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Abstract

This work studies the behavior of shallow ReLU networks trained with the logistic
loss via gradient descent on binary classification data where the underlying data
distribution is general, and the (optimal) Bayes risk is not necessarily zero. In this
setting, it is shown that gradient descent with early stopping achieves population
risk arbitrarily close to optimal in terms of not just logistic and misclassification
losses, but also in terms of calibration, meaning the sigmoid mapping of its outputs
approximates the true underlying conditional distribution arbitrarily finely. More-
over, the necessary iteration, sample, and architectural complexities of this analysis
all scale naturally with a certain complexity measure of the true conditional model.
Lastly, while it is not shown that early stopping is necessary, it is shown that any
univariate classifier satisfying a local interpolation property is inconsistent.

1 Overview and main result

Deep networks trained with gradient descent seem to have no trouble adapting to arbitrary prediction
problems, and are steadily displacing stalwart methods across many domains. In this work, we
provide a mathematical basis for this good performance on arbitrary binary classification problems,
considering the simplest possible networks: shallow ReLU networks where only the inner (input-
facing) weights are trained via vanilla gradient descent with a constant step size. The central
contributions are as follows.

1. Fully general classification tasks. The joint distribution generating the (x, y) pairs only requires
x to be bounded, and is otherwise arbitrary. In particular, the underlying distribution may be
noisy, meaning the true conditional model of the labels, Pr[Y = 1|X = x], is arbitrary.
In this setting, we show that as data, width, and training time increase, the logistic loss measured
over the population converges to optimality over all measurable functions, which moreover
implies that the induced conditional model (defined by a sigmoid mapping) converges to the true
model, and the population misclassification rate also converges to optimality. This is in contrast
with prior analyses of gradient descent, which either only consider the training risk [Allen-Zhu
et al., 2018b, Du et al., 2019, Zou et al., 2018, Oymak and Soltanolkotabi, 2019, Song and Yang,
2019], or can only handle restricted conditional models [Allen-Zhu et al., 2018a, Arora et al.,
2019, Cao and Gu, 2019, Nitanda and Suzuki, 2019, Ji and Telgarsky, 2020b, Chen et al., 2021].

2. Adaptivity to data simplicity. The required number of data samples, network nodes, and
gradient descent iterations all shrink if the distribution satisfies a natural notion of simplicity:
the true conditional model Pr[Y = 1|X = x] is approximated well by a low-complexity
infinite-width random feature model.

Rounding out the story and contributions, firstly we present a brief toy univariate model hinting
towards the necessity of early stopping: concretely, any univariate predictor satisfying a local
interpolation property can not achieve optimal test error for noisy distributions. Secondly, our
analysis is backed by a number of lemmas that could be useful elsewhere; amongst these are a
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multiplicative error property of the logistic loss, and separately a technique to control the effects of
large network width over not just a finite sample, but over the entire sphere.

1.1 Main result: optimal test error via gradient descent

The goal in this work is to minimize the logistic risk over the population: letting µ denote an arbitrary
Borel measure over (x, y) pairs with compactly-supported marginal µx and conditional py, with
a data sample ((xi, yi))

n
i=1, and a function f , define the logistic loss, empirical logistic risk, and

logistic risk respectively as

ℓ(r) := ln(1 + e−r), R̂(f) :=
1

n

n∑
k=1

ℓ(ykf(xk)), R(f) := Ex,yℓ(yf(x)).

We use the logistic loss not only due to its practical prevalence, but also due to an interesting
multiplicative error property which strengthens our main results (cf. Lemma B.1 and Theorem 1.1),
all while being Lipschitz.

We seek to make the risk R(f) as small as possible: formally, we compare against the Bayes risk

R := inf
{
R(f) : measurable f :Rd → R

}
.

While competing with R may seem a strenuous goal, in fact it simplifies many aspects of the learning
task. Firstly, due to the universal approximation properties of neural networks [Funahashi, 1989,
Hornik et al., 1989, Cybenko, 1989, Barron, 1993], we are effectively working over the space of all
measurable functions already. Secondly, as will be highlighted in the main result below, via the theory
of classification calibration [Zhang, 2004, Bartlett et al., 2006], competing with the Bayes (convex)
risk also recovers the true conditional model, and minimizes the misclassification loss; this stands
in contrast with the ostensibly more modest goal of minimizing misclassification over a restricted
class of predictors, namely the agnostic learning setting, which suffers a variety of computational
and statistical obstructions [Goel et al., 2020a,b, Yehudai and Shamir, 2020, Frei et al., 2020].

