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Abstract

Identifying protein enzyme functions, crucial001
for numerous applications, is challenging due002
to the rapid growth in protein sequences. Cur-003
rent methods either struggle with false posi-004
tives or fail to generalize to lesser-known pro-005
teins and those with uncharacterized functions.006
To tackle these challenges, we propose LLaPA:007
a Protein-centric Large Language and Protein008
Assistant for Enzyme Commission (EC) num-009
ber prediction. LLaPA uses a large multi-modal010
model to accurately predict EC numbers by011
reformulating the EC number format within012
the LLM self-regression framework. We intro-013
duce a dual-level protein-centric retrieval: the014
protein-level retrieves protein sequences with015
similar regions, and the chemical-level retrieves016
corresponding molecules with relevant reaction017
information. By inputting the original protein018
along with the retrieved protein and molecule019
into the LLM, LLaPA achieves improved predic-020
tion accuracy, with enhanced generalizability021
to lesser-known proteins. Evaluation on three022
public benchmarks shows accuracy improve-023
ments of 17.03%, 9.32%, and 38.64%. These024
results highlight LLaPA’s ability to generalize025
to novel protein sequences and functionalities.026
Codes are provided in the supplement.027

1 Introduction028

Understanding the functions of protein enzymes is029

crucial for unraveling metabolic pathways (Fon-030

seca et al., 2019), diagnosing diseases (Hewitt031

et al., 2004; Voller et al., 1976), advancing person-032

alized medicine (Sookoian and Pirola, 2015), facili-033

tating industrial applications (Victorino da Silva034

Amatto et al., 2022; Bernal et al., 2018; Chap-035

man et al., 2018; Basso and Serban, 2019), un-036

derstanding biological evolution (Campbell et al.,037

2016), and beyond. Recently, advances in bio-038

logical technologies have unveiled a vast array of039

enzyme protein sequences from organisms span-040

ning the entire tree of life. However, only a small041

fraction of the protein has been manually anno- 042

tated (i.e., ∼ 0.3% (Boutet et al., 2007) in UniPro- 043

tKB (The UniProt Consortium, 2023) is manually 044

annotated.) The computational methods can bridge 045

the sequence-annotation gap, but the critical assess- 046

ment of protein function annotation (CAFA) study 047

found that ∼ 40% of the computation annotations 048

are incorrect (Radivojac et al., 2013). Additionally, 049

there exists a portion of proteins that are not similar 050

enough to any characterized protein to infer func- 051

tion and their function remains unknown (Price 052

et al., 2018a). Therefore, the functional annotation 053

of understudied and promiscuous proteins remains 054

an overwhelming challenge in protein science (Jef- 055

fery, 2018; Hult and Berglund, 2007). 056

In the past few years, the enzyme function anno- 057

tation has been formulated as a multi-label classifi- 058

cation tasks (Gligorijević et al., 2021; Lin et al., 059

2022; Ryu et al., 2019; Sanderson et al., 2023; 060

Dalkiran et al., 2018), aiming to predict the En- 061

zyme Commission (EC) number of annotated en- 062

zymes (Webb and International Union of Biochem- 063

istry and Molecular Biology, 1992). The EC num- 064

ber is a classification ontology for the chemical 065

reactions catalyzed by enzymes. However, the 066

multi-label classification paradigm suffers from the 067

limited and imbalanced training dataset. Recently 068

proposed CLEAN framework shows the retrieval- 069

based framework can significantly surpass classi- 070

fication deep learning frameworks, such as Prote- 071

Infer (Sanderson et al., 2023), DeepEC (Ryu et al., 072

2019), and DEEPre (Li et al., 2018). Notably, it ex- 073

hibits remarkable performance on EC numbers rep- 074

resented by fewer than ten sequences, highlighting 075

the superiority of contrastive learning over multi- 076

label classification in predicting enzyme function. 077

However, the framework is not engineered to gener- 078

alize to proteins with novel functionalities, requir- 079

ing a certain number of proteins with annotated EC 080

numbers to maintain its generalizability. There are 081

pioneers (Xu et al., 2023b; Gane et al.) aiming to 082
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harness the generalizability of LLM and combine083

