
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NESTEROV FINDS GRAAL: OPTIMAL AND ADAPTIVE
GRADIENT METHOD FOR CONVEX OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we focus on the problem of minimizing a continuously differen-
tiable convex objective function, minx f(x). Recently, Malitsky (2020); Ala-
caoglu et al. (2023) developed an adaptive first-order method, GRAAL. This
algorithm computes stepsizes by estimating the local curvature of the objective
function without any line search procedures or hyperparameter tuning, and attains
the standard iteration complexity O(L∥x0 − x∗∥2/ϵ) of fixed-stepsize gradient
descent for L-smooth functions. However, a natural question arises: is it pos-
sible to accelerate the convergence of GRAAL to match the optimal complexity
O(

√
L∥x0 − x∗∥2/ϵ) of the accelerated gradient descent of Nesterov (1983)? Al-

though some attempts have been made by Li & Lan (2025); Suh & Ma (2025), the
ability of existing accelerated algorithms to adapt to the local curvature of the
objective function is highly limited. We resolve this issue and develop GRAAL
with Nesterov acceleration, which can adapt its stepsize to the local curvature at
a geometric, or linear, rate just like non-accelerated GRAAL. We demonstrate
the adaptive capabilities of our algorithm by proving that it achieves near-optimal
iteration complexities for L-smooth functions, as well as under a more general
(L0, L1)-smoothness assumption (Zhang et al., 2019).

1 INTRODUCTION

First-order, or gradient, optimization methods are highly popular in many practical applications due
to their simplicity and scalability. However, the key limitation of these methods is that they require
the choice of the stepsize parameter. In this paper, we focus on developing efficient gradient methods
that can adjust the stepsize at each iteration in an adaptive manner. Formally speaking, we consider
the following optimization problem:

min
x∈Rd

f(x), (1)

where Rd is a finite-dimensional Euclidean space, and f(x) : Rd → R is a convex continuously
differentiable objective function. We assume that problem (1) has a solution x∗ ∈ Rd.

1.1 GRADIENT METHODS

The simplest and most fundamental example of first-order methods is gradient descent (GD). This
algorithm performs iterations to find an approximate solution to problem (1) according to the fol-
lowing update rule:

xk+1 = xk − η∇f(xk), (2)

where η > 0 is the stepsize. Despite its simplicity, GD and its variants are widely used in practice,
especially for solving large-scale problems that often appear, for instance, in machine learning. It is
well-known (Polyak, 1963; Nesterov et al., 2018; Drori & Teboulle, 2014) that in the case where the
objective function f(x) is L-smooth, i.e., the gradient ∇f(x) is L-Lipschitz, GD with the stepsize
η = 1/L achieves the following iteration complexity:

K = O
(
L∥x0 − x∗∥2/ϵ

)
⇒ f(xK)− f(x∗) ≤ ϵ. (3)

In addition, in his seminal work, Nesterov (1983) proposed a modification of GD that implements
acceleration via momentum. This accelerated gradient descent (AGD) achieves substantially im-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

proved iteration complexity:

K = O
(√

L∥x0 − x∗∥2/ϵ
)

⇒ f(xK)− f(x∗) ≤ ϵ. (4)

It was shown that AGD is an optimal algorithm. That is, the complexity in eq. (4) cannot be improved
by any first-order optimization method due to the lower complexity bounds of Nesterov et al. (2018).

1.2 ADAPTIVE METHODS

One of the main issues with the standard GD and AGD is that they require tuning the stepsize η.
In particular, they require knowledge of the gradient Lipschitz constant L to achieve the iteration
complexities in eqs. (3) and (4). A typical approach to addressing this issue is to use a time-varying
stepsize ηk in eq. (2), which is computed at each iteration according to a certain adaptive rule.

Line search. The simplest way to compute the stepsize ηk is to use line search (or backtracking), an
iterative procedure that finds ηk satisfying a certain objective function value decrement condition.
It was originally proposed by Goldstein (1962); Armijo (1966), and its modern variant for GD and
AGD was analyzed by Nesterov (2013). Unfortunately, line search makes the iterations of gradient
methods more expensive as it requires the computation of the gradient ∇f(x) and/or function value
f(x) multiple times without making any “progress”. Hence, it is rarely used in practice.

AdaGrad-type methods. An alternative approach is to use the following stepsizes ηk in eq. (2):

ηk = η ·
(∑k

i=0∥∇f(xi)∥2
)−1/2

, (5)

where η > 0 is a positive parameter. The resulting algorithm is called AdaGrad and was originally
developed by Duchi et al. (2011); McMahan & Streeter (2010). It is well known that AdaGrad
has the complexity of GD in eq. (3) for L-smooth functions (Levy et al., 2018). Moreover, this
algorithm is universal: it can also achieve the corresponding complexities of GD for non-smooth but
Lipschitz functions, or in the case where only stochastic estimates of the gradients are available, all
with a single choice of the parameter η ∝ ∥x0 − x∗∥ (Levy et al., 2018; Li & Orabona, 2019;
Orabona, 2023). In addition, accelerated variants of AdaGrad are available (Levy et al., 2018;
Cutkosky, 2019; Kavis et al., 2019; Rodomanov et al., 2024; Kreisler et al., 2024; Kovalev, 2025),
as well as parameter-free variants (Cutkosky & Orabona, 2018; Orabona & Pál, 2021; Defazio &
Mishchenko, 2023; Mishchenko & Defazio, 2023; Ivgi et al., 2023; Khaled et al., 2023; Kreisler
et al., 2024), which do not require tuning the parameter η. Unfortunately, AdaGrad-type methods
have a significant drawback: the stepsize ηk in eq. (5) is non-increasing. Hence, it cannot truly
adapt to the local curvature of the objective function, which may limit its performance in many
applications (Defazio et al., 2022).

Local curvature estimation. In this paper, we focus on a different approach to computing the
stepsize ηk by estimating the local curvature, i.e., the local gradient Lipschitz constant. To the best
of our knowledge, the first such algorithm that has strong convergence guarantees, GRAAL, was
proposed by Malitsky (2020). It is a modification of GD, which uses the following stepsize rule at
each iteration:

ηk+1 = min
{
(1 + γ)ηk,

νλ2
k+1

ηk−1

}
, (6)

where λk+1 > 0 is a certain finite-difference estimate of the local inverse gradient Lipschitz constant
at the current iteration, and γ, ν > 0 are positive constants. Alacaoglu et al. (2023) showed that
GRAAL can achieve the iteration complexity in eq. (3) for L-smooth functions. Moreover, Malitsky
& Mishchenko (2020) established the same result for AdGD, the vanilla GD with a stepsize rule
similar to eq. (6):

ηk+1 = min
{
ηk
√

1 + γηk

ηk−1
, νλk+1

}
. (7)

Overall, GRAAL and AdGD demonstrate attractive results, both theoretically and experimentally,
on a range of practical optimization problems (Alacaoglu et al., 2023; Malitsky & Mishchenko,
2020).

1.3 MAIN CONTRIBUTION: GRAAL WITH NESTEROV ACCELERATION

Motivated by the attractive theoretical and practical results for GRAAL and AdGD, we pose the
following natural research question:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Q1. Is it possible to develop an algorithm that incorporates Nesterov acceleration and can truly
adapt to the local curvature of the objective function, as GRAAL and AdGD do?

Unfortunately, to the best of our knowledge, there is no positive and comprehensive answer to this
question. Malitsky & Mishchenko (2020) proposed an accelerated version of AdGD, which showed
strong experimental results. However, it is only a heuristic and does not have any theoretical con-
vergence guarantees whatsoever. In addition, Li & Lan (2025) developed AC-FGM and Suh & Ma
(2025) developed AdaNAG, which can be seen as attempts to incorporate Nesterov acceleration into
GRAAL/AdGD with theoretical guarantees. However, the abilities of AC-FGM and AdaNAG to
adapt to the local curvature of the objective function are highly limited, as we will discuss later.

In this paper, we provide a positive answer to Question 1 and make the following contributions:

(i) In Section 2, we develop Accelerated GRAAL (Algorithm 1) for solving problem (1),
which incorporates Nesterov acceleration and utilizes a generalized version of the step-
size update rules in eqs. (6) and (7). We also provide a theoretical convergence analysis of
this algorithm.

(ii) In Section 3, we show that Algorithm 1 achieves the optimal iteration complexity in eq. (4)
for L-smooth functions up to additive logarithmic factors, without the requirement of hy-
perparameter tuning or any additional line search procedures.

(iii) In Section 4, we demonstrate the adaptive capabilities of Algorithm 1 by showing that it
achieves the iteration complexity in eq. (4) under the more general (L0, L1)-smoothness of
the objective function, up to constant additive factors that do not depend on the precision ϵ.

The important feature of Algorithm 1 is that it can adapt the stepsize ηk to the local curvature at
a geometric, or linear, rate, just like the standard non-accelerated GRAAL. In contrast, AC-FGM
and AdaNAG allow only sublinear growth of the stepsize, so their adaptive abilities are insufficient.
In particular, Algorithm 1 is the first adaptive algorithm that can achieve near-optimal iteration
complexity for (L0, L1)-smooth functions, while there are no such results for AC-FGM or AdaNAG,
to the best of our knowledge. More details are available in Sections 3.2 and 4.2.

1.4 RELATED WORK

More adaptive stepsizes: Barzilai-Borwein and Polyak. The idea of computing stepsizes using
estimates of the local gradient Lipschitz constant was previously used by Barzilai & Borwein (1988),
who proposed the following stepsize rule:

ηk+1 = ⟨xk+1−xk,∇f(xk+1)−∇f(xk)⟩
∥∇f(xk+1)−∇f(xk)∥2 . (8)

Unfortunately, GD with this rule provably works only in the case where the objective function f(x)
is quadratic (Raydan, 1993; Dai & Liao, 2002), and may not work otherwise (Burdakov et al., 2019).
Polyak (1969) suggested using GD with the following stepsize rule:

ηk+1 = f(xk+1)−f(x∗)
∥∇f(xk+1)∥2 . (9)

Similar to AdaGrad, GD with this rule was shown to be universal (Hazan & Kakade, 2019). How-
ever, it requires a tight estimate of the optimal objective function value f(x∗), which is rarely avail-
able in practice.