Our predictors are shallow ReLU networks, trained via gradient descent — the simplest architecture
which is not convex in its parameters, but satisfies universal approximation. In detail, letting (aj)

m
j=1

be uniformly random ±1 signs, (wj)
m
j=1 with wj ∈ Rd be standard Gaussians, and ρ > 0 be a

temperature, we predict on an input x ∈ Rd with

f(x; ρ, a,W ) := f(x;W ) :=
ρ√
m

m∑
j=1

ajσr(w
T

jx),

where σr(z) := max{0, z} is the ReLU; since only W is trained, both ρ and a are often dropped. To
train, we perform gradient descent with a constant step size on the empirical risk:

Wi+1 := Wi − η∇R̂(Wi), where R̂(W ) := R̂
(
x 7→ f(x;W )

)
.

Our guarantees are for an iterate with small empirical risk and small norm: W≤t := argmin{R̂(Wi) :
i ≤ t, ∥Wi −W0∥ ≤ Rgd}, where Rgd is our early stopping radius: if Rgd is guessed correctly, our
rates improve, but our analysis also handles the case Rgd = ∞ where no guess is made, and indeed
this is used in our final consistency analysis (a pessimistic, fully general setting).

Our goal is to show that this iterate W≤t has approximately optimal population risk: R(W≤t) ≈ R.
Certain prediction problems may seem simpler than others, and we want our analysis to reflect this
while abstracting away as many coincidences of the training process as possible. Concretely, we
measure simplicity via the performance and complexity of an infinite-width random feature model
over the true distribution, primarily based on the following considerations.

• By measuring performance over the population, random effects of the training sample are
removed, and it is impossible for the random feature model to simply revert to memorizing data,
as it never sees that training data.

• The random feature model has infinite width, and via sampling can be used as a benchmark for
all possible widths simultaneously, but is itself freed from coincidences of random weights.
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In detail, our infinite-width random feature model is as follows. Let U∞ : Rd → Rd be an
(uncountable) collection of weights (indexed by Rd), and define a prediction mapping via

f(x;U∞) :=

∫ 〈
U∞(v), x1[vTx ≥ 0]

〉
dN (v), whereby R(U∞) := R(x 7→ f(x;U∞)).

Note that for each Gaussian random vector v ∼ N , we construct a random feature x 7→ x1[vTx ≥ 0].
This particular choice is simply the gradient of a corresponding ReLU ∇vσr(v

Tx), and is motivated
by the NTK literature [Jacot et al., 2018, Li and Liang, 2018, Du et al., 2019]. A similar object has
appeared before in NTK convergence analyses [Nitanda and Suzuki, 2019, Ji and Telgarsky, 2020b],
but the conditions on U∞ were always strong (e.g., data separation with a margin).

What, then, does it mean for the data to be simple? In this work, it is when there exists a U∞ with
R(U∞) ≈ R, and moreover U∞ has low norm; for technical convenience, we measure the norm as
the maximum over individual weight norms, meaning supv ∥U∞(v)∥. To measure approximability,
for sake of interpretation, we use the binary Kullback-Leibler divergence (KL): defining a conditional
probability model ϕ∞ corresponding to U∞ via

ϕ∞(x) := ϕ(f(x;U∞)), where ϕ(r) :=
1

1 + exp(−r)
,

then the binary KL can be written as

Kbin(py, ϕ∞) :=

∫ (
py ln

py
ϕ∞

+ (1− py) ln
1− py
1− ϕ∞

)
dµx = R(U∞)−R.

This relationship between binary KL and the excess risk is a convenient property of the logistic loss,
which immediately implies calibration as a consequence of achieving the optimal risk.

The pieces are all in place to state our main result.

Theorem 1.1. Let width m ≥ ln(emd), temperature ρ > 0, and reference model U∞ be given with
R := max{4, ρ, supv ∥U∞(v)∥} < ∞, and define a corresponding conditional model ϕ∞(x) :=
ϕ(f(x;U∞)). Let optimization accuracy ϵgd and radius Rgd ≥ R/ρ be given, define effective radius

B := min
{
Rgd,

3R
ρ + 4e

ρ

√
t
√
eτ0R(U∞) +Rτn

}
, and generalization, linearization, and sampling

errors (τn, τ1, τ0) as

τn := Õ

(
(d ln(1/δ))3/2√

n

)
, τ1 := Õ

(
ρB4/3

√
d ln(1/δ)

m1/6

)
, τ0 := Õ

(
ρ ln(1/δ) +

√
d ln(1/δ)

m1/4

)
,

where it is assumed τ1 ≤ 2, and Õ hides constants and ln(nmd). Choose step size η := 4/ρ2, and
run gradient descent for t := 1/(8ϵgd) iterations, selecting iterate W≤t := argmin{R̂(Wi) : i ≤
t, ∥Wi −W0∥ ≤ Rgd}. Then, with probability at least 1− 25δ,

R(W≤t)−R (logistic error)

≤ Kbin(py, ϕ∞) +
(
eτ1+τ0 − 1

)
R(U∞) (reference model error)

+ eτ1R2ϵgd (optimization error)
+ eτ1(ρB +R)τn (generalization error),

where the classification and calibration errors satisfy

R(W≤t)−R (logistic error)

≥ 2

∫ (
ϕ(f(x;W≤t))− py

)2
dµx(x) (calibration error)

≥ 1

2

(
Rz(W≤t)−Rz

)2
(classification error).

