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ABSTRACT

In this paper, we focus on the problem of minimizing a continuously differen-
tiable convex objective function, min, f(z). Recently, Malitsky| (2020); |Ala-
caoglu et al.| (2023) developed an adaptive first-order method, GRAAL. This
algorithm computes stepsizes by estimating the local curvature of the objective
function without any line search procedures or hyperparameter tuning, and attains
the standard iteration complexity O(L||zo — z*||?/€) of fixed-stepsize gradient
descent for L-smooth functions. However, a natural question arises: is it pos-
sible to accelerate the convergence of GRAAL to match the optimal complexity
O(y/L||zo — x*||?/€) of the accelerated gradient descent of Nesterov|(1983)? Al-
though some attempts have been made by |Li & Lan|(2025);Suh & Ma (2025)), the
ability of existing accelerated algorithms to adapt to the local curvature of the
objective function is highly limited. We resolve this issue and develop GRAAL
with Nesterov acceleration, which can adapt its stepsize to the local curvature at
a geometric, or linear, rate just like non-accelerated GRAAL. We demonstrate
the adaptive capabilities of our algorithm by proving that it achieves near-optimal
iteration complexities for L-smooth functions, as well as under a more general
(Lo, L1 )-smoothness assumption (Zhang et al.,[2019).

1 INTRODUCTION

First-order, or gradient, optimization methods are highly popular in many practical applications due
to their simplicity and scalability. However, the key limitation of these methods is that they require
the choice of the stepsize parameter. In this paper, we focus on developing efficient gradient methods
that can adjust the stepsize at each iteration in an adaptive manner. Formally speaking, we consider
the following optimization problem:

min f(x 1

min f(x) 1)
where R is a finite-dimensional Euclidean space, and f(z): R? — R is a convex continuously
differentiable objective function. We assume that problem (1)) has a solution z* € R,

1.1 GRADIENT METHODS

The simplest and most fundamental example of first-order methods is gradient descent (GD). This
algorithm performs iterations to find an approximate solution to problem (I)) according to the fol-
lowing update rule:

Tpy1 = T — NV f(2p), 2

where 1 > 0 is the stepsize. Despite its simplicity, GD and its variants are widely used in practice,
especially for solving large-scale problems that often appear, for instance, in machine learning. It is
well-known (Polyak, |1963; Nesterov et al., 2018 [Drori & Teboulle, 2014) that in the case where the
objective function f(z) is L-smooth, i.e., the gradient V f(z) is L-Lipschitz, GD with the stepsize
1 = 1/L achieves the following iteration complexity:

K =0(L|zo —2*I’)e) = f(zk)— f(@*) <e 3)

In addition, in his seminal work, [Nesterov| (1983) proposed a modification of GD that implements
acceleration via momentum. This accelerated gradient descent (AGD) achieves substantially im-
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proved iteration complexity:

K =0(VL|zo—a*?/e) = flzx) = f(z") <e )
It was shown that AGD is an optimal algorithm. That is, the complexity in eq. (4) cannot be improved
by any first-order optimization method due to the lower complexity bounds of Nesterov et al.|(2018]).

1.2 ADAPTIVE METHODS

One of the main issues with the standard GD and AGD is that they require tuning the stepsize 7.
In particular, they require knowledge of the gradient Lipschitz constant L to achieve the iteration
complexities in eqs. (3) and {@). A typical approach to addressing this issue is to use a time-varying
stepsize 7, in eq. (2)), which is computed at each iteration according to a certain adaptive rule.

Line search. The simplest way to compute the stepsize 7y, is to use line search (or backtracking), an
iterative procedure that finds 7, satisfying a certain objective function value decrement condition.
It was originally proposed by |Goldstein| (1962); Armijo| (1966), and its modern variant for GD and
AGD was analyzed by Nesterov| (2013)). Unfortunately, line search makes the iterations of gradient
methods more expensive as it requires the computation of the gradient V f () and/or function value
f(x) multiple times without making any “progress”. Hence, it is rarely used in practice.

AdaGrad-type methods. An alternative approach is to use the following stepsizes 7, in eq. (2):

e =1+ (S IV F@)?) 2 5)

where 17 > 0 is a positive parameter. The resulting algorithm is called AdaGrad and was originally
developed by Duchi et al.| (2011); McMahan & Streeter| (2010). It is well known that AdaGrad
has the complexity of GD in eq. for L-smooth functions (Levy et al., [2018)). Moreover, this
algorithm is universal: it can also achieve the corresponding complexities of GD for non-smooth but
Lipschitz functions, or in the case where only stochastic estimates of the gradients are available, all
with a single choice of the parameter n o< ||zg — «*|| (Levy et al. 2018} |Li & Orabonal 2019}
Orabonal [2023). In addition, accelerated variants of AdaGrad are available (Levy et al., 2018;
Cutkoskyl, [2019; [Kavis et al.l 2019; Rodomanov et al., 2024} [Kreisler et al., [2024; [Kovalev, [2025),
as well as parameter-free variants (Cutkosky & Orabona, 2018; |Orabona & Pal, [2021; Defazio &
Mishchenko, 2023} Mishchenko & Defazio, 2023} [Ivgi et al., 2023; Khaled et al., 2023} [Kreisler,
et al., 2024), which do not require tuning the parameter 7. Unfortunately, AdaGrad-type methods
have a significant drawback: the stepsize 7 in eq. is non-increasing. Hence, it cannot truly
adapt to the local curvature of the objective function, which may limit its performance in many
applications (Defazio et al., 2022]).

Local curvature estimation. In this paper, we focus on a different approach to computing the
stepsize 7y, by estimating the local curvature, i.e., the local gradient Lipschitz constant. To the best
of our knowledge, the first such algorithm that has strong convergence guarantees, GRAAL, was
proposed by Malitsky| (2020). It is a modification of GD, which uses the following stepsize rule at
each iteration:

. vA7
Mh+1 = mm{(l + Ve } (6)

where A1 > 0is a certain finite-difference estimate of the local inverse gradient Lipschitz constant
at the current iteration, and v,v > 0 are positive constants. |[Alacaoglu et al| (2023)) showed that
GRAAL can achieve the iteration complexity in eq. (3) for L-smooth functions. Moreover, Malitsky
& Mishchenko| (2020) established the same result for AdGD, the vanilla GD with a stepsize rule
similar to eq. (6):

Nea1 = min{nk 1+ nl’ikl , y)\kﬂ}‘ (7)

Overall, GRAAL and AdGD demonstrate attractive results, both theoretically and experimentally,
on a range of practical optimization problems (Alacaoglu et al., [2023; Malitsky & Mishchenko)
2020).

1.3 MAIN CONTRIBUTION: GRAAL WITH NESTEROV ACCELERATION

Motivated by the attractive theoretical and practical results for GRAAL and AdGD, we pose the
following natural research question:
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Q1. Is it possible to develop an algorithm that incorporates Nesterov acceleration and can truly
adapt to the local curvature of the objective function, as GRAAL and AdGD do?

Unfortunately, to the best of our knowledge, there is no positive and comprehensive answer to this
question. Malitsky & Mishchenkol| (2020) proposed an accelerated version of AdGD, which showed
strong experimental results. However, it is only a heuristic and does not have any theoretical con-
vergence guarantees whatsoever. In addition, |Li & Lan| (2025) developed AC-FGM and [Suh & Ma
(2025) developed AdaNAG, which can be seen as attempts to incorporate Nesterov acceleration into
GRAAL/AdGD with theoretical guarantees. However, the abilities of AC-FGM and AdaNAG to
adapt to the local curvature of the objective function are highly limited, as we will discuss later.

In this paper, we provide a positive answer to Question|l|and make the following contributions:

(i) In Section [2] we develop Accelerated GRAAL (Algorithm [I)) for solving problem (T,
which incorporates Nesterov acceleration and utilizes a generalized version of the step-
size update rules in eqs. (6) and (7). We also provide a theoretical convergence analysis of
this algorithm.

(ii) In Section[3] we show that Algorithm [I]achieves the optimal iteration complexity in eq.
for L-smooth functions up to additive logarithmic factors, without the requirement of hy-
perparameter tuning or any additional line search procedures.

(iii) In Section 4] we demonstrate the adaptive capabilities of Algorithm [T| by showing that it
achieves the iteration complexity in eq. (4) under the more general (L, L1)-smoothness of
the objective function, up to constant additive factors that do not depend on the precision e.