LLM with a protein encoder to create an end-to-084

end trained large multi-model model for various085

protein-related tasks. Despite these advancements,086

their approach primarily emphasizes linking pro-087

teins with textual data, often overlooking biolog-088

ical priors. This oversight restricts the model’s089

ability to offer interpretations from a biological090

standpoint—an aspect that is essential for advanc-091

ing biological research.092

In this paper, we introduce LLaPA, a protein-093

centric, framework for multi-modal large language094

models (MLLMs) training and inference. In de-095

tail, LLaPA enhances MLLMs for protein enzyme096

understanding from two perspectives. ❶ Focus-097

ing on the Natural Language Prior, we first ob-098

served that the LLM struggles to directly and ac-099

curately output EC numbers (i.e., “EC 3.4.11.4”)100

due to their specific format—four numbers sepa-101

rated by periods. To counteract this limitation, we102

redesigned the EC number format by replacing the103

period with another symbol that is distant from104

numbers in the embedding space. ❷ Embracing105

the Biological Prior, we build a two-tiered protein-106

centric retrieval engine, grounded in two funda-107

mental biological insights: (1) At the protein-level,108

recognizing the evolutionary conservation of func-109

tionally critical regions within protein sequences,110

our engine retrieves a protein with similar regions111

as the reference to infer the query enzyme’s func-112

tion. (2) At the chemical level, acknowledging the113

intrinsic link between an enzyme’s catalytic actions114

and its function, we leverage the retrieved protein115

to further identify a corresponding molecule. This116

molecule acts as an additional reference point, re-117

fining our EC number prediction capabilities. By118

querying a protein along with two retrieved entities119

- a protein and a molecule, LLaPA directly predicts120

the corresponding Enzyme Commission numbers.121

Our contributions are summarized below:122

⋆ We introduce LLaPA framework, a cutting-123

edge framework specifically designed for pro-124

tein enzyme function prediction. LLaPA stands125

out by addressing the unique challenges in126

protein enzyme function annotation through127

innovative training and inference strategies tai-128

lored for multi-modal large language models129

(MLLMs).130

⋆ We identified how the traditional format of EC131

numbers can be problematic for accurate pre-132

dictions by large language models (LLMs). To133

address this, LLaPA introduces a new encod- 134

ing scheme that replaces periods with symbols 135

that are more distinct in the embedding space. 136

This subtle change significantly improves EC 137

number prediction accuracy, indicating the 138

format’s better compatibility with the LLMs’ 139

self-regression paradigm. 140

⋆ LLaPA advances the field with its two-tiered 141

retrieval engine, deeply rooted in biological in- 142

sights. This engine not only identifies proteins 143

with evolutionary conserved, functionally crit- 144

ical regions but also pairs these proteins with 145

corresponding molecules. This dual approach 146

enhances the prediction of Enzyme Commis- 147

sion numbers, leveraging biological priors at 148

both the protein and chemical levels to refine 149

the model’s predictive accuracy. 150

⋆ Our extensive testing across four public 151

datasets confirms the effectiveness of our 152

approach. For example, LLaPA achieves 153

{17.03%, 9.32%, 38.64%} performance im- 154

provements on Halogenase, Price, and New 155

datasets over previous state-of-the-art (SOTA) 156

approaches. 157

2 Related Work 158

Large Language Model Large Language Mod- 159

els (LLMs) have demonstrated considerable poten- 160

tial in biology by leveraging vast biological datasets 161

to advance research and understanding. Genomic 162

models such as BioBERT (Lee et al., 2020) and 163

DNABERT (Ji et al., 2021) excel in sequence anno- 164

tation and gene function prediction. In proteomics, 165

models like ESM-1b (Rives et al., 2019) improve 166

protein sequence understanding, and TAPE (Rao 167

et al., 2019) facilitates evaluation efficiency by 168

providing a standardized benchmark. In drug de- 169

velopment, AlphaFold3 (Callaway, 2024) proved 170

superior in finding new drugs. Others, such as 171

SciBERT (Beltagy et al., 2019), a leading lan- 172

guage model, significantly improve the extraction 173

and summarization of essential information. Re- 174

cent research focuses on integrating multimodal 175

data (Zhang et al., 2023a) (Wang et al., 2024). For 176

example, LLaVA (Liu et al., 2024), which connects 177

a vision encoder and an LLM, is the first attempt 178

to extend instruction-tuning to the language-image 179

multimodal space. The BLIP (Li et al., 2022) has 180

demonstrated impressive performance in vision- 181

language tasks and also achieved state-of-the-art 182
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zero-shot performance when the models are di-183

rectly applied to two video-language tasks. In addi-184

tion, enhancing model interpretability (Joshi et al.,185

2021) (Nhlapho et al., 2024), and improving pre-186

diction robustness (Yang et al., 2023) also attract a187

lot of attention.188

Enzyme Function Prediction Enzyme function189

prediction plays a crucial role in the field of bi-190

ology. Several ways have been devised to fore-191

cast enzyme function, such as those relying on192

sequence similarity (Zhang et al., 2017) (Desai193

et al., 2011) (Altschul et al., 1997), structural sim-194

ilarity (Altschul et al., 1990), and protein homol-195

ogy (Zhang et al., 2017). InterPro (Paysan-Lafosse196

et al., 2022) signatures, position-specific scoring197

matrices (cheol Jeong et al., 2010), pseudo-amino198

acid composition (Chou, 2009), and machine learn-199

ing techniques (Amidi et al., 2017) such as multi-200

label k-nearest neighbour (Huang et al., 2007) and201

SVM (Mohammad and Nagarajaram, 2011) are202

all good ways to figure out what multi-functional203

enzymes do. Furthermore, the deep learning frame-204

works that integrate representation learning and205

classifier learning have shown significant promise206

in enzyme function prediction, such as Protein-207

fer (Sanderson et al., 2023), DeepEC (Ryu et al.,208

2019), and DEEPre (Li et al., 2018). A new209

paradigm was recently introduced by ProTranslator210

(Xu and Wang, 2022). It deems the process of using211

function descriptions to predict the amino acid se-212

quence a machine translation problem. This pattern213

was later expanded with a framework for multilin-214

gual translation (Xu et al., 2023a). Additionally,215

(Yu et al., 2023) introduces a metric learning frame-216

work designed to increase the distance between pro-217

tein embeddings of differing functions and decrease218

it for those with similar functions, achieving state-219

of-the-art (SoTA) performance. However, their220

approach relies solely on a simple triplet loss for221

contrasting samples and does not integrate biologi-222

cal priors to enhance generalization for functions223

without a defined EC number.224

3 Methodology225

Overview LLaPA is a framework designed specif-226

ically for predicting the function of protein en-227

zymes, outputting the Enzyme Commission num-228

ber based on the given protein sequence. First of229

all, we reformulate the y that is more friendly for230

LLM prediction (Section 3.1). Then, for a protein231

sequence x with n amino acids, LLaPA initially uses232

x to identify a reference protein sequence x′, then 233

retrieves the corresponding molecule m′ related to 234

the catalytic reaction involve x (Section 3.2). As a 235

result, LLaPA employs x, x′, and m′ to predict the 236

functional annotation y of x (Section 3.3). 237

Specifically, LLaPA inference adopts a similar 238

design to LLaVA (Liu et al., 2023b,a). With x, 239

retrieved protein x′ and retrieved molecule m′, 240

LLaPA first apply the pre-trained protein encoder 241

E(·) to provide protein features zp = E(x) and 242

z′p = E(x′). Next it uses the pre-trained molec- 243

ular encoder C(·) to obtain molecular features 244

zm = C(m′). To process these features further, 245

LLaPA uses two projectors: Wp, which converts 246

zp and z′p into language embedding tokens hp and 247

h′p, and Wm, which transforms zm into language 248

embedding tokens hm. These projectors map infor- 249

mation from proteins and molecules into the lan- 250

guage token space, bridging biological and chem- 251

ical prior to understanding protein enzyme func- 252

tion. Finally, the query protein x, retrieved protein 253

x′, and molecule m′ along with corresponding in- 254

structions can combine together to obtain the EC 255

number of the query. For more details about the 256

overall pipeline, please refer to Algorithm 1. 257

3.1 Enzyme Commission Number 258

Reformulation 259

In this section, we introduce the Enzyme Com- 260

mission (EC) number reformulation. Protein func- 261

tional annotations, including EC numbers and Gene 262

Ontology (GO) terms, exhibit hierarchical struc- 263

tures. Especially, the Enzyme Commission (EC) 264

number serves as a numerical system for classify- 265

ing enzymes according to the chemical reactions 266

they facilitate. Within this enzyme nomenclature 267

system, each EC number has four digital numbers, 268

that correspond to a recommended name for the 269

specific enzyme-catalyzed reaction it denotes. In 270

Figure 2, the digits represent, from left to right, 271

the reaction class, subclass, sub-subclass, and a 272

substrate-specific serial number. 273

However, we’ve observed that Large Language 274

Models (LLMs) struggle to predict the EC number 275

for given protein sequences. We suspect this limi- 276

tation may be rooted in the characteristics of the 277

embedding space. To explore this hypothesis, we 278

began by visualizing the embedding of symbols, 279

including numbers, letters, and the “.” character. 280

As shown in Figure 1 (A), we noticed that the “.” 281

character is positioned closely to the numbers in the 282

embedding space. This proximity suggests that pre- 283
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Figure 1: The overview of LLaPA. (A) EC Number reformulation. We reformulate the EC number by analyzing the distribution
of symbols within the embedding space, adopt the use of LLM self-regression for EC number prediction. (B) During training
and inference, it employs two-tiered retrieval engine that encompasses both protein sequence and molecule retrieval for accurate
EC number prediction. (C) For molecule retrieval, we utilize an expert-curated knowledge base. (D) All gathered information,
along with the query protein, is then processed by an LLM to generate the final prediction.
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Figure 2: A case of EC number format.