Lastly, for any ϵ > 0, there exists U
(ϵ)

∞ with supv ∥U
(ϵ)

∞ (v)∥ < ∞ and whose conditional model

ϕ
(ϵ)
∞ (x) := ϕ(f((x, 1)/

√
2;U

(ϵ)

∞ )) satisfies Kbin(py, ϕ
(ϵ)
∞ ) ≤ ϵ.
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Remark 1.1. The key properties of Theorem 1.1 are as follows.

1. (Achieving error O(ϵ) in three different regimes.) As Theorem 1.1 is quite complicated,
consider three different situations, which vary the reference model U∞ and its norm upper
bound R := max{4, ρ, supv ∥U∞(v)∥} < ∞, as well as the early stopping radius Rgd. Let
target population (excess) risk ϵ > 0 be given, set ϵgd = ϵ and t = 1/(8ϵgd) as in Theorem 1.1,
and suppose n ≥ 1/ϵ2 samples: in each of the three following settings, the other parameters
parameters (namely ρ and m) will be chosen to ensure a final error R(W≤t)−R = O(ϵ).

(a) (Easy data.) Suppose a setting with easy data: specifically, suppose that for chosen target
accuracy ϵ > 0, there exists U∞ with Kbin(py, ϕ∞) = R(U∞) − R ≤ R(U∞) ≤ ϵ. If
we set ρ = 1 and m ≥ R8, then (τn, τ1, τ0) are all constant, and we get a final bound
R(W≤t)−R = O(ϵ).
Note crucially that m ≈ R8 sufficed for this setting; this was a goal of the present analysis,
as it recovers the polylogarithmic width analyses from prior work [Ji and Telgarsky, 2020b,
Chen et al., 2021]. Those works however either used a separation condition due to Nitanda
and Suzuki [2019] in the shallow case, or an assumption on the approximation properties
of the sampled weights (a random variable) in the deep case, and thus the present analysis
provides not just a re-proof, but a simplification and generalization. This was the motivation
for the strange multiplicative form of the errors in Theorem 1.1: had we used the more
common additive errors with standard linearization tools, a polylogarithmic width proof
would fail.

(b) (General data, clairvoyant early stopping radius Rgd.) Suppose that we are in the
general noisy case, meaning any U∞ we pick has a large error Kbin(py, ϕ∞), but we
magically know the R corresponding to a good U∞, and can choose Rgd = R/ρ. Unlike
the previous case, to achieve some target error ϵ, we need to work harder to control the
term

[
exp(τ1 + τ0)− 1

]
R(U∞), since we no longer have small R(U∞); to this end, since

τ1 = Õ(R4/3/(mρ2)1/6) and τ0 = Õ(ρ+ 1/m1/4), choosing ρ = m−1/8 and m = 1/ϵ8

gives τ1 = Õ(ϵ) and τ0 = Õ(ϵ), and together R(W≤t)−R = O(ϵ).
(c) (General data, worst-case early stopping.) Suppose again the case of general noisy data

with large error Kbin(py, ϕ∞) for any U∞ we pick, but now suppose we have no early
stopping hint, and pessimistically set Rgd = ∞. As a consequence of all of this, the term
B can scale as t2/3/ρ = 1/(ρϵ2/3), thus to control τ1 = Õ((1/ϵ)2/3/(mρ2)1/6) and τ0 =

Õ(ρ+ 1/m1/4), we can again choose ρ = m−1/8, but need a larger width m = 1/ϵ40/3.
Together, we once again achieve population excess risk R(W≤t)−R = O(ϵ).

Summarizing, a first key point is that arbitrarily small excess risk O(ϵ) is always possible; as
discussed, this is in contrast to prior work, which either only gave training error guarantees, or
required restrictive conditions for small test error. A second key point is that the parameters of
the bound, most notably the required width, will shrink greatly when either the data is easy, or
an optimal stopping radius Rgd is known.

2. (Consistency.) Consistency is a classical statistical goal of achieving the optimal test error
almost surely over all possible predictors as n → ∞; here it is proved as a consequence of
Theorem 1.1, namely the preceding argument that we can achieve excess risk O(ϵ) even with
general prediction problems and no early stopping hints (Rgd = ∞). The consistency guarantee
is stated formally in Corollary 2.3. The statement takes the width to infinity, and demonstrates
another advantage of using an infinite-width reference model: within the proof, after fixing a
target accuracy, the reference model is fixed and used for all widths simultaneously.