The important feature of Algorithm [T]is that it can adapt the stepsize 7, to the local curvature at
a geometric, or linear, rate, just like the standard non-accelerated GRAAL. In contrast, AC-FGM
and AdaNAG allow only sublinear growth of the stepsize, so their adaptive abilities are insufficient.
In particular, Algorithm [I]is the first adaptive algorithm that can achieve near-optimal iteration
complexity for (L, L1 )-smooth functions, while there are no such results for AC-FGM or AdaNAG,
to the best of our knowledge. More details are available in Sections [3.2]and[4.2]

1.4 RELATED WORK

More adaptive stepsizes: Barzilai-Borwein and Polyak. The idea of computing stepsizes using
estimates of the local gradient Lipschitz constant was previously used by |Barzilai & Borwein|(1988),
who proposed the following stepsize rule:

 (@her—s V(@)= ()
M+l = G g )V @ol? ®)

Unfortunately, GD with this rule provably works only in the case where the objective function f(x)
is quadratic (Raydan, 1993} Dai & Liaol[2002), and may not work otherwise (Burdakov et al.,[2019).
Polyak| (1969) suggested using GD with the following stepsize rule:
— f@rp)=f(")
M1 = 9 Flanr 0l ©)
Similar to AdaGrad, GD with this rule was shown to be universal (Hazan & Kakade, 2019). How-

ever, it requires a tight estimate of the optimal objective function value f(x*), which is rarely avail-
able in practice.

Optimization for (Lo, L;)-smooth functions. The (Lo, L;)-smoothness assumption was pro-
posed by [Zhang et al.| (2019)) as a generalization and a more realistic alternative to the standard
L-smoothness. The convergence of gradient methods under this assumption has been extensively
studied in the literature (Zhang et al., [2020; |Chen et al., [2023). [Gorbunov et al.| (2024) showed that
AdGD can achieve the iteration complexity of non-accelerated GD in eq. (3) up to additive con-
stant factors without the requirement of hyperparameter tuning or line search. Additionally, several
accelerated algorithms with theoretical guarantees are available (Li et al.l 2023} |Gorbunov et al.,
2024; [Vankov et al.,[2024). However, all these algorithms are non-adaptive, and only |Vankov et al.
(2024) managed to achieve the optimal iteration complexity in eq. (@) up to additive constant factors,
with the requirement of a substantially more complex small-dimensional relaxation oracle (Nesterov
et al., [2021). It is also worth mentioning the concurrent work of [Tyurin| (2025), who managed to
achieve the complexity in eq. (4)) up to additive constant factors. However, their algorithm requires
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the tuning of several parameters and is, therefore, also non-adaptive. Additionally, the initial version
of our paper appeared online prior to the work of Tyurin| (2025)), with only the results from Section 4]
missing, which we were finalizing at that time.

2 ADAPTIVE GRADIENT METHOD WITH NESTEROV ACCELERATION

2.1 ALGORITHM DEVELOPMENT

In this section, we develop Accelerated GRAAL for solving problem (I). Below, we briefly describe
the key ideas used in the development of the algorithm. After assembling these ideas, we obtain the
resulting Algorithm

Local curvature estimator. As discussed in Section[I.2] the stepsize rule in eq. (6) used in GRAAL

requires an estimate of the inverse local gradient Lipschitz constant A. When the objective function

is convex, given two points z, 2 € R?, we can consider the following two options for computing :
fon T _ lz==] : . — 2Dy (x,2)

Option I A = ety Option Il A = e755=5rm (10)

GRAAL was originally developed for solving monotone variational inequalities (VI). Hence, it uses

Option I, which works for this more general problem class, with the gradient V f(x) replaced by

the monotone operator. However, it turns out that Option II can better exploit the properties of the
objective function f(x). Hence, we use Option II and, for convenience, define A(x; z) as follows:

A(ws2) = L Tor@viam Vi@ # Vi) an
+00 Vf(x) =Vf(z)

It is worth noting that |L1 & Lan| (2025); Suh & Mal (2025) also used Option II in AC-FGM and
AdaNAG, respectively.

Nesterov acceleration. To incorporate Nesterov acceleration in Algorithm I} we use its recent
interpretation by Kovalev & Borodich|(2024). The idea is that at the iteration k of a gradient method,
we replace the objective function f(z) with the function fj,(z): R? — R, defined as follows:

fr(z) = a;l flagz + (1 — ag)Ty), where ay € (0,1], T € RY (12)

In the case where GD is used, that is, xx+1 = = — 7V fr(z), we can choose ay, = 2/(k +
2) and Tp41 = aprr+1 + (1 — ak )Tk, which gives the STM algorithm (Gasnikov & Nesterov,
2016), a variant of AGD. However, we use the definition in eq. (I2)) as it substantially simplifies the
development of Algorithm

GRAAL extrapolation. We use the extrapolation step of GRAAL in combination with the inter-
pretation of Nesterov acceleration above. It can be summarized as follows:

Tpr1 = Tp — M6V fr(Zr), Tpr1 = Thy1 + 0(Tpp1 — 1), (13)

where 6 > 0 is the extrapolation parameter. GRAAL uses extrapolation for two reasons. First, the
vanilla gradient method does not work for VI as it diverges even on simple bilinear min-max prob-
lems (Daskalakis et al., 2017). Hence, the extragradient method (Korpelevich, [1976; Mishchenko
et al.l 2020) or methods with extrapolation (Daskalakis et al.l 2017} Malitsky & Taml 2020} Ko-
valev et al., |2022) are typically used. Second, and more importantly, to the best of our knowledge,
the particular type of extrapolation used by GRAAL plays a key role in its adaptive capabilities.
In particular, it is an open question whether our results can be obtained with a different baseline
algorithm.

Problem: choosing a. Although it may seem that the tools described above are already enough to
obtain Algorithm [T} one issue remains. The interpretation of [Kovalev & Borodich|(2024) combined
with the GRAAL step in eq. suggests that one should choose Tx11 = apir + (1 — ak)Tk.
However, this would require that the parameters «ay, satisfy the following inequality

M/t < M1/ Q-1 + M- (14)

"More details on eq. are available in the works of [Kovalev & Borodich| (2024); Kovalev| (2025).
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Algorithm 1 Accelerated GRAAL
I: input: 7o € R%, g >0, K € {1,2,...}
2: parameters: 6,~, v > 0 satisfying eq. (I9)
3ap0=po=1, Ho=H_1=n-1=mn0, Zo=7To=1p
4: fork=0,1,...,K —1do

. — _Q4vme
> Akt1 = Hr (1t
6: Tpt1 = xp — MV f (Zk) > gradient step
7: Tr1 = Bedr + (1 — Br)Tk > additional coupling step
8: Tpt1 = Thg1 + O(Tpy1 — Tk) > GRAAL extrapolation
9: Tpt1 = k1841 + (1 — Qpg1) Tt > Nesterov acceleration/STM
10: Ap+1 = Min{A(Tp41; Tr), A(Trt1; Tor1)} > local curvature estimator
X . VvHp 1 Akp1 _ s etomainn
11: M1 = mln{(l + ¥)nk, e }, Hyv1 = Hi + i1 > adaptive stepsize
. — _ Mey1
12: ﬁk+1 T oagpp1Hpp

13: output: Tx € R?

The best option is to choose cvj, such that eq. (I4) becomes an equality. However, this is impossible:
computing 7, requires an estimate of the local curvature, which requires the computation of the
gradient V fi(21) and its use in eq. , which in turn requires knowing oy in advance. Alterna-
tively, one could follow the approach of |Li & Lan|(2025)) and |Suh & Mal(2025)) used in AC-FGM
and AdaNAG, respectively, and simply predefine oy, < 2/(k + 2), just like in AGD. However,
this requires additional restrictions on the stepsize 7, and vastly limits the adaptation capabilities of
AC-FGM, as we will discuss in Section@

Solution: additional coupling step. The key idea to resolve the issue above is to avoid the inequal-
ity in eq. (]EI) by defining T ; differently, using an additional coupling step:

Tp+1 = PuZr + (1 — Br)Tw, Ty = gy + (1 — )Tk, (15)

where ) € (0, 1]. Consequently, instead of requiring the inequality eq. , we choose the param-
eters [ to satisfy the following relation

e/ (akBr) = Me—1/(ak—108k—1) + Mk = --- = Hy, where Hj = Zfzomo (16)
Hence, we choose S = 1y /(o Hy) and avoid additional restrictions on the stepsize 7. The only
(I4+y)me—1

remaining question is how to ensure 3; < 1. The answer is that we choose ay, = e GEEn

Indeed, in Lemmal[l] we prove that 3 € (0, 1] by utilizing the inequality 7, < (1 + v)nk—1, which
is implied by our stepsize rule in eq. (I7). Moreover, our choice of ay, is implementable as it does
not require knowledge of 7, and, in contrast to AC-FGM and AdaNAG, it is adaptive because it
is not based on any predefined sequence, but rather uses the adaptive stepsizes 1;_1 and their sum
Hy_;.