dicting the EC number may be akin to predicting284

a single, large numerical value. Accurately pre-285

dicting such a large number presents a significant286

challenge (Yuan et al., 2023; Zhang et al., 2020;287

Sundararaman et al., 2020; Jin et al., 2024).288

Therefore, we first replaced the “.” with the let-289

ter “A”, and we got an improvement for predicting290

the EC number. Then we further replace “A” with291

“Z” which is farther away from numbers in the em-292

bedding space, and then get further improvement.293

Please refer to Section 4 for a detailed discussion294

of the demonstration results.295

After reformulating the Enzyme Commission296

(EC) number for large language model (LLM) pre-297

dictions, we are now able to accurately predict the298

first three digits of the EC number. This outcome299

suggests that the model is capable of understanding300

protein functions but falls short in identifying the301

specific catalytic reaction utilized by the protein,302

i.e., correctly predicting the four digits of the EC 303

number. To address this limitation, we require fur- 304

ther reference information to assist the model in 305

pinpointing the precise catalytic reaction associated 306

with the protein. 307

3.2 Integrating Biological Prior Knowledge by 308

Retrieval Engine 309

In this section, we introduce a novel two-tiered re- 310

trieval engine, a cornerstone of LLaPA integrates 311

biological prior knowledge to prompt LLMs to pre- 312

dict the four digits of the EC number. This engine 313

is divided into two specialized modules: the first ad- 314

dresses the retrieval of reference protein sequences, 315

while the second concentrates on the identification 316

of molecules relevant to chemical reactions. 317

Protein Prior Knowledge Module - Retrieval of 318

Reference Protein Sequences. A fundamental 319

principle in understanding protein function is that 320

regions of protein sequences important for function 321

tend to be conserved through evolution. Conse- 322

quently, proteins sharing similar regions are likely 323

to possess similar enzymatic functions and may 324

even catalyze the same reactions. Inspired by this 325

insight into protein functionality, we employ "mm- 326

seq2" (Steinegger and Söding, 2017), a compre- 327

hensive software suite designed for the efficient 328

searching and clustering of extensive protein and 329

nucleotide sequence datasets based on significant 330

protein-related knowledge. This tool enables us to 331

identify the most closely related protein sequence 332

as a reference, thereby aiding the model in accu- 333
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rately predicting the four digits of the EC number.334

When given a protein, LLaPA utilizes "mmseq2" to335

find the most similar protein sequence, x′, within a336

specified protein database.337

Specifically, input the query protein sequence x338

to the “mmseq2”. It will search the specified pro-339

tein database and output x′, which has the highest340

sequence identity cutoff value in the database.341

Chemical Reaction Prior Knowledge Module342

- Retrieval of Corresponding Molecules. The343

simplest way to identify a catalytic reaction is by344

examining the reaction itself. This module is de-345

signed to retrieve a molecule in SMILES format 1346

that participates in the catalytic reaction associ-347

ated with a given protein. Yet, the task of retriev-348

ing the catalytic reaction based solely on the pro-349

tein sequence is exceedingly difficult. Fortunately,350

the "Protein Prior Knowledge Module" presents351

an opportunity to bypass the direct retrieval of352

molecules by protein sequence. Therefore, we em-353

ploy the “rhea” (Bansal et al., 2022), an expert-354

curated knowledgebase of chemical and transport355

reactions of biological interest, and the standard for356

enzyme and transporter annotation in UniProtKB.357

Noticeably, the “rhea” necessitates the EC number358

to fetch the relevant catalytic reaction—the very359

information we aim to predict.360

During the training phase, as shown on the Fig-361

ure 1 (B), we directly input the EC number (i.e.,362

the label) of the protein sequence to the “Molecule363

Retrieval” module. During the inference phase364

(the right side of Figure 1 (B)), the EC number365

of the input protein sequence x is unavailable.366

Therefore, we first input the protein sequence x367

to the “Protein Prior Knowledge Module” and get368

a protein sequence m′. We then fed the EC num-369

bers of the retrieved protein sequence m′ into the370

"Molecule Retrieval" module.371

As depicted in Figure 1 (C), our “Molecule Re-372

trieval” module operates as follows: (1) it randomly373

selects one EC number from the input EC numbers;374

(2) it inputs the selected EC number into the “rhea”,375

which then outputs the corresponding catalytic re-376

action; (3) it selects the first reactant molecule in377

the catalytic reaction to be the output molecule m′.378

We emphasize that the retrieving logic in the in-379

ference phase is reasonable, as proteins with high380

1The simplified molecular-input line-entry system
(SMILES) is a specification in the form of a line notation
for describing the structure of chemical species using short
ASCII strings. (Weininger, 1988)