3. (Non-vacuous generalization, and an estimate of R.) There is extensive concern throughout
the community that generalization estimates are hopelessly loose [Neyshabur et al., 2014, Zhang
et al., 2016, Dziugaite and Roy, 2017]; to reduce the concern here, we raise two points. Firstly,
these concerns usually involve explicit calculations of generalization bounds which have terms
scaling with some combination of ∥W∥ (not ∥W −W0∥) and m; e.g,. one standard bound has
spectral norms ∥W∥2 and (2, 1) matrix norms ∥(W −W0)

T∥2,1, which are upper bounded by
∥W −W0∥

√
m [Bartlett et al., 2017]. By contrast, the present work uses a new generalization
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bound technique (cf. Lemma B.8) which first de-linearizes the network, then applies a linear
generalization bound which has only ∥W−W0∥ and no explicit poly(m), and then re-linearizes.

Secondly, there may still be concern that the story here is broken due to the term R, and namely
the non-existence of good choices for U∞. For this, we conducted a simple experiment. Noting
that we can freeze the initial features and train linear predictors of the form f (0)(x;V ) for
weights V ∈ Rm×d (cf. section 1.4), and that the performance converges to the infinite-width
performance as m → ∞, we fixed a large width and trained two prediction tasks: an easy task of
MNIST 1 vs 5 until Reasy/

√
n ≈ 1/2, and a hard task of MNIST 3 vs 5 until Rhard/

√
n ≈ 1/2.

After training, we obtained test error R(Veasy) ≈ 0.01 and R(Vhard) ≈ 0.08. Plugging all of
these terms back in to the bound, firstly these techniques can yield a non-vacuous generalization
bound, secondly they do not exhibit bad scaling with large width, and thirdly they do reflect the
difficulty of the problem, as desired.

4. (Early stopping and the NTK.) As discussed above, when the data is noisy, the method is
explicitly early stopped, either by clairvoyantly choosing Rgd, or by making t small. In this
setting, the optimization accuracy ϵgd is an excess empirical risk, meaning in particular that 0
training error (the interpolation regime [Belkin et al., 2018a]) will not be reached. This is in
stark contrast to standard NTK analyses [Allen-Zhu et al., 2018b], which guarantee zero training
error, but can not ensure good test error in general. Since the NTK itself is an early stopping (as
in, if one continues to optimizes, one exits the NTK), then the early stopping in this work is even
earlier than the NTK early stopping; this situation is summarized in Figure 1 in the appendix,
and will be revisited for the lower bound in Section 1.2.

5. (Classification and calibration.) The relationship to classification and calibration errors is
merely a restatement of existing results [Zhang, 2004, Bartlett et al., 2006], though it is reproved
here in an elementary way for the special case of the logistic loss. Similarly, the guarantee that
Kbin(py, ϕ

(ϵ)
∞ ) can be made arbitrarily small is also not a primary contribution, and indeed most

of the heavy lifting is provided both by prior work in neural network approximation [Barron,
1993], and by the existing and reliable machinery for proving consistency [Schapire and Freund,
2012]. As such, the consistency result is stated only much later in Corollary 2.3, and our focus
is on the exact risk guarantees in Theorem 1.1.

6. (Inputs with bias: (x, 1)/
√
2 ∈ Rd+1.) The end of Theorem 1.1 appends a constant to the

input (and rescales), which simulates a bias term inside each ReLU; this is necessary since our
models are (sigmoid mappings of) homogeneous functions, whereas py is general. Biases are
also simulated in this way in the consistency result in Corollary 2.3.

Further discussion of Theorem 1.1, including the formal consistency result (cf. Corollary 2.3) and a
proof sketch, all appear in Section 2. Full proofs appear in the appendices.

1.2 Should we early stop?

Theorem 1.1 uses early stopping: it can blow up if R > 0 and the two gradient descent parameters
Rgd and 1/ϵgd are taken to ∞ in an uncoordinated fashion. Part of this is purely technical: as with
many neural network optimization proofs, the analysis breaks when far from initialization. It is
of course natural to wonder what happens if one trains indefinitely, entering the actively-studied
interpolation regime [Belkin et al., 2018b,a, Bartlett et al., 2019]. Furthermore, there is evidence that
gradient descent on shallow networks limits towards a particular interpolating choice, one with large
margins [Soudry et al., 2018, Lyu and Li, 2020, Chizat and Bach, 2020, Ji and Telgarsky, 2020a]. Is
this behavior favorable?

While we do not rule out that the interpolating solutions found by neural networks perform well, we
show that at least in the low-dimensional (univariate!) setting, if a prediction rule perfectly labels the
data and is not too wild between training points, then it is guaranteed to achieve poor test loss on
noisy problems. This negative observation is not completely at odds with the interpolation literature,
where the performance of some rules improves with dimension [Belkin et al., 2018b].

Proposition 1.2. Given a finite sample ((xi, yi))
n
i=1 with xi ∈ R and yi ∈ {±1}, let Fn denote the

collection of local interpolation rules (cf. Figure 2 in the appendix): letting x(i) index examples in
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sorted order, meaning x(1) ≤ x(2) ≤ · · · ≤ x(n), define Fn as

Fn :=
{
f : R → R : ∀i f(x(i)) = y(i), and

if y(i) = y(i+1), then inf
α∈[0,1]

f
(
αx(i) + (1− α)x(i+1)

)
y(i) > 0

}
.

