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Abstract

Time series (TS) modeling is essential in dynamic systems like weather prediction and anomaly
detection. Recent studies utilize Large Language Models (LLMs) for TS modeling, leveraging
their powerful pattern recognition capabilities. These methods primarily position LLMs as
the predictive backbone, often omitting the mathematical modeling within traditional TS
models, such as periodicity. However, disregarding the potential of LLMs also overlooks
their pattern recognition capabilities. To address this gap, we introduce LLM-TS Integrator,
a novel framework that effectively integrates the capabilities of LLMs into traditional TS
modeling. Central to this integration is our mutual information module. The core of
this mutual information module is a traditional TS model enhanced with LLM-derived
insights for improved predictive abilities. This enhancement is achieved by maximizing
the mutual information between traditional model’s TS representations and LLM’s textual
representation counterparts, bridging the two modalities. Moreover, we recognize that
samples vary in importance for two losses: traditional prediction and mutual information
maximization. To address this variability, we introduce the sample reweighting module to
improve information utilization. This module assigns dual weights to each sample: one for
prediction loss and another for mutual information loss, dynamically optimizing these weights
via bi-level optimization. Our method achieves state-of-the-art or comparable performance
across five mainstream TS tasks, including short-term and long-term forecasting, imputation,
classification, and anomaly detection. Our code is available at: https://github.com/
BorealisAI/LLM-TS-Integrator

1 Introduction

Time series (TS) modeling, as emphasized in Hyndman and Athanasopoulos (2018), is crucial for a variety of
real-world applications. It is instrumental in forecasting meteorological factors for weather prediction (Wu
et al., 2021), imputing missing data in economic TS (Friedman, 1962), detecting anomalies in industrial
monitoring data for maintenance (Gao et al., 2020), and classifying trajectories for action recognition
(Franceschi et al., 2019). Given its significant practical impact, TS analysis continues to attract substantial
attention (Lim and Zohren, 2021; Wen et al., 2022).

∗Work done during an internship at RBC Borealis.
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Figure 1: Illustration of LLM-TS Integrator. Module (a) enhances the traditional TS model (TimesNet) with
LLM-derived insights by mutual information maximization. Module (b) optimizes sample importance for
both prediction loss and mutual information loss to improve information utilization. The LLM is utilized
solely during the training phase and is not required during inference.

Recent efforts in TS modeling have increasingly adopted Large Language Models (LLMs) to leverage their
exceptional pattern recognition capabilities (Jiang et al., 2024; Zhou et al., 2023; Jin et al., 2024; Sun et al.,
2023; Gruver et al., 2023b; Cao et al., 2024). While these innovative approaches validate the potential of
LLMs in TS modeling, they primarily position LLMs as the core predictive model. Consequently, they often
omit the mathematical modeling tailored specifically for TS models, such as employing the Fourier Transform
to capture periodic patterns (Wu et al., 2023).

On the other hand, fully disregarding the potential of LLMs also overlooks their powerful pattern recognition
capabilities. It is important to recognize the balance between leveraging LLMs for their advanced capabilities
and utilizing traditional TS models for their mathematical modeling, to enhance the overall performance and
accuracy of TS predictions. In response, we propose LLM-TS Integrator, a novel framework that effectively
integrates the capabilities of LLMs into traditional TS modeling.

Central to our framework is a mutual information module, as depicted in Figure 1(a). The core of this
module is a traditional predictive model, which we enhance with insights derived from LLMs to improve its
predictive abilities. In this work, we primarily utilize TimesNet (Wu et al., 2023) as the traditional predictive
model due to its exceptional performance and insight into periodic modeling, and our framework is also
applicable to other traditional TS models (see in Section 4.6.3). We achieve this enhancement by maximizing
the mutual information (Sun et al., 2020) between the TS representations from traditional models and their
textual counterparts from LLMs, thereby bridging these two modalities (a detailed discussion of various
LLMs is provided in Section 4.6.4). Despite its established use, mutual information maximization has not
been previously applied to the intersection of TS and text domain. With textual descriptions often missing
from TS data, we propose generating such descriptions via a carefully designed template. This template is
enriched with essential background and statistical details pertinent to the TS, thereby enriching the LLM’s
comprehension of the TS context (a comprehensive discussion of various templates is in Appendix A.5).

Our first module introduces a dual loss framework: traditional prediction and mutual information, and we
recognize that the importance of samples differs between the two losses. For instance, a large prediction
loss for a sample highlights its learning potential, emphasizing the need to focus on its prediction loss. This
scenario also implies that the model’s learning for this sample is inadequate and its hidden representation
is suboptimal for mutual information computation. Consequently, the sample’s contribution to the mutual
information calculation should be reduced. To manage this variability, we have introduced a novel sample
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reweighting module powered by a simple MLP (multilayer perceptron) network, as depicted in Figure 1(b).
This module processes the sample prediction loss to produce dual weights for each sample, one for the
prediction loss and another for the mutual information loss. These weights are optimized through bi-level
optimization, thereby enhancing the efficacy of information utilization.

Our primary contributions are as follows:

• We introduce the LLM-TS Integrator framework, which consists of mutual information and sample
reweighting. The first module enhances traditional TS modeling with capabilities from LLMs through
mutual information maximization.

• The second module optimizes sample importance for both prediction loss and mutual information loss,
which improves information utilization.

• Extensive experiments across five mainstream TS tasks—short-term and long-term forecasting, imputation,
classification, and anomaly detection—demonstrate the effectiveness of our framework. Obtained experi-
mental results align across state-of-the-art of traditional time series and various LLMs which demonstrates
applicability of LLM-TS Integrator framework regardless of choice of methods.

• LLM-TS Integrator framework keeps LLMs frozen and does not require fine-tuning and introduces minimum
additional costs compared to traditional time series methods.

2 Preliminaries

TimesNet. In this paper, we mainly choose TimesNet as the traditional predictive model due to its
exceptional performance (Wu et al., 2023) and also explore other additional traditional models including
ETSformer (Woo et al., 2022), Stationary (Liu et al., 2022b), and FreTS (Yi et al., 2023) in Section 4.6.
Previous studies to modeling temporal variations in 1D time series often struggle with complex temporal
patterns. TimesNet addresses this challenge by decomposing these complex variations into multiple intra-
period and inter-period variations. This is achieved by transforming the 1D time series into a series of 2D
tensors, each corresponding to different periods. For the time series x, we derive its representation hm

θ (x)
using the TimesNet model parameterized by θ where m represents model.

Large Language Models. Language models are trained on extensive collections of natural language
sequences, with each sequence consisting of multiple tokens. Notable large language models such as GPT-
3 (Brown et al., 2020) and Llama2 (Touvron et al., 2023) aim to predict the next token based on preceding
tokens, demonstrating their capabilities through improvements in model parameter size and the amount of
training data. Each language model uses a tokenizer that breaks down an input string into a sequence of
recognizable tokens. However, the training of current large language models is solely focused on natural
language, not encompassing time series data. This limitation presents challenges for the direct application of
large language models to time series analysis.

3 Method

In this section, we present the LLM-TS Integrator framework, which effectively integrates the capabilities of
LLMs into traditional TS modeling. This framework consists of two modules: mutual information and sample
reweighting. The first module enhances a traditional TS model with LLM-derived insights for improved
predictive abilities, as explored in Section 3.1. The second module optimizes weights for prediction loss and
mutual information loss via bi-level optimization, improving information utilization, as covered in Section 3.2.
The overall algorithm is shown in Algorithm 1.

3.1 Mutual Information

Previous studies (Zhou et al., 2023; Jin et al., 2023) have predominantly highlighted the use of Large Language
Models (LLMs) as the core predictive model in the TS analysis, often omitting the mathematical modeling
within traditional TS models, such as periodicity.
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Algorithm 1 LLM-TS Integrator
Input: The TS dataset D, number of training iterations T .
Output: Trained TS model parameterized by θ∗.

1: /* Mutual Information Module */
2: Train a traditional TS model (e.g., TimesNet) parameterized by θ using D.
3: Generate text description t for TS sample x via a designed template.
4: Derive hidden representations hm

θ (x) from the TS model and hl(t) from the LLM.
5: while τ <= T − 1 do
6: Sample x, t, y from D, where y are the labels.
7: Optimize a discriminator model Tβ to estimate mutual information as per Eq .(2).
8: /* Sample Reweighting Module */
9: Process sample loss lO with the weighting net to produce dual weights as per Eq. (3), (4).

10: Adopt bi-level optimization to update the weighting net following Eq. (6), (7).
11: Re-calculate dual weights using the updated weighting net per Eq. (3), (4).
12: Calculate the overall loss to update the TS model as per Eq. (5).
13: end while
14: Return the trained TS model parameterized by θ∗.

In contrast, our framework utilizes a traditional TS model as the predictive backbone, enhanced by the
advanced capabilities of LLMs. In this paper, we employ TimesNet, as outlined in Section 2, as the traditional
predictive model, and we further examine other models in Section 4.6. This hybrid methodology combines
the advantages of both traditional TS models and modern LLMs. We achieve this integration via a mutual
information module, which maximizes the mutual information between the TS data representations derived
from the traditional model and their corresponding textual representations derived from LLMs.

3.1.1 Mutual Information Estimation.

Estimating the mutual information between hidden representations of a time series (TS) sample x and its
corresponding textual description t is essential. For the TS sample x, we derive its representation hm

θ (x) using
TimesNet, a model parameterized by θ. For the text t, its representation hl(t) is extracted using a pre-trained
LLM, where l denotes the language model. In this study, we employ the LLaMA-3b model (Touvron et al.,
2023) as our primary LLM, while also evaluating other LLMs as detailed in Section 4.6.