Optimization for (L0, L1)-smooth functions. The (L0, L1)-smoothness assumption was pro-
posed by Zhang et al. (2019) as a generalization and a more realistic alternative to the standard
L-smoothness. The convergence of gradient methods under this assumption has been extensively
studied in the literature (Zhang et al., 2020; Chen et al., 2023). Gorbunov et al. (2024) showed that
AdGD can achieve the iteration complexity of non-accelerated GD in eq. (3) up to additive con-
stant factors without the requirement of hyperparameter tuning or line search. Additionally, several
accelerated algorithms with theoretical guarantees are available (Li et al., 2023; Gorbunov et al.,
2024; Vankov et al., 2024). However, all these algorithms are non-adaptive, and only Vankov et al.
(2024) managed to achieve the optimal iteration complexity in eq. (4) up to additive constant factors,
with the requirement of a substantially more complex small-dimensional relaxation oracle (Nesterov
et al., 2021). It is also worth mentioning the concurrent work of Tyurin (2025), who managed to
achieve the complexity in eq. (4) up to additive constant factors. However, their algorithm requires

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the tuning of several parameters and is, therefore, also non-adaptive. Additionally, the initial version
of our paper appeared online prior to the work of Tyurin (2025), with only the results from Section 4
missing, which we were finalizing at that time.

2 ADAPTIVE GRADIENT METHOD WITH NESTEROV ACCELERATION

2.1 ALGORITHM DEVELOPMENT

In this section, we develop Accelerated GRAAL for solving problem (1). Below, we briefly describe
the key ideas used in the development of the algorithm. After assembling these ideas, we obtain the
resulting Algorithm 1.

Local curvature estimator. As discussed in Section 1.2, the stepsize rule in eq. (6) used in GRAAL
requires an estimate of the inverse local gradient Lipschitz constant λ. When the objective function
is convex, given two points x, z ∈ Rd, we can consider the following two options for computing λ:

Option I: λ = ∥x−z∥
∥∇f(x)−∇f(z)∥ , Option II: λ =

2Df (x,z)
∥∇f(x)−∇f(z)∥2 . (10)

GRAAL was originally developed for solving monotone variational inequalities (VI). Hence, it uses
Option I, which works for this more general problem class, with the gradient ∇f(x) replaced by
the monotone operator. However, it turns out that Option II can better exploit the properties of the
objective function f(x). Hence, we use Option II and, for convenience, define Λ(x; z) as follows:

Λ(x; z) =

{
2Df (x;z)

∥∇f(x)−∇f(z)∥2 ∇f(x) ̸= ∇f(z)

+∞ ∇f(x) = ∇f(z)
. (11)

It is worth noting that Li & Lan (2025); Suh & Ma (2025) also used Option II in AC-FGM and
AdaNAG, respectively.

Nesterov acceleration. To incorporate Nesterov acceleration in Algorithm 1, we use its recent
interpretation by Kovalev & Borodich (2024). The idea is that at the iteration k of a gradient method,
we replace the objective function f(x) with the function fk(x) : Rd → R, defined as follows:

fk(x) = α−1
k · f(αkx+ (1− αk)xk), where αk ∈ (0, 1], xk ∈ Rd. (12)

In the case where GD is used, that is, xk+1 = xk − ηk∇fk(xk), we can choose αk = 2/(k +
2) and xk+1 = αkxk+1 + (1 − αk)xk, which gives the STM algorithm (Gasnikov & Nesterov,
2016), a variant of AGD. However, we use the definition in eq. (12) as it substantially simplifies the
development of Algorithm 1.

GRAAL extrapolation. We use the extrapolation step of GRAAL in combination with the inter-
pretation of Nesterov acceleration above. It can be summarized as follows:

xk+1 = xk − ηk∇fk(x̂k), x̂k+1 = xk+1 + θ(xk+1 − xk), (13)

where θ > 0 is the extrapolation parameter. GRAAL uses extrapolation for two reasons. First, the
vanilla gradient method does not work for VI as it diverges even on simple bilinear min-max prob-
lems (Daskalakis et al., 2017). Hence, the extragradient method (Korpelevich, 1976; Mishchenko
et al., 2020) or methods with extrapolation (Daskalakis et al., 2017; Malitsky & Tam, 2020; Ko-
valev et al., 2022) are typically used. Second, and more importantly, to the best of our knowledge,
the particular type of extrapolation used by GRAAL plays a key role in its adaptive capabilities.
In particular, it is an open question whether our results can be obtained with a different baseline
algorithm.

Problem: choosing αk. Although it may seem that the tools described above are already enough to
obtain Algorithm 1, one issue remains. The interpretation of Kovalev & Borodich (2024) combined
with the GRAAL step in eq. (13) suggests that one should choose xk+1 = αkx̂k + (1 − αk)xk.
However, this would require that the parameters αk satisfy the following inequality:1

ηk/αk ≤ ηk−1/αk−1 + ηk. (14)

1More details on eq. (14) are available in the works of Kovalev & Borodich (2024); Kovalev (2025).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Accelerated GRAAL
1: input: x0 ∈ Rd, η0 > 0, K ∈ {1, 2, . . .}
2: parameters: θ, γ, ν > 0 satisfying eq. (19)
3: α0 = β0 = 1, H0 = H−1 = η−1 = η0, x̃0 = x0 = x0

4: for k = 0, 1, . . . ,K − 1 do
5: αk+1 = (1+γ)ηk

Hk+(1+γ)ηk

6: xk+1 = xk − ηk∇f(x̃k) ▷ gradient step
7: xk+1 = βkx̃k + (1− βk)xk ▷ additional coupling step
8: x̂k+1 = xk+1 + θ(xk+1 − xk) ▷ GRAAL extrapolation
9: x̃k+1 = αk+1x̂k+1 + (1− αk+1)xk+1 ▷ Nesterov acceleration/STM

10: λk+1 = min{Λ(xk+1; x̃k),Λ(xk+1; x̃k+1)} ▷ local curvature estimator

11: ηk+1 = min
{
(1 + γ)ηk,

νHk−1λk+1

ηk−1

}
, Hk+1 = Hk + ηk+1 ▷ adaptive stepsize

12: βk+1 = ηk+1

αk+1Hk+1

13: output: xK ∈ Rd

The best option is to choose αk such that eq. (14) becomes an equality. However, this is impossible:
computing ηk requires an estimate of the local curvature, which requires the computation of the
gradient ∇fk(x̂k) and its use in eq. (11), which in turn requires knowing αk in advance. Alterna-
tively, one could follow the approach of Li & Lan (2025) and Suh & Ma (2025) used in AC-FGM
and AdaNAG, respectively, and simply predefine αk ∝ 2/(k + 2), just like in AGD. However,
this requires additional restrictions on the stepsize ηk and vastly limits the adaptation capabilities of
AC-FGM, as we will discuss in Section 3.2.

Solution: additional coupling step. The key idea to resolve the issue above is to avoid the inequal-
ity in eq. (14) by defining xk+1 differently, using an additional coupling step:

xk+1 = βkx̃k + (1− βk)xk, x̃k = αkx̂k + (1− αk)xk, (15)

where βk ∈ (0, 1]. Consequently, instead of requiring the inequality eq. (14), we choose the param-
eters βk to satisfy the following relation:2

ηk/(αkβk) = ηk−1/(αk−1βk−1) + ηk = · · · = Hk, where Hk =
∑k

i=0ηi. (16)

Hence, we choose βk = ηk/(αkHk) and avoid additional restrictions on the stepsize ηk. The only
remaining question is how to ensure βk ≤ 1. The answer is that we choose αk = (1+γ)ηk−1

Hk−1+(1+γ)ηk−1
.

Indeed, in Lemma 1, we prove that βk ∈ (0, 1] by utilizing the inequality ηk ≤ (1 + γ)ηk−1, which
is implied by our stepsize rule in eq. (17). Moreover, our choice of αk is implementable as it does
not require knowledge of ηk, and, in contrast to AC-FGM and AdaNAG, it is adaptive because it
is not based on any predefined sequence, but rather uses the adaptive stepsizes ηk−1 and their sum
Hk−1.

Adaptive stepsize. We use the following adaptive stepsize ηk in our algorithm:

ηk+1 = min
{
(1 + γ)ηk,

νHk−1λk+1

ηk−1

}
, (17)

where λk+1 = min{Λ(xk+1; x̃k),Λ(xk+1; x̃k+1)} is the local curvature estimator. This rule is
primarily implied by the convergence analysis in the proof of Theorem 1 in Appendix A.3. It can
also be seen as a generalization of the stepsize rules in eqs. (6) and (7) for GRAAL and AdGD,
respectively.

2.2 CONVERGENCE ANALYSIS

We start the convergence analysis with the following two lemmas. In Lemma 1, we show that
βk ∈ (0, 1] as discussed in the previous Section 2.1. In Lemma 2, we use the additional coupling
step from line 7 and the convexity of the objective function f(x) to obtain some useful inequalities.
Lemma 1 (↓). λk, ηk, Hk > 0, αk ∈ (0, 1), and βk ∈ (0, 1] for all k ∈ {1, . . . ,K}.

2More details on eq. (16) are available in the proof of Theorem 1 in Appendix A.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 2 (↓). The following inequalities hold for all k ∈ {1, . . . ,K − 1}:
f(xk)− f(x̃k) ≤ 1

βk
(f(xk)− f(xk+1)), Df (xk; x̃k−1) ≤ Df (xk−1; x̃k−1). (18)

Now, we obtain the main convergence result in Theorem 1. Note that Algorithm 1 requires the
universal constant parameters θ, γ, ν > 0 to satisfy eq. (19). However, it is easy to verify that such
parameters exist. Using Theorem 1, we also obtain the upper bound on the functional suboptimality
and distance to the solution of problem (1) in Corollary 1.
Theorem 1 (↓). Let parameters θ, γ, ν > 0 satisfy the following relations:

4νθ(1 + γ)2 = γ, 1 + 2γ + 2γθ2

(1+θ)2 ≤ θ
(1+θ) +

θ2

(1+θ)2 . (19)

Then, the following inequality holds for all x ∈ Rd and k ∈ {1, . . . ,K − 1}:

Ψk+1(x) ≤ Ψk(x)− γθ
2 η2k∥∇f(x̃k)∥2 − 1

4(1+γ)ηk Df (xk; x̃k), (20)

where Ψk(x) is defined as follows:

Ψk(x) =
1
2∥xk−x∥2+Hk−1(f(xk)−f(x))+ θηkηk−1

λk
Df (xk−1; x̃k−1)+

γθ
2 ∥xk−xk−1∥2. (21)

Corollary 1 (↓). The following inequality holds for all x ∈ Rd and K ≥ 1:
1
2∥xK − x∥2 +HK−1(f(xK)− f(x)) ≤ 1

2∥x0 − x∥2 + (1+γθ)
2 η20∥∇f(x0)∥2. (22)

It is important to highlight that the results in Theorem 1 and Corollary 1 are general and do not
require any additional assumptions on the objective function other than convexity and continuous
differentiability. Consequently, they do not imply any non-asymptotic convergence results for Al-
gorithm 1. However, in Sections 3 and 4, we will establish particular iteration complexities in the
cases where the objective function is L-smooth and (L0, L1)-smooth, respectively.

