LLaPA: Harnessing Language Models for Protein Enzyme Function

Anonymous ACL submission

Abstract

Identifying protein enzyme functions, crucial
for numerous applications, is challenging due
to the rapid growth in protein sequences. Cur-
rent methods either struggle with false posi-
tives or fail to generalize to lesser-known pro-
teins and those with uncharacterized functions.
To tackle these challenges, we propose LLaPA:
a Protein-centric Large Language and Protein
Assistant for Enzyme Commission (EC) num-
ber prediction. LLaPA uses a large multi-modal
model to accurately predict EC numbers by
reformulating the EC number format within
the LLM self-regression framework. We intro-
duce a dual-level protein-centric retrieval: the
protein-level retrieves protein sequences with
similar regions, and the chemical-level retrieves
corresponding molecules with relevant reaction
information. By inputting the original protein
along with the retrieved protein and molecule
into the LLM, LLaPA achieves improved predic-
tion accuracy, with enhanced generalizability
to lesser-known proteins. Evaluation on three
public benchmarks shows accuracy improve-
ments of 17.03%, 9.32%, and 38.64% . These
results highlight LLaPA’s ability to generalize
to novel protein sequences and functionalities.
Codes are provided in the supplement.

1 Introduction

Understanding the functions of protein enzymes is
crucial for unraveling metabolic pathways (Fon-
seca et al., 2019), diagnosing diseases (Hewitt
et al., 2004; Voller et al., 1976), advancing person-
alized medicine (Sookoian and Pirola, 2015), facili-
tating industrial applications (Victorino da Silva
Amatto et al., 2022; Bernal et al., 2018; Chap-
man et al., 2018; Basso and Serban, 2019), un-
derstanding biological evolution (Campbell et al.,
2016), and beyond. Recently, advances in bio-
logical technologies have unveiled a vast array of
enzyme protein sequences from organisms span-
ning the entire tree of life. However, only a small

fraction of the protein has been manually anno-
tated (i.e., ~ 0.3% (Boutet et al., 2007) in UniPro-
tKB (The UniProt Consortium, 2023) is manually
annotated.) The computational methods can bridge
the sequence-annotation gap, but the critical assess-
ment of protein function annotation (CAFA) study
found that ~ 40% of the computation annotations
are incorrect (Radivojac et al., 2013). Additionally,
there exists a portion of proteins that are not similar
enough to any characterized protein to infer func-
tion and their function remains unknown (Price
et al., 2018a). Therefore, the functional annotation
of understudied and promiscuous proteins remains
an overwhelming challenge in protein science (Jef-
fery, 2018; Hult and Berglund, 2007).

In the past few years, the enzyme function anno-
tation has been formulated as a multi-label classifi-
cation tasks (Gligorijevi¢ et al., 2021; Lin et al.,
2022; Ryu et al., 2019; Sanderson et al., 2023;
Dalkiran et al., 2018), aiming to predict the En-
zyme Commission (EC) number of annotated en-
zymes (Webb and International Union of Biochem-
istry and Molecular Biology, 1992). The EC num-
ber is a classification ontology for the chemical
reactions catalyzed by enzymes. However, the
multi-label classification paradigm suffers from the
limited and imbalanced training dataset. Recently
proposed CLEAN framework shows the retrieval-
based framework can significantly surpass classi-
fication deep learning frameworks, such as Prote-
Infer (Sanderson et al., 2023), DeepEC (Ryu et al.,
2019), and DEEPre (Li et al., 2018). Notably, it ex-
hibits remarkable performance on EC numbers rep-
resented by fewer than ten sequences, highlighting
the superiority of contrastive learning over multi-
label classification in predicting enzyme function.
However, the framework is not engineered to gener-
alize to proteins with novel functionalities, requir-
ing a certain number of proteins with annotated EC
numbers to maintain its generalizability. There are
pioneers (Xu et al., 2023b; Gane et al.) aiming to



harness the generalizability of LLM and combine
LLM with a protein encoder to create an end-to-
end trained large multi-model model for various
protein-related tasks. Despite these advancements,
their approach primarily emphasizes linking pro-
teins with textual data, often overlooking biolog-
ical priors. This oversight restricts the model’s
ability to offer interpretations from a biological
standpoint—an aspect that is essential for advanc-
ing biological research.

In this paper, we introduce LLaPA, a protein-
centric, framework for multi-modal large language
models (MLLMs) training and inference. In de-
tail, LLaPA enhances MLLMs for protein enzyme
understanding from two perspectives. @ Focus-
ing on the Natural Language Prior, we first ob-
served that the LLLM struggles to directly and ac-
curately output EC numbers (i.e., “EC 3.4.11.4”)
due to their specific format—four numbers sepa-
rated by periods. To counteract this limitation, we
redesigned the EC number format by replacing the
period with another symbol that is distant from
numbers in the embedding space. ® Embracing
the Biological Prior, we build a two-tiered protein-
centric retrieval engine, grounded in two funda-
mental biological insights: (1) At the protein-level,
recognizing the evolutionary conservation of func-
tionally critical regions within protein sequences,
our engine retrieves a protein with similar regions
as the reference to infer the query enzyme’s func-
tion. (2) At the chemical level, acknowledging the
intrinsic link between an enzyme’s catalytic actions
and its function, we leverage the retrieved protein
to further identify a corresponding molecule. This
molecule acts as an additional reference point, re-
fining our EC number prediction capabilities. By
querying a protein along with two retrieved entities
- a protein and a molecule, LLaPA directly predicts
the corresponding Enzyme Commission numbers.
Our contributions are summarized below:

* We introduce LLaPA framework, a cutting-
edge framework specifically designed for pro-
tein enzyme function prediction. LLaPA stands
out by addressing the unique challenges in
protein enzyme function annotation through
innovative training and inference strategies tai-
lored for multi-modal large language models
(MLLMs).

* We identified how the traditional format of EC
numbers can be problematic for accurate pre-
dictions by large language models (LLMs). To

address this, LLaPA introduces a new encod-
ing scheme that replaces periods with symbols
that are more distinct in the embedding space.
This subtle change significantly improves EC
number prediction accuracy, indicating the
format’s better compatibility with the LLMs’
self-regression paradigm.