We estimate mutual information using the Jensen-Shannon MI estimator (Sun et al., 2020; Nowozin et al.,
2016) and additionally explore the MINE estimator (Hjelm et al., 2019a) as detailed in Appendix A.12.
Specifically, let (x, t) represent a sample from the TS set S, and (x̃, t̃) denote a sample from S̃ = S where
(x, t) ̸= (x̃, t̃). Within this context, S denotes the TS training distribution while the product S × S̃ represents
pairs of distinct samples within S. Then the lower bound of mutual information can be estimated as:

I(θ, β) = ES[−sp(−Tβ(hm
θ (x), hl(t))] − ES×S̃[sp(Tβ(hm

θ (x), hl(t̃))] , (1)

where Tβ denotes the discriminator parameterized by β and sp is the softplus function. For the details of Tβ ,
we feed the positive and negative examples into a 1-layered fully-connected network with a hidden size of 64,
and then output the dotproduct of the two representations. The mutual information estimation begins by
fixing the model parameters θ, followed by training β as the estimator. Specifically, we optimize β via the
following:

β̂ = β − η0 · ∂I(θ, β)
∂β

(2)

where η0 denotes the learning rate. Subsequently, we refine the model parameters θ to maximize mutual
information, thereby enriching the traditional TS model with insights derived from LLMs. This alternating
optimization procedure between model and discriminator is repeated each epoch.
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3.1.2 Text Description for Time Series.

In our approach, we assume each time series (TS) sample x is paired with a corresponding textual description,
t. However, textual descriptions are frequently unavailable for many TS datasets. To bridge this gap,
we introduce a methodology for generating textual descriptions of TS data. We propose creating textual
representations that capture essential background and statistical details of the TS inspired by Jin et al. (2023).
This process can be systematically implemented using the following carefully designed template:

template = (
"{task_description}. The content is: {TS}. "
"Input statistics: min value {min(TS)}, max value {max(TS)}, "
"median value {median(TS)}, top 5 lags {compute_lags(TS)}."

)

3.2 Sample Reweighting

Our mutual information module introduces two distinct loss functions: (1) the original sample prediction loss,
lO(x, y), hereafter referred to as lO, which corresponds to the prediction loss for a TS sample x and its label y,
and (2) the mutual information maximization loss, denoted as −I(θ, β). We acknowledge that the significance
of samples varies between these two losses. Specifically, a large prediction loss lO indicates a sample’s
substantial learning potential, thereby justifying a higher weight ωO for its prediction loss. Conversely, this
suggests that the sample’s representation may be suboptimal for mutual information computation, warranting
a lower weight ωI .

Here, lO(x, y) denotes the sample-level loss for each task: For the forecasting task, we use MSE, where y
represents the future target values. For the classification task, we use cross-entropy, where y corresponds to a
class label. For the imputation task, we compute MSE for the masked points that need to be reconstructed.
For the anomaly detection task, we adopt a reconstruction-based approach, measuring MSE between the
original and reconstructed time series.

To address this disparity, we have developed a novel sample reweighting module, described as follows.

3.2.1 Weighting Network.

To automate weight assignment, our module employs a two-layer MLP network parameterized by α, which
processes the sample prediction loss to produce a pair of weights:

ωO(α), ωI(α) = MLPα(lO) (3)

This process involves converting the sample loss lO into a latent code z through a hidden layer. The network
then outputs dual weights:

ωO(α), ωI(α) = σ(mO · z), σ(mI · z) (4)

where mO > 0 and mI < 0 to ensure a negative correlation between ωO and ωI . The function σ(·) denotes
the sigmoid activation.

For a batch of N samples, the weight vector ωO(α) ∈ RN is directly applied to the original prediction
loss vector lO ∈ RN , resulting in the weighted average loss calculated as mean(ωO(α) · lO). Similarly, the
weight vector ωI(α) ∈ RN not only reflects the overall significance of the mutual information but also
each sample’s individual contribution to this metric. The mean of these weights mean(ωI(α)) represents
the overall importance. For mutual information computations, ωI(α) is transformed into a probability
distribution pi

I = ωi
I∑N

i=1
ωi

I

. This adjustment affects the distribution used in mutual information calculations,

necessitating a recalculation of mutual information as I(θ, β, α), with details provided in Appendix A.1. As
a result, the overall loss is formulated as:

L(θ, α) = mean(ωO(α) · lO) + mean(ωI(α)) · [−I(θ, β, ωI(α))] (5)
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3.2.2 Bi-level Optimization.

The ensuing challenge is optimizing the weighting network α. We achieve this by leveraging the supervision
signals from a small validation dataset (Chen et al., 2022a). If the weighting network is properly optimized,
the model trained with these weights is expected to show improved performance on the validation dataset in
terms of the validation loss LV (θ) = 1

M

∑M
j lj

O(xj , yj), where M denotes the size of the validation set. This
constitutes a bi-level optimization problem (Hospedales et al., 2021; Chen et al., 2022a;b). At the inner level,
model training is conducted through gradient descent:

θ̂(α) = θ − η1 · ∂L(θ, α)
∂θ

(6)

The objective is to ensure that the model performs optimally on the validation dataset:

α̂ = α − η2 · ∂LV (θ(α))
∂α

(7)

Both η1 and η2 represent the learning rates for the respective optimization steps. Through the minimization
of the validation loss, we aim to optimize the weighting network α.

4 Experimental Results

To demonstrate the versatility of our LLM-TS Integrator, we conduct extensive experiments across five main
tasks: short- and long-term forecasting, imputation, classification, and anomaly detection. To maintain
experimental integrity, our methodology adheres to the setup in (Wu et al., 2023). We detail the experimental
setting in Appendix A.2.

4.0.1 Baselines.

Our evaluation employs a comprehensive array of baseline models across several architectural designs (1)
CNN-based models, specifically TimesNet (Wu et al., 2023); (2) MLP-based models, including LightTS (Zhang
et al., 2022) and DLinear (Zeng et al., 2023); (3) Transformer-based models, such as Reformer (Kitaev
et al., 2020), Informer (Zhou et al., 2021b), Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022),
Nonstationary Transformer (Liu et al., 2022b), ETSformer (Woo et al., 2022), and PatchTST (Nie et al.,
2023); (4) LLM-based models, represented by GPT4TS (Zhou et al., 2023). While we assess a wide range of
models, we focus our discussion on the top-performing ones as highlighted in Zhou et al. (2023).

Additional comparisons for forecasting tasks include LLM-based models like Time-LLM (Jin et al., 2023)
and TEST (Sun et al., 2023). For short-term forecasting, models like N-HiTS (Challu et al., 2023) and
N-BEATS (Oreshkin et al., 2020) are included. Anomaly detection tasks are assessed using Anomaly
Transformer (Xu et al., 2022), and for classification, models such as XGBoost (Chen and Guestrin, 2016),
Rocket (Dempster et al., 2020), LSTNet (Lai et al., 2018), LSSL (Gu et al., 2022), Pyraformer (Liu et al.,
2022a), TCN (Franceschi et al., 2019), and Flowformer (Huang et al., 2022) are considered. This broad
selection of baselines enables a rigorous comparison across various tasks, highlighting the capabilities of our
method.

4.1 Main Results

Figure 2 demonstrates that our LLM-TS Integrator consistently outperforms other methods in various tasks,
underscoring its efficacy. We will refer to our method as LLM-TS in the tables for brevity. Unless otherwise
indicated, we cite results from TimesNet (Wu et al., 2023). We reproduce TimesNet and GPT4TS (Zhou
et al., 2023) experiments for all tasks. All results are averages from three runs with different seeds. Standard
deviations for ablation studies are detailed in Appendix 8. The best results are highlighted in bold, with
the second-best underlined. We also (1) present several showcases of our method in Appendix A.4 and (2)
discuss the model efficiency in Appendix A.6
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Figure 2: Model performance across different tasks.

4.2 Short- and Long- Term Forecasting

4.2.1 Setup.

To comprehensively assess our framework’s forecasting capabilities, we engage it in both short- and long-term
forecasting settings. In the realm of short-term forecasting, we utilize the M4 dataset (Spyros Makridakis,
2018), which aggregates univariate marketing data on a yearly, quarterly, and monthly basis. For long-term
forecasting, we examine five datasets following (Zhou et al., 2023): ETT (Zhou et al., 2021a), Electricity
(UCI, 2015), Traffic (PeMS, 2024), Weather (Wetterstation, 2024), and ILI (CDC, 2024). We adhere to the
TimesNet setting with an input length of 96. For LLM-based methods like GPT4TS and Time-LLM, which
use different input lengths, we rerun the experiments using their code. For PatchTST, we cite the results
from (Wang et al., 2023a), as the original PatchTST uses an input length of 512. Due to shorter input lengths
in this study compared to the original, the reported performance is lower.

4.2.2 Results.

As shown in Tables 1 and 2, our LLM-TS performs exceptionally well in both short- and long-term settings.
It consistently surpasses TimesNet, highlighting the effectiveness of incorporating LLM-derived insights.
Furthermore, it generally outperforms other LLM-based methods such as GPT4TS, TIME-LLM, and TEST,
underscoring the advantages of integrating traditional TS modeling.

Table 1: Short-term M4 forecasting. The prediction lengths are in [6, 48] and results are obtained by weighting
averages across multiple datasets with varying sampling intervals. Full results are in Appendix A.7.

Methods LLM-TS TimesNet GPT4TS TIME-LLM TEST PatchTST N-HiTS N-BEATS FEDformer Stationary Autoformer

SMAPE 11.819 11.908 11.991 11.983 11.927 12.059 11.927 11.851 12.840 12.780 12.909
MASE 1.588 1.612 1.600 1.595 1.613 1.623 1.613 1.599 1.701 1.756 1.771
OWA 0.851 0.860 0.861 0.859 0.861 0.869 0.861 0.855 0.918 0.930 0.939
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Table 2: Long-term forecasting: Averages over 4 lengths: 24, 36, 48, 60 for ILI, and 96, 192, 336, 720 for others. Full
results in Appendix A.8.