3 CONVERGENCE ANALYSIS FOR L-SMOOTH FUNCTIONS

3.1 MAIN RESULT

In this section, we establish the iteration complexity of Algorithm 1 in the case where the objective
function f(x) is L-smooth for L > 0. That is, the gradient ∇f(x) is L-Lipschitz:

∥∇f(x)−∇f(z)∥ ≤ L∥x− z∥ for all x, z ∈ Rd. (23)
We start with the following two lemmas. Lemma 3 provides a lower bound on the curvature esti-
mates λk. This lemma is standard, and its proof is given, for instance, by Nesterov et al. (2018,
Theorem 2.1.5). Lemma 4 bounds the growth of the cumulative sum Hk of the stepsizes ηk.
Lemma 3. λk ≥ 1/L for all k ∈ {1, . . . ,K}.
Lemma 4 (↓). Hk−1 ≤ Hk ≤ (2 + γ)Hk−1 for all k ∈ {0, . . . ,K}.

Now, we are ready to establish the lower bound on the cumulative sum Hk of the stepsizes ηk in the
following Theorem 2. Using this bound, we establish the iteration complexity of Algorithm 1 for
L-smooth functions in Corollary 2.
Theorem 2 (↓). Let constants c,m ∈ R be defined as follows:

c = min

{ √
ν

3(2+γ) ,
√
νγ

16 4
√

γ(1+γ)5(2+γ)3

}
, m =

⌈
max

{
2, ln1+γ

[
4c2

γη0L

]}⌉
. (24)

Then, the following inequality holds for all k ∈ {0, . . . ,K}:√
Hk ≥ c√

L
· (k −m). (25)

Corollary 2. Let η0L ≤ 1. Then, to reach the precision f(xK)− f(x∗) ≤ ϵ, the following number
of iterations of Algorithm 1 is sufficient:

K = O
(
1 +

√
L∥x0 − x∗∥2/ϵ+ ln

[
1

η0L

])
. (26)

Note that the complexity result in Corollary 2 requires the initial stepsize η0 to satisfy the inequality
η0 ≤ 1/L. However, we can simply choose η0 to be very small, say 10−10, as suggested by Malitsky
& Mishchenko (2020) for AdGD. This will only result in a small logarithmic additive factor in the
iteration complexity as implied by Corollary 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2 COMPARISON WITH AC-FGM AND ADANAG

AC-FGM. Li & Lan (2025, Corollary 1) use the following adaptive stepsize rule for AC-FGM:

ηk+1 = min
{

k+1
k ηk,

1
8kλk+1

}
. (27)

This rule implies that the stepsize growth is restricted by the inequality ηk+1 ≤ (1 + 1/k)ηk. As
mentioned in Section 2.1, this restriction substantially limits the ability of AC-FGM to adapt to the
curvature of the objective function. In particular, the result of Li & Lan (2025, Corollary 1) implies
the following iteration complexity, provided η0 ≤ 0.4/L:

K = O
(√

max{1, 1/(η0L)} · L∥x0 − x∗∥2/ϵ
)

⇒ f(xK)− f(x∗) ≤ ϵ. (28)

This matches the optimal complexity in eq. (4), if we choose η0 = 0.4/L. However, if we choose
the initial stepsize to be too small, i.e., η0 ≪ 0.4/L, the complexity result in eq. (28) will be worse
than the optimal one by a factor of 1/

√
η0L. In other words, the stepsize rule in eq. (27) cannot

adapt to a “bad” choice of the initial stepsize η0 due to stepsize growth restrictions. Li & Lan (2025)
even had to use a line search at the first iteration of AC-FGM to find a “good” initial stepsize η0 and
achieve the optimal complexity in eq. (4).

AdaNAG. Suh & Ma (2025) uses a stepsize rule in AdaNAG, which is not substantially different
from eq. (27). Consequently, they encounter issues similar to AC-FGM. The difference is that they
do not use a line search at the first iteration, but rather estimate η0 using Option I in eq. (10), which
implies the following iteration complexity:

K = O
(
max{1, η0L} ·

√
L∥x0 − x∗∥2/ϵ

)
⇒ f(xK)− f(x∗) ≤ ϵ. (29)

This result may be significantly worse than the optimal one in eq. (4) if the initial stepsize estimate
is too large, i.e., η0L ≫ 1. Moreover, similar to AC-FGM, the growth of the stepsize in AdaNAG is
also substantially restricted, which can limit its performance, for instance, under the more realistic
(L0, L1)-smoothness assumption.

Algorithm 1 vs AC-FGM and AdaNAG. In contrast to AC-FGM and AdaNAG, our stepsize rule
in eq. (17) allows the geometric growth of the stepsize ηk+1 ≤ (1 + γ)ηk. Hence, Algorithm 1
can adapt even to a very small choice of the initial stepsize η0 at the cost of a small logarithmic
additive factor in the iteration complexity, as indicated by Corollary 2. In addition, as we will discuss
in Section 4, the geometric growth of the stepsize is crucial for adaptation under the (L0, L1)-
smoothness assumption, where the local gradient Lipschitz constant may change at an exponential
rate. It is also worth mentioning that Li & Lan (2025, Corollary 2) and Suh & Ma (2025, Theorem 6)
tried to resolve the issues with the stepsize growth restrictions in AC-FGM and AdaNAG by using
different stepsize rules. However, they could not properly justify the efficiency of these new stepsize
rules and provably achieve geometric growth of the stepsize.

4 CONVERGENCE ANALYSIS FOR (L0, L1)-SMOOTH FUNCTIONS

In this section, we establish the iteration complexity of Algorithm 1 in the case where the objective
function f(x) is (L0, L1)-smooth for L0, L1 > 0. That is, the objective function f(x) is twice
continuously differentiable and the following inequality holds:

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ for all x ∈ Rd. (30)

This assumption was proposed by Zhang et al. (2019) and is primarily motivated by experiments
suggesting that the norm of the Hessian correlates with the gradient norm of the objective functions
in deep neural networks. Note that the requirement for twice continuous differentiability may be re-
laxed by using the following equivalent condition for continuously differentiable objective functions
(Vankov et al., 2024, Lemma 2.5):

∥∇f(x)−∇f(z)∥ ≤ (L0 + L1∥∇f(x)∥) · 1
L1

(exp(L1∥x− z∥)− 1). (31)

It is also important to highlight that (L0, L1)-smoothness implies L-smoothness with L = L0. The
reverse is obviously not true: (L0, L1)-smoothness is much more general and allows the exponen-
tial growth of the objective function and local gradient Lipschitz constant (Gorbunov et al., 2024,
Lemma 2.1; Vankov et al., 2024, Lemma 2.5).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1 MAIN RESULT

We start the convergence analysis of Algorithm 1 with Lemma 5, which refines the previously ob-
tained results in Theorem 1 and Corollary 1. Furthermore, in Lemmas 6 and 7, we establish lower
bounds on the estimate λk of the local inverse gradient Lipschitz constant.
Lemma 5 (↓). The following inequalities hold for all K ≥ 1:

∥x̃K−1 − x∗∥ ≤ D, ∥xK−1 − x∗∥ ≤ D,
∑K

i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
≤ D2, (32)

where D ≥ 0 is defined as follows:

D2 = max
{

1
γθ , 2(1 + γ), (1 + 2θ)2

}(
∥x0 − x∗∥2 + (1 + γθ)η20∥∇f(x0)∥2

)
. (33)

Lemma 6 (↓). λk ≥ λmin for all k ∈ {1, . . . ,K}, where λmin > 0 is defined as follows:

λmin = 1
L0

exp(−3L1D). (34)

Lemma 7 (↓). The following inequality holds for all k ∈ {1, . . . ,K}:

λk ≥ 4

9max{2L0, 2L1∥∇f(x̃k)∥, 2L1∥∇f(x̃k−1)∥, 9L2
1 Df (xk, x̃k), 9L2

1 Df (xk−1, x̃k−1)}
. (35)

Next, we define the sets of indices T1(k), T2(k), T3(k), T4(k) as follows:

T1(k) =
{
1 ≤ i ≤ k : ηi =

νHi−2λi

ηi−2
and λi ≥ 2

9L0

}
,

T2(k) =
{
1 ≤ i ≤ k : ηi =

νHi−2λi

ηi−2
and λi <

2
9L0

}
,

T3(k) =
{
1 ≤ i ≤ k : ηi <

νHi−2λi

ηi−2
and (l(i) ∈ T1(k) or i− l(i) > m)

}
,

T4(k) =
{
1 ≤ i ≤ k : ηi <

νHi−2λi

ηi−2
and l(i) ∈ T2(k) ∪ {0} and i− l(i) ≤ m

}
,

(36)

where m is a positive integer, and the integer function l(k) is defined as follows:

l(k) = max{i : i ∈ T1(k) ∪ T2(k) ∪ {0}}. (37)

It is not hard to verify that these sets of indices are pairwise disjoint and that ∪4
j=1Tj(k) =

{1, . . . , k}. Moreover, the sizes of the sets T2(k) and T4(k) are bounded as shown in the following
Lemma 8.
Lemma 8 (↓). The following inequalities hold for all k ∈ {1, . . . ,K}:

|T4(k)| ≤ m+m|T2(k)|, |T2(k)| ≤ 1 + 81(1+γ)2

2min{ν,ν2} · L2
1D2. (38)