sequence identify cutoff values typically exhibit 381

similar enzyme functions (Gerlt et al., 2015; Yu 382

et al., 2023). Therefore, their molecules in the 383

corresponding chemical enzyme reactions should 384

possess similar catalytic information. For instance, 385

the protein “T1RRJ4” and its corresponding re- 386

trieved protein “Q2XSC6” have the EC numbers 387

“EC 4.2.3.10” and “EC 4.2.3.20”, respectively. In- 388

terestingly, the first reaction molecule for both is 389

“(2E)-geranyl diphosphate”. As depicted in Fig- 390

ure 1 (C), our “Molecule Search” process ran- 391

domly chooses an EC number when multiple are 392

available; if only one EC number exists, that EC 393

number is utilized. 394

3.3 Model Architecture and Training 395

In this section, we delve into the details of the 396

network architecture designed to underpin the pro- 397

posed retrieval engine, the corresponding multi- 398

modal training pipeline, and the technical details of 399

LLaPA. We also illustrate the flow of data and the 400

trainable parameters during training in Figure 6(a). 401

We follow the network architecture of LLaVA 402

but replace the vision encoder to modality-specific 403

encoders and projectors. We place the details of 404

network architecture and multi-modal training in 405

Appendix A.1. 406

4 Experiments 407

In this section, we first introduce the experimental 408

setup (Section 4.1), then show LLaPA’s advanced 409

performance (Section 4.2), and finally show in- 410

depth analysis about LLaPA (Section 4.3). 411

4.1 Experimental Setup 412

In this section, we introduce our experimental setup 413

in terms of datasets, evaluation metrics, evaluation 414

tasks, and baselines. 415

Datasets. We selected the Swiss-Prot 416

database (Boutet et al., 2007) as the source 417

of our training data, a subset of the extensive 418

UniProt dataset known for its thorough human 419

review and curated annotations. Employing 420

the data filtering approach described in (Yu 421

et al., 2023), we initially secured approximately 422

220K protein sequences. Subsequently, we 423

clustered and subsampled these sequences using 424

mmseq2 (Steinegger and Söding, 2017), applying 425

sequence identity cutoffs of 70% to effectively 426

filter out homologous sequences. Our assessment 427

of the LLaPA model’s competency in predicting EC 428
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numbers was performed across four well-regarded429

benchmarks: New-392 (or New) (Yu et al., 2023),430

Price-149 (or Price) Price et al. (2018b),431

Multi (Yu et al., 2023), and Halogenase (Yu et al.,432

2023). The sequence identify between training433

set and testing set Halogenase, Multi, New-392,434

and Price-149 are 39.20%, 58.96%, 48.41%, and435

42.66%, respectively. Therefore, the performance436

improvement in Halogenase and Price-149437

can indicate the generalization enhancement.438

More details about these datasets, please refer to439

Appendix A.4.440

Evaluation Metric. Initially, we utilize the F-1441

score to compare the performance of LLaPA against442

other baseline models. Subsequently, to delve443

deeper into the predictive behavior of LLaPA, we444

examine its performance using two different types445

of accuracy measures.:446

Acc–1 =
1

N

N∑
i=1

number of true positive
number of true labels

Acc–2 =
1

N

N∑
i=1

number of true positive
number of predicted labels

, (1)447

where Acc-1 represents the ratio of correct predic-448

tions to the total number of ground truth instances,449

and Acc-2 denotes the ratio of correct predictions450

to the total number of predicted EC numbers. The451

former metric assesses the model’s ability to accu-452

rately identify the correct EC numbers, while the453

latter evaluates the model’s tendency to predict as454

many EC numbers as possible.455

Tasks. We consider two kinds of tasks, one for456

Full EC number prediction, which needs to predict457

the four digital numbers, and requires the modal458

to identify the specific catalytic reaction utilized459

by the protein, and another is to predict the first460

three digital numbers of EC numbers that require461

to understanding the general understanding of the462

type of reaction the enzyme catalyzes. Though463

it lacks the specificity of full EC predictions, this464

broader categorization can aid tasks like metabolic465

pathway analysis by helping map enzyme roles and466

biological process flows.467

Baselines. To highlight the exceptional perfor-468

mance of LLaPA, we benchmark it against three469

state-of-the-art (SOTA) methodologies: (1) For470

classification, we employ ESM-2 (Lin et al., 2022),471

a leading general-purpose protein language model.472

We fine-tune ESM-2 using our training data and473

then validate its performance across four bench- 474

marks; (2) In terms of retrieval methods, we utilize 475

CLEAN (Yu et al., 2023), which leverages triplet 476

loss to differentiate proteins across enzyme sub- 477

strate classes; (3) For a translation-based approach, 478

we examine BioTranslator (Xu et al., 2023a), distin- 479

guished by its zero-shot learning capability across 480

multiple applications; (4) For structure-based pro- 481

tein methods, we employ GearNet (Zhang et al., 482

2023c) and ESM-GearNet (Zhang et al., 2023b). 483

More implement details about LLaPA and baselines, 484

replease refer to Appendix A.2 and Appendix A.3 485

respectively. 486

4.2 LLaPA Achieves Superior Protein Enzyme 487

Understanding 488

Referring to Table 1, it’s evident that LLaPA 489

significantly outperforms the baseline models 490

in predicting "Full EC Numbers" across three 491

datasets, registering F-1 score improvements of 492

{17.03%, 9.32%, 38.64%} on the Halogenase, 493

Price, and New datasets, respectively. How- 494

ever, it’s worth noting that BioTranslator surpasses 495

LLaPA in the Multi dataset. Despite this, BioTrans- 496

lator’s Acc-1 is substantially higher than its Acc-2, 497

suggesting a tendency to over-predict EC numbers 498

for each protein—a less-than-ideal approach in 499

practical scenarios. In comparison, LLaPA demon- 500

strates competitive performance with BioTransla- 501

tor, maintaining a closer alignment between Acc-1 502

and Acc-2, which underscores LLaPA’s more de- 503

pendable predictions. 504

Furthermore, when focusing on the predic- 505

tion of the "First Three EC Numbers," LLaPA 506

consistently surpasses all baselines across ev- 507

ery dataset, with F-1 score improvements of 508

{60.13%, 7.08%, 6.01%, 18.23%}. Additionally, 509

the notable discrepancy between Acc-1 and Acc-2 510

within the Multi dataset highlights LLaPA’s lim- 511

itations in this area, suggesting a need for more 512

comprehensive data to better grasp the nuances of 513

enzymes associated with rare EC numbers. 514

4.3 In-depth Analysis and Ablation Study 515

Q1: What does the EC Number Reformulation 516

bring to performance? A1: Generalizability and 517

Reliability In our ablation study focused on EC 518

Number Reformulation to address Q1, we con- 519

trast LLaPA with its variants: “LLaPA (AAA)” and 520

“LLaPA without reformulation”. In Table 2, we re- 521

veal that modifying the original EC number format 522

by replacing the period (“.”) with a letter signif- 523
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Halogenase Multi Price New

Acc-1 Acc-2 F1 Acc-1 Acc-2 F1 Acc-1 Acc-2 F1 Acc-1 Acc-2 F1

Full EC Numbers

ESM2-650M (ft) 0.0146 0.5000 0.0155 0.3522 0.0004 0.0412 0.4965 0.0002 0.0403 0.5958 0.0003 0.0276
ESM2-650M (lora) 0.2162 0.0001 0.0367 0.5975 0.0006 0.1054 0.4406 0.0002 0.0275 0.5375 0.0003 0.0205