Methods LLM-TS TimesNet TIME-LLM DLinear PatchTST GPT4TS FEDformer TEST Stationary ETSformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MAE MSE MAE MSE

Weather 0.257 0.285 0.265 0.290 0.279 0.296 0.265 0.317 0.265 0.285 0.275 0.292 0.309 0.360 0.291 0.315 0.288 0.314 0.271 0.334
ETTh1 0.454 0.451 0.470 0.462 0.474 0.459 0.456 0.452 0.516 0.484 0.473 0.451 0.440 0.460 0.440 0.460 0.570 0.537 0.542 0.510
ETTh2 0.396 0.413 0.413 0.426 0.398 0.415 0.559 0.515 0.391 0.411 0.383 0.410 0.437 0.449 0.414 0.432 0.526 0.516 0.439 0.452
ETTm1 0.401 0.409 0.414 0.418 0.437 0.421 0.403 0.407 0.406 0.407 0.408 0.400 0.448 0.452 0.402 0.411 0.481 0.456 0.429 0.425
ETTm2 0.295 0.331 0.294 0.331 0.298 0.342 0.350 0.401 0.290 0.334 0.290 0.335 0.305 0.349 0.323 0.359 0.306 0.347 0.293 0.342

ILI 1.973 0.894 2.266 0.974 2.726 1.098 2.616 1.090 2.184 0.906 5.117 1.650 2.847 1.144 3.324 1.232 2.077 0.914 2.497 1.004
ECL 0.194 0.299 0.198 0.298 0.229 0.315 0.212 0.300 0.216 0.318 0.206 0.285 0.214 0.327 0.237 0.324 0.193 0.296 0.208 0.323

Traffic 0.618 0.333 0.627 0.335 0.606 0.395 0.625 0.383 0.529 0.341 0.561 0.373 0.610 0.376 0.581 0.388 0.624 0.340 0.621 0.396

Average 0.574 0.427 0.618 0.442 0.681 0.468 0.686 0.483 0.600 0.436 0.964 0.525 0.701 0.489 0.756 0.491 0.633 0.465 0.662 0.473

4.3 Imputation

4.3.1 Setup.

To assess our method’s imputation capabilities, we employ three datasets: ETT (Zhou et al., 2021a), Electricity
(UCI, 2015), and Weather (Wetterstation, 2024), serving as our benchmarks. To simulate various degrees of
missing data, we randomly obscure time points at proportions of {12.5%, 25%, 37.5%, 50%} following (Wu
et al., 2023).

4.3.2 Results.

Table 3 illustrates that our method achieves performance comparable to GPT4TS and surpasses other
baselines, highlighting its effectiveness. We attribute the robust performance of GPT4TS primarily to its
backbone feature extractor: the pre-trained language model, which excels at capturing time series patterns,
enhancing its imputation proficiency.

Table 3: Imputation task: Randomly masked {12.5%, 25%, 37.5%, 50%} of points in 96-length series, averaging results
over 4 mask ratios. Full results are in Appendix A.9.

Methods LLM-TS TimesNet GPT4TS PatchTST LightTS DLinear FEDformer Stationary Autoformer Reformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.025 0.103 0.028 0.109 0.028 0.108 0.047 0.140 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150 0.055 0.166
ETTm2 0.021 0.087 0.022 0.089 0.023 0.088 0.029 0.102 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105 0.157 0.280
ETTh1 0.087 0.198 0.090 0.199 0.069 0.174 0.115 0.224 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214 0.122 0.245
ETTh2 0.050 0.148 0.051 0.150 0.050 0.144 0.065 0.163 0.119 0.250 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156 0.234 0.352

ECL 0.094 0.211 0.095 0.212 0.091 0.207 0.072 0.183 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225 0.200 0.313
Weather 0.030 0.056 0.031 0.059 0.032 0.058 0.034 0.055 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057 0.038 0.087

Average 0.051 0.134 0.053 0.136 0.049 0.130 0.060 0.144 0.123 0.228 0.119 0.224 0.112 0.229 0.056 0.142 0.061 0.151 0.134 0.240

4.4 Classification

4.4.1 Setup.

We focus on the application of our method to sequence-level time series classification tasks, a crucial test
of its ability to learn high-level representations from data. Specifically, we employ 10 diverse multivariate
datasets sourced from the UEA Time Series Classification repository (Bagnall et al., 2018). These datasets
encompass a wide range of real-world applications, including gesture and action recognition, audio processing,
among other practical domains. We reproduce the results of TEST based on their code (Sun et al., 2023).

4.4.2 Results.

As depicted in Figure 3, our LLM-TS Integrator achieves superior performance with an average accuracy of
73.4%. As detailed in Appendix A.10, it consistently outperforms other LLM-based methods across most
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tasks, including GPT4TS and TEST. We attribute this enhanced capability to the traditional TS modeling
techniques in our framework, which effectively capture classification characteristics more adeptly than LLMs.
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Figure 3: Model comparison in classification.
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4.5 Anomaly Detection

4.5.1 Setup.

Our study concentrates on unsupervised time series anomaly detection, aiming to identify aberrant time
points indicative of potential issues. We benchmark our method against five established anomaly detection
datasets: SMD (Su et al., 2019), MSL (Hundman et al., 2018), SMAP (Hundman et al., 2018), SWaT (Mathur
and Tippenhauer, 2016), and PSM (Abdulaal et al., 2021). These datasets span a variety of applications,
including service monitoring, space and earth exploration, and water treatment processes. For a consistent
evaluation framework across all experiments, we employ the classical reconstruction error metric to determine
anomalies following Wu et al. (2023).

4.5.2 Results.

As indicated in Table 4, our LLM-TS Integrator exhibits superior performance with an average F1-score of
85.17%. This result underscores the versatility of LLM-TS, demonstrating its capability not only in classifying
complete sequences, as discussed previously, but also in effectively detecting anomalies in time series data.

Table 4: Anomaly detection task. F1-score (as %). ∗. in the Transformers represents the name of ∗former. Full results
are in Appendix A.11.

Methods LLM-TS TimesNet GPT4TS PatchTS. ETS. FED. LightTS DLinear Stationary Auto. Pyra. Anomaly.** In. Re. Trans.

SMD 84.69 84.57 84.32 84.62 83.13 85.08 82.53 77.10 84.72 85.11 83.04 85.49 81.65 75.32 79.56
MSL 81.11 80.34 81.73 78.70 85.03 78.57 78.95 84.88 77.50 79.05 84.86 83.31 84.06 84.40 78.68

SMAP 69.41 69.18 68.86 68.82 69.50 70.76 69.21 69.26 71.09 71.12 71.09 71.18 69.92 70.40 69.70
SWaT 93.23 93.12 92.59 85.72 84.91 93.19 93.33 87.52 79.88 92.74 91.78 83.10 81.43 82.80 80.37
PSM 97.43 97.27 97.34 96.08 91.76 97.23 97.15 93.55 97.29 93.29 82.08 79.40 77.10 73.61 76.07

Average 85.17 84.90 84.97 82.79 82.87 84.97 84.23 82.46 82.08 84.26 82.57 80.50 78.83 77.31 76.88

4.6 Ablations

In this section, we first verify the effectiveness of our framework by sequentially removing key components:
(1) mutual information module and (2) sample reweighting module. Additionally, for mutual information, we
explore the impact of removing the template while retaining the raw time series data inputs to the LLM.
We denote these variants as w/o mutual, w/o reweight and w/o template. Our experiments span long-term
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Table 5: Results averaged over 4 prediction lengths.

Methods Ours w/o mutual w/o template w/o reweight TimesNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.257 0.285 0.264 0.290 0.263 0.288 0.264 0.291 0.265 0.290
ETTh1 0.454 0.451 0.467 0.460 0.465 0.460 0.464 0.463 0.470 0.462
ETTh2 0.396 0.413 0.411 0.423 0.404 0.418 0.408 0.419 0.413 0.426
ETTm1 0.401 0.409 0.411 0.417 0.406 0.415 0.403 0.411 0.414 0.418
ETTm2 0.295 0.331 0.300 0.335 0.298 0.332 0.292 0.328 0.294 0.331

ILI 1.973 0.894 2.221 0.942 2.173 0.950 2.173 0.947 2.266 0.974
ECL 0.194 0.299 0.199 0.302 0.196 0.301 0.199 0.299 0.198 0.298

Traffic 0.618 0.333 0.624 0.336 0.622 0.335 0.622 0.336 0.627 0.335

forecasting tasks including Weather, ETTh1, ETTm1 and ILI. As detailed in Table 5, the removal of any
component leads to a decrease in performance, confirming the value of each design element. Additionally, we
explore the use of the MINE estimator (Hjelm et al., 2019a) instead of the Jensen-Shannon MI estimator in
our main paper, with further details provided in Appendix A.12. Lastly, we showcase various case studies to
demonstrate the enhancements facilitated by our method in Appendix A.4 and explore template variations in
Appendix A.5.

4.6.1 Mutual Information.

We further explore the mutual information module from a representation learning perspective, following
the findings in Wu et al. (2023). They adopt a CKA (Centered Kernel Alignment) metric which measures
similarity between representations obtained from the first and last layer of a model and they find that
forecasting and anomaly detection benefits from high CKA similarity, contrasting with that imputation and
classification tasks benefits from lower CKA similarity.