Now, we establish the key lower bound on the cumulative sum Hk of the stepsizes ηk in the following
Theorem 3. Using this bound, we establish the iteration complexity of Algorithm 1 for (L0, L1)-
smooth functions in Corollary 3.
Theorem 3 (↓). Let c > 0 and m > 0 be defined as follows:

c = min

{ √
2ν

9(2+γ) ,
√
νγ

24 4
√

4γ(1+γ)5(2+γ)3

}
, m =

⌈
max

{
1, ln1+γ

[
4c2

γη0L0

]
, 4 ln1+γ

[
2

9L0λmin

]}⌉
. (39)

Then, the following inequality holds for all k ∈ {0, . . . ,K}.√
Hk ≥ c√

L0
· (k − |T2(k)| − |T4(k)| − 1). (40)

Corollary 3 (↓). Let η0L0 exp(L1∥x0 − x∗∥) ≤ 1. Then, D = O(∥x0 − x∗∥), and to reach the
precision f(xK)− f(x∗) ≤ ϵ, the following number of iterations of Algorithm 1 is sufficient:

K = O
(
1 +

√
L0D2/ϵ+ L3

1D3 +
(
1 + L2

1D2
)
ln
[

1
η0L0

])
. (41)

Similar to Corollary 2 for the L-smooth case, Corollary 3 requires the initial stepsize η0 to satisfy
the inequality η0L0 exp(L1∥x0 − x∗∥) ≤ 1. We can ensure this inequality without any line search
or hyperparameter tuning, simply by choosing a very small initial stepsize η0. Choosing the initial
stepsize η0 too small will only result in an additive constant factor

(
1 + L2

1D2
)
ln

[
1

η0L0

]
, which

does not depend on the precision ϵ and has a logarithmic dependence on η0.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the iteration complexities for solving problem (1) under the convexity and
(L0, L1)-smoothness; universal constants are omitted; D = ∥x0 − x∗∥; the initial functional gap is
bounded as f(x0)− f(x∗) ≤ O(L0D2 exp(L1D)), where necessary; optimality is considered up to
additive constants.

Reference Optimal Adaptive

Li et al. (2023)
√

L0D2

ϵ ×
(
1 + L2

1D2
)
exp(O(1)L1D) ✘ ✘

Gorbunov et al. (2024)
√

L0D2

ϵ ×
√

1 + L1D exp(L1D) ✘ ✘

Vankov et al. (2024)
√

L0D2

ϵ + (L1D)5/3 ✔ ✘

Tyurin (2025)
√

L0D2

ϵ + (L1D)2 ✔ ✘

Corollary 3
√

L0D2

ϵ + (L1D)3 ✔ ✔

Iteration Complexity

4.2 COMPARISON WITH EXISTING RESULTS

Accelerated methods for (L0, L1)-smooth functions. As mentioned in Section 1.4, there are sev-
eral existing accelerated algorithms with theoretical guarantees for minimizing convex (L0, L1)-
smooth functions. To compare these results with Algorithm 1, we use a particular choice of the
initial stepsize η0 = 1

L0
exp(−L1∥x0 − x∗∥) in Corollary 3. The comparison is summarized in

Table 1. The algorithms of Li et al. (2023); Gorbunov et al. (2024) are neither adaptive nor optimal.
The algorithms of Vankov et al. (2024); Tyurin (2025) are near-optimal as they match the complex-
ity in eq. (4) up to additive constants, just like Algorithm 1. The result of Vankov et al. (2024) has
a slightly better additive constant (L1D)5/3. However, neither of the algorithms of Vankov et al.
(2024); Tyurin (2025) is adaptive: the algorithm of Vankov et al. (2024) requires solving a one-
dimensional auxiliary optimization subproblem at each iteration, and the algorithm of Tyurin (2025)
requires tuning several parameters. In contrast, Algorithm 1 does not require any hyperparameter
tuning or line search to achieve near-optimal complexity, as discussed in the previous Section 4.1.

AdGD for (L0, L1)-smooth functions. Gorbunov et al. (2024) established the iteration complexity
O
(
L0D2/ϵ+ (L1D)6

)
for the AdGD algorithm under the (L0, L1)-smoothness assumption.3 This

result is unsurprisingly worse than ours in Corollary 3 due to the lack of acceleration. In addition,
Gorbunov et al. (2024) did not prove that the constant D is bounded as D = O(∥x0 − x∗∥). In
fact, D also contains the initial objective function gap f(x0) − f(x∗), and hence, it may have an
exponential dependency on the initial distance ∥x0 − x∗∥.

AC-FGM and AdaNAG. As previously discussed in Section 3.2, we allow the geometric growth
of the adaptive stepsize in Algorithm 1, which is crucial for obtaining the near-optimal complexity
result in Corollary 3. Indeed, the estimates of the local curvature λk can scale exponentially in
the worst case according to Lemma 6, but can grow up to O(1/L0) when the algorithm reaches a
certain region near the solution x∗. Hence, the growth of the stepsize at a geometric rate or faster is
necessary to avoid exponential factors in the iteration complexity. In contrast, Li & Lan (2025); Suh
& Ma (2025) do not provide any convergence guarantees for (L0, L1)-smoothness for AC-FGM and
AdaNAG. In addition, as previously discussed, the rate of stepsize growth in AC-FGM and AdaNAG
is far below geometric. Hence, we conjecture that it is not possible to reach near-optimal complexity
with these algorithms.

3Note that Gorbunov et al. (2024) incorrectly reported their result as Õ
(
L0D2/ϵ+ (L1D)4

)
.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmet Alacaoglu, Axel Böhm, and Yura Malitsky. Beyond the golden ratio for variational inequality
algorithms. Journal of machine learning research, 24(172):1–33, 2023.

Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific
Journal of mathematics, 16(1):1–3, 1966.

Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA journal of
numerical analysis, 8(1):141–148, 1988.

Oleg Burdakov, Yuhong Dai, and Na Huang. Stabilized barzilai-borwein method. Journal of Com-
putational Mathematics, pp. 916–936, 2019.

Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimiza-
tion is as efficient as smooth nonconvex optimization. In International Conference on Machine
Learning, pp. 5396–5427. PMLR, 2023.

Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In International conference
on machine learning, pp. 1446–1454. PMLR, 2019.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning
in banach spaces. In Conference On Learning Theory, pp. 1493–1529. PMLR, 2018.

Yu-Hong Dai and Li-Zhi Liao. R-linear convergence of the barzilai and borwein gradient method.
IMA Journal of numerical analysis, 22(1):1–10, 2002.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
optimism. arXiv preprint arXiv:1711.00141, 2017.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Aaron Defazio, Baoyu Zhou, and Lin Xiao. Grad-gradagrad? a non-monotone adaptive stochastic
gradient method. arXiv preprint arXiv:2206.06900, 2022.

Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex minimization:
a novel approach. Mathematical Programming, 145(1):451–482, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Alexander Gasnikov and Yurii Nesterov. Universal fast gradient method for stochastic composit
optimization problems. arXiv preprint arXiv:1604.05275, 2016.

Allen A Goldstein. Cauchy’s method of minimization. Numerische Mathematik, 4(1):146–150,
1962.

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel
Horváth, and Martin Takáč. Methods for convex (l 0, l 1)-smooth optimization: Clipping, ac-
celeration, and adaptivity. arXiv preprint arXiv:2409.14989, 2024.

Elad Hazan and Sham Kakade. Revisiting the polyak step size. arXiv preprint arXiv:1905.00313,
2019.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR,
2023.

Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. Advances in neural information processing
systems, 32, 2019.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. Dowg unleashed: An efficient universal
parameter-free gradient descent method. Advances in Neural Information Processing Systems,
36:6748–6769, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.

Dmitry Kovalev. Sgd with adaptive preconditioning: Unified analysis and momentum acceleration.
arXiv preprint arXiv:2506.23803, 2025.

Dmitry Kovalev and Ekaterina Borodich. On linear convergence in smooth convex-concave
bilinearly-coupled saddle-point optimization: Lower bounds and optimal algorithms. arXiv
preprint arXiv:2411.14601, 2024.

Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated primal-dual gradient method
for smooth and convex-concave saddle-point problems with bilinear coupling. Advances in Neural
Information Processing Systems, 35:21725–21737, 2022.

Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. In The Thirty Seventh Annual Conference on Learning Theory, pp. 3257–3324.
PMLR, 2024.

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and acceler-
ation. Advances in neural information processing systems, 31, 2018.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. Advances in Neural Information Processing Systems,
36:40238–40271, 2023.

Tianjiao Li and Guanghui Lan. A simple uniformly optimal method without line search for convex
optimization: T. li, g. lan. Mathematical Programming, pp. 1–38, 2025.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983–
992. PMLR, 2019.

Yura Malitsky. Golden ratio algorithms for variational inequalities. Mathematical Programming,
184(1):383–410, 2020.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. In Interna-
tional Conference on Machine Learning, pp. 6702–6712. PMLR, 2020.

Yura Malitsky and Matthew K Tam. A forward-backward splitting method for monotone inclusions
without cocoercivity. SIAM Journal on Optimization, 30(2):1451–1472, 2020.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Konstantin Mishchenko, Dmitry Kovalev, Egor Shulgin, Peter Richtárik, and Yura Malitsky. Revis-
iting stochastic extragradient. In International Conference on Artificial Intelligence and Statistics,
pp. 4573–4582. PMLR, 2020.

Yu Nesterov. Gradient methods for minimizing composite functions. Mathematical programming,
140(1):125–161, 2013.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence O(1/k2). Dokl. Akad. Nauk. SSSR, 269(3):543, 1983.

Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal–dual ac-
celerated gradient methods with small-dimensional relaxation oracle. Optimization Methods and
Software, 36(4):773–810, 2021.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Francesco Orabona. Normalized gradients for all. arXiv preprint arXiv:2308.05621, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Francesco Orabona and Dávid Pál. Parameter-free stochastic optimization of variationally coherent
functions. arXiv preprint arXiv:2102.00236, 2021.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

Boris Teodorovich Polyak. Minimization of unsmooth functionals. USSR Computational Mathe-
matics and Mathematical Physics, 9(3):14–29, 1969.