ESM2-650M (linear) 0.1351 0.5556 0.1577 0.0063 1.0000 0.0084 0.0063 1.0000 0.2322 0.0146 0.5000 0.0155
BioTranslator 0.1081 0.0571 0.0293 0.2131 0.1625 0.1536 0.0604 0.0448 0.0240 0.1020 0.0802 0.0503

CLEAN 0.1622 0.1622 0.2140 0.0686 0.1967 0.0951 0.0592 0.0604 0.0958 0.0696 0.0893 0.0475
GearNet 0.1622 0.1622 0.2140 0.0686 0.1967 0.0951 - - - 0.0696 0.0893 0.2423

GearNet-ESM 0.1923 0.2778 0.1667 0.0339 0.0132 0.0161 - - - 0.2423 0.1935 0.2406
LLaPA 0.3514 0.3514 0.3843 0.1414 0.1571 0.1399 0.3423 0.3423 0.3254 0.5016 0.5040 0.4367

First Three EC Numbers

ESM2-650M (ft) 0.2703 0.4545 0.2806 0.8529 0.9667 0.8627 0.5973 0.8558 0.6296 0.6817 0.8193 0.7241
ESM2-650M (lora) 0.2703 0.0021 0.0562 0.1471 0.0014 0.0140 0.6376 0.0052 0.0898 0.5363 0.0041 0.0414

ESM2-650M (linear) 0.0811 0.5000 0.1216 0.7353 0.9615 0.7500 0.4161 0.9394 0.4703 0.4336 0.8317 0.4746
BioTranslator 0.0811 0.0682 0.0266 0.1311 0.1143 0.0733 0.0470 0.0380 0.0163 0.0459 0.0382 0.0152

CLEAN 0.3783 0.3514 0.3550 0.6264 0.6443 0.6580 0.9399 0.9344 0.9100 0.7806 0.7303 0.7740
GearNet 0.0769 0.1250 0.0769 0.0192 0.0227 0.0346 - - - 0.5529 0.6985 0.5790

GearNet-ESM 0.1538 0.4444 0.1538 0.0192 0.0213 0.0346 - - - 0.6375 0.7276 0.6358
LLaPA 0.9770 0.9460 0.9563 1.0000 0.7842 0.9335 0.9732 0.9664 0.9701 0.9770 0.9460 0.9563

Table 1: The comparison of LLaPA with the state-of-the-art EC number prediction tools.
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Figure 3: Extra studies about the protein retrieval database. We apply sequence identity cutoffs of 10%, 30%, 50%, 70%,
creating five datasets, including the original, to serve as our protein retrieval database during the training phase. We’ve tracked
how the F-1 score shifts when we adjust the cutoff values across four datasets, focusing on tasks predicting “Full EC Number”
and “First Three EC Number”. A higher cutoff value means including more homologous protein sequences in our analysis.

icantly enhances the model’s ability to generate524

plausible predictions for the Halogenase dataset,525

thereby indicating an improvement in generaliz-526

ability. Moreover, we observed a marked reduction527

in the discrepancy between Acc-1 and Acc-2 fol-528

lowing the EC number reformulation. This trend529

was consistent across both "Full EC Numbers" and530

"First Three EC Numbers" predictions, underscor-531

ing an enhancement in the model’s reliability. As532

illustrated in Figure 1 (A), within the embedding533

space, the character “A” is situated further from534

the numbers compared to the period (“.”), and “Z”535

is even more distant from the numbers than “A”.536

This spatial arrangement in the embedding space537

suggests that as the distance from these numbers538

increases, so too do the generalizability and relia- 539

bility of the model’s predictions. 540

Q2: What are retrieved proteins and molecules 541

responsible for? A2: Improve the performance 542

The comparison of LLaPA against its variations, 543

“LLaPA without SMILES” and “LLaPA without pro- 544

tein”, provides us with several key takeaways: ❶ 545

For “Full EC Numbers”, it turns out that informa- 546

tion about molecules play a starring role, while 547

information on proteins takes the spotlight for nail- 548

ing the “First Three EC Numbers” predictions. For 549

instance, our dual-layer retrieval engine boosts the 550

F-1 score from virtually nothing (0.0%) and a mod- 551

est 3.6% to an impressive 38.43%. ❷ The differ- 552

ence between Acc-1 and Acc-2 stays pretty much 553
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Halogenase Multi Price New

Acc-1 Acc-2 F1 Acc-1 Acc-2 F1 Acc-1 Acc-2 F1 Acc-1 Acc-2 F1

Full EC Numbers

LLaPA 0.3514 0.3514 0.3843 0.1414 0.1571 0.1399 0.3423 0.3423 0.3254 0.5016 0.5040 0.4367
LLaPA (AAA) 0.1351 0.0676 0.1906 0.1235 0.1030 0.1437 0.2282 0.1141 0.2572 0.4044 0.2086 0.3651

LLaPA w/o reformulation 0.0541 0.0270 0.0852 0.1706 0.1393 0.1446 0.1879 0.0940 0.2084 0.3053 0.1607 0.2892
LLaPA w/o SMILES 0.0000 0.0000 0.0000 0.0519 0.0574 0.0536 0.0000 0.0000 0.0000 0.0145 0.0153 0.0247
LLaPA w/o protein 0.0270 0.0270 0.0360 0.0717 0.0749 0.0921 0.1342 0.1342 0.1502 0.2425 0.2429 0.2238

LLaPA w/ Original Vicuna 0.0000 0.0000 0.0000 0.0525 0.0574 0.0503 0.0000 0.0000 0.0000 0.0109 0.0123 0.0256

First Three EC Numbers

LLaPA 0.9770 0.9460 0.9563 1.0000 0.7842 0.9335 0.9732 0.9664 0.9701 0.9770 0.9460 0.9563
LLaPA (AAA) 1.0000 0.8378 0.9045 1.0000 0.4276 0.7535 1.0000 0.6544 0.7952 1.0000 0.5640 0.7543

LLaPA w/o reformulation 1.0000 0.6305 0.8730 1.0000 0.4891 0.7892 1.0000 0.6689 0.8189 1.0000 0.6305 0.8730
LLaPA w/o SMILES 0.8649 0.8649 0.8649 0.9836 0.5984 0.7939 0.9195 0.9128 0.9141 0.8724 0.8151 0.8360
LLaPA w/o protein 0.4595 0.4595 0.4595 1.0000 0.7186 0.9005 0.9799 0.9732 0.9739 0.9821 0.9422 0.9599

LLaPA w/ Original Vicuna 0.1351 0.1351 0.1351 1.0000 0.5328 0.7627 0.9866 0.9765 0.9866 0.8112 0.7411 0.7720