* LLaPA advances the field with its two-tiered
retrieval engine, deeply rooted in biological in-
sights. This engine not only identifies proteins
with evolutionary conserved, functionally crit-
ical regions but also pairs these proteins with
corresponding molecules. This dual approach
enhances the prediction of Enzyme Commis-
sion numbers, leveraging biological priors at
both the protein and chemical levels to refine
the model’s predictive accuracy.

* Our extensive testing across four public
datasets confirms the effectiveness of our
approach. For example, LLaPA achieves
{17.03%,9.32%, 38.64%} performance im-
provements on Halogenase, Price, and New
datasets over previous state-of-the-art (SOTA)
approaches.

2 Related Work

Large Language Model Large Language Mod-
els (LLMs) have demonstrated considerable poten-
tial in biology by leveraging vast biological datasets
to advance research and understanding. Genomic
models such as BioBERT (Lee et al., 2020) and
DNABERT (Ji et al., 2021) excel in sequence anno-
tation and gene function prediction. In proteomics,
models like ESM-1b (Rives et al., 2019) improve
protein sequence understanding, and TAPE (Rao
et al., 2019) facilitates evaluation efficiency by
providing a standardized benchmark. In drug de-
velopment, AlphaFold3 (Callaway, 2024) proved
superior in finding new drugs. Others, such as
SciBERT (Beltagy et al., 2019), a leading lan-
guage model, significantly improve the extraction
and summarization of essential information. Re-
cent research focuses on integrating multimodal
data (Zhang et al., 2023a) (Wang et al., 2024). For
example, LLaVA (Liu et al., 2024), which connects
a vision encoder and an LLM, is the first attempt
to extend instruction-tuning to the language-image
multimodal space. The BLIP (Li et al., 2022) has
demonstrated impressive performance in vision-
language tasks and also achieved state-of-the-art



zero-shot performance when the models are di-
rectly applied to two video-language tasks. In addi-
tion, enhancing model interpretability (Joshi et al.,
2021) (Nhlapho et al., 2024), and improving pre-
diction robustness (Yang et al., 2023) also attract a
lot of attention.

Enzyme Function Prediction Enzyme function
prediction plays a crucial role in the field of bi-
ology. Several ways have been devised to fore-
cast enzyme function, such as those relying on
sequence similarity (Zhang et al., 2017) (Desai
etal., 2011) (Altschul et al., 1997), structural sim-
ilarity (Altschul et al., 1990), and protein homol-
ogy (Zhang et al., 2017). InterPro (Paysan-Lafosse
et al., 2022) signatures, position-specific scoring
matrices (cheol Jeong et al., 2010), pseudo-amino
acid composition (Chou, 2009), and machine learn-
ing techniques (Amidi et al., 2017) such as multi-
label k-nearest neighbour (Huang et al., 2007) and
SVM (Mohammad and Nagarajaram, 2011) are
all good ways to figure out what multi-functional
enzymes do. Furthermore, the deep learning frame-
works that integrate representation learning and
classifier learning have shown significant promise
in enzyme function prediction, such as Protein-
fer (Sanderson et al., 2023), DeepEC (Ryu et al.,
2019), and DEEPre (Li et al., 2018). A new
paradigm was recently introduced by ProTranslator
(Xu and Wang, 2022). It deems the process of using
function descriptions to predict the amino acid se-
quence a machine translation problem. This pattern
was later expanded with a framework for multilin-
gual translation (Xu et al., 2023a). Additionally,
(Yu et al., 2023) introduces a metric learning frame-
work designed to increase the distance between pro-
tein embeddings of differing functions and decrease
it for those with similar functions, achieving state-
of-the-art (SOTA) performance. However, their
approach relies solely on a simple triplet loss for
contrasting samples and does not integrate biologi-
cal priors to enhance generalization for functions
without a defined EC number.

3 Methodology

Overview LLaPA is a framework designed specif-
ically for predicting the function of protein en-
zymes, outputting the Enzyme Commission num-
ber based on the given protein sequence. First of
all, we reformulate the y that is more friendly for
LLM prediction (Section 3.1). Then, for a protein
sequence X with n amino acids, LLaPA initially uses

x to identify a reference protein sequence X, then
retrieves the corresponding molecule m’ related to
the catalytic reaction involve x (Section 3.2). As a
result, LLaPA employs x, x’, and m’ to predict the
functional annotation y of x (Section 3.3).
Specifically, LLaPA inference adopts a similar
design to LLaVA (Liu et al., 2023b,a). With x,
retrieved protein x’ and retrieved molecule m’,
LLaPA first apply the pre-trained protein encoder
E(-) to provide protein features z, = F(x) and
z, = E(x'). Next it uses the pre-trained molec-
ular encoder C(-) to obtain molecular features
z,, = C(m’). To process these features further,
LLaPA uses two projectors: W, which converts
zp and ZI,) into language embedding tokens /,, and
h;, and W,,,, which transforms z,, into language
embedding tokens h,,,. These projectors map infor-
mation from proteins and molecules into the lan-
guage token space, bridging biological and chem-
ical prior to understanding protein enzyme func-
tion. Finally, the query protein x, retrieved protein
x’, and molecule m’ along with corresponding in-
structions can combine together to obtain the EC
number of the query. For more details about the
overall pipeline, please refer to Algorithm 1.

3.1 Enzyme Commission Number
Reformulation

In this section, we introduce the Enzyme Com-
mission (EC) number reformulation. Protein func-
tional annotations, including EC numbers and Gene
Ontology (GO) terms, exhibit hierarchical struc-
tures. Especially, the Enzyme Commission (EC)
number serves as a numerical system for classify-
ing enzymes according to the chemical reactions
they facilitate. Within this enzyme nomenclature
system, each EC number has four digital numbers,
that correspond to a recommended name for the
specific enzyme-catalyzed reaction it denotes. In
Figure 2, the digits represent, from left to right,
the reaction class, subclass, sub-subclass, and a
substrate-specific serial number.