Marcos Raydan. On the barzilai and borwein choice of steplength for the gradient method. IMA
Journal of Numerical Analysis, 13(3):321–326, 1993.

Anton Rodomanov, Xiaowen Jiang, and Sebastian U Stich. Universality of adagrad stepsizes for
stochastic optimization: Inexact oracle, acceleration and variance reduction. Advances in Neural
Information Processing Systems, 37:26770–26813, 2024.

Jaewook J Suh and Shiqian Ma. An adaptive and parameter-free nesterov’s accelerated gradient
method for convex optimization. arXiv preprint arXiv:2505.11670, 2025.

Alexander Tyurin. Near-optimal convergence of accelerated gradient methods under generalized
and (l 0, l 1)-smoothness. arXiv preprint arXiv:2508.06884, 2025.

Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Opti-
mizing (l 0, l 1)-smooth functions by gradient methods. arXiv preprint arXiv:2410.10800, 2024.

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms for
non-convex optimization. Advances in Neural Information Processing Systems, 33:15511–15521,
2020.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
A PROOFS FOR SECTION 2

A.1 PROOF OF LEMMA 1

First, we can show that λk > 0 for all k ∈ {1, . . . ,K}. Otherwise, if λk = 0, there exist
x, z ∈ Rd such that Λ(x, z) = 0 due to the definition of λk on line 10. Hence, Df (x; z) = 0
according to eq. (11). From the convexity of the function f(x), it follows that Df (x; z) ≥ 0. Hence,
x minimizes the function Df (·; z), and by the first-order optimality conditions, ∇x Df (x; z) =
∇f(x) − ∇f(z) = 0. This implies Λ(x; z) = +∞ according to eq. (11), which contradicts the
possibility of λk = 0.

Next, using the fact that λk > 0 and lines 3 and 11, it is easy to show that ηk, Hk > 0 for all
k ∈ {−1, . . . ,K}. Hence, the inclusions αk ∈ (0, 1) and βk ∈ (0,+∞) are obvious due to their
definitions on lines 5 and 12. Finally, we can upper-bound βk+1 as follows:

βk+1
(a)
=

ηk+1

αk+1Hk+1

(b)
=

ηk+1

Hk + ηk+1
· Hk + (1 + γ)ηk

(1 + γ)ηk

(c)
≤ (1 + γ)ηk

Hk + (1 + γ)ηk
· Hk + (1 + γ)ηk

(1 + γ)ηk
= 1,

where (a) uses line 12; (b) uses lines 5 and 11; (c) uses the inequality ηk+1 ≤ (1 + γ)ηk implied by
line 11 and the monotonicity of the function t 7→ t/(1 + t).

A.2 PROOF OF LEMMA 2

We can upper-bound f(xk+1) as follows:

f(xk+1)
(a)
= f(βkx̃k + (1− βk)xk)

(b)
≤ βkf(x̃k) + (1− βk)f(xk),

where(a) uses line 7; (b) uses Lemma 1 and the convexity of f(x). After rearranging, we obtain the
first desired inequality. Furthermore, we can upper-bound Df (xk, x̃k−1) as follows:

Df (xk; x̃k−1)
(a)
= Df (βk−1x̃k−1 + (1− βk−1)xk−1; x̃k−1)

(b)
≤ (1− βk−1)Df (xk−1; x̃k−1) + βk−1 Df (x̃k−1; x̃k−1)

(c)
≤ Df (xk−1; x̃k−1)

where (a) uses line 7; (b) and (c) use uses Lemma 1 and the convexity of Df (·; x̃k−1), which is
implied by the convexity of f(x). This proves the second desired inequality.

A.3 PROOF OF THEOREM 1

For all k ∈ {1, . . . ,K − 1}, we obtain the following:

1
2∥xk+1 − x∥2 = 1

2∥xk − x∥2 − 1
2∥xk+1 − xk∥2 + ⟨xk+1 − xk, xk+1 − x⟩

= 1
2∥xk − x∥2 − 1

2∥xk+1 − xk∥2 + ⟨xk+1 − xk, xk+1 − x̂k+1⟩
+ ⟨xk+1 − xk, x̂k+1 − x̂k + x̂k − x⟩
(a)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 + ⟨xk+1 − xk, x̂k+1 − x̂k + x̂k − x⟩

(b)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

+ ηk⟨∇f(x̃k), x− x̂k⟩
(c)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

+ ηk⟨∇f(x̃k), x− x̃k⟩+ (1−αk)ηk

αk
⟨∇f(x̃k), xk − x̃k⟩

(d)
≤ 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

+ ηk(f(x)− f(x̃k)) +
(1−αk)ηk

αk
(f(xk)− f(x̃k)−Df (xk; x̃k))

= 1
2∥xk − x∥2 −

(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

− ηk(f(xk)− f(x)) + ηk

αk
(f(xk)− f(x̃k))− (1−αk)ηk

αk
Df (xk; x̃k)

(e)
≤ 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

− ηk(f(xk)− f(x)) + ηk

αkβk
(f(xk)− f(xk+1))− (1−αk)ηk

αk
Df (xk; x̃k)

(f)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

− ηk(f(xk)− f(x)) +Hk(f(xk)− f(xk+1))− (1−αk)ηk

αk
Df (xk; x̃k)

(g)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 − ηk⟨∇f(x̃k), x̂k+1 − x̂k⟩

+Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− (1−αk)ηk

αk
Df (xk; x̃k),

where (a) uses line 8; (b) uses line 6; (c) uses line 9; (d) uses the convexity of function f(x); (e)
uses Lemma 2; (f) uses line 12; (g) uses line 11. Furthermore, we get the following:
1
2∥xk+1 − x∥2

≤ 1
2∥xk − x∥2 −

(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩ − ηk⟨∇f(x̃k−1), x̂k+1 − x̂k⟩

(a)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩

+ ηk

ηk−1
⟨xk − xk−1, x̂k+1 − x̂k⟩

(b)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩

+ ηk

θηk−1
⟨x̂k − xk, x̂k+1 − x̂k⟩

= 1
2∥xk − x∥2 −

(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩

+ ηk

2θηk−1
(∥x̂k+1 − xk∥2 − ∥x̂k − xk∥2 − ∥x̂k+1 − x̂k∥2)

(c)
= 1

2∥xk − x∥2 −
(
1
2 + θ

)
∥xk+1 − xk∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− (1−αk)ηk

αk
Df (xk; x̃k)− ηk⟨∇f(x̃k)−∇f(x̃k−1), x̂k+1 − x̂k⟩

+ ηk

2θηk−1
((1 + θ)2∥xk+1 − xk∥2 − θ2∥xk − xk−1∥2 − ∥x̂k+1 − x̂k∥2)

(d)
≤ 1

2∥xk − x∥2 + (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 + ηk∥∇f(x̃k)−∇f(x̃k−1)∥∥x̂k+1 − x̂k∥

− (1−αk)ηk

αk
Df (xk; x̃k) +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x)),

where (a) uses line 6; (b) and (c) use line 8; (d) uses the Cauchy-Schwarz inequality. Next, we get
1
2∥xk+1 − x∥2

≤ 1
2∥xk − x∥2 + (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− (1−αk)ηk

αk
Df (xk; x̃k) +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 + ηk∥∇f(x̃k)−∇f(x̃k−1)∥∥x̂k+1 − x̂k∥

(a)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

αk
Df (xk; x̃k)

+ ηk∥∇f(x̃k)−∇f(xk)∥∥x̂k+1 − x̂k∥+ ηk∥∇f(xk)−∇f(x̃k−1)∥∥x̂k+1 − x̂k∥
(b)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

αk
Df (xk; x̃k)

+ ηk

√
2
λk

Df (xk; x̃k)∥x̂k+1 − x̂k∥+ ηk

√
2
λk

Df (xk; x̃k−1)∥x̂k+1 − x̂k∥
(c)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

αk
Df (xk; x̃k)

+ ηk

√
2
λk

Df (xk; x̃k)∥x̂k+1 − x̂k∥+ ηk

√
2
λk

Df (xk−1; x̃k−1)∥x̂k+1 − x̂k∥
(d)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

− ηk

2θηk−1
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

αk
Df (xk; x̃k) +

(1−αk)ηk

2αk
Df (xk; x̃k)

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 + θηkηk−1

λk
Df (xk−1; x̃k−1) +

ηk

2θηk−1
∥x̂k+1 − x̂k∥2

= 1
2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− (1−αk)ηk

4αk
Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

4αk
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

(e)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − (1−αk)ηk

4αk
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

where (a) uses the triangle inequality; (b) uses line 10 and eq. (11); (c) uses Lemma 2; (d) uses
Young’s inequality; (e) uses lines 5 and 11. Furthermore, we obtain the following:

1
2∥xk+1 − x∥2

≤ 1
2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − (1−αk)λk+1

4θαkηk+1
· θηk+1ηk

λk+1
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

(a)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − 1

4νθ(1+γ) ·
θηk+1ηk

λk+1
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

(b)
= 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − (1+γ)

γ · θηk+1ηk

λk+1
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

≤ 1
2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ αkηk

(1−αk)λk
∥x̂k+1 − x̂k∥2 − θηk+1ηk

λk+1
Df (xk; x̃k) +

θηkηk−1

λk
Df (xk−1; x̃k−1)

(c)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 − θηk

2ηk−1
∥xk − xk−1∥2

+ 2(1+θ)2αkηk

(1−αk)λk
∥xk+1 − xk∥2 + 2θ2αkηk

(1−αk)λk
∥xk − xk−1∥2

≤ 1
2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
ηk

ηk−1
+ 4θαkηk

(1−αk)λk
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 + 2θ2αkηk

(1−αk)λk
∥xk − xk−1∥2

(d)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
(1 + γ) + 4θαkηk

(1−αk)λk
− θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 + 2θ2αkηk

(1−αk)λk
∥xk − xk−1∥2

(e)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
(1 + γ) + 4νθ(1 + γ)2 − θ+2θ2

(1+θ)2

)
∥xk+1 − xk∥2 + 2νθ2(1 + γ)2∥xk − xk−1∥2

(f)
= 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)

+ (1+θ)2

2θ

(
1 + 2γ − θ

(1+θ) −
θ2

(1+θ)2

)
∥xk+1 − xk∥2 + γθ

2 ∥xk − xk−1∥2

(g)
≤ 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))− ηk

4(1+γ) Df (xk; x̃k)

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)− γθ∥xk+1 − xk∥2 + γθ

2 ∥xk − xk−1∥2

(h)
= 1

2∥xk − x∥2 +Hk−1(f(xk)− f(x))−Hk(f(xk+1)− f(x))

+ θηkηk−1

λk
Df (xk−1; x̃k−1)− θηk+1ηk

λk+1
Df (xk; x̃k)− γθ

2 ∥xk+1 − xk∥2 + γθ
2 ∥xk − xk−1∥2

− γθη2
k

2 ∥∇f(x̃k)∥2 − ηk

4(1+γ) Df (xk; x̃k)m

where (a) and (e) use lines 5 and 11; (b), (f) and (g) use eq. (19); (c) uses line 8 and the inequality
∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2; (d) uses the inequality ηk ≤ (1 + γ)ηk−1 implied by line 11; (h) desc.
It remains to use the definition Ψk(x) in eq. (21).