Adaptive stepsize. We use the following adaptive stepsize 7, in our algorithm:

M = minf (1-+7)gy, et ), a7)

Mk—1

where A\gyr1 = min{A(ZTgi1;Tx), AM(Tgt1; Tr+1)} is the local curvature estimator. This rule is
primarily implied by the convergence analysis in the proof of Theorem [T]in Appendix [A.3] It can
also be seen as a generalization of the stepsize rules in egs. (6) and for GRAAL and AdGD,
respectively.

2.2 CONVERGENCE ANALYSIS

We start the convergence analysis with the following two lemmas. In Lemma [T} we show that
Bi € (0,1] as discussed in the previous Section In Lemma[2] we use the additional coupling
step from lineand the convexity of the objective function f(x) to obtain some useful inequalities.

Lemma 1 (). A, i, Hi >0, oy, € (0,1), and By, € (0,1] forallk € {1,...,K}.
*More details on eq. are available in the proof of Theoremin Appendix
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Lemma 2 (I). The following inequalities hold for all k € {1,..., K — 1}:
f@r) = f(@r) < g (f@k) = f@k41))s Dy@riTh-1) < Dy (Th-133p-1).  (18)

k
Now, we obtain the main convergence result in Theorem [} Note that Algorithm [I] requires the
universal constant parameters 6,~, v > 0 to satisfy eq. (I9). However, it is easy to verify that such
parameters exist. Using Theorem|I] we also obtain the upper bound on the functional suboptimality
and distance to the solution of problem () in Corollary

Theorem 1 ({). Let parameters 0,~,v > 0 satisfy the following relations:

2 276> 0 0>
4V0(1 + fY) =7, 1+2v+ (1_7_0)2 < a+o) + a+ez- (19)
Then, the following inequality holds for all v € R* and k € {1,..., K —1}:
Vi (@) < Wi(x) = ZRl V@)1 — sy D (@ns &), (20)

where Uy (x) is defined as follows:
Uy (2) = ok —a|®+ Heor (F (@) — F(2) + P58 D p(Tp1; 1) + B llze — x| % 1)
Corollary 1 . The following inequality holds for all x € R* and K > 1:
ek —2l® + He 1 (f(@x) = f@) < Sllao — 2] + S520 IV F@o)P. (22)

It is important to highlight that the results in Theorem |I| and Corollary |I| are general and do not
require any additional assumptions on the objective function other than convexity and continuous
differentiability. Consequently, they do not imply any non-asymptotic convergence results for Al-
gorithm [T} However, in Sections [3] and f] we will establish particular iteration complexities in the
cases where the objective function is L-smooth and (L, L1)-smooth, respectively.

3 CONVERGENCE ANALYSIS FOR L-SMOOTH FUNCTIONS

3.1 MAIN RESULT

In this section, we establish the iteration complexity of Algorithm[I]in the case where the objective
function f(z) is L-smooth for L > 0. That is, the gradient V f () is L-Lipschitz:
IVf(x) = Vf(2)| < L|jz— 2| forall z,z € R (23)

We start with the following two lemmas. Lemma [3] provides a lower bound on the curvature esti-
mates \;. This lemma is standard, and its proof is given, for instance, by [Nesterov et al. (2018,
Theorem 2.1.5). LemmaE]bounds the growth of the cumulative sum Hj, of the stepsizes 7.

Lemma3. A\, > 1/L forallk € {1,...,K}.
Lemma 4 (I). Hy_1 < H, < (2+7)Hy_1 forallk € {0,...,K}.

Now, we are ready to establish the lower bound on the cumulative sum H}, of the stepsizes 7y, in the
following Theorem [2} Using this bound, we establish the iteration complexity of Algorithm [I] for
L-smooth functions in Corollary

Theorem 2 ({)). Let constants ¢, m € R be defined as follows:

— mi Vv N _ 4c?
€= mm{ 32+7) 16 V7(1+7?5(2+7)3 }’ m= [maX{Q’ 14 [Wﬁ} H (24
Then, the following inequality holds for all k € {0, ..., K}:
Hy > & - (k—m). (25)

Corollary 2. Let ngL < 1. Then, to reach the precision f(Tr) — f(z*) < ¢, the following number
of iterations of Algorithm([l|is sufficient:

K:O<1+\/W+ln{nﬁb. (26)

Note that the complexity result in Corollary 2|requires the initial stepsize 7y to satisfy the inequality
no < 1/L. However, we can simply choose 7 to be very small, say 1071, as suggested by Malitsky!
& Mishchenko| (2020) for AAGD. This will only result in a small logarithmic additive factor in the
iteration complexity as implied by Corollary



Under review as a conference paper at ICLR 2026

3.2 COMPARISON WITH AC-FGM AND ADANAG

AC-FGM. Li & Lan| (2025, Corollary 1) use the following adaptive stepsize rule for AC-FGM:
Me+1 = min{ B2 p kX0 ). (27)

This rule implies that the stepsize growth is restricted by the inequality i1 < (1 4+ 1/k)ng. As
mentioned in Section [2.1] this restriction substantially limits the ability of AC-FGM to adapt to the
curvature of the objective function. In particular, the result of Li & Lan| (2025, Corollary 1) implies
the following iteration complexity, provided 79 < 0.4/ L:

K:(’)(\/max{l,l/(noL)}-LHxO—J:*||2/e) = f@r)-fl@)<e (28

This matches the optimal complexity in eq. @), if we choose 19 = 0.4/L. However, if we choose
the initial stepsize to be too small, i.e., g < 0.4/L, the complexity result in eq. will be worse
than the optimal one by a factor of 1/4/19L. In other words, the stepsize rule in eq. cannot
adapt to a “bad” choice of the initial stepsize 7y due to stepsize growth restrictions. |Li & Lan|(2025)
even had to use a line search at the first iteration of AC-FGM to find a “good” initial stepsize 1y and
achieve the optimal complexity in eq. (4).

AdaNAG. Suh & Ma (2025) uses a stepsize rule in AdaNAG, which is not substantially different
from eq. (27). Consequently, they encounter issues similar to AC-FGM. The difference is that they
do not use a line search at the first iteration, but rather estimate 7, using Option I in eq. (I0), which
implies the following iteration complexity:

K= o(maX{L oL} - /Llzo — x*||2/e) =  f(zx) - f(z") < (29)

This result may be significantly worse than the optimal one in eq. (4) if the initial stepsize estimate
is too large, i.e., oL > 1. Moreover, similar to AC-FGM, the growth of the stepsize in AdaNAG is
also substantially restricted, which can limit its performance, for instance, under the more realistic
(Lo, L1)-smoothness assumption.

Algorithm [I] vs AC-FGM and AdaNAG. In contrast to AC-FGM and AdaNAG, our stepsize rule
in eq. allows the geometric growth of the stepsize 11 < (1 + v)n,. Hence, Algorithm
can adapt even to a very small choice of the initial stepsize 7, at the cost of a small logarithmic
additive factor in the iteration complexity, as indicated by Corollary[2] In addition, as we will discuss
in Section |4] the geometric growth of the stepsize is crucial for adaptation under the (Lo, L1)-
smoothness assumption, where the local gradient Lipschitz constant may change at an exponential
rate. It is also worth mentioning that|Li & Lan|(2025| Corollary 2) and|Suh & Ma| (2025, Theorem 6)
tried to resolve the issues with the stepsize growth restrictions in AC-FGM and AdaNAG by using
different stepsize rules. However, they could not properly justify the efficiency of these new stepsize
rules and provably achieve geometric growth of the stepsize.

4 CONVERGENCE ANALYSIS FOR (Lg, L1)-SMOOTH FUNCTIONS

In this section, we establish the iteration complexity of Algorithm|l|in the case where the objective
function f(z) is (Lo, L1)-smooth for Lo, L; > 0. That is, the objective function f(x) is twice
continuously differentiable and the following inequality holds:

|IV2f(x)|| < Lo + L1||Vf(x)| forall z € R% (30)

This assumption was proposed by [Zhang et al.| (2019) and is primarily motivated by experiments
suggesting that the norm of the Hessian correlates with the gradient norm of the objective functions
in deep neural networks. Note that the requirement for twice continuous differentiability may be re-
laxed by using the following equivalent condition for continuously differentiable objective functions
(Vankov et al.} 2024, Lemma 2.5):

IVf(x) = V) < (Lo + Lal|Vf(@)]]) - 25 (exp(Laflz — 2])) = 1). GD

It is also important to highlight that (L, L1 )-smoothness implies L-smoothness with L = Lg. The
reverse is obviously not true: (Lo, L1)-smoothness is much more general and allows the exponen-
tial growth of the objective function and local gradient Lipschitz constant (Gorbunov et al.| 2024,
Lemma 2.1;|Vankov et al., {2024, Lemma 2.5).
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4.1 MAIN RESULT

We start the convergence analysis of Algorithm [T] with Lemma [5] which refines the previously ob-
tained results in Theorem [I]and Corollary [T Furthermore, in Lemmas [6] and [7] we establish lower
bounds on the estimate \j, of the local inverse gradient Lipschitz constant.