Experiments are conducted using the MSL dataset for the anomaly detection task, the Weather dataset for
forecasting, the ETTh1 dataset for imputation, and the PEMS-SF dataset for classification. As depicted
in Figure 4, the removal of components in our method results in decreased CKA similarity in anomaly
detection and forecasting tasks, but an increase in imputation and classification tasks. This observation
further substantiates the effectiveness of our components.

4.6.2 Sample Reweighting.

Regarding the sample reweighting module, we illustrate the behavior of the learned weighting network in
Appendix A.12. The trend confirms our hypothesis: sample weight ωO increases with the prediction loss
lO, and weight ωI decreases as lO increases. This pattern validates our sample reweighting module. Further
discussion comparing this module to a fixed weight scheme are presented in Appendix A.12.

To verify the effectiveness of our method, we conduct ablation studies focusing on (1) traditional time series
(TS) models and (2) language models.

4.6.3 Traditional Models.

Although we utilize TimesNet as our primary model, our framework is applicable to other traditional models.
We explored additional traditional models including ETSformer (Woo et al., 2022), Stationary (Liu et al.,
2022b), and FreTS (Yi et al., 2023). As shown in Table 6, integrating LLM-TS generally enhances performance
across all traditional models, underscoring the benefits of our method.

4.6.4 Language Models.

In the main paper, the LLaMA-3b model (Touvron et al., 2023) is used to generate embeddings for the TS
language description. We compare it with GPT2 (Radford et al., 2019) and BERT (Devlin et al., 2019)
to assess different embeddings’ performance. Table 7 reveals that LLaMA-3b generally outperforms the
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alternatives, and all LMs improve results compared to non-LLM approaches, validating the effectiveness of
LLM-TS Integrator.

Table 6: Ablation results on different traditional models. Full results are in Appendix A.12.

Methods ETSformer ETS LLM-TS Stationary Stat LLM-TS FreTS FreTS LLM-TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W eather 0.313 0.382 0.307 0.375 0.282 0.307 0.284 0.309 0.262 0.306 0.255 0.302
ET T h1 0.799 0.684 0.791 0.678 0.667 0.582 0.653 0.572 0.484 0.473 0.478 0.466
ET T m1 0.638 0.583 0.555 0.528 0.527 0.477 0.522 0.471 0.415 0.422 0.407 0.415

ILI 3.922 1.367 3.740 1.320 2.722 1.041 2.205 0.935 3.449 1.279 3.158 1.211

Table 7: Ablation results on different LLM embeddings. Full results are in Appendix A.12.

Methods LLM-TS (LLaMA) LLaMA w/o template GPT2 BERT No LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W eather 0.257 0.285 0.263 0.288 0.261 0.287 0.260 0.287 0.264 0.290
ET T h1 0.454 0.451 0.465 0.460 0.464 0.458 0.467 0.460 0.467 0.460
ET T m1 0.401 0.409 0.406 0.415 0.406 0.413 0.406 0.412 0.411 0.417

ILI 1.973 0.894 2.173 0.950 2.169 0.936 2.193 0.952 2.221 0.942

5 Related Work

5.1 LLM for TS Modeling.

FPT (Zhou et al., 2023) suggests utilizing pre-trained language models to extract features from time series
for improved predictions. TIME-LLM (Jin et al., 2024) and TEST (Sun et al., 2023) adapt LLMs for
general time series forecasting by maintaining the original language model structure while reprogramming the
input to fit time series data (Zhou et al., 2024). LLMTIME (Gruver et al., 2023b) interprets time series as
sequences of numbers, treating forecasting as a next-token prediction task akin to text processing, applying
pre-trained LLMs for this purpose. Given that it is not a state-of-the-art method and primarily targets
zero-shot forecasting, it has not been incorporated into our experimental framework. TEMPO (Cao et al.,
2024) utilizes essential inductive biases of the TS task for generative pre-trained transformer models. Gao
et al. (2024); Goswami et al. (2024) also explore time series foundation models by pre-training large models
on extensive time series datasets.

5.2 Time Series to Text.

PromptCast (Xue and Salim, 2023) proposes to transform the numerical input and output into prompts, which
enables forecasting in a sentence-to-sentence manner. Time-LLM (Jin et al., 2024) incorporates background,
instruction and statistical information of the time series data via natural language to facilitate time series
forecasting in LLM. LLMTIME (Gruver et al., 2023a) converts time series data into a string of numbers
and predicts future values as if completing a text. AutoTimes (Liu et al., 2024) maps time series into the
embedding space of language tokens, enabling autoregressive generation of future predictions.

5.3 Mutual Information

The Infomax principle (Linsker, 1988; Bell and Sejnowski, 1995), applied in the context of neural networks,
advocates for maximizing mutual information between the inputs and outputs of a network. Traditionally,
quantifying mutual information was challenging outside a few specific probability distributions, as discussed
in Shwartz-Ziv and Tishby (2017). This complexity led to the development of various heuristics and
approximations (Tishby et al., 2000). Recently, a breakthrough came with MINE (Belghazi et al., 2021),
which introduced a neural estimator capable of assessing mutual information between two arbitrary quantities
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with a precision that depends on the capacity of the encoding network. This innovative approach has
spearheaded advancements in the field of representation learning (Hjelm et al., 2019b; Sylvain et al., 2020).
The estimator we utilize is based on the Jensen-Shannon divergence variant of the MINE mutual information
estimator.

5.4 Sample Reweighting.

Sample reweighting is commonly used to improve training efficacy (Fang et al., 2023; Wang et al., 2023b; Yuan
et al., 2023a; Zhang et al., 2023; Yuan et al., 2023b). Traditional approaches (Freund and Schapire, 1997;
Sun et al., 2007) assign larger weights to samples with higher loss values, as these hard samples have greater
learning potential. Recent studies (Ren et al., 2018) suggest using a validation set to guide the learning of
sample weights, which can enhance model training. Notably, meta-weight-net (Shu et al., 2019) proposes
learning a mapping from sample loss to sample weight. In this work, we adopt an MLP network that takes
sample prediction loss as input and outputs dual weights for prediction loss and mutual information loss.

6 Conclusion and Discussion

In conclusion, the LLM-TS Integrator framework offers a promising approach to integrating Large Language
Models (LLMs) with traditional TS methods. By encouraging high mutual information between textual
and TS data, our method aims to maintain the distinct characteristics of TS while benefiting from the
advanced pattern recognition capabilities of LLMs. The introduced sample reweighting module enhances
performance by dynamically adjusting the relevance of each sample based on its predictive and informational
contributions. Comprehensive empirical evaluations suggest that this framework improves accuracy across
various TS tasks, including forecasting, anomaly detection, and classification. However, further research is
necessary to confirm these results across more diverse and robust datasets including Monash (Godahewa
et al., 2021) and GIFT-Eval (Aksu et al., 2024), and to explore additional LLM features that could further
enrich our model. Additionally, it is important to acknowledge current limitations, such as the need for
computational resources and the potential challenges in aligning the two modalities effectively.
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A Appendix

A.1 Mutual Information Recalculation

Recall that mutual information can be calculated using the equation:

I(θ, β) = ES[−sp(−Tβ(hm
θ (x), hl(t))] − ES×S̃[sp(Tβ(hm

θ (x), hl(t̃))] , (8)

where Tβ signifies the discriminator characterized by parameters β, and sp denotes the softplus function.
Notably, (x, t) symbolizes a sample from the dataset S, while (x̃, t̃) represents a different sample from the
dataset S̃ = S.

This formulation presumes a uniform distribution of samples. However, we have already computed probabilities
pi

I for each sample, which introduces a non-uniform distribution. For a batch of N samples, the expected
value is computed as

ES[−sp(−Tβ(hm
θ (x), hl(t))] = −

N∑
i=1

pi
Isp(−Tβ(hm

θ (xi), hl(ti)). (9)

ES×S̃[sp(Tβ(hm
θ (x), hl(t̃))] =

∑
i

∑
i ̸=j

p̂ijsp(Tβ(hm
θ (xi), hl(t̃j)). (10)

Here, p̂ij is defined as pi
I ·pj

I∑
i

∑
i̸=j

pi
I

·pj
I

, adjusting for the non-uniform distribution of sample probabilities. As

pi
I is produced from the weighting network α, we can also write I(θ, β) as I(θ, β, α).

A.2 Experimental Settings

Following Shu et al. (2019), the weighting network comprises a two-layer MLP with a hidden size of 100, and
we set the learning rate η2 for this network at 0.001. The learning rate η0 of the discriminator is set as 0.001
at the first epoch and then decreases to 0.0001 for the rest of epochs.

A.3 Standard Error Results

Table 8 presents the results along with standard errors to underscore the consistency and reliability of our
method’s performance.
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Table 8: Ablation results with standard error.