A.4 PROOF OF COROLLARY 1

We can upper-bound 1
2∥xK − x∥2 +HK−1(f(xK)− f(x)) as follows:

1
2∥xK − x∥2 +HK−1(f(xK)− f(x))

(a)
≤ ΨK(x)

(b)
≤ Ψ1(x)

(c)
≤ 1

2∥x1 − x∥2 +H0(f(x1)− f(x)) + θηkηk−1

λk
Df (x0; x̃0) +

γθ
2 ∥x1 − x0∥2

(d)
= 1

2∥x1 − x∥2 + η0(f(x0)− f(x)) + γθ
2 ∥x1 − x0∥2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(e)
= 1

2∥x0 − x∥2 + (1+γθ)η2
0

2 ∥∇f(x0)∥2 − η0⟨∇f(x0), x0 − x⟩+ η0(f(x0)− f(x))

= 1
2∥x0 − x∥2 + (1+γθ)η2

0

2 ∥∇f(x0)∥2 − η0 Df (x, x0)

(f)
≤ 1

2∥x0 − x∥2 + (1+γθ)η2
0

2 ∥∇f(x0)∥2,

where (a) and (c) use eq. (21); (b) uses Theorem 1; (d) uses lines 3 and 7; (e) use lines 3 and 6; (f)
uses the convexity of f(x).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PROOFS FOR SECTION 3

B.1 PROOF OF LEMMA 4

For k = 0 we have Hk = Hk−1. The inequality Hk ≥ Hk−1 is obvious for k ≥ 1 due to line 11.
Furthermore, we can upper-bound Hk for k ≥ 1 as follows:

Hk
(a)
= Hk−1 + ηk

(b)
≤ Hk−1 + (1 + γ)ηk−1

(c)
≤ (2 + γ)Hk−1,

where (a), (b) and (c) use line 11.

B.2 PROOF OF THEOREM 2

We prove the statement of Theorem 2 by induction over K. The base case, K = m, is obvious.
Now, we assume that eq. (25) holds for all k ∈ {0, . . . ,K}, where K ≥ m, and prove eq. (25) for
k = K + 1. We consider the following cases:

Case 1. (1 + γ)ηKηK−1 ≥ νHK−1λK+1.
Case 2. (1 + γ)ηKηK−1 < νHK−1λK+1.

Case 2a. ηK = η0(1 + γ)K .
Case 2b. ηK < η0(1 + γ)K .

Case 1. Here we have ηK+1 = νHK−1λk+1

ηK−1
and obtain the following inequality:√

HK+1 = 1√
HK+1+

√
HK−2

(HK+1 −HK−2) +
√
HK−2

(a)
≥ 1

2
√

HK+1

(HK+1 −HK−2) +
√
HK−2

(b)
≥ 1

2
√

HK+1

(ηK+1 + ηK−1) +
√

HK−2

(c)
≥

√
ηK+1ηK−1

HK+1
+
√

HK−2

(d)
≥

√
νHK−1

LHK+1
+

√
HK−2

(e)
≥

√
ν

(2+γ)
√
L
+

√
HK−2

(f)
≥

√
ν

(2+γ)
√
L
+ c√

L
· (K − 2−m)

(g)
≥ c√

L
· (K + 1−m),

where (a) uses the inequality HK−2 ≤ HK+1 for K ≥ m ≥ 2; (b) uses line 11; (c) uses Young’s
inequality; (d) uses the assumption ηK+1 = νHK−1λk+1

ηK−1
(Case 1) and Lemma 3; (e) uses Lemma 4;

(f) uses the induction hypothesis in eq. (25); (g) uses the inequality 3c√
L

≤
√
ν

(2+γ)
√
L

implied by
eq. (24). This proves Case 1.

Case 2a. In this case, it is easy to verify that ηk = η0(1 + γ)k for all k ∈ {0, . . . ,K + 1}. Hence,
we can lower-bound HK+1 as follows:

HK+1
(a)
=

∑K+1
k=0 η0(1 + γ)k = η0

γ

(
(1 + γ)K+2 − 1

)
= η0(1+γ)m

γ

(
(1 + γ)K+2−m − 1

(1+γ)m

)
≥ η0(1+γ)m

γ

((
(1 + γ)(K−m+2)/2

)2

− 1

)
(b)
≥ η0(1+γ)m

γ

((
1 + γ

2 (K −m+ 2)
)2 − 1

)
≥ η0γ(1+γ)m

4 (K −m+ 2)
2 (42)

(c)
≥ c2

L (K + 2−m)2 ≥ c2

L (K + 1−m)2,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where (a) uses line 11 and the relation ηk = η0(1 + γ)k above; (b) uses the inequality K ≥ m and
Bernoulli’s inequality; (c) uses the inequality (1 + γ)m ≥ 4c2

γη0L
implied by eq. (24). This proves

Case 2a.

Case 2b. In this case, there exists l ∈ {1, ...,K} such that ηl < (1 + γ)ηl−1. We choose the largest
such index l ∈ {1, ...,K}. This implies the following relations:

ηl =
νHl−2λl

ηl−2
and ηk = (1 + γ)k−lηl for all k ∈ {l, . . . ,K + 1}. (43)

Hence, we can upper-bound HK+1 as follows:

HK+1
(a)
= Hl−1 +

∑K−l+1
i=0 ηl(1 + γ)i = Hl−1 +

ηl

γ ((1 + γ)K−l+2 − 1)

(b)
≤

(
1 + (1+γ)K−l+3−(1+γ)

γ

)
Hl−1 ≤ (1+γ)K−l+3

γ Hl−1

(44)

where (a) uses the above relation; (b) uses the inequalities ηl ≤ (1 + γ)ηl−1 and ηl−1 ≤ Hl−1

implied by line 11. Furthermore, we can lower-bound ηl as follows:

ηl
(a)
= νHl−2λl

ηl−2

(b)
≥ νHl−2λl

Hl−Hl−3

(c)
≥ νHl−2

L(Hl−Hl−3)
, (45)

where (a) uses the relation above; (b) uses lines 3 and 11, where we define H−2 = H0; (c) uses
Lemma 3. Next, we obtain the following inequality:(√

HK+1 −
√
Hl−3

)2 (a)
≥

(√
HK+1 −

√
Hl−1

)(√
Hl −

√
Hl−3

)
= HK+1−Hl−1√

HK+1+
√

Hl−1

· Hl−Hl−3√
Hl+

√
Hl−3

(b)
≥ HK+1−Hl−1

2
√

HK+1

· Hl−Hl−3

2
√
Hl

(c)
= ηl((1+γ)K−l+2−1)

2γ
√

HK+1

· Hl−Hl−3

2
√
Hl

(d)
≥ νHl−2((1+γ)K−l+2−1)

4γL
√

HK+1Hl

(e)
≥ νHl−2

4L
√

γ(1+γ)Hl−1Hl

· (1+γ)K−l+2−1√
(1+γ)K−l+2

≥ νHl−2

4L
√

γ(1+γ)Hl−1Hl

· ((1 + γ)(K−l)/2+1 − 1)

(f)
≥ ν

4L
√

γ(1+γ)(2+γ)3
· ((1 + γ)(K−l)/2+1 − 1), (46)

where (a) uses the inequalities Hl−3 ≤ Hl−1 and Hl ≤ HK+1; (b) uses the inequalities HK+1 ≥
Hl−1 and Hl ≥ Hl−3; (c) and (e) use eq. (44); (d) use eq. (45); (f) uses Lemma 4. Next, we take
the square root of both sides and obtain the following:√

HK+1 −
√
Hl−3 ≥

√
ν

2 4
√

γ(1+γ)(2+γ)3L2
·
√
(1 + γ)(K−l)/2+1 − 1

(a)
≥

√
ν

2 4
√

γ(1+γ)(2+γ)3L2
·
(
(1 + γ)(K−l+2)/4 − 1

)
=

√
ν

2 4
√

γ(1+γ)5(2+γ)3L2
·
(
(1 + γ)(K−l)/4+3/2 − (1 + γ)

)
(b)
≥

√
νγ

2 4
√

γ(1+γ)5(2+γ)3L2
·
(
1
4 (K − l) + 1

2

)
(c)
≥

√
νγ

2 4
√

γ(1+γ)5(2+γ)3L2
·
(
1
8 (K − l) + 1

2

)
=

√
νγ

16 4
√

γ(1+γ)5(2+γ)3L2
· (K − l + 4) (47)

(d)
≥ c√

L
(K − l + 4),

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where (a) uses the inequality
√
a ≥

√
a+ b −

√
b for a, b ≥ 0; (b) uses Bernoulli’s inequality; (c)

uses the inequality K ≥ l; (d) uses eq. (24). Finally, we obtain the following:√
HK+1 ≥

√
Hl−3 +

c√
L
(K − l + 4)

(a)
≥ c√

L
(K + 1−m),

where (a) uses the induction hypothesis in eq. (25) for k = l − 3, which also holds for l = 1 due to
the definition H−2 = H0. This proves Case 2b.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C PROOFS FOR SECTION 4

C.1 PROOF OF LEMMA 5

Step 1. We can upper-bound
∑K

i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
as follows:∑K

i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
≤ max

{
2
γθ , 4(1 + γ)

}∑K
i=1

(
γθ
2 η2i ∥∇f(x̃i)∥2 + 1

4(1+γ)ηi Df (xi; x̃i)
)

(a)
≤ max

{
2
γθ , 4(1 + γ)

}∑K
i=1(Ψi(x

∗)−Ψi+1(x
∗))

(b)
≤ max

{
2
γθ , 4(1 + γ)

}
Ψ1(x

∗)

(c)
≤ max

{
1
γθ , 2(1 + γ)

}(
∥x0 − x∗∥2 + (1 + γθ)η20∥∇f(x0)∥2

)
,

where (a) uses Theorem 1; (b) uses the fact that Ψ1(x
∗) ≥ 0, which is implied by eq. (21); (c) is

obtained similarly to the proof of Corollary 1 in Appendix A.4.