However, we’ve observed that Large Language
Models (LLMs) struggle to predict the EC number
for given protein sequences. We suspect this limi-
tation may be rooted in the characteristics of the
embedding space. To explore this hypothesis, we
began by visualizing the embedding of symbols,
including numbers, letters, and the “.” character.
As shown in Figure 1 (A), we noticed that the “.”
character is positioned closely to the numbers in the
embedding space. This proximity suggests that pre-
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Figure 1: The overview of LLaPA. (A) EC Number reformulation. We reformulate the EC number by analyzing the distribution
of symbols within the embedding space, adopt the use of LLM self-regression for EC number prediction. (B) During training
and inference, it employs two-tiered retrieval engine that encompasses both protein sequence and molecule retrieval for accurate

EC number prediction. (C) For molecule retrieval, we utilize an expert-curated knowledge base. (D) All gathered information,

along with the query protein, is then processed by an LLM to generate the final prediction.
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Figure 2: A case of EC number format.

dicting the EC number may be akin to predicting
a single, large numerical value. Accurately pre-
dicting such a large number presents a significant
challenge (Yuan et al., 2023; Zhang et al., 2020;
Sundararaman et al., 2020; Jin et al., 2024).

Therefore, we first replaced the *“.” with the let-
ter “A”, and we got an improvement for predicting
the EC number. Then we further replace “A” with
“Z” which is farther away from numbers in the em-
bedding space, and then get further improvement.
Please refer to Section 4 for a detailed discussion
of the demonstration results.

After reformulating the Enzyme Commission
(EC) number for large language model (LLM) pre-
dictions, we are now able to accurately predict the
first three digits of the EC number. This outcome
suggests that the model is capable of understanding
protein functions but falls short in identifying the
specific catalytic reaction utilized by the protein,

i.e., correctly predicting the four digits of the EC
number. To address this limitation, we require fur-
ther reference information to assist the model in
pinpointing the precise catalytic reaction associated
with the protein.

3.2 Integrating Biological Prior Knowledge by
Retrieval Engine

In this section, we introduce a novel two-tiered re-
trieval engine, a cornerstone of LLaPA integrates
biological prior knowledge to prompt LLMs to pre-
dict the four digits of the EC number. This engine
is divided into two specialized modules: the first ad-
dresses the retrieval of reference protein sequences,
while the second concentrates on the identification
of molecules relevant to chemical reactions.

Protein Prior Knowledge Module - Retrieval of
Reference Protein Sequences. A fundamental
principle in understanding protein function is that
regions of protein sequences important for function
tend to be conserved through evolution. Conse-
quently, proteins sharing similar regions are likely
to possess similar enzymatic functions and may
even catalyze the same reactions. Inspired by this
insight into protein functionality, we employ "mm-
seq2" (Steinegger and Soding, 2017), a compre-
hensive software suite designed for the efficient
searching and clustering of extensive protein and
nucleotide sequence datasets based on significant
protein-related knowledge. This tool enables us to
identify the most closely related protein sequence
as a reference, thereby aiding the model in accu-



rately predicting the four digits of the EC number.
When given a protein, LLaPA utilizes "mmseq2" to
find the most similar protein sequence, x’, within a
specified protein database.

Specifically, input the query protein sequence X
to the “mmseq2”. It will search the specified pro-
tein database and output X', which has the highest
sequence identity cutoff value in the database.

Chemical Reaction Prior Knowledge Module
- Retrieval of Corresponding Molecules. The
simplest way to identify a catalytic reaction is by
examining the reaction itself. This module is de-
signed to retrieve a molecule in SMILES format !
that participates in the catalytic reaction associ-
ated with a given protein. Yet, the task of retriev-
ing the catalytic reaction based solely on the pro-
tein sequence is exceedingly difficult. Fortunately,
the "Protein Prior Knowledge Module" presents
an opportunity to bypass the direct retrieval of
molecules by protein sequence. Therefore, we em-
ploy the “rhea” (Bansal et al., 2022), an expert-
curated knowledgebase of chemical and transport
reactions of biological interest, and the standard for
enzyme and transporter annotation in UniProtKB.
Noticeably, the “rhea” necessitates the EC number
to fetch the relevant catalytic reaction—the very
information we aim to predict.

During the training phase, as shown on the Fig-
ure 1 (B), we directly input the EC number (i.e.,
the label) of the protein sequence to the “Molecule
Retrieval” module. During the inference phase
(the right side of Figure 1 (B)), the EC number
of the input protein sequence X is unavailable.
Therefore, we first input the protein sequence x
to the “Protein Prior Knowledge Module” and get
a protein sequence m’. We then fed the EC num-
bers of the retrieved protein sequence m’ into the
"Molecule Retrieval" module.

As depicted in Figure 1 (C), our “Molecule Re-
trieval” module operates as follows: (1) it randomly
selects one EC number from the input EC numbers;
(2) it inputs the selected EC number into the “rhea”,
which then outputs the corresponding catalytic re-
action; (3) it selects the first reactant molecule in
the catalytic reaction to be the output molecule m’.

We emphasize that the retrieving logic in the in-
ference phase is reasonable, as proteins with high

'The simplified molecular-input line-entry system
(SMILES) is a specification in the form of a line notation
for describing the structure of chemical species using short
ASCII strings. (Weininger, 1988)

sequence identify cutoff values typically exhibit
similar enzyme functions (Gerlt et al., 2015; Yu
et al., 2023). Therefore, their molecules in the
corresponding chemical enzyme reactions should
possess similar catalytic information. For instance,
the protein “T1RRJ4” and its corresponding re-
trieved protein “Q2XSC6” have the EC numbers
“EC 4.2.3.10” and “EC 4.2.3.20”, respectively. In-
terestingly, the first reaction molecule for both is
“(2E)-geranyl diphosphate”. As depicted in Fig-
ure 1 (C), our “Molecule Search” process ran-
domly chooses an EC number when multiple are
available; if only one EC number exists, that EC
number is utilized.

3.3 Model Architecture and Training

In this section, we delve into the details of the
network architecture designed to underpin the pro-
posed retrieval engine, the corresponding multi-
modal training pipeline, and the technical details of
LLaPA. We also illustrate the flow of data and the
trainable parameters during training in Figure 6(a).