Lemma 5 (). The following inequalities hold for all K > 1:

|Zk1 =" <D, |Ex-1 -2 <D, L, (FIV @) +m Dy 3:)) < D?, (32)
where D > 0 is defined as follows:

D2 — max{%, 2(1+7),(1+ 29)2}(||x0 —z*[2 4+ (L + 03 |V f(20) 7). (33)
Lemma 6 . Ak = Amin forall k € {1,..., K}, where Apin > 0 is defined as follows:
Amin = 7= exp(—=3L1 D). (34)
Lemma 7 . The following inequality holds for all k € {1,...,K}:
4
Ak 2> po - — — — . (35
b= 9max{2Lo, 2L, ||V f(Zx)], 2L1 |V f (Z—-1)|, 9LI D¢ (Tk, T1), ILI D (Th—1, Tp—1) } 35)
Next, we define the sets of indices 71 (k), T2(k), T5(k), Ta(k) as follows:
ﬂ(k):{lgigk:m:%and)\ > 920}
Totk) = {1 < i <hom = =2 and s < o2
- (36)
ﬁ(k):{1g¢gk:ni<%and(() (k)orz—l()>m)}
Ta(k) = {1 <i<kom < e and (i) € To(k) U {0} and i — 1(7) < m}
where m is a positive integer, and the integer function (k) is defined as follows:
I(k) =max{i:i e Ti(k)UTz(k) U{0}}. 37)

It is not hard to verify that these sets of indices are pairwise disjoint and that U?:ﬂ}(k) =
{1,...,k}. Moreover, the sizes of the sets T2(k) and T4(k) are bounded as shown in the following
Lemmal8l

Lemma 8 . The following inequalities hold for allk € {1,... K}:
Tab)| <m+mlTa(k)],  [Ta(k)] <1+ 200 12D2, (38)

2 min{v,v?}

Now, we establish the key lower bound on the cumulative sum Hy, of the stepsizes 7y, in the following
Theorem |3} Using this bound, we establish the iteration complexity of Algorithm (1| for (Lo, L1)-
smooth functions in Corollary

Theorem 3 ({). Let ¢ > 0 and m > 0 be defined as follows:

= mi 2y Vv _ 2
o N R S
Then, the following inequality holds for all k € {0, ..., K}.
(k= [T2(k)| = [ Ta(k)| = 1). (40)

Corollary 3 (J). Let 1oL exp(Li||zg — z*||) < 1. Then, D = O(||zg — x*|)), and to reach the
precision f(Tx) — f(a*) < ¢, the following number of iterations of Algorithm|l|is sufficient:

K:(’)(1+\/L0D2/6+L:1"D3+ (1+ L2D?) ln[no%o}) @41)

Similar to Corollary [2] for the L-smooth case, Corollary [3| requires the initial stepsize 7 to satisfy
the inequality ng Lo exp(L1||xzg — z*||) < 1. We can ensure this inequality without any line search
or hyperparameter tuning, simply by choosing a very small initial stepsize 7. Choosmg the initial
stepsize 79 too small will only result in an additive constant factor (1 + L2’D2) In [ ] which

does not depend on the precision € and has a logarithmic dependence on 7.
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Table 1: Comparison of the iteration complexities for solving problem (T)) under the convexity and
(Lo, L1)-smoothness; universal constants are omitted; D = ||xg — *||; the initial functional gap is
bounded as f(xg) — f(2*) < O(LoD? exp(L1D)), where necessary; optimality is considered up to
additive constants.

Reference Iteration Complexity Optimal | Adaptive
Li et al] (2023) VER % (14 L3DY) exp(O)LiD) | X X
Gorbunov et al (2024) \/E % \/T+ LiDexp(L1D) X X
Vankov et al) (2024) LoD? 4 (L, D)%/3 v X
Tyurin| (2025) \/@ + (L1D)? v X
Corollary 3] LoD? | (L, D)3 v v

4.2 COMPARISON WITH EXISTING RESULTS

Accelerated methods for (L, L, )-smooth functions. As mentioned in Section|1.4] there are sev-
eral existing accelerated algorithms with theoretical guarantees for minimizing convex (Lg, L1)-
smooth functions. To compare these results with Algorithm [l} we use a particular choice of the
initial stepsize ny = L%) exp(—L||xzo — «*||) in Corollary FFLThe comparison is summarized in
Table E} The algorithms of |Li et al.| (2023));/Gorbunov et al.|(2024) are neither adaptive nor optimal.
The algorithms of |[Vankov et al.|(2024); Tyurin| (2025)) are near-optimal as they match the complex-
ity in eq. @) up to additive constants, just like Algorithm[I] The result of [Vankov et al.| (2024) has
a slightly better additive constant (L;D)%/3. However, neither of the algorithms of Vankov et al.
(2024); [Tyurin| (2025)) is adaptive: the algorithm of |[Vankov et al.| (2024) requires solving a one-
dimensional auxiliary optimization subproblem at each iteration, and the algorithm of [Tyurin|(2025]))
requires tuning several parameters. In contrast, Algorithm [I] does not require any hyperparameter
tuning or line search to achieve near-optimal complexity, as discussed in the previous Section[4.1]

AdGD for (L, L )-smooth functions. Gorbunov et al.| (2024) established the iteration complexity
O(LoD?/e + (L1 D)%) for the AdGD algorithm under the (L, L1)-smoothness assumption | This
result is unsurprisingly worse than ours in Corollary [3] due to the lack of acceleration. In addition,
Gorbunov et al|(2024) did not prove that the constant D is bounded as D = O(||zg — z*||). In
fact, D also contains the initial objective function gap f(xo) — f(«*), and hence, it may have an
exponential dependency on the initial distance ||z¢ — 2*||.

AC-FGM and AdaNAG. As previously discussed in Section we allow the geometric growth
of the adaptive stepsize in Algorithm[I] which is crucial for obtaining the near-optimal complexity
result in Corollary 3] Indeed, the estimates of the local curvature A\, can scale exponentially in
the worst case according to Lemma @ but can grow up to O(1/Ly) when the algorithm reaches a
certain region near the solution z*. Hence, the growth of the stepsize at a geometric rate or faster is
necessary to avoid exponential factors in the iteration complexity. In contrast,|Li & Lan|(2025); Suh
& Ma|(2025)) do not provide any convergence guarantees for (L, L1 )-smoothness for AC-FGM and
AdaNAG. In addition, as previously discussed, the rate of stepsize growth in AC-FGM and AdaNAG
is far below geometric. Hence, we conjecture that it is not possible to reach near-optimal complexity
with these algorithms.

3Note thatGorbunov et al.| (2024) incorrectly reported their result as O (LoD? /e + (LlD)4).
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Appendix

A PROOFS FOR SECTION 2]

A.1 PROOF oF LEMMAI]

First, we can show that A\, > 0 for all k& € {1,...,K}. Otherwise, if Ay = 0, there exist
x,z € RY such that A(z,2) = 0 due to the definition of \; on line Hence, Dy(z;2) = 0
according to eq. . From the convexity of the function f(x), it follows that D s (x; z) > 0. Hence,
x minimizes the function Dy (-;2), and by the first-order optimality conditions, V, Ds(x;2) =
Vf(z) — Vf(z) = 0. This implies A(z;2) = oo according to eq. (L), which contradicts the
possibility of A\x = 0.