Table 2: Ablation study on LLaPA. “LLaPA (AAA)” involves substituting the periods (“.”) in the standard EC number
format with three “A” letters, while “LLaPA w/o reformulation” continues to utilize the traditional EC number
format. Additionally, the exclusion of molecule retrieval during the inference process is indicated by “LLaPA w/o
SMILES”, the omission of protein retrieval is denoted by “LLaPA w/o protein”, and “LLaPA w/ Original Vicuna”
replaces the fine-tuned LLM with original vicuna model weight.

the same, indicating that the reliability is brought554

by the “EC Number Reformulation”. ❸ The en-555

hancements we see with our retrieval engine shine556

brightest with the Halogenase and Multi datasets.557

This suggests that the extra info we pull up helps558

the language model spot and understand proteins it559

hasn’t met before, showcasing the power of addi-560

tional data in uncharted territory.561

Q3: What is the ideal protein for the protein562

retrieval engine? A3: The homologous sequence563

matter. To tackle this question, we zoomed in564

on how adjusting our protein retrieval database af-565

fects our findings. We started by setting sequence566

identity cutoffs at 10%, 30%, 50%, and 70%, cre-567

ating four sub-datasets at varying levels of protein568

sequence similarity. Next, we tested these sub-569

datasets to observe any shifts in performance. It’s570

worth mentioning that a 100% cutoff points to our571

original dataset, detailed in Section 4.1, which in-572

cludes 220K protein sequences. The 100% cutoff573

dataset also doubles as our default testing retrieval574

database. Our strategy involved closely monitor-575

ing how the F-1 scores varied with different cutoff576

values across various datasets, particularly for pre-577

dicting the “Full EC Number” and the “First Three578

EC Numbers”. What we discovered was quite re-579

vealing: incorporating sequences with a higher de-580

gree of homology—those closely related protein581

sequences—proves to be advantageous, especially582

when tackling the “Full EC Number” prediction583

tasks. This insight highlights the significance of584

carefully selecting sequences to enhance the preci-585

sion of our predictions. 586

For more detailed analysis, please refer to Ap- 587

pendix B. 588

5 Conclusion 589

This paper introduces LLaPA, a multi-modal frame- 590

work developed to predict enzyme functions by as- 591

signing Enzyme Commission (EC) numbers to pro- 592

tein sequences. Our work represents a pioneering 593

effort to synergize natural language priors (where 594

punctuation such as "." in numbers can resemble 595

large numerical values to LLMs due to their prox- 596

imity in the word embedding space) and biological 597

priors (emphasizing the evolutionary conservation 598

of functionally critical regions within protein se- 599

quences and the catalytic reactions of the corre- 600

sponding enzymes) in a unified approach using 601

multi-modal large language models. 602

As a result, LLaPA achieves state-of-the-art per- 603

formance across four public benchmarks, demon- 604

strating its superiority. This underscores the sig- 605

nificance of the EC number format and suggests 606

a promising method for integrating biological in- 607

sights through retrieval mechanisms with LLMs 608

to enhance our understanding of protein enzyme 609

functions. Future directions include a broader ex- 610

ploration of protein function, the integration of 611

our proposed retrieval engine with reasoning capa- 612

bilities to further augment retrieval effectiveness, 613

and proposing a large-scale protein dataset with 614

secondary structure and then comparing it with 615

structure-based protein predictors. 616
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Limitation617

Our method primarily utilizes datasets that are pub-618

licly available, and our validation process does not619

include wet lab experiments. This limitation con-620

fines the scope of our prediction results. To achieve621

a more comprehensive understanding and valida-622

tion of our findings, future work should consider623

incorporating experimental data from wet lab exper-624

iments. Such integration would not only enhance625

the reliability of our predictions but also bridge the626

gap between computational predictions and empiri-627

cal evidence, potentially leading to more accurate628

and applicable outcomes in the field.629

Potential Risks630

The training and evaluation dataset of LLaPA are631

public available. Therefore, the risk of LLaPA re-632

quire further additional investigation.633

Acknowledgment of AI Assistance in634

Writing and Revision635

We used ChatGPT for revision of the manuscript.636
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A Method Details1005

A.1 Model Architecture and Multi-modal1006

Training1007

Network Architecture The network architecture1008

is illustrated in Figure 1 (D). LLaPA features sev-1009

eral key components: an LLM for natural language1010

processing, a protein encoder, and a correspond-1011

ing projector that bridges the protein encoder with1012

the LLM. Additionally, it includes a molecule en-1013

coder and its own projector to link the molecule1014

encoder with the LLM. We use Vicuna-7b (Zheng1015

et al., 2023) as the backbone of LLaPA, which is1016

a chat assistant trained by fine-tuning Llama 2 on1017

high-quality dialog datasets. To make LLaPA under-1018

stand protein sequences (i.e., sequence of amino1019

acid tokens, which are the primary structure of pro-1020

teins), we employ ESM-2 (Lin et al., 2022) as the1021

protein encoder E(·), the general-purpose protein1022

language model. For the molecule, we use Chem-1023

BERTa (Chithrananda et al., 2020) as the molecule1024

encoder C(·), a language model pre-trained on1025

a chemical dataset called PubChem (Kim et al.,1026

2019) that consists of molecules in SMILES for-1027

mat. These two projectors that connect the protein1028

feature, and molecule feature into language embed-1029

ding tokens hl are both a two-layer MLP.1030

Multi-modal Training For each protein x, we1031

create a single-turn conversation dataset (nq,na).1032

These are arranged sequentially, with the answers1033

interpreted as the assistant’s responses and the ques-1034

tion as the instruction, denoted as nq. This ar-1035

rangement follows a unified format for multimodal1036

instruction-following sequences, as illustrated in1037

Figure 5. We set the trainable parameters as θ,1038

ninstruct,<i and na,<i as the instruction and answer1039

tokens in each turn before the current prediction1040

token na. For sequences of length L, we obtain the1041

target answers generating probability na by:1042

p(na|x, x′,m′,ninstruct,<i,na,<i). (2)1043

In this formulation, x, x′, and m′ are anchored1044

across all answers. For the sake of clarity, we omit1045

nsystem−message and all <STOP> tokens, even1046

though they are also taken into consideration in1047

the conditioning.1048

For the model training, we consider a two-stage1049

instruction-tuning procedure. ① Feature Align-1050

ment. We keep the protein encoder, molecule en-1051

coder, and LLM weights are frozen, and maxi-1052

mize the likelihood of Equation A.1 with train-1053

able parameters θ = {Wp,Wm}. In this way,1054

You are a helpful language and protein assistant.
You are able to understand the protein sequence that the user provides, 
and ouput the corresponding enzyme commission numbers, for example: 3.4.11.4, 3.6.1.4

Protein: <protein>\n
Candidate protein: <protein>\n
One of the generated product: <molecule>\n
List all enzyme commission numbers that are associated with the protein, this protein is
similar with the candidate protein.\n

Figure 4: The multimodal instruction used during LLaPA
LoRA fine-tuning.