We follow the network architecture of LLaVA
but replace the vision encoder to modality-specific
encoders and projectors. We place the details of
network architecture and multi-modal training in
Appendix A.1.

4 Experiments

In this section, we first introduce the experimental
setup (Section 4.1), then show LLaPA’s advanced
performance (Section 4.2), and finally show in-
depth analysis about LLaPA (Section 4.3).

4.1 Experimental Setup

In this section, we introduce our experimental setup
in terms of datasets, evaluation metrics, evaluation
tasks, and baselines.

Datasets. We  selected the  Swiss-Prot
database (Boutet et al., 2007) as the source
of our training data, a subset of the extensive
UniProt dataset known for its thorough human
review and curated annotations. Employing
the data filtering approach described in (Yu
et al., 2023), we initially secured approximately
220K protein sequences.  Subsequently, we
clustered and subsampled these sequences using
mmseq?2 (Steinegger and Soding, 2017), applying
sequence identity cutoffs of 70% to effectively
filter out homologous sequences. Our assessment
of the LLaPA model’s competency in predicting EC



numbers was performed across four well-regarded
benchmarks: New-392 (or New) (Yu et al., 2023),
Price-149 (or Price) Price et al. (2018b),
Multi (Yuetal., 2023), and Halogenase (Yu et al.,
2023). The sequence identify between training
set and testing set Halogenase, Multi, New-392,
and Price-149 are 39.20%, 58.96%, 48.41%, and
42.66%, respectively. Therefore, the performance
improvement in Halogenase and Price-149
can indicate the generalization enhancement.
More details about these datasets, please refer to
Appendix A.4.

Evaluation Metric. Initially, we utilize the F-1
score to compare the performance of LLaPA against
other baseline models. Subsequently, to delve
deeper into the predictive behavior of LLaPA, we
examine its performance using two different types
of accuracy measures.:

1 X number of true positive
Acc-1 = — E P
N 4 - number of true labels
=

, (D

number of true positive

Acc-2 = —1
cc—2 = E
N P number of predicted labels

where Acc-1 represents the ratio of correct predic-
tions to the total number of ground truth instances,
and Acc-2 denotes the ratio of correct predictions
to the total number of predicted EC numbers. The
former metric assesses the model’s ability to accu-
rately identify the correct EC numbers, while the
latter evaluates the model’s tendency to predict as
many EC numbers as possible.

Tasks. We consider two kinds of tasks, one for
Full EC number prediction, which needs to predict
the four digital numbers, and requires the modal
to identify the specific catalytic reaction utilized
by the protein, and another is to predict the first
three digital numbers of EC numbers that require
to understanding the general understanding of the
type of reaction the enzyme catalyzes. Though
it lacks the specificity of full EC predictions, this
broader categorization can aid tasks like metabolic
pathway analysis by helping map enzyme roles and
biological process flows.

Baselines. To highlight the exceptional perfor-
mance of LLaPA, we benchmark it against three
state-of-the-art (SOTA) methodologies: (1) For
classification, we employ ESM-2 (Lin et al., 2022),
a leading general-purpose protein language model.
We fine-tune ESM-2 using our training data and

then validate its performance across four bench-
marks; (2) In terms of retrieval methods, we utilize
CLEAN (Yu et al., 2023), which leverages triplet
loss to differentiate proteins across enzyme sub-
strate classes; (3) For a translation-based approach,
we examine BioTranslator (Xu et al., 2023a), distin-
guished by its zero-shot learning capability across
multiple applications; (4) For structure-based pro-
tein methods, we employ GearNet (Zhang et al.,
2023c) and ESM-GearNet (Zhang et al., 2023b).
More implement details about LLaPA and baselines,
replease refer to Appendix A.2 and Appendix A.3
respectively.

4.2 LLaPA Achieves Superior Protein Enzyme
Understanding

Referring to Table 1, it’s evident that LLaPA
significantly outperforms the baseline models
in predicting "Full EC Numbers" across three
datasets, registering F-1 score improvements of
{17.03%,9.32%, 38.64%} on the Halogenase,
Price, and New datasets, respectively. How-
ever, it’s worth noting that BioTranslator surpasses
LLaPA in the Multi dataset. Despite this, BioTrans-
lator’s Acc-1 is substantially higher than its Acc-2,
suggesting a tendency to over-predict EC numbers
for each protein—a less-than-ideal approach in
practical scenarios. In comparison, LLaPA demon-
strates competitive performance with BioTransla-
tor, maintaining a closer alignment between Acc-1
and Acc-2, which underscores LLaPA’s more de-
pendable predictions.

Furthermore, when focusing on the predic-
tion of the "First Three EC Numbers," LLaPA
consistently surpasses all baselines across ev-
ery dataset, with F-1 score improvements of
{60.13%, 7.08%, 6.01%, 18.23%}. Additionally,
the notable discrepancy between Acc-1 and Acc-2
within the Multi dataset highlights LLaPA’s lim-
itations in this area, suggesting a need for more
comprehensive data to better grasp the nuances of
enzymes associated with rare EC numbers.

4.3 In-depth Analysis and Ablation Study

Q1: What does the EC Number Reformulation
bring to performance? A1: Generalizability and
Reliability In our ablation study focused on EC
Number Reformulation to address Q1, we con-
trast LLaPA with its variants: “LLaPA (AAA)” and
“LLaPA without reformulation”. In Table 2, we re-
veal that modifying the original EC number format