Then there exists a constant c > 0 so that with probability at least 1−δ over the draw of ((xi, yi))
n
i=1

with n ≥ ln(1/δ)/c, every f ∈ Fn satisfies Rz(f) ≥ R̄z(f) + c.

Although a minor contribution, this result will be discussed briefly in Section 3, with detailed proofs
appearing in the appendices. For a similar discussion for nearest neighbor classifiers albeit under a
few additional assumptions, see [Nakkiran and Bansal, 2021].

1.3 Related work

Analyses of gradient descent. The proof here shares the most elements with recent works whose
width could be polylogarithmic in the sample size and desired target accuracy 1/ϵ [Ji and Telgarsky,
2020b, Chen et al., 2021]. Similarities include using a regret inequality as the core of the proof, using
an infinite-width target network [Nitanda and Suzuki, 2019, Ji and Telgarsky, 2020b], and using a
linearization inequality [Chen et al., 2021, Allen-Zhu et al., 2018b]. On the technical side, the present
work differs in the detailed treatment of the logistic loss, and in the linearization inequality which
is extended to hold over the population risk; otherwise, the core gradient descent analysis here is
arguably simplified relative to these prior works. It should be noted that the use of a regret inequality
here and in the previous works crucially makes use of a negated term which was dropped in some
classical treatments; this trick is now re-appearing in many places [Orabona and Pál, 2021, Frei et al.,
2020].

There are many other, somewhat less similar works in the vast literature of gradient descent on neural
networks, in particular in the neural tangent regime [Jacot et al., 2018, Li and Liang, 2018, Du et al.,
2019]. These works often handle not only training error, but also testing error [Allen-Zhu et al., 2018a,
Arora et al., 2019, Cao and Gu, 2019, Nitanda and Suzuki, 2019, Ji and Telgarsky, 2020b, Chen et al.,
2021]. As was mentioned before, these works do not appear to handle arbitrary target models; see
for instance the modeling discussion in [Arora et al., 2019, Section 6]. As another interesting recent
example, some works explicitly handle certain noisy conditional models, but with error terms that do
not go to zero in general [Liang et al., 2021].

Consistency. Consistency of deep networks with classification loss and some training procedure is
classical; e.g., in [Farago and Lugosi, 1993], the authors show that it suffices to run a computationally
intractable algorithm on an architecture chosen to balance VC dimension and universal approximation.
Similarly, the work here makes use of Barron’s superposition analysis in an infinite-width form to meet
the Bayes risk [Barron, 1993, Ji et al., 2020b]. The statistics literature has many other works giving
beautiful analyses of neural networks, e.g., even with minimax rates [Schmidt-Hieber, 2017], though
it appears this literature generally does not consider gradient descent and arbitrary classification
objectives.

In the boosting literature, most consistency proofs only consider classification loss [Bartlett and
Traskin, 2007, Schapire and Freund, 2012], though there is a notable exception which controls the
convex loss (and thus calibration), although the algorithm has a number of modifications [Zhang and
Yu, 2005]. In all these works, arbitrary py are not handled explicitly as here, but rather implicitly via
assumptions on the expressiveness of the weak learners. One exception is the logistic loss boosting
proof of Telgarsky [2013], which explicitly handles measurable py via Lusin’s theorem as is done
here, but ultimately the proof only controls classification loss.

Following the arXiv posting of this work, a few closely related works appeared. Firstly, Richards and
Kuzborskij [2021] show that the expected excess risk can scale with ∥Wt −W0∥F/n

α, though in
contrast with the present work, it is not shown that this ratio can go to zero for arbitrary prediction
problems, and moreover the bound is in expectation only. Secondly, the work of Braun et al. [2021]
is even closer, however it requires a condition on the Fourier spectrum of the conditional model py,
which is circumvented here via a more careful Fourier analysis due to Ji et al. [2020b].

Calibration. There is an increasing body of work considering the (in)ability of networks trained
with the logistic loss to recover the underlying conditional model. Both on the empirical side [Guo
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et al., 2017] and on the theoretical side [Bai et al., 2021], the evidence is on the side of the logistic
loss doing poorly, specifically being overconfident, meaning the sigmoid outputs are too close to 0 or
1. This overconfident regime corresponds to large margins; indeed, since gradient descent can be
proved in some settings to exhibit unboundedly large unnormalized margins on all training points
[Lyu and Li, 2020], the sigmoid mapping of the predictions will necessarily limit to exactly 0 or
1. On the other hand, as mentioned in [Bai et al., 2021], regularization suffices to circumvent this
issue. In the present work, a combination of early stopping and small temperature are employed.
As mentioned before, calibration is proved here as an immediate corollary of meeting the optimal
logistic risk via classification calibration [Zhang, 2004, Bartlett et al., 2006].