Figure 5: The input sequence employed to train the model
is designed to teach the model to predict the assistant’s re-
sponses and to determine the appropriate point to conclude.
Consequently, only the green sequence/tokens are utilized in
calculating the loss within the auto-regressive model.

protein and molecule features zp, z
′
p, zm can be 1055

aligned with the pre-trained LLM word embed- 1056

ding. ② Parameter Efficient Fine-tuning. We 1057

adopt LoRA (Hu et al., 2021) for the training. The 1058

LoRA is an efficient training strategy that main- 1059

tains high model quality without introducing any 1060

delay during inference or necessitating a reduction 1061

in the input sequence length. As a result, we keep 1062

the visual encoder and the weights of the Large 1063

Language Model (LLM) frozen, updating the two 1064

projectors {Wp,Wm} and the LoRA parameters 1065

(ϕ) in the LLM; i.e., the trainable parameters are 1066

θ = {Wp,Wm, ϕ}. 1067

A.2 Implementation Details 1068

Techinical Details. Pretraining: We adhered to 1069

the official training guidelines of LLaVA, employ- 1070

ing the Adam optimizer with an initial learning 1071

rate of 5 × 10−5, which gradually decreases fol- 1072

lowing a cosine annealing schedule. Our batch size 1073

was set at 128, and we trained the two projectors 1074

for 5 epochs. LoRA Fine-Tuning: For fine-tuning 1075

with LoRA, we set r = 128 and α = 256. The 1076

learning rates were 5 × 10−5 for the two projec- 1077

tors and 2 × 10−5 for LoRA modules with the 1078

same batch size 128 but 10 epochs. LoRA was 1079

applied across all linear modules of LLMs, includ- 1080

ing [down_proj, up_proj, q_proj, v_proj, k_proj, 1081

o_proj, gate_proj]. The pretraining and fine-tuning 1082

of LLaPA were conducted on 8 NVIDIA A6000 1083

GPUs. Retrieval: During training, if protein re- 1084

trieval fails (i.e., an available protein reference can- 1085

not be retrieved), we default to using the query 1086

protein sequence as the retrieved protein. Simi- 1087

larly, for missing molecule retrievals, we return 1088

zero vectors as the retrieval result. The retrieval 1089
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database during training is the training set itself1090

to maintain fair comparison with baselines. Dur-1091

ing inference, we use the original dataset as the1092

retrieval base (including 220K protein sequences1093

filtered from the Swiss-Prot database). For those1094

proteins with multiple EC numbers, we will ran-1095

domly select one of them for molecule retrieval.1096

Predicting, The format of LLaPA is designed for1097

easy reformulation, allowing users to substitute the1098

placeholder “Z” with a period (“.”) to revert to1099

the original, more user-friendly format for read-1100

ing. Fune-tuning Instruction: We use the instruc-1101

tion for better multimodal optimization during the1102

fine-tuning stage, we leave the system instruction1103

and multimodal instruction in Figure 4.1104

Algorithm 1 LLaPA Training and Inference
Pipeline

1: Input: Query protein x.
2: if Training then
3: Input: Query protein label y.
4: end if
5: Output: Predict EC number y.
6: Require: Instruction Template ninstruct.
7: Require: Protein retrieval database PRD.
8: Require: Molecule retrieval database MRD.
9: # Protein retrieval

10: x′ ← ProteinRetrieval(x,PRD),
11: # Molecule retrieval
12: if Training then
13: ŷ ← ECNumberExtract(x) # got EC num-

ber of x
14: else
15: ŷ← ECNumberExtract(x′) # got EC num-

ber of x′

16: end if
17: m′ ← MoleculeRetrieval(ŷ)
18: if Training then
19: ȳ ← LLaPA(x,x′,m′,ninstruct) and calcu-

late the loss with y to update the model.
20: else
21: ȳ← LLaPA(x,x′,m′,ninstruct)
22: end if

Training and Inference Pipeline. We show the1105

pseudocode of the training and inference pipeline1106

in Algorithm 1. The ProteinRetrieval re-1107

trieves similar protein sequence in protein re-1108

trieval database PRD of give protein x, the1109

ProteinRetrieval retrieves molecule m′ that re-1110

lated with EC number ŷ, and ECNumberExtract1111

outputs the EC number that corresponding to the 1112

input protein x/x′. LLaPA receive the query pro- 1113

tein x, retrieved protein x′ and retrieved molecule 1114

m′ to predict EC number for training or inference. 1115

The computation cost for training is arround 18 1116

TFLOPs and the inference is arround 2 TFLOPs if 1117

the batch size is 1. In practice, we use 8 A6000 for 1118

training (batch size is 128) and a single A6000 for 1119

inference. 1120

The Flow of Data and the training details. We 1121

show the data flow of LLaPA in Figure 6(a) (A). The 1122

(B) and (C) in Figure 6(a) show the model details 1123

during model training. In the first stage, only two 1124

modality-specific projectors participate in training, 1125

and in the stage two, these LoRA modules added 1126

to the LLM are trained simultaneously with these 1127

mode-specific projectors. 1128

The training and the inference details of LLaPA in 1129

Line 17-21 of Algorithm 1 are like this: modality- 1130

specific encoder and projector convert each pro- 1131

tein x/x′ and molecule m′ into sequences of pro- 1132

tein tokens and molecule tokens, respectively. We 1133

then replace the query protein token sequence x 1134

with the special token <protein> in the format “Pro- 1135

tein: <protein>\n” in ninstruct (Figure 4). The re- 1136

trieved protein token sequence, x′ is replaced with 1137

<protein> in “Candidate protein: <protein>\n” in 1138

ninstruct. Similarly, the molecule token sequence 1139

m′ is replaced with <molecule> in “One of the 1140

generated products: <molecule>\n” of ninstruct. 1141

Specifically, all text in ninstruct is encoded as 1142

hl, and x/x′ is encoded by protein encoder E(·), 1143

and then the output is projected by Wp to form 1144

token sequence hp and h′p, The special token <pro- 1145

tein> in hl is then replaced by hp and h′p Ṡimilarly, 1146

molecule m′ is encoded by molecule encoder C(·), 1147

and then the output is projected by Wm to form 1148

token sequence hm. The special token <molecule> 1149

in hl is replaced by hm. Finally, the LLM uses 1150

hp, hm, and hl to make predictions. 1151

A.3 Baselines Details 1152

For the ESM-2 model, we utilized the ESM2-650M 1153

variant and subjected it to three distinct fine-tuning 1154

strategies: ESM2-650M (ft), where all parameters 1155

were made trainable; ESM2-650M (lora), where 1156

LoRA was applied to the query, key, and value 1157

layers, in addition to optimizing an additional clas- 1158

sification head; and ESM2-650M (linear), which 1159

involved optimization of only the classification 1160

head. The classification head’s output dimension in 1161
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... Protein <Prot> ... Candidata protein <Prot> ... product <SMILES> ... 
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Projection