TRL

by replacing the period (““.”) with a letter signif-



Halogenase Multi Price New
Acc-1  Acc-2 F1 Acc-1  Acc-2 F1 Acc-1  Acc-2 F1 Acc-1  Acc-2 F1
Full EC Numbers
ESM2-650M (ft) 0.0146  0.5000 0.0155 0.3522 0.0004 0.0412 0.4965 0.0002 0.0403 0.5958 0.0003 0.0276
ESM2-650M (lora)  0.2162 0.0001 0.0367 0.5975 0.0006 0.1054 0.4406 0.0002 0.0275 0.5375 0.0003 0.0205
ESM2-650M (linear) 0.1351 0.5556 0.1577 0.0063 1.0000 0.0084 0.0063 1.0000 0.2322 0.0146 0.5000 0.0155
BioTranslator 0.1081 0.0571 0.0293 0.2131 0.1625 0.1536 0.0604 0.0448 0.0240 0.1020 0.0802 0.0503
CLEAN 0.1622 0.1622 0.2140 0.0686 0.1967 0.0951 0.0592 0.0604 0.0958 0.0696 0.0893 0.0475
GearNet 0.1622 0.1622 0.2140 0.0686 0.1967 0.0951 - - - 0.0696 0.0893 0.2423
GearNet-ESM 0.1923 0.2778 0.1667 0.0339 0.0132 0.0161 - - - 0.2423  0.1935 0.2406
LLaPA 0.3514 0.3514 0.3843 0.1414 0.1571 0.1399 0.3423 0.3423 0.3254 0.5016 0.5040 0.4367
First Three EC Numbers
ESM2-650M (ft) 0.2703 0.4545 0.2806 0.8529 0.9667 0.8627 0.5973 0.8558 0.6296 0.6817 0.8193 0.7241
ESM2-650M (lora)  0.2703 0.0021 0.0562 0.1471 0.0014 0.0140 0.6376 0.0052 0.0898 0.5363 0.0041 0.0414
ESM2-650M (linear) 0.0811 0.5000 0.1216 0.7353 0.9615 0.7500 0.4161 0.9394 0.4703 0.4336 0.8317 0.4746
BioTranslator 0.0811 0.0682 0.0266 0.1311 0.1143 0.0733 0.0470 0.0380 0.0163 0.0459 0.0382 0.0152
CLEAN 0.3783 0.3514 0.3550 0.6264 0.6443 0.6580 0.9399 0.9344 0.9100 0.7806 0.7303 0.7740
GearNet 0.0769 0.1250 0.0769 0.0192 0.0227 0.0346 - - - 0.5529 0.6985 0.5790
GearNet-ESM 0.1538 0.4444 0.1538 0.0192 0.0213 0.0346 - - - 0.6375 0.7276 0.6358
LLaPA 0.9770 0.9460 0.9563 1.0000 0.7842 0.9335 0.9732 0.9664 0.9701 0.9770 0.9460 0.9563

Table 1: The comparison of LLaPA with the state-of-the-art EC number prediction tools.
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Figure 3: Extra studies about the protein retrieval database. We apply sequence identity cutoffs of 10%, 30%, 50%, 70%,

creating five datasets, including the original, to serve as our protein retrieval database during the training phase. We’ve tracked
how the F-1 score shifts when we adjust the cutoff values across four datasets, focusing on tasks predicting “Full EC Number”

and “First Three EC Number”. A higher cutoff value means incl

icantly enhances the model’s ability to generate
plausible predictions for the Halogenase dataset,
thereby indicating an improvement in generaliz-
ability. Moreover, we observed a marked reduction
in the discrepancy between Acc-1 and Acc-2 fol-
lowing the EC number reformulation. This trend
was consistent across both "Full EC Numbers" and
"First Three EC Numbers" predictions, underscor-
ing an enhancement in the model’s reliability. As
illustrated in Figure 1 (A), within the embedding
space, the character “A” is situated further from
the numbers compared to the period (*.”), and “Z”
is even more distant from the numbers than “A”.
This spatial arrangement in the embedding space
suggests that as the distance from these numbers

uding more homologous protein sequences in our analysis.

increases, so too do the generalizability and relia-
bility of the model’s predictions.

(02: What are retrieved proteins and molecules
responsible for? A2: Improve the performance
The comparison of LLaPA against its variations,
“LLaPA without SMILES” and “LLaPA without pro-
tein”, provides us with several key takeaways: @
For “Full EC Numbers”, it turns out that informa-
tion about molecules play a starring role, while
information on proteins takes the spotlight for nail-
ing the “First Three EC Numbers” predictions. For
instance, our dual-layer retrieval engine boosts the
F-1 score from virtually nothing (0.0%) and a mod-
est 3.6% to an impressive 38.43%. @ The differ-
ence between Acc-1 and Acc-2 stays pretty much



Halogenase Multi Price New
Acc-1  Acc-2 F1 Acc-1  Acc-2 F1 Acc-1  Acc-2 F1 Acc-1  Acc-2 F1
Full EC Numbers
LLaPA 0.3514 0.3514 0.3843 0.1414 0.1571 0.1399 0.3423 0.3423 0.3254 0.5016 0.5040 0.4367
LLaPA (AAA) 0.1351 0.0676 0.1906 0.1235 0.1030 0.1437 0.2282 0.1141 0.2572 0.4044 0.2086 0.3651
LLaPA w/o reformulation  0.0541 0.0270 0.0852 0.1706 0.1393 0.1446 0.1879 0.0940 0.2084 0.3053 0.1607 0.2892
LLaPA w/o SMILES 0.0000 0.0000 0.0000 0.0519 0.0574 0.0536 0.0000 0.0000 0.0000 0.0145 0.0153 0.0247
LLaPA w/o protein 0.0270 0.0270 0.0360 0.0717 0.0749 0.0921 0.1342 0.1342 0.1502 0.2425 0.2429 0.2238
LLaPA w/ Original Vicuna 0.0000 0.0000 0.0000 0.0525 0.0574 0.0503 0.0000 0.0000 0.0000 0.0109 0.0123 0.0256
First Three EC Numbers
LLaPA 0.9770 0.9460 0.9563 1.0000 0.7842 0.9335 0.9732 0.9664 0.9701 0.9770 0.9460 0.9563
LLaPA (AAA) 1.0000 0.8378 0.9045 1.0000 0.4276 0.7535 1.0000 0.6544 0.7952 1.0000 0.5640 0.7543
LLaPA w/o reformulation  1.0000 0.6305 0.8730 1.0000 0.4891 0.7892 1.0000 0.6689 0.8189 1.0000 0.6305 0.8730
LLaPA w/o SMILES 0.8649 0.8649 0.8649 0.9836 0.5984 0.7939 0.9195 09128 0.9141 0.8724 0.8151 0.8360
LLaPA w/o protein 0.4595 0.4595 0.4595 1.0000 0.7186 0.9005 0.9799 0.9732 0.9739 0.9821 0.9422 0.9599
LLaPA w/ Original Vicuna 0.1351 0.1351 0.1351 1.0000 0.5328 0.7627 0.9866 0.9765 0.9866 0.8112 0.7411 0.7720