Methods Ours w/o mutual w/o reweight TimesNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.166 ± 0.001 0.217 ± 0.001 0.168 ± 0.002 0.218 ± 0.003 0.181 ± 0.002 0.232 ± 0.001 0.174 ± 0.002 0.224 ± 0.001

192 0.229 ± 0.002 0.269 ± 0.002 0.227 ± 0.002 0.268 ± 0.002 0.230 ± 0.001 0.270 ± 0.002 0.235 ± 0.001 0.272 ± 0.002
336 0.278 ± 0.001 0.302 ± 0.002 0.298 ± 0.002 0.318 ± 0.002 0.283 ± 0.002 0.306 ± 0.001 0.285 ± 0.002 0.307 ± 0.001
720 0.354 ± 0.001 0.351 ± 0.001 0.361 ± 0.001 0.356 ± 0.001 0.361 ± 0.001 0.355 ± 0.001 0.365 ± 0.001 0.358 ± 0.000

E
T

T
h

1 96 0.403 ± 0.003 0.420 ± 0.002 0.402 ± 0.002 0.422 ± 0.001 0.408 ± 0.002 0.428 ± 0.001 0.414 ± 0.003 0.431 ± 0.002
192 0.440 ± 0.005 0.441 ± 0.002 0.459 ± 0.003 0.455 ± 0.003 0.469 ± 0.003 0.460 ± 0.002 0.463 ± 0.006 0.456 ± 0.003
336 0.471 ± 0.003 0.457 ± 0.002 0.471 ± 0.003 0.457 ± 0.002 0.492 ± 0.002 0.474 ± 0.002 0.487 ± 0.004 0.466 ± 0.003
720 0.503 ± 0.003 0.487 ± 0.002 0.535 ± 0.002 0.507 ± 0.002 0.485 ± 0.003 0.478 ± 0.004 0.517 ± 0.002 0.494 ± 0.002

E
T

T
m

1 96 0.329 ± 0.008 0.371 ± 0.004 0.341 ± 0.006 0.377 ± 0.005 0.350 ± 0.006 0.387 ± 0.003 0.340 ± 0.006 0.377 ± 0.004
192 0.380 ± 0.005 0.398 ± 0.002 0.404 ± 0.006 0.413 ± 0.003 0.383 ± 0.006 0.397 ± 0.003 0.406 ± 0.007 0.408 ± 0.002
336 0.418 ± 0.002 0.425 ± 0.002 0.432 ± 0.003 0.428 ± 0.001 0.410 ± 0.002 0.411 ± 0.002 0.424 ± 0.003 0.425 ± 0.002
720 0.476 ± 0.005 0.440 ± 0.003 0.468 ± 0.005 0.449 ± 0.002 0.467 ± 0.004 0.448 ± 0.002 0.485 ± 0.006 0.461 ± 0.004

I
L

I

24 1.921 ± 0.116 0.898 ± 0.019 2.170 ± 0.100 0.947 ± 0.023 1.934 ± 0.098 0.925 ± 0.020 2.072 ± 0.122 0.948 ± 0.015
36 2.151 ± 0.035 0.933 ± 0.020 2.093 ± 0.069 0.889 ± 0.024 2.505 ± 0.103 1.020 ± 0.010 2.494 ± 0.072 1.019 ± 0.004
48 2.062 ± 0.052 0.892 ± 0.011 2.418 ± 0.034 0.959 ± 0.008 2.325 ± 0.116 0.948 ± 0.036 2.298 ± 0.038 0.964 ± 0.006
60 1.759 ± 0.124 0.853 ± 0.035 2.203 ± 0.105 0.971 ± 0.028 1.926 ± 0.088 0.896 ± 0.023 2.198 ± 0.040 0.963 ± 0.010

A.4 Showcases

To provide a clear comparison among different models, we showcase the forecasting task results on ETTh1
(96-96) and ETTm1 (96-336) using three models: LLM-TS, TimesNet, and GPT4TS. As shown in Figures 5
and 6, our LLM-TS model produces significantly more accurate predictions, demonstrating its effectiveness.

To illustrate the performance improvements achieved by the LLM-TS Integrator framework, we introduce a
case study. We created a training set with a weighted sine function:

4∑
i=1

ωi sin(fit + pi) + ϵN(0, 1) (11)

where w1 = 0.1, w2 = 0.2, w3 = 0.3, w4 = 0.4; f1 = 1
40 , f2 = 1

45 , f3 = 1
50 , f4 = 1

55 ; p1 = 0, p2 = 1, p3 = 2,
p4 = 3; and ϵ = 0.1 is the noise level. We generated a long sequence of length 10, 000 and then sampled a
batch of size 64 with a sequence length of 96 and a prediction length of 336 to train GPT4TS, TimesNet, and
LLM-TS on this data for 1, 000 iterations. For testing, we created a test set with frequency f = 1

20 , which is
greater than max(f1, f2, f3, f4), and used p = 2.5, w = 1 and ϵ = 0.1.

As shown in Figure 7, Figure 8 an Figure 9, we can know:

• GPT4TS fails to accurately capture periodic information as it relies solely on a language model
without incorporating traditional mathematical modelling.

• TimesNet generally captures periodic information due to the use of the FFT mathematical operator,
but it still does not perfectly match the ground truth.

• LLM-TS captures periodic information and better matches the ground truth by integrating rich
language model insights into the traditional TimesNet model.

This case study highlights how the LLM-TS Integrator framework benefits from both inherent properties
of traditional TS models and pattern recognition abilities of LLMs, demonstrating the effectiveness of our
approach.

A.5 Template Variation

We conducted additional experiments on the ETTh1 dataset for long-term forecasting with GPT2. The
original template achieves a Mean Squared Error (MSE) of 0.464 and a Mean Absolute Error (MAE) of 0.458.
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Figure 7: GPT4TS on synthetic data
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Figure 8: TimesNet on synthetic data
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Figure 9: LLM-TS on synthetic data

We tested variations of the template by changing the original context from "The Electricity Transformer
Temperature is a crucial indicator in electric power long-term deployment." to:

• Variation 1: "The temperature of the electricity transformer is a vital metric for long-term electric
power deployment."

• Variation 2: "Monitoring the temperature of electricity transformers is essential for the long-term
deployment of electric power."

• Variation 3: "The temperature of electricity transformers serves as a key indicator in the long-term
deployment of electric power."

• Variation 4: No template.

Besides, we also consider the following changes:

• w/o Input Statistics: excluding input statistical data from our analysis.

• w/o Mean, Max, Median: remove mean, max and median informatino.

• w/o Lags: remove lags information.

The performance of these variations is summarized in Table 9. These results indicate that the performance
is quite similar across different variations, supporting the robustness of our approach regardless of minor
template modifications. For further details on the template implementation, refer to our code repository at
https://anonymous.4open.science/r/llm_ts_anonymous-F07D/utils/tools.py.

A.6 Model Efficiency Analysis

Compared to TimesNet, our LLM-TS integrator introduces additional costs due to the mutual information
and sample weighting modules. However, after training, the inference cost of our method is the same as
TimesNet. We detail the time cost of each component for ETTh1 and ETTm1 tasks, using a batch size of
32 on a 32G V100 GPU. As shown in Table 10, the training cost of our method is reasonable, given that it
achieves the best performance across most tasks.
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Table 9: Performance across different template variations (standard error)

Template Variation MSE MAE
Original Template 0.464 ± 0.002 0.458 ± 0.003
Variation 1 0.460 ± 0.003 0.456 ± 0.002
Variation 2 0.465 ± 0.003 0.460 ± 0.003
Variation 3 0.464 ± 0.002 0.459 ± 0.002
Variation 4 (No template) 0.466 ± 0.003 0.460 ± 0.003
w/o Input Statistics 0.468 ± 0.002 0.462 ± 0.002
w/o Mean/Max/Median 0.465 ± 0.002 0.459 ± 0.002
w/o Lags 0.467 ± 0.002 0.460 ± 0.003

It is important to note that we use the pre-trained LLM to obtain the text embeddings only once. These
embeddings can then be used throughout the training process. For instance, obtaining the embeddings for
the ETTh1 dataset using the llama-3b model on an A100 GPU takes approximately 1 hour. We acknowledge
that embedding extraction may become more time-consuming and memory-intensive with significantly larger
or multivariate datasets. In such scenarios, strategies such as prioritizing difficult or representative data
points could be employed to manage computational costs effectively. After this, the embeddings are utilized
in our framework to train the model, and in the final output of the TimesNet model. This ensures that the
inference time of our method is identical to that of the TimesNet model.

As detailed in the TimesNet paper, our backbone model TimesNet is relatively small with 0.067 MB parameters.
For comparison, other models have the following sizes: Non-stationary Transformer has 1.884 MB, Autoformer
has 1.848 MB, FEDformer has 2.9 MB, LightTS has 0.163 MB, DLinear has 0.296 MB, ETSformer has 1.123
MB, Informer has 1.903 MB, Reformer has 1.157 MB, and Pyraformer has 1.308 MB. The introduced mutual
information network consists of only two linear layers of size 64x64 and 64x4096, which is negligible in terms
of additional parameters. Similarly, the introduced MLP network consists of four layers: 1 × 100, 100 × 1,
1 × 1, and 1 × 1, and the number of parameters is also negligible.

Thus, our model remains very small and efficient, with inference time identical to TimesNet (as the mutual
information component is only used during training). Given that many TS models are primarily used for
inference, our approach offers effective performance gains with minimal additional computational cost.

From a theoretical standpoint, let dα denote the dimension of the weighting network parameters and dθ

denote the dimension of the prediction network parameters. Denote the computation cost of Eq. (6) as
c(dα, dθ). According to Section 4 of Franceschi et al. (2017), the time complexity of the bi-level optimization
is O(c(dα, dθ)), with the primary computational cost arising from the Jacobian-vector product in Eq. (7).
This explains the time complexity of the sample reweighting module.

Table 10: Cost Comparison per step(s).

Methods Overall TimesNet Mutual Information Sample Reweighting

ETTh1 3.177 0.126 0.577 2.474
Weather 5.563 0.436 1.094 4.033

A.7 Full Results of Short-term Forecasting

Table 11 displays the comprehensive results for short-term forecasting.

A.8 Full Results of Long-Term Forecasting

Full results for long-term forecasting are presented in Table 12.
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Table 11: Full results of short-term forecasting.