Next, using the fact that A\; > 0 and lines [3] and [T} it is easy to show that 7, H; > 0 for all
k € {-1,...,K}. Hence, the inclusions oy, € (0,1) and 8;, € (0, +00) are obvious due to their
definitions on lines [5|and[12] Finally, we can upper-bound 1 as follows:

B, @Mt @ M1 Hy + (14 7)nk Atme  He+ (A +N)m _
T e e Hetmesr Uy - He+Q+)me Q+7)m

where (a) uses line[12} (b) uses lines[5]and[11} (c) uses the inequality ;11 < (1 + v)nx implied by
line[T1]and the monotonicity of the function ¢ — ¢/(1 +t). O

)

A.2 PROOF OF LEMMAD]
We can upper-bound f(Z41) as follows:

) @ F(Bun+ (L BT D B (@) + (1 — B f(E).

where(a) uses line[7} (b) uses Lemmal|l]and the convexity of f(z). After rearranging, we obtain the
first desired inequality. Furthermore, we can upper-bound D (Zj, Z;—1) as follows:

Dy (Tp; Th—1) & D¢ (Br—1Zr—1+ (1 — Br—1)Th—1; Tr—1)

=]

< (1= Br—1) Dp(Tp—15Th—1) + Br—1 Dp(Tr—1; Th—1)
©@ -
< D¢(Th—1;Th—-1)

where (EI) uses line @ and (c) use uses Lemma |I| and the convexity of D¢(-; x—1), which is
implied by the convexity of f(x). This proves the second desired inequality. O

A.3 PROOF OF THEOREMII]
Forall k € {1,..., K — 1}, we obtain the following:

Slzrer — 2f? = $llon — 2)1? = loesr — zll® + (Tog1 — oo, Tog1 — )

= %Hffk - l‘Hz - %ka-&-l - -Tk||2 + <93k+1 — Ty Tk+1 — fik+1>

+{Trer1 — Tk, T — Tp + Tp — 1)

@ slak —lI” = (5 + 0)[lensr — 2all® + (Trrr — Tp, Brgr — Bp + 81 — @)
8 sl —2® = (5 + 0) arrs — 2k ll® = m(VF (Er), Brgr — E1)

+ 0 (Vf(Zr), x — )

8 e —2)® = (3 +0) lewr — 2ll? — me(V F(Ek), Brs1 — &)

(Y f (@), — Br) + LB (T £ (3), Ty — T

g

Sllzr — 2l = (3 + 0) lzrrr — 2ll® = me(V F(@k), Brpr — k)

13
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+(f(@) = f(@r)) + L2 (£(@) — f(@r) — Dy (Th: 3x))
= $llze — 21> = (3 + ) |zrs1 — zkl1? — MV f (Tk), Brgr — Bi)
— e (f@k) = F(@) + Z(F (k) — f(Er)) — LoD (7 7)

< o — 2l = (3 + 0)llzwsr — 2l = (V£ (@n), Bngr — )
— (@) = F(2) + 22 (F@k) — f(@rs) — B2 D (75 3,

B 111zp — 2lf2 = (3 +0)lzsr — okl — me(VF (@), Ersr — k)

— m(f (@) = F(2)) + He(F(@k) = [(@rp1)) — 2D (3 )
@

= o —2® = (3 +0)|lwrr — 2il? — e (VF (@), Brgr — En)
+ Her (f(T) — £(2)) = H(f(@rs) — f(2) — Lo220% D (3 5,

where @) uses line l; (]E[) uses line @ uses line E @) uses the convexity of function f(x); (EI)
uses Lemma[2} (f) uses line[T2} (g) uses hne@ Furthermore, we get the following:

slors —z?
< sllow —al* = (5 + 0) | wrgr — xil|® + Heoa (f (Tn) — f(2) — Hi(f(Thsr) — f(2))
- m Dy (@Tk; Tx) — m(V f(@r) = VI (Tr—1), T1 — Tk) — eV f(Th-1), Th1 — k)
8. ek —z)® = (3 4 0)lzrr1 — zll® + Heer (f@i) — f(2)) — He(f(Trsr) — f())
- % Dy (Tn; k) — iV f(Tx) — VI (Tr-1), Thg1 — Tx)

+ nf’“ (g — Th—1, Trt1 — Tk)

8, Sk —2l? = (3 + O)llweir =zl + Hea (f(@n) — f(2) = Hi(f (@ria) — f(2))
- % Dy (Zk; Tk) — eV f(Zk) = VI (Tr-1), Bht1 — Tk)
+

(B — Thy Thtr1 — i)

Ok —1
= %”xk -zl - (% + 9>H9Ck+1 — apl|” + Hie1 (f@k) — f(2) — He(f (@) — f(2))
— 0= (75 7) — (Y f (@) — VF(Fr1), Brat — )
+ g (Eksr = 2ll® = & — 2ell® = E541 — 2)1°)

8. sllzk — 2> = (3 4 0) lzerr — all” + He1 (f (Tn) — f(2) — Hi(f(Tsr) — f(2))
- % Dy (Zk; Tk) — eV f(Zk) = VI (Tr-1), Bot1 — Tk)

+ g (L4 0)?|zpsr — x| = 0 [lon — 2| = ([ 241 — &%)

@ 1+6)° 9
= Hllon =l S5 (52 = 5 s = el = g5 o —

— s &1 — &) + IV (@) = VF (@e-0) 12011 — ]
— Um0 b (s k) + Hieoa (F(T0) — (@) — Hi(f@ri1) = f (@),

where @) uses line[6} (b) and (c) use line[8} (d) uses the Cauchy-Schwarz inequality. Next, we get
sllzers — |

146 2 ony
< Sllow — ol + C2 (52 — G205 ) lowsn — all® — 225 ok — wpma |

— Qe (73 34) + Hioa (f(T) — f(2) — Ho(f (@) — ()
|Zks1 — Zxl1? + Ml VF (@) — V@) ||| @641 — 2|

- 29771%1

Dt — 2+ Hioa (F0) — F@) — Hilf (i) — £ ()

14-6)? 2 0
+ 29) (anl - (011299)2> [ T,Zfl |z — 2p—1]?

14



Under review as a conference paper at ICLR 2026

1 — o~
— sgli kg — k|2 — UE2 Dy (T )

TV (@) = V@) [ Err1 = Zell + el [V (@x) = VI (@) | B0 — 21l

g slox — 2)® + Hioa (f (@) — (@) — Hi(f (@rgr) — f(2))

14-6)? 2 0
+ O (e — 205 Y lonsn — all® = 222 ok — g |
— sgli | ingr — k|2 — UE2 Dy (T )

+ 1) o Dp(@h; Zn) |21 — Tall + 6y /5 DTk Trm1) | Brg1 — |

—_— ga—
< sllae —a|* + Hyoa (f (@k) — f(2) = He(f(@n1) — f(2))
1+6)% 2 0
+ : ;9) (nZ: - (011290)2> k41 — kaQ - gnk%ﬂzk - Ik—1||2
~ ~ 1— — ~
- 202:_1 [ &1 — 2x]* — % Dy (Tk; Tr)

+0\/ 5 Dy (Tns T |21 — x| + nk\/%k Dy (Tr—1; Th—1) | Zh41 — Tk

Q= ol Hea(F@) — F(@)) — H(f Gan) — (@)

14-6)? 2 0
+ (450 (nffl - (011290)2> lokt1 — axll? — o=l =z ?

- - 1— — ~ 1— — o~
s [ Zr1 — &k — U= 1 (75 21,) + % Dy (T; T1)

. . 91111 _ . .
+ 7(1f22'§/\k |Zks1 — 25l + =L Dy (Tp—15 Tp—1) + o || Eh41 — ol

= Yo — 2|® + Heea (f(@) — £(2) — Hi(f(@rgr) — f(z)) — L2 D (34 5,

1+6 2 9
T . P i
— — .~ 0 _ — ~
A s — 2 — Q2 D (B ) + U D (T o)
¢

Hww = 2* + Hea(F @) — f(2) = He(f@ay1) — £(2)) — iy Dy (s )
¢!

+6)? : 01
+ 20) (nzkl - (011290)2> lzkr1 — @ll* — Qanl e — zp |
— ) — - 7] _ _ -
+ B 1Tk — 2|7 — Ceowm 4(;’;)"" Dy (Tk; Tx) + 50 Dy (Th—1; Th-1)

where (@) uses the triangle inequality; (b) uses line [I0] and eq. (I1)); (c) uses Lemma [2} (d) uses
Young’s inequality; () uses lines[5]and[L1]} Furthermore, we obtain the following:

3llzss — 2
< llok = @l + Heo1 (f @) = £(2)) = He(f (@Trs1) = F(2)) = 3085y Ds (Tns @)

1+6 2 7]
+ 29) (n:: - (911299)2) [#r41 — mk”z - M%ka - Ik—1H2

QM S A2 _ (A—ar)Xetr | Onktime — A MK —1 — >
+ (I—ax) e ||$k+1 - l‘k” T 0okt Art1 Df(xk:a xk) + by Df(xk—lvxk—l)

@ slloe = l” + Hy—1 (f (@k) — f(2)) = Hy(f(@ps1) = F(2)) = g3y Dy (Tw; )

14-6)2 2 0
+ O (G — 53 o — el — ol — e

e . 0 . I _
+ et 12k — Zyl|* — 4,,9(11”) F EELIE D (T Br) + T Dp (T—15 1)

Akt1
B 1 wp — 2l? + Hia (F0) = £(2) = Hu(f@rn) = F(2)) — 5 Dy (T )
9)? 2
U5 (5 = G ) Ik =l = sl =z