Table 2: Ablation study on LLaPA. “LLaPA (AAA)” involves substituting the periods (“.”) in the standard EC number
format with three “A” letters, while “LLaPA w/o reformulation” continues to utilize the traditional EC number
format. Additionally, the exclusion of molecule retrieval during the inference process is indicated by “LLaPA w/o
SMILES”, the omission of protein retrieval is denoted by “LLaPA w/o protein”, and “LLaPA w/ Original Vicuna”
replaces the fine-tuned LLM with original vicuna model weight.

the same, indicating that the reliability is brought
by the “EC Number Reformulation”. @ The en-
hancements we see with our retrieval engine shine
brightest with the Halogenase and Multi datasets.
This suggests that the extra info we pull up helps
the language model spot and understand proteins it
hasn’t met before, showcasing the power of addi-
tional data in uncharted territory.

Q3: What is the ideal protein for the protein
retrieval engine? A3: The homologous sequence
matter. To tackle this question, we zoomed in
on how adjusting our protein retrieval database af-
fects our findings. We started by setting sequence
identity cutoffs at 10%, 30%, 50%, and 70%, cre-
ating four sub-datasets at varying levels of protein
sequence similarity. Next, we tested these sub-
datasets to observe any shifts in performance. It’s
worth mentioning that a 100% cutoff points to our
original dataset, detailed in Section 4.1, which in-
cludes 220K protein sequences. The 100% cutoff
dataset also doubles as our default testing retrieval
database. Our strategy involved closely monitor-
ing how the F-1 scores varied with different cutoff
values across various datasets, particularly for pre-
dicting the “Full EC Number” and the “First Three
EC Numbers”. What we discovered was quite re-
vealing: incorporating sequences with a higher de-
gree of homology—those closely related protein
sequences—proves to be advantageous, especially
when tackling the “Full EC Number” prediction
tasks. This insight highlights the significance of
carefully selecting sequences to enhance the preci-

sion of our predictions.
For more detailed analysis, please refer to Ap-
pendix B.

5 Conclusion

This paper introduces LLaPA, a multi-modal frame-
work developed to predict enzyme functions by as-
signing Enzyme Commission (EC) numbers to pro-
tein sequences. Our work represents a pioneering
effort to synergize natural language priors (where
punctuation such as "." in numbers can resemble
large numerical values to LLMs due to their prox-
imity in the word embedding space) and biological
priors (emphasizing the evolutionary conservation
of functionally critical regions within protein se-
quences and the catalytic reactions of the corre-
sponding enzymes) in a unified approach using
multi-modal large language models.

As aresult, LLaPA achieves state-of-the-art per-
formance across four public benchmarks, demon-
strating its superiority. This underscores the sig-
nificance of the EC number format and suggests
a promising method for integrating biological in-
sights through retrieval mechanisms with LLMs
to enhance our understanding of protein enzyme
functions. Future directions include a broader ex-
ploration of protein function, the integration of
our proposed retrieval engine with reasoning capa-
bilities to further augment retrieval effectiveness,
and proposing a large-scale protein dataset with
secondary structure and then comparing it with
structure-based protein predictors.



Limitation

Our method primarily utilizes datasets that are pub-
licly available, and our validation process does not
include wet lab experiments. This limitation con-
fines the scope of our prediction results. To achieve
a more comprehensive understanding and valida-
tion of our findings, future work should consider
incorporating experimental data from wet lab exper-
iments. Such integration would not only enhance
the reliability of our predictions but also bridge the
gap between computational predictions and empiri-
cal evidence, potentially leading to more accurate
and applicable outcomes in the field.

Potential Risks

The training and evaluation dataset of LLaPA are
public available. Therefore, the risk of LLaPA re-
quire further additional investigation.
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A Method Details

A.1 Model Architecture and Multi-modal
Training

Network Architecture The network architecture
is illustrated in Figure 1 (D). LLaPA features sev-
eral key components: an LLM for natural language
processing, a protein encoder, and a correspond-
ing projector that bridges the protein encoder with
the LLM. Additionally, it includes a molecule en-
coder and its own projector to link the molecule
encoder with the LLM. We use Vicuna-7b (Zheng
et al., 2023) as the backbone of LLaPA, which is
a chat assistant trained by fine-tuning Llama 2 on
high-quality dialog datasets. To make LLaPA under-
stand protein sequences (i.e., sequence of amino
acid tokens, which are the primary structure of pro-
teins), we employ ESM-2 (Lin et al., 2022) as the
protein encoder E(-), the general-purpose protein
language model. For the molecule, we use Chem-
BERTa (Chithrananda et al., 2020) as the molecule
encoder C(-), a language model pre-trained on
a chemical dataset called PubChem (Kim et al.,
2019) that consists of molecules in SMILES for-
mat. These two projectors that connect the protein
feature, and molecule feature into language embed-
ding tokens h; are both a two-layer MLP.

Multi-modal Training For each protein x, we
create a single-turn conversation dataset (ng, n,).
These are arranged sequentially, with the answers
interpreted as the assistant’s responses and the ques-
tion as the instruction, denoted as n,. This ar-
rangement follows a unified format for multimodal
instruction-following sequences, as illustrated in
Figure 5. We set the trainable parameters as 6,
Niystruct,<i and Ng_<; as the instruction and answer
tokens in each turn before the current prediction
token n,. For sequences of length L, we obtain the
target answers generating probability n, by:

2)

In this formulation, x,x’, and m’ are anchored
across all answers. For the sake of clarity, we omit
Ngystem—message and all <STOP> tokens, even
though they are also taken into consideration in
the conditioning.