Methods LLM-TS TimesNet GPT4TS TIME-LLM PatchTST N-HiTS N-BEATS FEDformer Stationary Autoformer

Y
ea

rl
y SMAP E 13.369 13.512 13.531 13.419 13.477 13.418 13.436 13.728 13.717 13.974

MASE 3.021 3.065 3.015 3.0050 3.019 3.045 3.043 3.048 3.078 3.134

OW A 0.789 0.799 0.793 0.789 0.792 0.793 0.794 0.803 0.807 0.822

Q
u

a
rt

er
ly SMAP E 10.020 10.069 10.177 10.110 10.38 10.202 10.124 10.792 10.958 11.338

MASE 1.162 1.178 1.194 1.178 1.233 1.194 1.169 1.283 1.325 1.365

OW A 0.878 0.887 0.898 0.889 0.921 0.899 0.886 0.958 0.981 1.012

M
on

th
ly SMAP E 12.696 12.783 12.894 12.980 12.959 12.791 12.677 14.260 13.917 13.958

MASE 0.936 0.949 0.956 0.963 0.970 0.969 0.937 1.102 1.097 1.103

OW A 0.880 0.889 0.897 0.903 0.905 0.899 0.880 1.012 0.998 1.002

O
th

er
s SMAP E 4.916 4.954 4.940 4.795 4.952 5.061 4.925 4.954 6.302 5.485

MASE 3.310 3.364 3.228 3.178 3.347 3.216 3.391 3.264 4.064 3.865

OW A 1.039 1.052 1.029 1.006 1.049 1.040 1.053 1.036 1.304 1.187

A
v
er

a
g
e SMAP E 11.819 11.908 11.991 11.983 12.059 11.927 11.851 12.840 12.780 12.909

MASE 1.588 1.612 1.600 1.595 1.623 1.613 1.599 1.701 1.756 1.771

OW A 0.851 0.860 0.861 0.859 0.869 0.861 0.855 0.918 0.930 0.939

A.9 Full Results of Imputation.

Table 13 contains the detailed results of our imputation tasks.

A.10 Full Results of Classification

Table 14 contains the comprehensive results for classification.

A.11 Full Results of Anamoly Detection

Full results for anamoly detection are detailed in Table 15.

A.12 Further Ablation Studies

MLP. Given that our template comprises only simple summary statistics of the time series and the original
values, we investigated whether the LLM component is essential. To this end, we replaced the LLM with
an MLP that accepts the normalized concatenated statistics (mean, max, median, lags) and outputs an
embedding of identical dimension to the LLM. We conducted experiments on ETTh1 and ETTm1. For
ETTm1, the MSE increased from 0.401 to 0.420, and the MAE increased from 0.409 to 0.425. Similarly,
for ETTh1, the MSE increased from 0.454 to 0.478, and the MAE increased from 0.451 to 0.463. We
also attempted using a single-layer self-attention module instead of the MLP. However, the performance
remained suboptimal. On ETTm1, the MSE increased from 0.401 to 0.423 and the MAE from 0.409 to 0.419;
similarly, on ETTh1, the MSE increased from 0.454 to 0.475 and the MAE from 0.451 to 0.461. These results
demonstrate that the LLM component is crucial in effectively capturing the mutual information from the
template, thereby justifying its use in our approach. Tan et al. (2024) demonstrate that using LLMs as
prediction backbones may not yield substantial improvements; however, our results highlight the effectiveness
of LLM embeddings when integrated as auxiliary information within traditional time-series models.

Mutual Information Estimator. In the main paper, we utilize the Jensen-Shannon mutual information
(MI) estimator. Additionally, we explore the Mutual Information Neural Estimator (MINE) (Hjelm et al.,
2019a). We evaluate both estimators on two tasks, ETTh1 and ETTm1, with results averaged over four
prediction lengths. For ETTh1, the MSE and MAE using the original Jensen-Shannon estimator are 0.454
and 0.451, respectively, compared to 0.460 and 0.457 with MINE. For ETTm1, the MSE and MAE are 0.401
and 0.409 with the original estimator, and 0.402 and 0.410 with MINE. These comparisons highlight the
robustness of our method across different mutual information estimators.
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Table 12: Full results for long-term forecasting. We use prediction length O ∈ {96, 192, 336, 720} except for
ILI and O ∈ {24, 36, 48, 60} for ILI. A lower MSE indicates better performance.

Methods LLM-TS TimesNet TIME-LLM DLinear PatchTST GPT4TS FEDformer TEST Stationary ETSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.166 0.217 0.174 0.224 0.202 0.239 0.196 0.255 0.186 0.227 0.196 0.234 0.217 0.296 0.214 0.264 0.173 0.223 0.197 0.281
192 0.229 0.269 0.235 0.272 0.245 0.277 0.237 0.296 0.234 0.265 0.241 0.271 0.276 0.336 0.262 0.298 0.245 0.285 0.237 0.312
336 0.278 0.302 0.235 0.272 0.300 0.313 0.283 0.335 0.284 0.301 0.296 0.308 0.339 0.380 0.310 0.329 0.321 0.338 0.298 0.353
720 0.354 0.351 0.365 0.358 0.369 0.356 0.345 0.381 0.356 0.349 0.367 0.354 0.403 0.428 0.378 0.370 0.414 0.410 0.352 0.288
Avg 0.257 0.285 0.265 0.290 0.279 0.296 0.265 0.317 0.265 0.285 0.275 0.292 0.309 0.360 0.291 0.315 0.288 0.314 0.271 0.334

E
T

T
h

1

96 0.403 0.420 0.414 0.431 0.414 0.422 0.386 0.400 0.460 0.447 0.409 0.415 0.376 0.419 0.411 0.426 0.513 0.491 0.494 0.479
192 0.440 0.441 0.463 0.456 0.466 0.450 0.437 0.432 0.512 0.477 0.468 0.446 0.420 0.448 0.475 0.461 0.534 0.504 0.538 0.504
336 0.471 0.457 0.487 0.466 0.515 0.475 0.481 0.459 0.546 0.496 0.503 0.461 0.459 0.465 0.508 0.482 0.588 0.535 0.574 0.521
720 0.503 0.487 0.517 0.494 0.503 0.487 0.519 0.516 0.544 0.517 0.510 0.482 0.506 0.507 0.504 0.494 0.643 0.616 0.562 0.535
Avg 0.454 0.451 0.470 0.462 0.474 0.459 0.456 0.452 0.516 0.484 0.473 0.451 0.440 0.460 0.475 0.466 0.570 0.537 0.542 0.510

E
T

T
h

2

96 0.322 0.366 0.340 0.374 0.306 0.353 0.333 0.387 0.308 0.355 0.298 0.350 0.358 0.397 0.328 0.374 0.476 0.458 0.340 0.391
192 0.400 0.409 0.399 0.410 0.386 0.399 0.477 0.476 0.393 0.405 0.376 0.399 0.429 0.439 0.403 0.418 0.512 0.493 0.430 0.439
336 0.432 0.435 0.452 0.452 0.460 0.458 0.594 0.541 0.427 0.436 0.430 0.439 0.496 0.487 0.455 0.458 0.552 0.551 0.485 0.479
720 0.430 0.442 0.462 0.468 0.442 0.451 0.831 0.657 0.436 0.450 0.428 0.451 0.463 0.474 0.470 0.477 0.562 0.560 0.500 0.497
Avg 0.396 0.413 0.413 0.426 0.398 0.415 0.559 0.515 0.391 0.411 0.383 0.410 0.437 0.449 0.414 0.432 0.526 0.516 0.439 0.452

E
T

T
m

1 96 0.329 0.371 0.340 0.377 0.393 0.398 0.345 0.372 0.352 0.374 0.350 0.369 0.379 0.419 0.336 0.373 0.386 0.398 0.375 0.398
192 0.380 0.398 0.406 0.408 0.412 0.405 0.380 0.389 0.390 0.393 0.387 0.387 0.426 0.441 0.381 0.399 0.459 0.444 0.408 0.410
336 0.418 0.425 0.424 0.425 0.442 0.425 0.413 0.413 0.421 0.414 0.418 0.407 0.445 0.459 0.411 0.418 0.495 0.464 0.435 0.428
720 0.476 0.440 0.485 0.461 0.502 0.457 0.474 0.453 0.462 0.449 0.477 0.437 0.543 0.490 0.478 0.454 0.585 0.516 0.499 0.462
Avg 0.401 0.409 0.414 0.418 0.437 0.421 0.403 0.407 0.406 0.407 0.408 0.400 0.448 0.452 0.402 0.411 0.481 0.456 0.429 0.425

E
T

T
m

2 96 0.189 0.266 0.185 0.264 0.193 0.281 0.193 0.292 0.183 0.270 0.185 0.271 0.203 0.287 0.230 0.307 0.192 0.274 0.189 0.280
192 0.253 0.307 0.252 0.306 0.254 0.315 0.284 0.363 0.255 0.314 0.250 0.312 0.269 0.328 0.284 0.338 0.280 0.339 0.253 0.319
336 0.315 0.345 0.323 0.350 0.320 0.355 0.369 0.427 0.309 0.347 0.314 0.351 0.325 0.366 0.340 0.370 0.334 0.361 0.314 0.357
720 0.421 0.408 0.415 0.403 0.426 0.416 0.554 0.522 0.412 0.404 0.410 0.408 0.421 0.415 0.436 0.420 0.417 0.413 0.414 0.413
Avg 0.295 0.331 0.294 0.331 0.298 0.342 0.350 0.401 0.290 0.334 0.290 0.335 0.305 0.349 0.323 0.359 0.306 0.347 0.293 0.342

I
L

I

24 1.921 0.898 2.072 0.948 2.589 1.054 2.398 1.040 2.229 0.894 5.259 1.689 3.228 1.260 3.371 1.231 2.294 0.945 2.527 1.020
36 2.151 0.933 2.494 1.019 2.996 1.194 2.646 1.088 2.330 0.925 6.136 1.831 2.679 1.080 3.725 1.322 1.825 0.848 2.615 1.007
48 2.062 0.892 2.298 0.964 2.714 1.095 2.614 1.086 2.140 0.894 4.670 1.562 2.622 1.078 3.291 1.237 2.010 0.900 2.359 0.972
60 1.759 0.853 2.198 0.963 2.605 1.050 2.804 1.146 2.037 0.912 4.402 1.517 2.857 1.157 2.907 1.136 2.178 0.963 2.487 1.016

