∥2

)
.

Combining this with the inequality obtained in Step 1 concludes the proof.

C.2 PROOF OF LEMMA 6

We can lower-bound λk as follows:

λk
(a)
= min{Λ(xk, x̃k−1),Λ(xk, x̃k)}
(b)
= min

{
2Df (xk,x̃k−1)

∥∇f(xk)−∇f(x̃k−1)∥2 ,
2Df (xk,x̃k)

∥∇f(xk)−∇f(x̃k)∥2

}
(c)
≥ 2

2(L0 + L1∥∇f(xk)∥) + L1 max{∥∇f(xk)−∇f(x̃k)∥, ∥∇f(xk)−∇f(x̃k−1)∥}
(d)
≥ 2

(L0 + L1∥∇f(xk)∥)(exp(L1 max{∥xk − x̃k∥, ∥xk − x̃k−1∥}) + 1)
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≥ 2

(L0 + L1∥∇f(xk)∥)(exp(L1(∥xk − x∗∥+max{∥x̃k − x∗∥, ∥x̃k−1 − x∗∥})) + 1)
(e)
≥ 2

(L0 + L1∥∇f(xk)∥)(1 + exp(2L1D))
(f)
≥ 2

L0 exp(L1∥xk − x∗∥)(1 + exp(2L1D))
(g)
≥ 2

L0 exp(L1D)(1 + exp(2L1D))
≥ 1

L0 exp(3L1D)
,

where (a) uses line 10; (b) uses eq. (11); (c) uses Corollary 2.8 of Vankov et al. (2024); (d) and (f)
use eq. (31); (e) and (g) use Lemma 5.

C.3 PROOF OF LEMMA 7

We can lower-bound Df (x, z) for all x, z ∈ Rd as follows:

Df (x, z)
(a)
≥ ∥∇f(x)−∇f(z)∥2

2(L0 + L1∥∇f(x)∥) + L1∥∇f(x)−∇f(z)∥
(b)
≥ ∥∇f(x)−∇f(z)∥2

2(L0 + L1∥∇f(z)∥) + 3L1∥∇f(x)−∇f(z)∥
,

where (a) uses Corollary 2.8 of Vankov et al. (2024); (b) uses the triangle inequality. Hence, we
obtain the following inequality, which is quadratic in ∥∇f(x)−∇f(z)∥:

∥∇f(x)−∇f(z)∥2 − 3L1 Df (x, z) · ∥∇f(x)−∇f(z)∥ − 2(L0 + L1∥∇f(z)∥)Df (x, z) ≤ 0.

Solving this inequality with respect to ∥∇f(x)−∇f(z)∥ gives the following

∥∇f(x)−∇f(z)∥ ≤
3L1 Df (x, z) +

√
(3L1 Df (x, z))2 + 8(L0 + L1∥∇f(z)∥)Df (x, z)

2
(a)
≤ 3L1 Df (x, z) +

√
2(L0 + L1∥∇f(z)∥)Df (x, z)

(b)
≤ 9

2L1 Df (x, z) +
1
3 (L0/L1 + ∥∇f(z)∥),

where (a) uses the inequality
√
a+ b ≤

√
a+

√
b; (b) uses Young’s inequality. Combining this with

the inequalities above gives the following:

Λ(x, z)
(a)
=

2Df (x,z)
∥∇f(x)−∇f(z)∥2

(b)
≥ 2

2(L0 + L1∥∇f(z)∥) + 3L1∥∇f(x)−∇f(z)∥
(c)
≥ 4

6(L0 + L1∥∇f(z)∥) + 27L2
1 Df (x, z)

≥ 4

9max{2L0, 2L1∥∇f(z)∥, 9L2
1 Df (x, z)}

where (a) uses eq. (11); (b) and (c) use the inequalities obtained above. Using this, we can lower-
bound λk as follows:

λk

(a)
≥ min{Λ(xk, x̃k−1),Λ(xk, x̃k)}
(b)
≥ 4

9max{2L0, 2L1∥∇f(x̃k)∥, 2L1∥∇f(x̃k−1)∥, 9L2
1 Df (xk, x̃k), 9L2

1 Df (xk, x̃k−1)}
(c)
≥ 4

9max{2L0, 2L1∥∇f(x̃k)∥, 2L1∥∇f(x̃k−1)∥, 9L2
1 Df (xk, x̃k), 9L2

1 Df (xk−1, x̃k−1)}
,

where (a) uses line 10; (b) uses the inequality obtained above; (c) uses Lemma 2.
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C.4 PROOF OF LEMMA 8