For the model training, we consider a two-stage
instruction-tuning procedure. @ Feature Align-
ment. We keep the protein encoder, molecule en-
coder, and LLM weights are frozen, and maxi-
mize the likelihood of Equation A.1 with train-
able parameters § = {W,, W,,}. In this way,

! /
p(na ’X7 X, M, Nynstruct,<is na,<i>-
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ou are a helpful language and protein assistant.
ou are able to understand the protein sequence that the user provides,
and ouput the corresponding enzyme commission numbers, for example: 3.4.11.4, 3.6.1.4

Protein: <protein>\n
Candidate protein: <protein>\n

One of the generated product: <molecule>\n

List all enzyme commission numbers that are associated with the protein, this protein is
similar with the candidate protein.\n

Figure 4: The multimodal instruction used during LLaPA
LoRA fine-tuning.

nsystem message <STO.P>\TL
Human: n,spue <STOP>\nAssistant : n, <STOP>

Figure 5: The input sequence employed to train the model
is designed to teach the model to predict the assistant’s re-
sponses and to determine the appropriate point to conclude.
Consequently, only the are utilized in
calculating the loss within the auto-regressive model.

protein and molecule features z, z;,, Z;, can be

aligned with the pre-trained LLM word embed-
ding. @ Parameter Efficient Fine-tuning. We
adopt LoRA (Hu et al., 2021) for the training. The
LoRA is an efficient training strategy that main-
tains high model quality without introducing any
delay during inference or necessitating a reduction
in the input sequence length. As a result, we keep
the visual encoder and the weights of the Large
Language Model (LLM) frozen, updating the two
projectors {W,,, W,, } and the LoRA parameters
(¢) in the LLM; i.e., the trainable parameters are
0 ={W,,W,,,o}.

A.2 Implementation Details

Techinical Details. Pretraining: We adhered to
the official training guidelines of LLaVA, employ-
ing the Adam optimizer with an initial learning
rate of 5 x 10~?, which gradually decreases fol-
lowing a cosine annealing schedule. Our batch size
was set at 128, and we trained the two projectors
for 5 epochs. LoRA Fine-Tuning: For fine-tuning
with LoRA, we set r = 128 and o = 256. The
learning rates were 5 x 1075 for the two projec-
tors and 2 x 107° for LoRA modules with the
same batch size 128 but 10 epochs. LoRA was
applied across all linear modules of LL.Ms, includ-
ing [down_proj, up_proj, q_proj, v_proj, k_proj,
o_proj, gate_proj]. The pretraining and fine-tuning
of LLaPA were conducted on 8 NVIDIA A6000
GPUs. Retrieval: During training, if protein re-
trieval fails (i.e., an available protein reference can-
not be retrieved), we default to using the query
protein sequence as the retrieved protein. Simi-
larly, for missing molecule retrievals, we return
zero vectors as the retrieval result. The retrieval




database during training is the training set itself
to maintain fair comparison with baselines. Dur-
ing inference, we use the original dataset as the
retrieval base (including 220K protein sequences
filtered from the Swiss-Prot database). For those
proteins with multiple EC numbers, we will ran-
domly select one of them for molecule retrieval.
Predicting, The format of LLaPA is designed for
easy reformulation, allowing users to substitute the
placeholder “Z” with a period (“.”) to revert to
the original, more user-friendly format for read-
ing. Fune-tuning Instruction: We use the instruc-
tion for better multimodal optimization during the
fine-tuning stage, we leave the system instruction
and multimodal instruction in Figure 4.

Algorithm 1 LLaPA Training and Inference
Pipeline

Input: Query protein x.
if Training then
Input: Query protein label y.
end if
Output: Predict EC number y.
Require: Instruction Template 1y, sryct-
Require: Protein retrieval database PRD.
Require: Molecule retrieval database MRD.
# Protein retrieval
x' «+— ProteinRetrieval(x, PRD),
: # Molecule retrieval
: if Training then
y < ECNumberExtract(x) # got EC num-
ber of x
else
y + ECNumberExtract(x’) # got EC num-
ber of x’
end if
m’ < MoleculeRetrieval(y)
if Training then
y « LLaPA(x,x',m’, n;psruct) and calcu-
late the loss with y to update the model.
else
y < LLaPA(x,x', m’, nypstruct)
end if

R A A S oy

—_ = = =
w22

14:
15:

16:
17:
18:
19:

20:
21:
22:

Training and Inference Pipeline. We show the
pseudocode of the training and inference pipeline
in Algorithm 1. The ProteinRetrieval re-
trieves similar protein sequence in protein re-
trieval database PRD of give protein x, the
ProteinRetrieval retrieves molecule m’ that re-
lated with EC number ¢, and ECNumberExtract
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outputs the EC number that corresponding to the
input protein x/x’. LLaPA receive the query pro-
tein x, retrieved protein x’ and retrieved molecule
m’ to predict EC number for training or inference.
The computation cost for training is arround 18
TFLOPs and the inference is arround 2 TFLOPs if
the batch size is 1. In practice, we use 8 A6000 for
training (batch size is 128) and a single A6000 for
inference.

The Flow of Data and the training details. We
show the data flow of LLaPA in Figure 6(a) (A). The
(B) and (C) in Figure 6(a) show the model details
during model training. In the first stage, only two
modality-specific projectors participate in training,
and in the stage two, these LORA modules added
to the LLM are trained simultaneously with these
mode-specific projectors.

The training and the inference details of LLaPA in
Line 17-21 of Algorithm 1 are like this: modality-
specific encoder and projector convert each pro-
tein x/x’ and molecule m’ into sequences of pro-
tein tokens and molecule tokens, respectively. We
then replace the query protein token sequence x
with the special token <protein> in the format “Pro-
tein: <protein>\n"’ in 1Ny s¢ruet (Figure 4). The re-
trieved protein token sequence, z’ is replaced with
<protein> in “Candidate protein: <protein>\n" in
Ninstruct- Similarly, the molecule token sequence
m’ is replaced with <molecule> in “One of the
generated products: <molecule>\n" of n;, s¢ryct-

Specifically, all text in n;psrucr 1S €ncoded as
h;, and x/x’ is encoded by protein encoder E(-),
and then the output is projected by W, to form
token sequence h,, and h/, The special token <pro-
tein> in h; is then replaced by %, and A, Similarly,
molecule m'’ is encoded by molecule encoder C'(-),
and then the output is projected by W,,, to form
token sequence h,,. The special token <molecule>
in h; is replaced by h,,. Finally, the LLM uses
hp, hum, and by to make predictions.