1.4 Further notation and technical background

The loss ℓ, risks R and R̂, and network f have been defined. The misclassification risk Rz(f) =
Pr[sgn(f(X)) ̸= Y ] appeared in Theorem 1.1, where sgn(f(x)) = 2 · 1[f(x) ≥ 0]− 1.

Next, consider the “gradient” of f with respect to weights W :

∇f(x;W ) :=
ρ√
m

m∑
j=1

aj1[w
T

jx ≥ 0]ejx
T;

it may seem the nondifferentiability at 0 is concerning, but in analyses close to initialization (as is the
one here), few activations change, and their behavior is treated in a worst-case fashion. Note that, as
is easily checked with this expression, ∥∇f(W )∥ ≤ ρ, which is convenient in many places in the
proofs. Here ∥ · ∥ denotes the Frobenius norm; ∥ · ∥2 will denote the spectral norm.

Given weight matrix Wi at time i, let (wT
i,j)

m
j=1 refer to its rows. Define features f (i) at time i and a

corresponding empirical risk R̂(i) using the features at time i as

f (i)(x;V ) :=
〈
∇f(x;Wi), V

〉
=

ρ√
m

∑
j

ajv
T

jx1[w
T

i,jx ≥ 0],

R̂(i)(x;V ) := R̂(x 7→ f (i)(x;V )).

By 1-homogeneity of the ReLU, f (i)(x;Wi) = f(x;Wi), which will also be used often. These
features at time i, meaning f (i) and R̂(i), are very useful in analyses near initialization, as they do
not change much. As such, f (0) and R(0) and R̂(0) will all appear often as well.

To be a bit pedantic about the measure µ: as before, there is a joint distribution µ, which is over the
Borel σ-algebra on Rd × {±1}, where ∥x∥ ≤ 1 almost surely. This condition suffices to grant both
a disintegration of µ into marginal µx and conditional py [Kallenberg, 2002, Chapter 6], and also
Lusin’s theorem [Folland, 1999, Theorem 7.10], which is used to switch from a measurable function
to a continuous one in the consistency proof (cf. Corollary 2.3).

2 Discussion and proof sketch of Theorem 1.1

This section breaks down the proof and discussion into four subsections: a section with common
technical tools, then sections for the analysis of generalization, optimization, and approximation.

2.1 Key technical lemmas

There are two main new technical ideas which power many parts of the proofs: a multiplicative error
property of the logistic loss, and a linearization over the sphere.

The logistic loss property is simple enough: for any a ≥ b, it holds that ℓ(−a)/ℓ(−b) ≤ exp(a− b).
On the surface, this seems innocuous, but this simple inequality allows us to reprove existing
polylogarithmic width results for easy data [Ji and Telgarsky, 2020b, Chen et al., 2021], however
making use of a proof scheme which is slightly more standard, or at the very least more apparently
a smooth convex proof with just this one special property of the logistic loss (as opposed to a few
special properties).
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The second tool is more technical, and is used crucially in many places in the proof. Many prior
analyses near initialization bound the quantity

f(x;V )− f(x;W )−
〈
∇f(x;W ), V −W

〉
,

where V and W are both close to initialization [Allen-Zhu et al., 2018b, Cao and Gu, 2019, Chen
et al., 2021]. These proofs are typically performed on a fixed example xk, and then a union bound
carries them over to the whole training set. Here, instead, such a bound is extended to hold over the
entire sphere, as follows.
Lemma 2.1 (Simplification of Lemma B.7). Let scalars δ > 0 and RV ≥ 1 and RB ≥ 0 be given.

1. With probability at least 1− 3nδ,

sup
∥Wi−W0∥≤RV

∥Wj−W0∥≤RV

∥B−W0∥≤RB

R̂(i)(B)

R̂(j)(B)
≤ exp

(
6ρ (RB + 2RV )R

1/3
V ln(e/δ)1/4

m1/6

)
.

2. Suppose m ≥ ln(edm). With probability at least 1− (1 + 3(d2m)d)δ,

sup
∥Wi−W0∥≤RV

R(Wi)

R(0)(Wi)
≤ exp

(
25ρR

4/3
V

√
ln(edm/δ)

m1/6

)
.

The preceding lemma combines both the linearization technique and the multiplicative error property:
it bounds how much the empirical and true risk change for a fix weight matrix if we swap in and
out the features at different iterations. That these bounds are a ratio is due to the multiplicative error
property. That the second part holds over the true risk, in particular controlling behavior over all
∥x∥ ≤ 1, is a consequence of the new more powerful linearization technique. This linearization
over the sphere is used crucially in three separate places: we use it when controlling the range in
the generalization proofs, when de-linearizing after generalization, and when sampling from the
infinite-width model U∞. The method of proof is inspired by the concept of co-VC dimension
[Gurvits and Koiran, 1995]: the desired inequality is first union bounded over a cover of the sphere,
and then relaxed to all points on the sphere. A key difficulty here is the non-smoothness of the ReLU,
and a key lemma establishes a smoothness-like inequality (cf. Lemma B.5). These techniques appear
in full in the appendices.