Using the definition of T4(k) in eq. (36), one can verify that the following inclusion holds:

T4(k) ⊂ {1 ≤ i ≤ k : i−max{j : j ∈ T2(i) ∪ {0}} ≤ m}, (49)

which implies the first desired inequality. Next, using Lemma 7 and the definition of T2(k) in
eq. (36), one can veryfy that the following inequality holds for all i ∈ T2(k):

λi ≥
4

9max{2L1∥∇f(x̃i)∥, 2L1∥∇f(x̃i−1)∥, 9L2
1 Df (xi, x̃i), 9L2

1 Df (xi−1, x̃i−1)}
. (50)

Hence, we obtain the following:

2D2

(a)
≥ 2

∑k
i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
=

∑k
i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
+
∑k+1

i=2

(
η2i−1∥∇f(x̃i−1)∥2 + ηi−1 Df (xi−1; x̃i−1)

)
(b)
≥

∑k
i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
+
∑k+1

i=2

(
1

(1+γ)2 η
2
i ∥∇f(x̃i−1)∥2 + 1

(1+γ)ηi Df (xi−1; x̃i−1)
)

(c)
≥

∑k
i=2

(
η2
i

(1+γ)2

(
∥∇f(x̃i)∥2 + ∥∇f(x̃i−1)∥2

)
+ ηi

(1+γ)2 (Df (xi; x̃i) + Df (xi−1; x̃i−1))
)

(d)
≥

∑
i∈T ′

2 (k)

(
η2
i

(1+γ)2

(
∥∇f(x̃i)∥2 + ∥∇f(x̃i−1)∥2

)
+ ηi

(1+γ)2 (Df (xi; x̃i) + Df (xi−1; x̃i−1))
)

(e)
≥

∑
i∈T ′

2 (k)

(
ν2λ2

i

(1+γ)2

(
∥∇f(x̃i)∥2 + ∥∇f(x̃i−1)∥2

)
+ νλi

(1+γ)2 (Df (xi; x̃i) + Df (xi−1; x̃i−1))
)
,

where (a) uses Lemma 5; (b) uses line 11; (c) uses the fact that γ > 0; (d) uses the definition
T ′
2 (k) = T2(k) \ {1}; (e) uses the definition of T2(k) in eq. (36) and the fact that Hi−2 ≥ ηi−2.

Furthermore, using eq. (50), we can show that the following inequality holds for all i ∈ T ′
2 (k):

max
{
λ2
i ∥∇f(x̃i)∥2, λ2

i ∥∇f(x̃i−1)∥2, λi Df (xi; x̃i), λi Df (xi−1; x̃i−1),
}
≥ 4

81L2
1
. (51)

Hence, we obtain the following:

2D2 ≥
∑

i∈T ′
2 (k)

(
min{ν,ν2}
(1+γ)2 · 4

81L2
1

) (a)
≥ 4min{ν,ν2}

81(1+γ)2L2
1
· |T ′

2 (k)|,

where (a) uses the fact that γ > 0. It remains to use the inequality |T2(k)| ≤ 1 + |T ′
2 (k)|.

C.5 PROOF OF THEOREM 3

We prove the statement of Theorem 3 by induction over K. The base case, K = 1, is obvious. Now,
we assume that eq. (40) holds for all k ∈ {0, . . . ,K}, where K ≥ 1, and prove the inequality in
eq. (40) for k = K + 1. We consider the following cases:

Case 1. K + 1 ∈ T2(K + 1) or K + 1 ∈ T4(K + 1).

Case 2. K + 1 ∈ T1(K + 1).

Case 3. K + 1 ∈ T3(K + 1).
Case 3a. l(K + 1) = 0.
Case 3b. l(K + 1) ∈ T1(K + 1).
Case 3c. l(K + 1) ∈ T2(K + 1).

Case 1. In this case, we can lower-bound
√

HK+1 as follows:√
HK+1

(a)
≥

√
HK
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(b)
≥ c√

L0
· (K − |T2(K)| − |T4(K)| − 1)

(c)
≥ c√

L0
· (K + 1− |T2(K + 1)| − |T4(K + 1)| − 1),

where (a) uses Lemma 4; (b) uses the induction hypothesis in eq. (40); (c) uses the assumpttion
K + 1 ∈ T2(K + 1) ∪ T4(K + 1) and the definition of T2(K + 1) and T4(K + 1) in eq. (36). This
proves Case 1.