Molecule Encoder
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...
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Language Model

(A) The Flow of Data

Protein
Retrieval

Molecule
Retrieval

Query
Protein

... Protein <Prot> ... Candidata protein <Prot> ... product <SMILES> ... 

Protein Encoder

Projection

Molecule Encoder

Projection

...

EC XX.XX.XX.XX

Language Model

(B) Training Stage One

... Protein <Prot> ... Candidata protein <Prot> ... product <SMILES> ... 

Protein Encoder

Projection

Molecule Encoder

Projection

...

EC XX.XX.XX.XX

Language Model

(C) Training Stage Two

Pretrained
WeightMLP: 

  - down, up, gate
Attention: 
  - q, k, v

(a) The model details of LLaPA include (A) the data flow process,
and (B) and (C) the specifics of the two-stage training procedure.

1.2.1.47 1.2.1.47

(b) The attention weight on proteins and molecules when
predicting the third digit of an EC number (left) and the
last digit of an EC number (right).

Figure 6: The model details of LLaPA and the attention weight dynamic from the third to the last digital number of
EC numbers.

Silhouette Coefficient: 0.122 Silhouette Coefficient: 0.187 Silhouette Coefficient: 0.301

Figure 7: The UMAP visualizations and corresponding silhouette coefficients for the text embeddings of all involved EC
numbers in both the training and testing datasets.

ESM-2 corresponds to the total number of Enzyme1162

Commission (EC) numbers identified within both1163

the training and testing datasets. We fine-tuned1164

the publicly available BioTranslator model using1165

the same dataset as LLaPA, following the recom-1166

mended hyperparameters from its documentation.1167

The goal was to accurately align full EC numbers1168

(“EC XX.XX.XX.XX”) with their respective pro-1169

tein sequences. For performance evaluation, we uti-1170

lized a standard multi-label classification approach1171

with a threshold of 0.5 to calculate metrics. Re-1172

garding the CLEAN model, we utilized the official1173

implementation and followed the suggested dataset-1174

specific hyperparameters to derive our final results.1175

A.4 Dataset Details1176

Four benchmarks we used as in follow: (1)1177

New-392 (or New) (Yu et al., 2023), which includes1178

392 enzyme sequences that span 177 distinct EC1179

numbers. (2) Price-149 (or Price), a collection1180

of protein sequences that were found to be in-1181

accurately or inconsistently labeled in reputable1182

databases like the Kyoto Encyclopedia of Genes1183

and Genomes (KEGG) by automated annotation1184

methods. These sequences were later annotated1185

with labels validated through experiments by Price1186

et al. (2018b). (3) Multi (Yu et al., 2023), a1187

dataset comprising enzymes associated with rare 1188

EC numbers, each represented no more than five 1189

times, with the dataset including over 3, 000 sam- 1190

ples and covering over 1, 000 distinct EC numbers. 1191

4. Halogenase (Yu et al., 2023), a dataset that 1192

encompasses various halogenases, either marked 1193

as uncharacterized and/or hypothetical proteins in 1194

UniProt or bearing conflicting annotations in schol- 1195

arly literature. Through meticulous expert curation 1196

and subsequent experimental validations, all halo- 1197

genase in the dataset were confidently annotated 1198

with EC numbers. 1199

For the hyperparameters of mmseq2, we used 1200

the “mmseqs2 easy-search” command with a sen- 1201

sitivity setting of “-s 5” and a maximum accepted 1202

sequences limit of “–max-seqs 10”. Default hy- 1203

perparameters were used for other settings. Our 1204

retrieval engine contains 227, 363 proteins and 1205

14, 162 molecules. 1206

B Additional Experiments 1207

B.1 Attention Weight Change 1208

In Figure 6(b), we visualize the attention weights 1209

on proteins and molecules when predicting the third 1210

and last digits of the EC number. The results show 1211

that the attention weight increases when the model 1212
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predicts the last digit of the EC number, indicating1213

why the molecule contributes significantly to the1214

full EC number prediction.1215

B.2 Structure-Based Protein Methods1216

We used RSCB and AlphaFold2 to construct pro-1217

tein structures from our training data. Since 1%1218

of the proteins in the training set do not have1219

structures, we excluded these and used the remain-1220

ing 99% to train GearNet (Zhang et al., 2023c)1221

and ESM-GearNet (Zhang et al., 2023b). We ap-1222

plied these models to this structured dataset. How-1223

ever, none of the proteins in the Price dataset have1224

structures available in the RSCB and AlphaFold21225

databases, and folding all these proteins using Al-1226

phaFold2 is too resource-intensive. Therefore, we1227

evaluated GearNet and ESM-GearNet only on the1228

Halogenase, Multi, and New datasets.1229

B.3 EC Number Reformulation Analysis1230

AQ1: Why can the EC Number Reformulation1231

improve performance? A1: Better feature qual-1232

ity In Figure 7, we display UMAP visualizations1233

derived from the EC number features generated by1234

our model. Each EC number label corresponds to1235

the first digit of the EC number, i.e., the reaction1236

class. Then we also calculate the Silhouette Coef-1237

ficient (s-score) to assess the clustering quality of1238

various EC number formats; a higher Silhouette Co-1239

efficient indicates improved clustering quality. The1240

improved clustering quality indicates the feature1241

quality is better. The results show that replacing “.”1242

with the letter “A” can improve the cluster quality1243

and replacing “A” with “Z” can further improve1244

the s-score from 0.187 to 0.301. The improvement1245

indicates the EC number reformulation possesses1246

a smoother and more clustered latent space with1247

respect to the ground-truth reaction labels. The im-1248

proved cluster quality matches better EC number1249

prediction, showing enhanced EC number features1250

boost the model’s performance.1251
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