1 0 _ Onne_ _ .
+ ey O‘;}Z;M |Zrs1 — Z|® = (+7) :7) . 777;:1"’“ Dy (Tk; k) + 7"";7: LD ¢ (Tp—1;Th—1)

< gllen = 2l + Heoa (f @x) = f(2)) = He(f @rr1) = f(2)) = g5 D @i T)
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+ (lerg) (nffl - (911200 )||$k+1 — anll? = g ok — w1

2l Enen — 2xl)® — S5 Dy (T Bx) + P Dy (Tho; Trn)

Ul — 22 + Hir (F(@) = £(2)) = Hi(f(@xi1) = F(2)) — 05 Dy (Tas )
P D (s 1) — a2 Dy (T )

L (o 02— B — P

2(1+6)2 . 202
+ A ke — ]+ Gl = 2

< gllen =2l + Heoa (f@x) = f(2)) = He(f (@nr1) = f(2)) = g5y Dy @i )

Ok Nk — = = 6 z T 7
+ %:1 Df(ﬁk,l;xkfl) — %Lm Df(xk;xk)
146)2 46 04202 26°
+{ 29) (nk R e s v (1129)2>||33k+1 — i * + Tarag o —a |’

g) e — 2)® + Heo1r (f (@) — f(2) — Ho(f @ks1) — f(2)) — 1147y Df Tk Tn)

+ P Ty (T3 E) — ‘%:ffk Dy (Tk; Tr)

146 o 2 20%a
+ O () + e — B2 o — el + AL ok — v |

Eb sllee — 2l + Hyo (f (@) = f(2) = Ho(f(@hs1) — f(2) = geisy Dy (Tns )

Onkm—1 = v Ok 17k _ .~
+ = Dy(Zp—1;Tk—1) — THD.f(xkvxk)

2
+ 0 () + 4001+ )2 = FE2 Yok — wpll? + 20621+ 7))l — w2

8 e — 2)® + Heo1t (f @) — f(2) — Ho(f @rsr) — f(@)) — ﬁDf(fk;fk)

0N —1 — v Onk+1Mk = .
+ o Df($k—1755k—1) - THDf(mkﬁﬂk)

1+6)? 2 0
+ 57 (1 +27 = g - <1-9+9)2) k1 = 2ill® + Flloe — 2

< gllew = 2)* + Hea(f(Tk) — f (@) = He(f(@rs1) = (@) — g1y Dy (@ )

+ Qm,\n:fl Dy (Tp—1;Tp-1) — a%:fk Dy (@k; 1) — 10| w1 — wkl|? + L|ar — v ||
B 12y, — 2l + B (F@) — £(2) — Hilf @rsn) — f()

- 79%;7: LDy (Tho1; Br1) — TR D@k ) — Blloers — ael)” + Bl — 2

on; ~
- %va(xk)llg 4(1+7) Df(l'hxk)

where @ and (&) use lines J§| and[T1} (), () and (g) use eq (19); (c) uses line[§]and the in ‘uahty
hi)

la + b|| < 2|la||® + 2||b]|% @) uses the inequality 7, < (1 + 'y)nk 1 implied by 11ne.; desc
It remains to use the definition Wy (z) in eq. (21).

A.4 PROOF OF COROLLARYI]
We can upper-bound % ||z g — z||? + Hx—1(f(Tx) — f(x)) as follows:
ek —2|® + Hxk—1(f(Zk) — f(2))

Q402 v,

=]

sllar — | + Ho(f(m1) — f(2)) + 97719;7% Dy (Zo; #0) + Fllz1 — wol|?

sllz = 2l® +n0(f (z0) = f(x)) + B ller — o

=V

16
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B 1120 — 22 + S22 )7 £ (o) |2 — 10 (V £ (20), 70 — ) + 10 (f () — f(x))
= Llwo — 2| + %nwmow — 10 Dy (@, o)

@ 2

< Hlwo — ) + 20 |57 £ (24)||2,

where () and (c) use eq. ZI); (B) uses Theorem [T} (d) uses lines [3|and [7; (e) use lines 3 and [6} @)

uses the convex1ty of f(z).

17
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B PROOFS FOR SECTION[3]

B.1 PROOF OF LEMMA [

For k = 0 we have Hy = Hj_;. The inequality Hy > Hjy_; is obvious for £ > 1 due to line
Furthermore, we can upper-bound Hy, for k > 1 as follows:

g ]
Hy = Hp—1 4+, < He—1y + (L4 7)1 < (24 7) Hi—1,

where (a), (b) and (c) use line[TT} O

B.2 PROOF OF THEOREM [2]

We prove the statement of Theorem |Z| by induction over K. The base case, K = m, is obvious.
Now, we assume that eq. holds for all k € {0, ..., K}, where K > m, and prove eq. for
k = K 4 1. We consider the following cases:

Case 1. (1 + ’)/)771(77[(_1 >VvHKg 1AK41-
Case 2. (1 + '7)77K77K71 < Z/HKflAKJrl.

Case 2a. nx = no(1 +)%.
Case 2b. 0 < no(1 + )%

vHr 1 k41

Case 1. Here we have g1 = o

VHig41 = W(HK—H — Hg o)+ Hgk_2

and obtain the following inequality:

@

2 ST (Hrq1 — Hg o) +/Hg 2

®

2 3 hl[ (Nx4+1+1K-1) +VHr—2
K+1

(24+v)VL

2 w c (K —2
—(2+7)ﬁ+\ﬁ'( —2-m)
@ .

where (@) uses the inequality Hx_y < Hg 41 for K > m > 2; (b) uses line [TT] uses Young’s
inequality; (d) uses the assumption 1y 11 = % (Case 1) and Lemma li uses Lemma
Vv

(ﬁ) uses the induction hypothesis in eq. , uses the inequality A < @I implied by
eq. (24). This proves Case 1.

Case 2a. In this case, it is easy to verify that i, = 19(1 + )" forall k € {0,..., K + 1}. Hence,
we can lower-bound H 1 as follows:

Hicor @ T8 (14 7)* = 2((14+9)72 - 1)
2
_ mo(4+)™ K+2-m _ _ 1 no(1+y)™ (K—m+2)/2\" _
= ((1+7) (H,y)m) > (((1+7) ) 1)

LD (14 J(K = m+2))" = 1) = B (K — o 4+ 2)° “2)

Vgl

2

C(K+2-m)?> (K +1-m)?,

V&

18
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where @ uses line|11|and the relation 1, = 70(1 + v)* above; @) uses the inequality K > m and
Bernoulli’s inequality; uses the inequality (1 + )™ > % implied by eq. . This proves
Case 2a.
Case 2b. In this case, there exists [ € {1, ..., K} such that n; < (1 + 7)m—1. We choose the largest
such index [ € {1, ..., K'}. This implies the following relations:

m="E=22 and gy = (147)"ly forall ke {l,..., K +1}. (43)
Hence, we can upper-bound H . ; as follows:

Hior @ B+ S5 (L4 9) = Hio + (14957142 - 1)

@ (1+ )K—l+37(1+ ) 14+ )K,H,‘g (44)
< (1 + %)Hl—l < (%Hl—l

where @) uses the above relation; (E[) uses the inequalities 7; < (1 + v)m—1 and m—1 < H;4
implied by line[TT] Furthermore, we can lower-bound 7; as follows:

@ vH, o @ vH; )\ vH;_o

M= "5, < H-H_ ;< LE-H_3) 45)

where (a)) uses the relation above; (b) uses lines [3] and [T1] where we define H_, = Ho; uses
Lemma 3] Next, we obtain the following inequality:

(Vi = V)" & (Vs = V) (V- VTs)
\/giilfl/lHj 1 \/%—:\71;373

Hg1—Hi—n  Hi—H,_3
2¢/Hk 41 2V H,

m(4 1) Hi—H_

Vizi

2

27\/HK+1 2vH,
@ vh oy 2o
- 4’YL\/HK+1HL
@ vH 3 S QypEttr
- 4L\/'y(1+fy)Hl,1Hl \/(1+7)K—l+2
vH 2 (K=1)/2+1
> =2 . 1
2 a1 )
®
v . (K=1)/2+1 _
= ey () D, (46)

where @) uses the inequalities H;_3 < H;_; and H; < Hg41; uses the inequalities Hp 1 >
H;_y and H; > H;_3; () and (¢) use eq. (@#4); (d) use eq. @3); (f) uses Lemmad] Next, we take
the square root of both sides and obtain the following:

VHitr =V His 2 2\/“/(1+7)(2+v)3L2 ’ \/(1 D/ -1

N X (K—-1+2)/4 _
2/~ () @) L2 ((1 +7) 1)