Case 2. In this case, we can lower-bound
√
HK+1 as follows:√

HK+1 = 1√
HK+1+

√
HK−2

(HK+1 −HK−2) +
√
HK−2

(a)
≥ 1

2
√

HK+1

(HK+1 −HK−2) +
√
HK−2

(b)
≥ 1

2
√

HK+1

(ηK+1 + ηK−1) +
√
HK−2

(c)
≥

√
ηK+1ηK−1

HK+1
+

√
HK−2

(d)
≥

√
νλK+1HK−1

HK+1
+

√
HK−2

(e)
≥

√
2νHK−1

9L0HK+1
+
√

HK−2

(f)
≥

√
2ν

3(2+γ)
√
L0

+
√
HK−2

(g)
≥ 3c√

L0
+
√
HK−2

(h)
≥ 3c√

L0
+ c√

L0
· (K − 2− |T2(K − 2)| − |T4(K − 2)| − 1)

= c√
L0

· (K + 1− |T2(K − 2)| − |T4(K − 2)| − 1)

(i)
≥ c√

L0
· (K + 1− |T2(K + 1)| − |T4(K + 1)| − 1),

where (a) and (f) use Lemma 4; (b) uses line 11; (c) uses Young’s inequality; (d) and (e) use the
assumption K + 1 ∈ T1(K + 1) and the definition of T1(K + 1) in eq. (36); (g) uses the definition
of c in eq. (39); (h) uses the induction hypothesis in eq. (40); (i) uses the definition of T2(k) and
T4(k) in eq. (36). This proves Case 2.

Case 3a. Since l(K + 1) = 0, we have T1(K + 1) = T2(K + 1) = ∅. Hence, from eqs. (36)
and (37) and line 11, we have ηK+1 = (1 + γ)K+1η0. Moreover, since K + 1 ∈ T3(K + 1)
and l(K + 1) /∈ T1(K + 1), we have K + 1 > m due to eqs. (36) and (37). Besides, since
T1(K + 1) = T2(K + 1) = ∅, from eq. (36) we conclude that T3(K + 1) = {m+ 1, . . . ,K + 1}
and T4(K + 1) = {1, . . . ,m}. Hence, we can lower-bound

√
HK+1 as follows:√

HK+1

(a)
≥ η0γ(1+γ)m

4 (K −m+ 2)
2

(b)
≥ c2

L0
(K −m+ 2)

2

(c)
= c2

L0
(K + 2− |T2(K + 1)| − |T4(K + 1)|)2

≥ c2

L0
(K + 1− |T2(K + 1)| − |T4(K + 1)| − 1)

2
,

where (a) is obtained similarly to eq. (42) in the proof of Theorem 2 in Appendix B.2; (b) uses the
definition of m in eq. (39); (c) uses the fact that T4(K + 1) = {1, . . . ,m} and T2(K + 1) = ∅ as
shown above. This proves Case 3a.

Case 3b. Using eqs. (36) and (37) and line 11, we can express ηK+1 as follows:

ηK+1 = (1 + γ)K+1−l(K+1)ηl(K+1) =
νHl(K+1)−2λl(K+1)

ηl(K+1)−2
. (52)
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Moreover, similar to eq. (44) in the proof of Theorem 2 in Appendix B.2, we can upper-bound HK+1

as follows:
HK+1 ≤ 1

γ (1 + γ)K−l(K+1)+3Hl(K+1)−1. (53)

In addition, similar to eq. (46) in the proof of Theorem 2 in Appendix B.2, and using the definition
of T1(k) in eq. (36), we can obtain the following inequality:(√

HK+1 −
√
Hl(K+1)−3

)2

≥ ν

18L0

√
γ(1+γ)(2+γ)3

·
(
(1 + γ)(K−l(K+1))/2+1 − 1

)
, (54)

where H−2 = H0, and similar to eq. (47) in the proof of Theorem 2 in Appendix B.2, we can obtain
the following inequality:√

HK+1 −
√
Hl(K+1)−3 ≥

√
νγ

24 4
√

4γ(1+γ)5(2+γ)3L2
0

· (K − l(K + 1) + 4). (55)

Finally, after rearranging, we can lower-bound
√
HK+1 as follows:√

HK+1

(a)
≥

√
Hl(K+1)−3 +

√
νγ

24 4
√

4γ(1+γ)5(2+γ)3L2
0

· (K − l(K + 1) + 4)

(b)
≥

√
Hl(K+1)−3 +

c√
L0

· (K − l(K + 1) + 4)

(c)
≥ c√

L0
· (l(K + 1)− 3− |T2(l(K + 1)− 3)| − |T4(l(K + 1)− 3)| − 1).