2.2 Generalization analysis

The generalization analysis ends up being easy thanks to the multiplicative error control in Lemma B.1,
and the aforementioned linearization over all points in the sphere. Specifically, to prove general-
ization, the network is first linearized, then generalization of linear predictors is applied, and then
de-linearization is applied on the population risk side. This generalization bound only pays logarith-
mically in the width m.

Typically the easiest step in proving generalization is to provide a worst-case estimate on the range of
the predictor. Here, since there is a goal of controlling the logistic loss over the population, brute
forcing this range estimate incurs a polynomial dependence on network width. The solution here
is again to apply the aforementioned Lemma B.3; the generalization statement appears in full as
Lemma B.8 together with its proof in the appendices.

2.3 Gradient descent analysis

A common tool in linear prediction is the regret inequality

∥vt − z∥2 + 2η
∑
i<t

R̂(vi+1) ≤ ∥v0 − z∥2 + 2tηR̂(z),

which can be derived by expanding the square in ∥vt − z∥2 and applying smoothness and convexity.
The term ∥vt − z∥2 is often dropped, but can be used in a very convenient way: by the triangle
inequality, if ∥vt − v0∥ ≥ 2∥z − v0∥, then the norm terms above may be canceled from both sides,
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which leaves only the empirical risk terms; overall, this argument ensures both small norm and small
empirical risk. This idea has appeared in a variety of works [Shamir, 2020, Ji et al., 2020a], and is
used here to provide a convenient norm control, allowing linearization and all other proof parts to go
through. Combining this idea with the earlier generalization analysis and a few other minor tricks
gives the following bounds, which in turn provide most of Theorem 1.1.

Lemma 2.2. Let temperature ρ > 0, step size η ≤ 4/ρ2, optimization accuracy ϵgd > 0, ra-
dius Rgd > 0, network width m ≥ ln(emd), reference matrix Z ∈ Rm×d, corresponding scalar
RZ ≤ Rgd where RZ ≥ max{1, ηρ, ∥W0 − Z∥}, and t ≥ 1/(2ηρ2ϵgd) be given; correspond-
ingly define W≤t := argmin{R̂(Wi) : i ≤ t, ∥Wi − W0∥ ≤ Rgd}. Define effective radius

B := min
{
Rgd, 3RZ + 2e

√
ηtR̂(0)(Z)

}
, and linearization and generalization errors

τ :=
25ρB4/3

√
d ln(em2d3/δ)

m1/6
, τn :=

80
(
d ln(em2d3/δ)

)3/2
√
n

,

and suppose τ ≤ 2. Then, with probability at least 1 − 3nδ, the selected iterate W≤t satisfies
∥W≤t −W0∥ ≤ B, along with the empirical risk guarantee

R̂(W≤t) ≤ e2τ R̂(0)(Z) + eτ (ρRZ)
2ϵgd,

and by discarding an additional 16δ failure probability, then R̂(0)(Z) ≤ R(0)(Z) + ρRZτn, and

R(W≤t) ≤ e4τR(0)(Z) + e3τ (ρRZ)
2ϵgd + e4τ (B +RZ)ρτn.

This version of the statement, unlike Theorem 1.1, features an arbitrary reference matrix Z. This is
powerful, though it can be awkward, since W0 is a random variable.

2.4 Approximation analysis, consistency, and the proof of Theorem 1.1

Rather than trying to reason about good predictors which may happen to be close to random initializa-
tion, the approach here is instead to start from deterministic predictors over the population (e.g., U∞),
and to use their structure to construct approximants near the initial iterate, the random matrix W0.
Specifically, the approach here is fairly brute force: given initial weights W0 with rows (wT

0,j)
m
j=1,

the rows (uj)
m
j=1 of the finite width reference matrix U ∈ Rm×d intended to mimic U∞ (which is

after all a mapping U∞ : Rd → Rd) are simply

uj :=
ajU∞(w0,j)

ρ
√
m

+ w0,j . (1)

By construction, ∥U −W0∥ ≤ R/ρ, where R := supv ∥U∞(v)∥. To argue that R(0)(U) and R(U∞)
are close, the abstract control over the sphere in Lemma B.3 is again used. Plugging this U into
Lemma 2.2 and introducing Kbin(py, ϕ∞) via Lemma B.1 gives the first part of Theorem 1.1, and the
second part of Theorem 1.1 is also from Lemma B.1.

It remains to prove that for any py , there exists U∞ with ϕ(x 7→ f((x, 1)/
√
2;U∞)) ≈ py (we must

include a bias term, as mentioned in Remark 1.1). If py were continuous, there is a variant of Barron’s
seminal universal approximation construction which explicitly gives an infinite-width network of the
desired form [Barron, 1993, Ji et al., 2020b]. To address continuity is even easier: Lusin’s theorem
[Folland, 1999, Theorem 7.10] lets us take the measurable function py, and obtain a continuous
function that agrees with it on all but a negligible fraction of the domain. This completes the proof.