Avg 1.973 0.894 2.266 0.974 2.726 1.098 2.616 1.090 2.184 0.906 5.117 1.650 2.847 1.144 3.324 1.232 2.077 0.914 2.497 1.004

E
C

L

96 0.167 0.271 0.169 0.273 0.207 0.292 0.197 0.282 0.190 0.296 0.186 0.273 0.193 0.308 0.218 0.309 0.169 0.273 0.187 0.304
192 0.178 0.280 0.186 0.288 0.209 0.297 0.196 0.285 0.199 0.304 0.190 0.278 0.201 0.315 0.220 0.311 0.182 0.286 0.199 0.315
336 0.198 0.302 0.206 0.305 0.224 0.312 0.209 0.301 0.217 0.319 0.204 0.291 0.214 0.329 0.234 0.323 0.200 0.304 0.212 0.329
720 0.233 0.344 0.231 0.327 0.277 0.359 0.245 0.333 0.258 0.352 0.245 0.297 0.325 0.355 0.276 0.354 0.222 0.321 0.233 0.345
Avg 0.194 0.299 0.198 0.298 0.229 0.315 0.212 0.300 0.216 0.318 0.206 0.285 0.214 0.327 0.237 0.324 0.193 0.296 0.208 0.323

T
ra

f
f

ic

96 0.587 0.315 0.589 0.313 0.609 0.402 0.650 0.396 0.526 0.347 0.563 0.378 0.587 0.366 0.589 0.390 0.612 0.338 0.607 0.392
192 0.612 0.326 0.627 0.337 0.586 0.382 0.598 0.370 0.522 0.332 0.549 0.367 0.604 0.373 0.567 0.380 0.613 0.340 0.621 0.399
336 0.634 0.338 0.635 0.341 0.593 0.390 0.605 0.373 0.517 0.334 0.566 0.376 0.621 0.383 0.583 0.389 0.618 0.328 0.622 0.396
720 0.640 0.351 0.658 0.349 0.636 0.405 0.645 0.394 0.552 0.352 0.567 0.372 0.626 0.382 0.585 0.391 0.653 0.355 0.632 0.396
Avg 0.618 0.333 0.627 0.335 0.606 0.395 0.625 0.383 0.529 0.341 0.561 0.373 0.610 0.376 0.581 0.388 0.624 0.340 0.621 0.396

Average 0.574 0.427 0.618 0.442 0.681 0.468 0.686 0.483 0.600 0.436 0.964 0.525 0.701 0.489 0.756 0.491 0.633 0.465 0.662 0.473

Sample Reweighting Illustration. Figures 11, 10, 12, and 13 display the learned weighting network
applied to various datasets: MSL for anomaly detection, Weather for forecasting, ETTh1 for imputation, and
PEMS-SF for classification. These visualizations corroborate our hypothesis: the sample weight ωO increases
with the prediction loss lO, while the weight ωI decreases as lO increases. This observed pattern supports the
efficacy of our reweighting strategy.

Static Weighting Scheme. We also explore a static weighting scheme as a contrast to the dynamic
weighting used in our sample reweighting module. This scheme balances the prediction loss and mutual
information loss, with a ratio of 0.0 representing pure prediction loss and 1.0 representing pure mutual
information loss. As shown in Table 18, the static approach underperforms relative to our dynamic sample
weighting module, demonstrating the superior effectiveness of our method.

A.12.1 Comprehensive Results.

The detailed performance of various traditional TS models and LLMs is presented in Table 16 and Table 17.
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Table 13: Full results for the imputation task. Randomly masked {12.5%, 25%, 37.5%, 50%} of points in
96-length series, averaging results over 4 mask ratios.

Methods LLM-TS TimesNet GPT4TS PatchTST LightTS DLinear FEDformer Stationary Autoformer Reformer
Mask Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 12.5% 0.018 0.088 0.023 0.101 0.018 0.089 0.041 0.130 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144 0.042 0.146
25% 0.022 0.097 0.023 0.101 0.023 0.099 0.044 0.135 0.093 0.206 0.080 0.193 0.052 0.166 0.032 0.119 0.046 0.144 0.042 0.146

37.5% 0.027 0.108 0.029 0.112 0.030 0.112 0.049 0.143 0.113 0.231 0.103 0.219 0.069 0.191 0.039 0.131 0.057 0.161 0.063 0.182
50% 0.033 0.120 0.035 0.123 0.042 0.131 0.055 0.151 0.134 0.255 0.132 0.248 0.089 0.218 0.047 0.145 0.067 0.174 0.082 0.208
Avg 0.025 0.103 0.028 0.109 0.028 0.108 0.047 0.140 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.150 0.055 0.166

E
T

T
m

2 12.5% 0.018 0.079 0.019 0.081 0.019 0.078 0.108 0.239 0.034 0.127 0.062 0.166 0.056 0.159 0.021 0.088 0.023 0.092 0.108 0.228
25% 0.020 0.085 0.021 0.087 0.021 0.084 0.028 0.099 0.042 0.143 0.085 0.196 0.080 0.195 0.024 0.096 0.026 0.101 0.136 0.262

37.5% 0.022 0.089 0.023 0.092 0.024 0.090 0.030 0.104 0.051 0.159 0.106 0.222 0.110 0.231 0.027 0.103 0.030 0.108 0.175 0.300
50% 0.025 0.096 0.025 0.097 0.027 0.098 0.034 0.110 0.059 0.174 0.131 0.247 0.156 0.276 0.030 0.108 0.035 0.119 0.211 0.329
Avg 0.021 0.087 0.022 0.089 0.023 0.088 0.029 0.102 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105 0.157 0.280

E
T

T
h

1

12.5% 0.058 0.165 0.064 0.170 0.043 0.141 0.093 0.201 0.240 0.345 0.151 0.267 0.070 0.190 0.060 0.165 0.074 0.182 0.074 0.194
25% 0.077 0.189 0.082 0.192 0.056 0.159 0.107 0.217 0.265 0.364 0.180 0.292 0.106 0.236 0.080 0.189 0.090 0.203 0.102 0.227

37.5% 0.096 0.209 0.098 0.209 0.074 0.182 0.120 0.230 0.296 0.382 0.215 0.318 0.124 0.258 0.102 0.212 0.109 0.222 0.135 0.261
50% 0.118 0.228 0.116 0.226 0.104 0.214 0.141 0.248 0.334 0.404 0.257 0.347 0.165 0.299 0.133 0.240 0.137 0.248 0.179 0.298
Avg 0.087 0.198 0.090 0.199 0.069 0.174 0.115 0.224 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214 0.122 0.245

E
T

T
h

2

12.5% 0.039 0.131 0.040 0.132 0.041 0.129 0.057 0.152 0.101 0.231 0.100 0.216 0.095 0.212 0.042 0.133 0.044 0.138 0.163 0.289
25% 0.046 0.143 0.048 0.146 0.046 0.137 0.061 0.158 0.115 0.246 0.127 0.247 0.137 0.258 0.049 0.147 0.050 0.149 0.206 0.331

37.5% 0.053 0.154 0.055 0.156 0.053 0.148 0.067 0.166 0.126 0.257 0.158 0.276 0.187 0.304 0.056 0.158 0.060 0.163 0.252 0.370
50% 0.061 0.165 0.061 0.165 0.060 0.160 0.073 0.174 0.136 0.268 0.183 0.299 0.232 0.341 0.065 0.170 0.068 0.173 0.316 0.419
Avg 0.050 0.148 0.051 0.150 0.050 0.144 0.065 0.163 0.119 0.250 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156 0.234 0.352

E
C

L

12.5% 0.087 0.203 0.090 0.204 0.080 0.194 0.055 0.160 0.102 0.229 0.092 0.214 0.107 0.237 0.093 0.210 0.089 0.210 0.190 0.308
25% 0.091 0.207 0.092 0.209 0.087 0.203 0.065 0.175 0.121 0.252 0.118 0.247 0.120 0.251 0.097 0.214 0.096 0.220 0.197 0.312

37.5% 0.095 0.213 0.096 0.213 0.094 0.211 0.076 0.344 0.141 0.273 0.144 0.276 0.136 0.266 0.102 0.220 0.104 0.229 0.203 0.315
50% 0.101 0.220 0.102 0.221 0.101 0.220 0.091 0.208 0.160 0.293 0.175 0.305 0.158 0.284 0.108 0.228 0.113 0.239 0.210 0.319
Avg 0.094 0.211 0.095 0.212 0.091 0.207 0.072 0.183 0.131 0.262 0.132 0.260 0.130 0.259 0.100 0.218 0.101 0.225 0.200 0.313

W
ea

th
er

12.5% 0.026 0.048 0.025 0.047 0.027 0.049 0.029 0.049 0.047 0.101 0.039 0.084 0.041 0.107 0.027 0.051 0.026 0.047 0.031 0.076
25% 0.029 0.055 0.031 0.062 0.030 0.054 0.031 0.053 0.052 0.111 0.048 0.103 0.064 0.163 0.029 0.056 0.030 0.054 0.035 0.082

37.5% 0.032 0.059 0.034 0.064 0.034 0.062 0.035 0.058 0.058 0.121 0.057 0.117 0.107 0.229 0.033 0.062 0.032 0.060 0.040 0.091
50% 0.033 0.061 0.035 0.062 0.037 0.066 0.038 0.063 0.065 0.133 0.066 0.134 0.183 0.312 0.037 0.068 0.037 0.067 0.046 0.099
Avg 0.030 0.056 0.031 0.059 0.032 0.058 0.060 0.144 0.055 0.117 0.052 0.110 0.099 0.203 0.032 0.059 0.031 0.057 0.038 0.087

Table 14: Complete classification task results. ∗. in the Transformers indicates the name of ∗former.