+ c√
L0

· (K − l(K + 1) + 4)

= c√
L0

· (K + 1− |T2(l(K + 1)− 3)| − |T4(l(K + 1)− 3)| − 1)

(d)
≥ c√

L0
· (K + 1− |T2(K + 1)| − |T4(K + 1)| − 1),

where (a) uses eq. (55); (b) uses the definition of c in eq. (39); (c) uses the induction hypothesis in
eq. (40); (d) uses the definition of T2(k) and T4(k) in eq. (36). This proves Case 3b.

Case 3c. Similar to eq. (46) in the proof of Theorem 2 in Appendix B.2, and using Lemma 6, we
can obtain the following inequality:(√

HK+1 −
√

Hl(K+1)−3

)2

≥ νλmin

4
√

γ(1+γ)(2+γ)3
·
(
(1 + γ)(K−l(K+1))/2+1 − 1

)
= νλmin(1+γ)m/4

4
√

γ(1+γ)(2+γ)3
·
(
(1 + γ)(K−l(K+1)−m/2)/2+1 − 1

(1+γ)m/4

)
(a)
≥ ν

18L0

√
γ(1+γ)(2+γ)3

·
(
(1 + γ)(K−l(K+1)−m/2)/2+1 − 1

)
(b)
≥ ν

18L0

√
γ(1+γ)(2+γ)3

·
(
(1 + γ)(K−l(K+1))/4+1 − 1

)
,

where H−2 = H0, and (a) uses the definition of m in eq. (39); (b) uses the fact that K− l(K+1) ≥
m, which is implied by the assumptions K + 1 ∈ T3(K + 1) and l(K + 1) ∈ T2(K + 1), and
eq. (36). After taking the square root from both sides of the inequality, we obtain the following:√

HK+1 −
√
Hl(K+1)−3 ≥

√
ν

3 4
√

4γ(1+γ)(2+γ)3L2
0

·
√
(1 + γ)(K−l(K+1))/4+1 − 1

(a)
≥

√
ν

3 4
√

4γ(1+γ)(2+γ)3L2
0

·
(
(1 + γ)(K−l(K+1)+4)/8 − 1

)
=

√
ν

3 4
√

4γ(1+γ)5(2+γ)3L2
0

·
(
(1 + γ)(K−l(K+1)+4)/8+1 − (1 + γ)

)
(b)
≥

√
νγ

24 4
√

4γ(1+γ)5(2+γ)3L2
0

· (K − l(K + 1) + 4),

where (a) uses the inequality
√
a ≥

√
a+ b −

√
b; (b) uses Bernoulli’s inequality. The rest of the

proof is identical to the proof of Case 3b.
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C.6 PROOF OF COROLLARY 3

We can upper-bound D2 as follows:

D (a)
=

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}
(∥x0 − x∗∥2 + (1 + γθ)η20∥∇f(x0)∥2)

(b)
≤

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}(
∥x0 − x∗∥+

√
(1 + γθ)η0∥∇f(x0)∥

)
(c)
≤

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}(
1 + (1 + γθ)η0L0 · (exp(L1∥x0−x∗∥)−1)

L1∥x0−x∗∥

)
∥x0 − x∗∥

(d)
≤

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}
(1 + (1 + γθ)η0L0 exp(L1∥x0 − x∗∥))∥x0 − x∗∥

(e)
≤

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}
(2 + γθ)∥x0 − x∗∥

= O(∥x0 − x∗∥),

where (a) uses eq. (33); (b) uses the inequality
√
a+ b ≤

√
a +

√
b; (c) uses eq. (31); (d) uses the

inequality exp(t)− 1 ≤ t exp(t), which is implied by the convexity of the function t 7→ exp(t); (e)
uses the assumption η0L0 ≤ exp(−L1∥x0 − x∗∥). It remains to combine Corollary 1, Lemma 8,
and Theorem 3.
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