As mentioned, a key property of the reference model U∞ is that it depends on neither the random
sampling of data, nor the random sampling of weights. This vastly simplifies the proof of consistency,
where the proof scheme first fixes an ϵ > 0 and chooses a U∞, and leaves it fixed as m and n vary.

Corollary 2.3. Let early stopping parameter ξ ∈ (0, 1) be given, and for each sample size n, define
a weight matrix Ŵn ∈ Rm(n)×(d+1) and corresponding conditional probability model ϕ̂n(x) :=

ϕ(f((x, 1)/
√
2; Ŵn)) as follows. For each sample size n, let (W (n)

i )i≥0 denote the corresponding
sequence of gradient descent iterates obtained with parameter choices ρ(n) := (m(n))−1/8, and
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m(n) := n
40
3 (1−ξ), and η(n) := 4/(ρ(n))2, and ϵ

(n)
gd := nξ−1, and t(n) := n1−ξ/8, and choose the

empirical risk minimizer over the sequence, meaning Ŵn := argmin
{
R̂(W

(n)
i ) : i ≤ t(n)

}
(in the

notation of Theorem 1.1, this is W≤t with Rgd = ∞). Then

R(Ŵn) −−−−−→ R a.s., Rz(Ŵn) −−−−−→ Rz a.s., ϕ̂n
L2(µx)−−−−−→ py a.s.,

where the last convergence is in the L2(µx) metric.

The use of a parameter ξ ∈ (0, 1) is standard in similar consistency results; see for instance the
analogous parameter in the consistency analysis of AdaBoost [Bartlett and Traskin, 2007]. Proofs, as
usual, are in the appendices.

3 Discussion and proof sketch of Proposition 1.2

Proposition 1.2 asserts that univariate local interpolation rules — predictors which perfectly fit
the data, and are not too wild between data points of the same label — will necessarily achieve
suboptimal population risk. The proof idea seems simple enough: if the true conditional probability
py is not one of {0, 1/2, 1} everywhere, and is also continuous, then there must exist a region where
it is well separated from these three choices. It seems natural that a constant fraction of the data in
these regions will form adjacent pairs with the wrong label; a local interpolation rule will fail on
exactly these adjacent noisy pairs, which suffices to give the bound. In reality, while this is indeed the
proof scheme followed here, the full proof must contend with many technicalities and independence
issues. It appears in the appendices.

While the motivation in Section 1.2 focused on neural networks which interpolate, and also maximum
margin solutions, the behavior on this noisy univariate data is also well-illustrated by k-nearest-
neighbors classifiers (k-nn). Specifically, 1-nn is a local interpolant, and Proposition 1.2 applies. On
the other hand, choosing k = Θ(ln(n)) is known to provide enough smoothing to achieve consistency
and avoid interpolation [Devroye et al., 1996].

It should be stressed again that even if the remaining pieces could be proved to apply this result to
neural networks, namely necessitating early stopping, it would still be a univariate result only, leaving
open many interesting possibilities in higher dimensions.

4 Concluding remarks and open problems

Empirical performance. Does the story here match experiments? E.g., is it often the case that if
a neural network performs well, then so does a random feature model? Do neural networks fail on
noisy data if care is not taken with temperature and early stopping? Most specifically, is this part of
what happens in existing results reporting such failures [Guo et al., 2017]?

Temperature parameter ρ. Another interesting point of study is the temperature parameter ρ. It
arises here in a fairly technical way: if py is often close to 1/2, then the random initialization of W0

gets in the way of learning py . The temperature ρ is in fact a brute-force method of suppressing this
weight initialization noise. On the other hand, temperature parameters are common across many
works which rely heavily on the detailed real-valued outputs of sigmoid and softmax mappings; e.g.,
in the distillation literature [Hinton et al., 2015]. The temperature also plays the same role as the
scale parameter in the lazy training regime [Chizat and Bach, 2019]. Is ρ generally useful, and does
the analysis here relate to its practical utility?

Random features, and going beyond the NTK. The analysis here early stops before the feature
learning begins to occur. How do things fare outside the NTK? Is there an analog of Theorem 1.1,
still stopping shy of the interpolation pitfalls of Proposition 1.2, but managing to beat random features
with some generality?

The logistic loss. One reason the logistic is used here is its simple interplay with calibration (e.g.,
see the elementary proof of Lemma B.1, as compared with the full machinery of classification
calibration [Zhang, 2004, Bartlett et al., 2006]). The other key reason was the multiplicative error
property Lemma B.1. Certainly, the logistic loss is widely used in practice; are the preceding technical
points at all related to the widespread empirical use of the logistic loss?
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