Step 2. Next, we prove the following inequality for all k ∈ {0, . . . ,K} by induction:

max{∥x̃k − x∗∥, ∥xk − x∗∥} ≤ (1 + 2θ) max
k=0,...,K

∥xk − x∗∥. (48)

The base case k = 0 is obvious due to line 3. For k ≥ 1 we can upper-bound ∥xk − x∗∥ as follows:

∥xk − x∗∥ (a)
= βk−1∥x̃k−1 − x∗∥+ (1− βk−1)∥xk−1 − x∗∥
(b)
≤ (1 + 2θ) max

k=0,...,K
∥xk − x∗∥,

where (a) uses line 7, the triangle inequality, and Lemma 1; (b) uses the induction hypothesis in
eq. (48) for k − 1. Next, we can upper-bound ∥x̃k − x∗∥ as follows:

∥x̃k − x∗∥
(a)
≤ αk∥x̂k − x∗∥+ (1− αk)∥xk − x∗∥
(b)
≤ αk∥x̂k − x∗∥+ (1− αk)(1 + 2θ) max

k=0,...,K
∥xk − x∗∥

(c)
≤ αk(1 + θ)∥xk − x∗∥+ αkθ∥xk−1 − x∗∥+ (1− αk)(1 + 2θ) max

k=0,...,K
∥xk − x∗∥

≤ (1 + 2θ) max
k=0,...,K

∥xk − x∗∥,

where (a) uses line 9 and the triangle inequality; (b) uses the inequality obtained above; (c) uses
line 8 and the triangle inequality. This proves eq. (48). Next, using eq. (48) and Corollary 1, we
obtain the following inequality for k ∈ {0, . . . ,K}:

max
{
∥x̃k − x∗∥2, ∥xk − x∗∥2

}
≤ (1 + 2θ)2

(
∥x0 − x∗∥2 + (1 + γθ)η20∥∇f(x0)∥2

)
.

Combining this with the inequality obtained in Step 1 concludes the proof.

C.2 PROOF OF LEMMA 6

We can lower-bound λk as follows:

λk
(a)
= min{Λ(xk, x̃k−1),Λ(xk, x̃k)}
(b)
= min

{
2Df (xk,x̃k−1)

∥∇f(xk)−∇f(x̃k−1)∥2 ,
2Df (xk,x̃k)

∥∇f(xk)−∇f(x̃k)∥2

}
(c)
≥ 2

2(L0 + L1∥∇f(xk)∥) + L1 max{∥∇f(xk)−∇f(x̃k)∥, ∥∇f(xk)−∇f(x̃k−1)∥}
(d)
≥ 2

(L0 + L1∥∇f(xk)∥)(exp(L1 max{∥xk − x̃k∥, ∥xk − x̃k−1∥}) + 1)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

≥ 2

(L0 + L1∥∇f(xk)∥)(exp(L1(∥xk − x∗∥+max{∥x̃k − x∗∥, ∥x̃k−1 − x∗∥})) + 1)
(e)
≥ 2

(L0 + L1∥∇f(xk)∥)(1 + exp(2L1D))
(f)
≥ 2

L0 exp(L1∥xk − x∗∥)(1 + exp(2L1D))
(g)
≥ 2

L0 exp(L1D)(1 + exp(2L1D))
≥ 1

L0 exp(3L1D)
,

where (a) uses line 10; (b) uses eq. (11); (c) uses Corollary 2.8 of Vankov et al. (2024); (d) and (f)
use eq. (31); (e) and (g) use Lemma 5.

C.3 PROOF OF LEMMA 7

We can lower-bound Df (x, z) for all x, z ∈ Rd as follows:

Df (x, z)
(a)
≥ ∥∇f(x)−∇f(z)∥2

2(L0 + L1∥∇f(x)∥) + L1∥∇f(x)−∇f(z)∥
(b)
≥ ∥∇f(x)−∇f(z)∥2

2(L0 + L1∥∇f(z)∥) + 3L1∥∇f(x)−∇f(z)∥
,

where (a) uses Corollary 2.8 of Vankov et al. (2024); (b) uses the triangle inequality. Hence, we
obtain the following inequality, which is quadratic in ∥∇f(x)−∇f(z)∥:

∥∇f(x)−∇f(z)∥2 − 3L1 Df (x, z) · ∥∇f(x)−∇f(z)∥ − 2(L0 + L1∥∇f(z)∥)Df (x, z) ≤ 0.

Solving this inequality with respect to ∥∇f(x)−∇f(z)∥ gives the following

∥∇f(x)−∇f(z)∥ ≤
3L1 Df (x, z) +

√
(3L1 Df (x, z))2 + 8(L0 + L1∥∇f(z)∥)Df (x, z)

2
(a)
≤ 3L1 Df (x, z) +

√
2(L0 + L1∥∇f(z)∥)Df (x, z)

(b)
≤ 9

2L1 Df (x, z) +
1
3 (L0/L1 + ∥∇f(z)∥),

where (a) uses the inequality
√
a+ b ≤

√
a+

√
b; (b) uses Young’s inequality. Combining this with

the inequalities above gives the following:

Λ(x, z)
(a)
=

2Df (x,z)
∥∇f(x)−∇f(z)∥2

(b)
≥ 2

2(L0 + L1∥∇f(z)∥) + 3L1∥∇f(x)−∇f(z)∥
(c)
≥ 4

6(L0 + L1∥∇f(z)∥) + 27L2
1 Df (x, z)

≥ 4

9max{2L0, 2L1∥∇f(z)∥, 9L2
1 Df (x, z)}

where (a) uses eq. (11); (b) and (c) use the inequalities obtained above. Using this, we can lower-
bound λk as follows:

λk

(a)
≥ min{Λ(xk, x̃k−1),Λ(xk, x̃k)}
(b)
≥ 4

9max{2L0, 2L1∥∇f(x̃k)∥, 2L1∥∇f(x̃k−1)∥, 9L2
1 Df (xk, x̃k), 9L2

1 Df (xk, x̃k−1)}
(c)
≥ 4

9max{2L0, 2L1∥∇f(x̃k)∥, 2L1∥∇f(x̃k−1)∥, 9L2
1 Df (xk, x̃k), 9L2

1 Df (xk−1, x̃k−1)}
,

where (a) uses line 10; (b) uses the inequality obtained above; (c) uses Lemma 2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.4 PROOF OF LEMMA 8

Using the definition of T4(k) in eq. (36), one can verify that the following inclusion holds:

T4(k) ⊂ {1 ≤ i ≤ k : i−max{j : j ∈ T2(i) ∪ {0}} ≤ m}, (49)

which implies the first desired inequality. Next, using Lemma 7 and the definition of T2(k) in
eq. (36), one can veryfy that the following inequality holds for all i ∈ T2(k):

λi ≥
4

9max{2L1∥∇f(x̃i)∥, 2L1∥∇f(x̃i−1)∥, 9L2
1 Df (xi, x̃i), 9L2

1 Df (xi−1, x̃i−1)}
. (50)

Hence, we obtain the following:

2D2

(a)
≥ 2

∑k
i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
=

∑k
i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
+
∑k+1

i=2

(
η2i−1∥∇f(x̃i−1)∥2 + ηi−1 Df (xi−1; x̃i−1)

)
(b)
≥

∑k
i=1

(
η2i ∥∇f(x̃i)∥2 + ηi Df (xi; x̃i)

)
+
∑k+1

i=2

(
1

(1+γ)2 η
2
i ∥∇f(x̃i−1)∥2 + 1

(1+γ)ηi Df (xi−1; x̃i−1)
)

(c)
≥

∑k
i=2

(
η2
i

(1+γ)2

(
∥∇f(x̃i)∥2 + ∥∇f(x̃i−1)∥2

)
+ ηi

(1+γ)2 (Df (xi; x̃i) + Df (xi−1; x̃i−1))
)

(d)
≥

∑
i∈T ′

2 (k)

(
η2
i

(1+γ)2

(
∥∇f(x̃i)∥2 + ∥∇f(x̃i−1)∥2

)
+ ηi

(1+γ)2 (Df (xi; x̃i) + Df (xi−1; x̃i−1))
)

(e)
≥

∑
i∈T ′

2 (k)

(
ν2λ2

i

(1+γ)2

(
∥∇f(x̃i)∥2 + ∥∇f(x̃i−1)∥2

)
+ νλi

(1+γ)2 (Df (xi; x̃i) + Df (xi−1; x̃i−1))
)
,

where (a) uses Lemma 5; (b) uses line 11; (c) uses the fact that γ > 0; (d) uses the definition
T ′
2 (k) = T2(k) \ {1}; (e) uses the definition of T2(k) in eq. (36) and the fact that Hi−2 ≥ ηi−2.

Furthermore, using eq. (50), we can show that the following inequality holds for all i ∈ T ′
2 (k):

max
{
λ2
i ∥∇f(x̃i)∥2, λ2

i ∥∇f(x̃i−1)∥2, λi Df (xi; x̃i), λi Df (xi−1; x̃i−1),
}
≥ 4

81L2
1
. (51)

Hence, we obtain the following:

2D2 ≥
∑

i∈T ′
2 (k)

(
min{ν,ν2}
(1+γ)2 · 4

81L2
1

) (a)
≥ 4min{ν,ν2}

81(1+γ)2L2
1
· |T ′

2 (k)|,

where (a) uses the fact that γ > 0. It remains to use the inequality |T2(k)| ≤ 1 + |T ′
2 (k)|.