Methods Classical RNN TCN Transformers MLP TimesNet LLM LLM-TSXGB Roc LSTNet LSSL Trans. Re. In. Pyra. Auto. Station. FED. ETS. Flow. DL LTS. GPT4TS TEST

Ethanol 43.7 45.2 39.9 31.1 28.9 32.7 31.9 31.6 30.8 31.6 32.7 31.2 28.1 33.8 32.6 29.7 30.4 26.2 25.1 31.9
FaceD 63.3 64.7 65.7 66.7 52.8 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 68.0 67.5 68.6 67.8 50.1 68.9

HandW 15.8 58.8 25.8 24.6 53.3 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 27.0 26.1 32.1 28.9 20.1 32.7
HeartB 73.2 75.6 77.1 72.7 75.6 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.1 75.1 77.6 72.2 73.7 77.1
JapanV 86.5 96.2 98.1 98.4 98.9 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.2 96.2 97.2 98.4 78.4 98.1
PEMS 98.3 75.1 86.7 86.1 68.8 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 75.1 88.4 89.6 79.2 59.5 90.8
SCP1 84.6 90.8 84.0 90.8 84.6 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 87.3 89.8 90.4 90.1 84.0 91.8
SCP2 48.9 53.3 52.8 52.2 55.6 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 50.5 51.1 57.1 50.0 54.4 57.8

SpokenA 69.6 71.2 100.0 100.0 95.6 98.4 97.0 100.0 99.6 100.0 100.0 100.0 100.0 98.8 81.4 100.0 98.6 97.9 82.1 98.6
UWave 75.9 94.4 87.8 85.9 88.4 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 82.1 80.3 85.5 85.6 84.4 86.6

Avg 66.0 72.5 71.8 70.9 70.3 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 67.5 70.4 72.7 69.5 61.2 73.4

Table 15: Full results for the anomaly detection.

Methods SMD MSL SMAP SWaT PSM Avg F1
Metrics P R F1 P R F1 P R F1 P R F1 P R F1 %

LLM-TS 88.09 81.54 84.69 89.04 74.49 81.11 89.95 56.51 69.41 91.16 95.40 93.23 98.44 96.45 97.43 85.17
TimesNet 87.93 81.45 84.57 88.62 73.48 80.34 89.59 56.35 69.18 91.00 95.33 93.12 98.40 96.18 97.27 84.90
GPT4TS 87.70 81.19 84.32 82.15 81.32 81.73 90.04 55.75 68.86 92.12 93.06 92.59 98.37 96.34 97.34 84.97

PatchTST 87.26 82.14 84.62 88.34 70.96 78.70 90.64 55.46 68.82 91.10 80.94 85.72 98.84 93.47 96.08 82.79
ETSformer 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
FEDformer 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97

LightTS 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
DLinear 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46

Stationary 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
Autoformer 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
Pyraformer 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57

Anomaly Transformer 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Informer 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Reformer 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31

Transformer 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
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Table 16: Different traditional models. We use prediction length O ∈ {96, 192, 336, 720} for ILI and
O ∈ {24, 36, 48, 60} for others.

Methods PatchTST PatchTST INT ETSformer ETS INT Stationary Stat INT FreTS FreTS INT

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.174 0.216 0.172 0.214 0.196 0.282 0.200 0.285 0.178 0.226 0.201 0.246 0.187 0.243 0.179 0.235
192 0.222 0.258 0.219 0.255 0.282 0.364 0.278 0.361 0.235 0.278 0.238 0.280 0.227 0.274 0.221 0.278
336 0.280 0.298 0.279 0.298 0.344 0.409 0.322 0.382 0.327 0.339 0.312 0.329 0.281 0.325 0.276 0.320
720 0.356 0.349 0.356 0.348 0.430 0.472 0.427 0.470 0.387 0.383 0.386 0.383 0.352 0.382 0.344 0.376
Avg 0.258 0.280 0.257 0.279 0.313 0.382 0.307 0.375 0.282 0.307 0.284 0.309 0.262 0.306 0.255 0.302

E
T

T
h

1

96 0.381 0.398 0.382 0.401 0.554 0.536 0.550 0.532 0.534 0.499 0.523 0.486 0.398 0.412 0.395 0.409
192 0.421 0.426 0.422 0.428 0.686 0.619 0.690 0.621 0.639 0.560 0.609 0.560 0.454 0.449 0.455 0.451
336 0.464 0.449 0.460 0.441 0.869 0.730 0.868 0.728 0.790 0.648 0.780 0.634 0.512 0.483 0.502 0.474
720 0.527 0.500 0.510 0.496 1.085 0.849 1.054 0.830 0.706 0.620 0.701 0.606 0.572 0.547 0.560 0.530
Avg 0.448 0.443 0.444 0.442 0.799 0.684 0.791 0.678 0.667 0.582 0.653 0.572 0.484 0.473 0.478 0.466

E
T

T
m

1 96 0.332 0.368 0.332 0.372 0.526 0.495 0.424 0.434 0.417 0.417 0.412 0.410 0.340 0.375 0.339 0.374
192 0.368 0.388 0.367 0.388 0.565 0.538 0.458 0.461 0.446 0.437 0.445 0.435 0.395 0.408 0.384 0.399
336 0.397 0.405 0.396 0.405 0.658 0.603 0.537 0.519 0.582 0.507 0.570 0.491 0.431 0.433 0.420 0.423
720 0.457 0.445 0.460 0.446 0.801 0.696 0.802 0.696 0.661 0.546 0.660 0.546 0.494 0.470 0.484 0.462
Avg 0.389 0.402 0.389 0.403 0.638 0.583 0.555 0.528 0.527 0.477 0.522 0.471 0.415 0.422 0.407 0.415

I
L

I

24 2.229 0.894 2.172 0.856 4.043 1.410 3.607 1.305 2.722 1.024 1.905 0.872 3.226 1.231 3.202 1.213
36 2.330 0.925 2.347 0.978 3.809 1.358 3.705 1.315 3.026 1.071 2.790 1.068 3.363 1.259 3.000 1.173
48 2.140 0.894 1.984 0.869 3.851 1.351 3.714 1.309 2.622 1.032 2.132 0.900 3.456 1.285 3.132 1.213
60 2.037 0.912 1.770 0.831 3.983 1.349 3.935 1.350 2.520 1.035 1.991 0.901 3.749 1.340 3.298 1.243

Avg 2.184 0.906 2.068 0.884 3.922 1.367 3.740 1.320 2.722 1.041 2.205 0.935 3.449 1.279 3.158 1.211

Table 17: Different LLM embeddings. We use prediction length O ∈ {96, 192, 336, 720} for ILI and O ∈
{24, 36, 48, 60} for others.

Methods LLM-TS (LLaMA) LLaMA w/o text GPT2 BERT No LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.166 0.217 0.170 0.218 0.168 0.218 0.167 0.217 0.168 0.218
192 0.229 0.269 0.227 0.266 0.226 0.267 0.229 0.270 0.227 0.268
336 0.278 0.302 0.295 0.314 0.292 0.310 0.283 0.305 0.298 0.318
720 0.354 0.351 0.360 0.354 0.359 0.354 0.360 0.354 0.361 0.356
Avg 0.257 0.285 0.263 0.288 0.261 0.287 0.260 0.287 0.264 0.290

E
T

T
h

1

96 0.403 0.420 0.409 0.427 0.408 0.426 0.402 0.421 0.402 0.422
192 0.440 0.441 0.445 0.445 0.442 0.444 0.452 0.450 0.459 0.455
336 0.471 0.457 0.490 0.472 0.487 0.467 0.494 0.472 0.471 0.457
720 0.503 0.487 0.518 0.496 0.517 0.494 0.520 0.497 0.535 0.507
Avg 0.454 0.451 0.465 0.460 0.464 0.458 0.467 0.460 0.467 0.460

E
T

T
m

1 96 0.329 0.371 0.350 0.387 0.338 0.370 0.340 0.375 0.341 0.377
192 0.380 0.398 0.383 0.398 0.392 0.404 0.401 0.408 0.404 0.413
336 0.418 0.425 0.423 0.426 0.416 0.423 0.414 0.421 0.432 0.428
720 0.476 0.440 0.467 0.449 0.477 0.454 0.470 0.445 0.468 0.449
Avg 0.401 0.409 0.406 0.415 0.406 0.413 0.406 0.412 0.411 0.417

I
L

I

24 1.921 0.898 1.998 0.929 1.997 0.929 1.917 0.915 2.170 0.947
36 2.151 0.933 2.422 0.957 2.333 0.958 2.431 1.004 2.093 0.889
48 2.062 0.892 2.198 0.964 2.269 0.937 2.333 0.961 2.418 0.959
60 1.759 0.853 2.072 0.948 2.077 0.921 2.089 0.926 2.203 0.971

Avg 1.973 0.894 2.173 0.950 2.169 0.936 2.193 0.952 2.221 0.942

Table 18: Static Weighting Scheme with Different ratios.

Ratio 0.0 0.2 0.4 0.6 0.8 1.0 Ours

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET T h1 0.478 0.468 0.471 0.459 0.465 0.462 0.470 0.463 0.473 0.450 0.471 0.463 0.454 0.451

ET T m1 0.415 0.417 0.408 0.414 0.405 0.412 0.406 0.412 0.417 0.419 0.416 0.419 0.401 0.409
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Figure 10: Forecasting.
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Figure 11: Anomaly detection
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Figure 12: imputation.
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Figure 13: classification
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