A.3 Baselines Details

For the ESM-2 model, we utilized the ESM2-650M
variant and subjected it to three distinct fine-tuning
strategies: ESM2-650M (ft), where all parameters
were made trainable; ESM2-650M (lora), where
LoRA was applied to the query, key, and value
layers, in addition to optimizing an additional clas-
sification head; and ESM2-650M (linear), which
involved optimization of only the classification
head. The classification head’s output dimension in



(A) The Flow of Data (B) Training Stage One
ECXXXX.XXXX Y DDGD FCXXXXXXXX ¥ DDGD 1.2.1 47 1.2.1 47
[Language Model ) | [LanguageModel  F 0.8 — 0.8 e
~000000 P00 000 060 -0P0000 P00 000 000
o e P S S TR Y [ S S S e =07 07
Projection  Wp) , |(Projection Wi [Projection % Wp) ,  |(Projection €Y Wi,
% Protein Excoder ] P (([Molecule Bncoder ) ™ T « )P o %D 0.6 0.6
Pr rx Candid: 1;(, rod sr:n:ss P rx Candid: 1;(’ ! sx;ngs 305 0.5
(C) Training Stage Two
[ 1, e 1, Yok i s s D000 g o4 0-4
(T 5 ) =03 0.3
et | e B0 RO 00,000,098 000 2 o2 0.2
. Weight |, Foion 0 75) | (ergesion W < o1 0.1
| wert A rog geoder 17 (ot Eentor). ™
KA =N(©0,)\ 0.0 - -
< 4 o b ‘“ﬁf") Protein  Molecule Protein  Molecule
(a) The model details of LLaPA include (A) the data flow process, (b) The attention weight on proteins and molecules when
and (B) and (C) the specifics of the two-stage training procedure. predicting the third digit of an EC number (left) and the

last digit of an EC number (right).

Figure 6: The model details of LLaPA and the attention weight dynamic from the third to the last digital number of
EC numbers.
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Figure 7: The UMAP visualizations and corresponding silhouette coefficients for the text embeddings of all involved EC
numbers in both the training and testing datasets.

ESM-2 corresponds to the total number of Enzyme  dataset comprising enzymes associated with rare
Commission (EC) numbers identified within both ~ EC numbers, each represented no more than five
the training and testing datasets. We fine-tuned  times, with the dataset including over 3, 000 sam-
the publicly available BioTranslator model using  ples and covering over 1, 000 distinct EC numbers.
the same dataset as LLaPA, following the recom- 4. Halogenase (Yu et al., 2023), a dataset that
mended hyperparameters from its documentation.  encompasses various halogenases, either marked
The goal was to accurately align full EC numbers  as uncharacterized and/or hypothetical proteins in
(“EC XX.XX.XX.XX”) with their respective pro-  UniProt or bearing conflicting annotations in schol-
tein sequences. For performance evaluation, we uti-  arly literature. Through meticulous expert curation
lized a standard multi-label classification approach ~ and subsequent experimental validations, all halo-
with a threshold of 0.5 to calculate metrics. Re-  genase in the dataset were confidently annotated
garding the CLEAN model, we utilized the official ~ with EC numbers.

implementation and followed the suggested dataset- For the hyperparameters of mmseq2, we used
specific hyperparameters to derive our final results.  the “mmseqs2 easy-search” command with a sen-
sitivity setting of “-s 5 and a maximum accepted
sequences limit of “—max-seqs 10”. Default hy-
Four benchmarks we used as in follow: (1) perparameters were used for other settings. Our
New-392 (or New) (Yu et al., 2023), which includes  retrieval engine contains 227,363 proteins and
392 enzyme sequences that span 177 distinct EC 14, 162 molecules.

numbers. (2) Price-149 (or Price), a collection

of protein sequences that were found to be in- B Additional Experiments

accurately or inconsistently labeled in reputable
databases like the Kyoto Encyclopedia of Genes
and Genomes (KEGG) by automated annotation  In Figure 6(b), we visualize the attention weights
methods. These sequences were later annotated  on proteins and molecules when predicting the third
with labels validated through experiments by Price  and last digits of the EC number. The results show
et al. (2018b). (3) Multi (Yu et al.,, 2023), a that the attention weight increases when the model

A.4 Dataset Details

B.1 Attention Weight Change
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predicts the last digit of the EC number, indicating
why the molecule contributes significantly to the
full EC number prediction.

B.2 Structure-Based Protein Methods

We used RSCB and AlphaFold2 to construct pro-
tein structures from our training data. Since 1%
of the proteins in the training set do not have
structures, we excluded these and used the remain-
ing 99% to train GearNet (Zhang et al., 2023c)
and ESM-GearNet (Zhang et al., 2023b). We ap-
plied these models to this structured dataset. How-
ever, none of the proteins in the Price dataset have
structures available in the RSCB and AlphaFold2
databases, and folding all these proteins using Al-
phaFold?2 is too resource-intensive. Therefore, we
evaluated GearNet and ESM-GearNet only on the
Halogenase, Multi, and New datasets.

B.3 EC Number Reformulation Analysis

AQI: Why can the EC Number Reformulation
improve performance? A1: Better feature qual-
ity In Figure 7, we display UMAP visualizations
derived from the EC number features generated by
our model. Each EC number label corresponds to
the first digit of the EC number, i.e., the reaction
class. Then we also calculate the Silhouette Coef-
ficient (s-score) to assess the clustering quality of
various EC number formats; a higher Silhouette Co-
efficient indicates improved clustering quality. The
improved clustering quality indicates the feature
quality is better. The results show that replacing “.”
with the letter “A” can improve the cluster quality
and replacing “A” with “Z” can further improve
the s-score from 0.187 to 0.301. The improvement
indicates the EC number reformulation possesses
a smoother and more clustered latent space with
respect to the ground-truth reaction labels. The im-
proved cluster quality matches better EC number
prediction, showing enhanced EC number features
boost the model’s performance.
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