_ N ) ( (K—1)/4+3/2 _ )
sarerr 1T (1+7)

vy (YK - 1
23/7(1+7)%(2+7)3L2 (4(K 0+ 2)

vy (YK - 1
231 (1) (27)° L2 (K =D+3)

VU ) _
wyAaraeE ) @7

(K —1+4),

IVE]

IViZi

Va1

v
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where @) uses the inequality \/a > v/a + b — /b for a,b > 0; dEI) uses Bernoulli’s inequality;
uses the inequality K > [; (d) uses eq. (24). Finally, we obtain the following:

@
vVHr41 > Hl,3+ﬁ(K—l+4)2%(K+l—m),

where (a) uses the induction hypothesis in eq. (23)) for & = [ — 3, which also holds for { = 1 due to
the definition H_, = Hj. This proves Case 2b. O
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C PROOFS FOR SECTION [4]

C.1 PROOF OF LEMMA 3]
Step 1. We can upper-bound Zfil (2 IV f(2:)|? +n: Dy (Ti; %;)) as follows:
S (RIVF @I + 0 Dy (s 32)
K ~ o~
< max{ 2,40+ S5, (ERIVS @) 2 + gty Dy (7 30))
@ K * *
< max{ 2,401+ ) 2L (W(@") — Wi (2Y))

< max{%, 4(1 + 7)}‘1’1(5”*)

&

max{ 35,21 +9) } (o — 2|2 + (1 + 10V S (@o)II),

where (a) uses Theorem [T} (b) uses the fact that ¥ (z*) > 0, which is implied by eq. 21); (d) is
obtained similarly to the proof of Corollary [T]in Appendix [A.4]
Step 2. Next, we prove the following inequality for all k¥ € {0,..., K} by induction:

max{||Zr — «*||, |Tx — z*||} < (1 + 20) k:rgaXKka —z". (48)

The base case k = 0 is obvious due to line[3] For k > 1 we can upper-bound ||z, — z*|| as follows:
7k — 2* 1| @ By flzn—s — &Il + (1 = Bo-n)Tes — 2|
(9]
< (1+20 -z
< (1+20) max [l — 27,

where (@) uses line[7} the triangle inequality, and Lemma [T} (b) uses the induction hypothesis in
eq. for k — 1. Next, we can upper-bound || %3 — z*|| as follows:

N @ . _
[Ze — 2" < al|@e — ™| + (1 — o) |T) — 27|
6
< apllEk — 2]+ (1 — ax) (1 +26) k_rgaxKH:Ek -z

* * *
s ap(L+ )z — 27| + arbllap—y — 27| + (1 — ax)(1 +26) max [y — 27|

s

< (14 20) k_IglaxKka —z",

where (@) uses line 9] and the triangle inequality; uses the inequality obtained above; (c)) uses
line 8] and the triangle inequality. This proves eq. . Next, using eq. @8) and Corollary [T] we
obtain the following inequality for k& € {0,..., K}:

max{|[Zx — 2%, T, — 2*[?} < (1+20)*(|lwo — ™[I + (L +10)n3 |V F (o) [|)-
Combining this with the inequality obtained in Step 1 concludes the proof. [
C.2 PROOF OF LEMMA[G]
We can lower-bound )\, as follows:

Ak @ min{A(fk, .”Iikfl), A(fk, .i‘k)}

@ . 2Df(17‘k,:ik,1) 2Df(fk,.7?k)

- mm{ V@) VI GrD? TVF @) -V I @ }

2

" 2(Lo + Lil|[Vf@)) + Ly max{[|V f(Zx) — VI (@), IV (@x) — VI (@k—1)l}
@ 2

>

(Lo + L[V £ () D) (exp(Ly max{|[Zx — Tk, [Tk — Zx-a[}) +1)

21



Under review as a conference paper at ICLR 2026

2

>
= (Lo + L[|V f(@p) 1) (exp(La ([|Tx — o*|| + max{||Zx — 2*|, |Tx—1 — z*[|})) + 1)

2
(Lo + L1V f(@x)[)(1 + exp(2L1D))

2
Loexp(Ly1||ZTx — 2*]|)(1 4+ exp(2L1 D))

2 S 1
Loexp(L1D)(1 + exp(2L1D)) ~ Loexp(3L1D)’
where %ses line (b uses eq. (ED; uses Corollary 2.8 of [Vankov et al] (2024); (d) and (f)
. O

use eq ; (€) and (g) use Lemma

V@

Y=

IVEI

C.3 PROOF OF LEMMA[T]

We can lower-bound D (z, 2) for all z, 2 € R as follows:
@ IVf(z) = V()
" 2L+ Ll V@)) + LalIVf(2) = V(2]

IVf(=) - VIR
2(Lo + L[V (2)|) + 3L1 [V f(2) = V)

where @) uses Corollary 2.8 of [Vankov et al.| (2024); (]E[) uses the triangle inequality. Hence, we
obtain the following inequality, which is quadratic in ||V f(z) — V f(2):

IVf(2) = V() = 3L Dy (@, 2) - [[Vf(2) = VF(2)ll = 2(Lo + Lr[|VF(2)[)) Ds (w, 2) < 0.
Solving this inequality with respect to |V f(z) — V f(z)]| gives the following

3L1 Dy(z,2) + /(3L1 Dy(z,2))2 + 8(Lo + L1[[Vf(2)[]) Ds(x, 2)
IVf(x) = Vi)l < 5

Dy(z, 2)

Vg

&

< 3Ly Dy(z,2) +/2(Lo + Li|Vf(2)]) Dy(z. 2)

NG|

5L1Dy(x,2) + 3(Lo/La + IV (2)])),

where (EI) uses the inequality v/a + b < v/a + v/b; (jﬂ) uses Young’s inequality. Combining this with
the inequalities above gives the following:

@ 2Dy (z,2)

A, 2) = [ormevror
9
= 2(Lo + Li||[VF(2)|]) + 3L1||Vf(z) — VF(2)|
4
6(Lo+ L1[|[Vf(2)|) + 27L3 Dy (z, 2)
4

>
~ 9max{2Lo, 2L, ||V f(2)|,9L3 Ds(z, 2)}

V@

where (@) uses eq. (TI)); (B) and (c) use the inequalities obtained above. Using this, we can lower-
bound A, as follows:

@
Ak = min{A(Ty, Tr—1), ATk, T1) }
® 4

>

T 9max{2Lg, 21 ||V f (@K, 2L1||V f (Zr-1) ]|, 9L% Df(fk, Zk), 9L§ Df(fk;, Zp—1)}

4

-9 max{2L0, 21 HVf((fk)H, 214 ||Vf(i‘k,1)||7 9L% Df(fk, fk), QL% Df(fkfl, .’Z’kfl)} ’
where (a) uses line[T0} (b) uses the inequality obtained above; (c) uses Lemmal 2} O
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C.4 PROOF OF LEMMA[§]

Using the definition of 74 (k) in eq. (36), one can verify that the following inclusion holds:
Tik)yc{1<i<k:i—max{j:je Tz(i)U{0}} <m}, (49)

which implies the first desired inequality. Next, using Lemma [/| and the definition of 72(k) in
eq. (36), one can veryfy that the following inequality holds for all ¢ € T2 (k):

4
Ai > — - — — — . 50
9 max (2L, [V /(@) 2L1 [V f (@) 012 Dy (@ 7). 03 D (mrr o)) O

Hence, we obtain the following:

2D?

@

> 250, (R IVF @) + 0 Dy (@5 2:)

= S (BIV S @) + mi Dy (i3 7))

+ 32 IV F @) + 151 Dy (T3 Ei-1))
)

@ Zk (77 ”vf £L’7, ”2 + i Df (EZ,IEZ
Skt .
~, ((1+72n2 IVf(&i- 1)||2+m77in(xif1;xif1))

)

o (i (95 @I + IV S o) ) + (s (D (55 ) + Dy (T3 320)))
@ ' T T

> Sieryon (e (IV/@ )||2+||Vf(56¢—1)|\2)+(1179?(1)]“@”1)+Df@_1;mi_l))>
@ 242

S Yo (25 (IV S @I + IV F@Ein)I?) + 225 (D (s £2) + Dy (Ficis i) ).