C.5 PROOF OF THEOREM 3

We prove the statement of Theorem 3 by induction over K. The base case, K = 1, is obvious. Now,
we assume that eq. (40) holds for all k ∈ {0, . . . ,K}, where K ≥ 1, and prove the inequality in
eq. (40) for k = K + 1. We consider the following cases:

Case 1. K + 1 ∈ T2(K + 1) or K + 1 ∈ T4(K + 1).

Case 2. K + 1 ∈ T1(K + 1).

Case 3. K + 1 ∈ T3(K + 1).
Case 3a. l(K + 1) = 0.
Case 3b. l(K + 1) ∈ T1(K + 1).
Case 3c. l(K + 1) ∈ T2(K + 1).

Case 1. In this case, we can lower-bound
√

HK+1 as follows:√
HK+1

(a)
≥

√
HK

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(b)
≥ c√

L0
· (K − |T2(K)| − |T4(K)| − 1)

(c)
≥ c√

L0
· (K + 1− |T2(K + 1)| − |T4(K + 1)| − 1),

where (a) uses Lemma 4; (b) uses the induction hypothesis in eq. (40); (c) uses the assumpttion
K + 1 ∈ T2(K + 1) ∪ T4(K + 1) and the definition of T2(K + 1) and T4(K + 1) in eq. (36). This
proves Case 1.

Case 2. In this case, we can lower-bound
√
HK+1 as follows:√

HK+1 = 1√
HK+1+

√
HK−2

(HK+1 −HK−2) +
√
HK−2

(a)
≥ 1

2
√

HK+1

(HK+1 −HK−2) +
√
HK−2

(b)
≥ 1

2
√

HK+1

(ηK+1 + ηK−1) +
√
HK−2

(c)
≥

√
ηK+1ηK−1

HK+1
+

√
HK−2

(d)
≥

√
νλK+1HK−1

HK+1
+

√
HK−2

(e)
≥

√
2νHK−1

9L0HK+1
+
√

HK−2

(f)
≥

√
2ν

3(2+γ)
√
L0

+
√
HK−2

(g)
≥ 3c√

L0
+
√
HK−2

(h)
≥ 3c√

L0
+ c√

L0
· (K − 2− |T2(K − 2)| − |T4(K − 2)| − 1)

= c√
L0

· (K + 1− |T2(K − 2)| − |T4(K − 2)| − 1)

(i)
≥ c√

L0
· (K + 1− |T2(K + 1)| − |T4(K + 1)| − 1),

where (a) and (f) use Lemma 4; (b) uses line 11; (c) uses Young’s inequality; (d) and (e) use the
assumption K + 1 ∈ T1(K + 1) and the definition of T1(K + 1) in eq. (36); (g) uses the definition
of c in eq. (39); (h) uses the induction hypothesis in eq. (40); (i) uses the definition of T2(k) and
T4(k) in eq. (36). This proves Case 2.

Case 3a. Since l(K + 1) = 0, we have T1(K + 1) = T2(K + 1) = ∅. Hence, from eqs. (36)
and (37) and line 11, we have ηK+1 = (1 + γ)K+1η0. Moreover, since K + 1 ∈ T3(K + 1)
and l(K + 1) /∈ T1(K + 1), we have K + 1 > m due to eqs. (36) and (37). Besides, since
T1(K + 1) = T2(K + 1) = ∅, from eq. (36) we conclude that T3(K + 1) = {m+ 1, . . . ,K + 1}
and T4(K + 1) = {1, . . . ,m}. Hence, we can lower-bound

√
HK+1 as follows:√

HK+1

(a)
≥ η0γ(1+γ)m

4 (K −m+ 2)
2

(b)
≥ c2

L0
(K −m+ 2)

2

(c)
= c2

L0
(K + 2− |T2(K + 1)| − |T4(K + 1)|)2

≥ c2

L0
(K + 1− |T2(K + 1)| − |T4(K + 1)| − 1)

2
,

where (a) is obtained similarly to eq. (42) in the proof of Theorem 2 in Appendix B.2; (b) uses the
definition of m in eq. (39); (c) uses the fact that T4(K + 1) = {1, . . . ,m} and T2(K + 1) = ∅ as
shown above. This proves Case 3a.

Case 3b. Using eqs. (36) and (37) and line 11, we can express ηK+1 as follows:

ηK+1 = (1 + γ)K+1−l(K+1)ηl(K+1) =
νHl(K+1)−2λl(K+1)

ηl(K+1)−2
. (52)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Moreover, similar to eq. (44) in the proof of Theorem 2 in Appendix B.2, we can upper-bound HK+1

as follows:
HK+1 ≤ 1

γ (1 + γ)K−l(K+1)+3Hl(K+1)−1. (53)

In addition, similar to eq. (46) in the proof of Theorem 2 in Appendix B.2, and using the definition
of T1(k) in eq. (36), we can obtain the following inequality:(√

HK+1 −
√
Hl(K+1)−3

)2

≥ ν

18L0

√
γ(1+γ)(2+γ)3

·
(
(1 + γ)(K−l(K+1))/2+1 − 1

)
, (54)

where H−2 = H0, and similar to eq. (47) in the proof of Theorem 2 in Appendix B.2, we can obtain
the following inequality:√

HK+1 −
√
Hl(K+1)−3 ≥

√
νγ

24 4
√

4γ(1+γ)5(2+γ)3L2
0

· (K − l(K + 1) + 4). (55)

Finally, after rearranging, we can lower-bound
√
HK+1 as follows:√

HK+1

(a)
≥

√
Hl(K+1)−3 +

√
νγ

24 4
√

4γ(1+γ)5(2+γ)3L2
0

· (K − l(K + 1) + 4)

(b)
≥

√
Hl(K+1)−3 +

c√
L0

· (K − l(K + 1) + 4)

(c)
≥ c√

L0
· (l(K + 1)− 3− |T2(l(K + 1)− 3)| − |T4(l(K + 1)− 3)| − 1).

+ c√
L0

· (K − l(K + 1) + 4)

= c√
L0

· (K + 1− |T2(l(K + 1)− 3)| − |T4(l(K + 1)− 3)| − 1)

(d)
≥ c√

L0
· (K + 1− |T2(K + 1)| − |T4(K + 1)| − 1),

where (a) uses eq. (55); (b) uses the definition of c in eq. (39); (c) uses the induction hypothesis in
eq. (40); (d) uses the definition of T2(k) and T4(k) in eq. (36). This proves Case 3b.

Case 3c. Similar to eq. (46) in the proof of Theorem 2 in Appendix B.2, and using Lemma 6, we
can obtain the following inequality:(√

HK+1 −
√

Hl(K+1)−3

)2

≥ νλmin

4
√

γ(1+γ)(2+γ)3
·
(
(1 + γ)(K−l(K+1))/2+1 − 1

)
= νλmin(1+γ)m/4

4
√

γ(1+γ)(2+γ)3
·
(
(1 + γ)(K−l(K+1)−m/2)/2+1 − 1

(1+γ)m/4

)
(a)
≥ ν

18L0

√
γ(1+γ)(2+γ)3

·
(
(1 + γ)(K−l(K+1)−m/2)/2+1 − 1

)
(b)
≥ ν

18L0

√
γ(1+γ)(2+γ)3

·
(
(1 + γ)(K−l(K+1))/4+1 − 1

)
,

where H−2 = H0, and (a) uses the definition of m in eq. (39); (b) uses the fact that K− l(K+1) ≥
m, which is implied by the assumptions K + 1 ∈ T3(K + 1) and l(K + 1) ∈ T2(K + 1), and
eq. (36). After taking the square root from both sides of the inequality, we obtain the following:√

HK+1 −
√
Hl(K+1)−3 ≥

√
ν

3 4
√

4γ(1+γ)(2+γ)3L2
0

·
√
(1 + γ)(K−l(K+1))/4+1 − 1

(a)
≥

√
ν

3 4
√

4γ(1+γ)(2+γ)3L2
0

·
(
(1 + γ)(K−l(K+1)+4)/8 − 1

)
=

√
ν

3 4
√

4γ(1+γ)5(2+γ)3L2
0

·
(
(1 + γ)(K−l(K+1)+4)/8+1 − (1 + γ)

)
(b)
≥

√
νγ

24 4
√

4γ(1+γ)5(2+γ)3L2
0

· (K − l(K + 1) + 4),

where (a) uses the inequality
√
a ≥

√
a+ b −

√
b; (b) uses Bernoulli’s inequality. The rest of the

proof is identical to the proof of Case 3b.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.6 PROOF OF COROLLARY 3

We can upper-bound D2 as follows:

D (a)
=

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}
(∥x0 − x∗∥2 + (1 + γθ)η20∥∇f(x0)∥2)

(b)
≤

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}(
∥x0 − x∗∥+

√
(1 + γθ)η0∥∇f(x0)∥

)
(c)
≤

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}(
1 + (1 + γθ)η0L0 · (exp(L1∥x0−x∗∥)−1)

L1∥x0−x∗∥

)
∥x0 − x∗∥

(d)
≤

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}
(1 + (1 + γθ)η0L0 exp(L1∥x0 − x∗∥))∥x0 − x∗∥

(e)
≤

√
max

{
1
γθ , 2(1 + γ), (1 + 2θ)2

}
(2 + γθ)∥x0 − x∗∥

= O(∥x0 − x∗∥),

where (a) uses eq. (33); (b) uses the inequality
√
a+ b ≤

√
a +

√
b; (c) uses eq. (31); (d) uses the

inequality exp(t)− 1 ≤ t exp(t), which is implied by the convexity of the function t 7→ exp(t); (e)
uses the assumption η0L0 ≤ exp(−L1∥x0 − x∗∥). It remains to combine Corollary 1, Lemma 8,
and Theorem 3.

26

	Introduction
	Gradient Methods
	Adaptive Methods
	Main Contribution: GRAAL with Nesterov Acceleration
	Related Work

	Adaptive Gradient Method with Nesterov Acceleration
	Algorithm Development
	Convergence Analysis

	Convergence Analysis for L-Smooth Functions
	Main Result
	Comparison with AC-FGM and AdaNAG

	Convergence Analysis for (L0,L1)-Smooth Functions
	Main Result
	Comparison with Existing Results

	Proofs for Section 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Corollary 1

	Proofs for Section 3
	Proof of Lemma 4
	Proof of Theorem 2

	Proofs for Section 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Theorem 3
	Proof of Corollary 3