T3 (k) = Ta(k) \ {1}; (e) uses the definition of T2(k) in eq. (B6) and the fact that H; o > n;_

where (a) uses Lemma 3} (b) uses line [TT} (c) uses the fact that v > 0; (d) uses the definition
Furthermore, using eq. (50), we can show that the following 1nequahty holds for all i € 75 (k):

max{A[|VS(Z:) 1%, NIV f (@01, X Dy (@3 20), X Dy (Fimr; Timn), } = g7z D)
Hence, we obtain the following:
2 min{v,v?} 4 @ 4min{v,v?}
2D > Yiery (M) - 51tz 2 St (B,
where (a)) uses the fact that > 0. It remains to use the inequality | T3(k)| < 1+ |73 (k)| O

C.5 PROOF OF THEOREM[3

We prove the statement of Theorem 3|by induction over K. The base case, K = 1, is obvious. Now,
we assume that eq. (40) holds for all k € {0,..., K}, where K > 1, and prove the inequality in
eq. [@0) for k = K + 1. We consider the followmg cases:

Casel. K+1eT(K+1)or K+1eTy(K+1).
Case2. K+1eTi(K+1).

Case3. K+1¢€ T3(K+1).
Case 3a. (K +1)=0.
Case3b. (K +1) € T1(K +1).
Case3c. [(K +1) € To(K +1).

Case 1. In this case, we can lower-bound +/ Hx ;1 as follows:
@
VHr41 2V Hg
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®
> e (K~ T3~ |Ta(K)| ~ 1)
S e (K41 |Ta(K + )|~ Ta(K + 1)~ 1),

where (a) uses Lemma [ (b) uses the induction hypothesis in eq. (@0); (c) uses the assumpttion
K+1eT(K+1)UT4(K + 1) and the definition of 7T3(K + 1) and T4(K + 1) in eq. (36). This
proves Case 1.

Case 2. In this case, we can lower-bound +/ H i 1 as follows:

VHg 1= m(]ﬁ(ﬂ —Hg 2)+/Hi 2

QW;K—H(HK+1—HK—2)+ Hy o
92\/1;}(7“(771(4-1‘1'771{—1)'1' Hg o
\/%—i— Hg—»

gﬁ+ Hg o

@\/32—0 Hy o
@;%0+fn.g«fzf\er(Kf2)|—\7'4(Kf2)|71)
= &= (K +1-|T2(K - 2)| - |Ta(K - 2)| = 1)

Y e (KT 1) = [T 1) - 1),

where (a) and (f) use Lemma [ (b) uses line [TT} (c) uses Young’s inequality; (d) and (e) use the
assumption K + 1 € T;(K + 1) and the definition of 7; (K + 1) in eq. (36); (g) uses the definition
of ¢ in eq. (39); (h) uses the induction hypothesis in eq. (40); (i) uses the definition of 73(k) and
Ta(k) in eq. (36). This proves Case 2.

Case 3a. Since [(K + 1) = 0, we have T1(K + 1) = 73(K + 1) = @. Hence, from egs.
and (37) and line [11] we have g1 = (1 + 7). Moreover, since K + 1 € T3(K + 1
and (K + 1) ¢ T1(K + 1), we have K + 1 > m due to egs. and . Besides, since
Ti(K +1) = T2(K + 1) = @, from eq. (36) we conclude that T3(K + 1) = {m +1,..., K + 1}
and T4(K 4+ 1) = {1,..., m}. Hence, we can lower-bound \/ H 11 as follows:

@ m
/HK+1 > ?70’Y(14+’Y) (K —m+ 2)2

2 2k —mray?
E(K +2 - |To(K +1)| = [Ta(K + 1)])?
> (K +1- [Ta(K +1)] = [Ta(K + 1) = 1),

0

where (a) is obtained similarly to eq. (2)) in the proof of Theorem [2]in Appendix [B.2} (b) uses the
definition of m in eq. (39); () uses the fact that T4(K +1) = {1,...,m} and T:(K + 1) = @ as
shown above. This proves Case 3a.

Case 3b. Using egs. (36) and (37) and line[TT] we can express 7k 41 as follows:

_ vH EDPY
i1 = (1+7) 1 Dy ) = —l“;;&;f?w“)- (52)
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Moreover, similar to eq. (#4) in the proof of Theorem[2)in Appendix[B.2] we can upper-bound H 41
as follows:

HK+1 <1 (1_’_7)1( l(K+1)+3Hl(K+1) 1. (53)

In addition, snmlar to eq. (@6) in the proof of Theorem 2] in Appendix [B-2] and using the definition
of 71 (k) in eq. (36), we can obtain the following inequality:

oy v , (K—U(K+1))/2+1 _
( A HZ(KH)_?’) Z18Lo\/'v(1+*v)(2+w)3 ((1+7) 1)’ (>4)

where H_y = Hj, and similar to eq. (#7) in the proof of Theorem 2]in Appendix [B.2] we can obtain
the following inequality:

Vi = \[Hucy=s 2 rmmiigeey (KUK D40 69

Finally, after rearranging, we can lower-bound \/ H g1 as follows:

VA 2 a, (K41)-3 + 24\/4W(1+7 e (K~ UK 1)+ 4)

g) Hyky1)-3+ \/% (K- UK +1)+4)

S (UK 1) =3~ [T(U(K +1) —8)] ~ [Ta(l(K + 1)~ 3)| 1),
+ o (KUK +1) +4)

= (K +1—|R(K + 1) = 3)| = [Ta(l(K + 1) = 3)| = 1)
g)\/%O-(K+1—|75(K+1)\—|ﬂ(K+1)\—1)v

where (a) uses eq. (53); (b) uses the definition of c in eq D uses the induction hypothesis in
eq. {@0); (d) uses the definition of T3(k) and T4 (k) in eq. ( ThlS proves Case 3b.

Case 3c. Similar to eq. (#6) in the proof of Theorem [2]in Appendlx and using Lemmal[6] we
can obtain the following inequality:

2
(, /HKJrl _ /Hz(K+1)73) > YW ETEEmE v(fi:)h(]%w . ((1 + 7)(1!(71(1r<+1))/2+1 _ 1)

i (1) ( (K—I(K+1)—m/2)/2+1 _ 1 )
= ey () FE=MEE
@

< v NG (K—U(K+1)—m/2)/24+1 _ 1)

= I8Loy/A0 2 (( +7)

®

S v NG (K—I(K+1))/44+1 _ 1)

= I8Loy/A (Lt 2 1) (( +7) ’

where H_5 = Hj, and (EI) uses the definition of m in eq. ; uses the fact that K — (K +1) >
m, which is implied by the assumptions K + 1 € T3(K + 1) and I(K + 1) € To(K + 1), and
eq. (36). After taking the square root from both sides of the inequality, we obtain the following:

_ Vv . K—1(K+1))/4+1 _
VHr1 =\ Hip1y)-3 > PRV R Ty \/(1+7)( (K+1)/ 1

@ f
9 v ) (K—I(K+1)4+4)/8 _ )
T 3/ (1) (2+7)3 L2 ((1 +7) 1
_ N2 ) (K—I(K+1)+4)/8+1 _
3 %/4A/(1+7)5(2+7)3L8 ((1 + 7) (1 + 7))
®
> o (K = UK +1) +4),

24 3/47(147)5(2+7)3L3

where @) uses the inequality \/a > va + b — v/b; (Eb uses Bernoulli’s inequality. The rest of the
proof is identical to the proof of Case 3b. O
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C.6 PROOF OF COROLLARY[3]

We can upper-bound D? as follows:

DR foas{5,201-49), (14202 (o — 2717 + (1 440V )l

5}
@\ Jmax{35,201 49,1+ 2012} (o 1l + T 70mlV o)1)

(exp(Ln||wo—a”|)—1

(c)
S\/max{le,Q (1+7),(1+20) 2}(1+ 1+~0)noLo - Talzo—2"] ))onf:c*H

=2

(1 + (1 +0)noLo exp(L1l|xo — z*|))|zo — 2™ ||

2

2 \/max{le,Q(l +7), (1+26)2

(e)
<\/max{,yle,2(1+’y (1+20)2 (24 90)||zo — ™|

= O([[zo — 2)),
where (@) uses eq. ; (EI) uses the inequality va + b < /a + Vb; (¢ uses eq. ; (@ uses the

inequality exp(t) — 1 < texp(¢), which is implied by the convexity of the function ¢ — exp(t); (€]
uses the assumption 1o Lo < exp(—L1|lzo — z*||). It remains to combine Corollary |1} Lemma (8}
and Theorem 3] 0

26



	Introduction
	Gradient Methods
	Adaptive Methods
	Main Contribution: GRAAL with Nesterov Acceleration
	Related Work

	Adaptive Gradient Method with Nesterov Acceleration
	Algorithm Development
	Convergence Analysis

	Convergence Analysis for L-Smooth Functions
	Main Result
	Comparison with AC-FGM and AdaNAG

	Convergence Analysis for (L0,L1)-Smooth Functions
	Main Result
	Comparison with Existing Results

	Proofs for Section 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Corollary 1

	Proofs for Section 3
	Proof of Lemma 4
	Proof of Theorem 2

	Proofs for Section 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Theorem 3
	Proof of Corollary 3


