
LLM and Simulation as Bilevel Optimizers:
A New Paradigm to Advance Physical Scientific

Discovery

Pingchuan Ma1, Tsun-Hsuan Wang1, Minghao Guo1, Zhiqing Sun2,
Joshua B. Tenenbaum1 3 4, Daniela Rus1, Chuang Gan5 6, Wojciech Matusik1

1MIT CSAIL, 2CMU LTI, 3MIT BCS, 4CBMM, 5UMass Amherst, 6MIT-IBM Watson AI Lab

Abstract

Large Language Models have recently gained significant attention in scientific
discovery for their extensive knowledge and advanced reasoning capabilities. How-
ever, they encounter challenges in effectively simulating observational feedback
and grounding it with language to propel advancements in physical scientific dis-
covery. Conversely, human scientists undertake scientific discovery by formulating
hypotheses, conducting experiments, and revising theories through observational
analysis. Inspired by this, we propose to enhance the knowledge-driven, abstract
reasoning abilities of LLMs with the computational strength of simulations. We
introduce Scientific Generative Agent (SGA), a bilevel optimization framework:
LLMs act as knowledgeable and versatile thinkers, proposing scientific hypotheses
and reason about discrete components, such as physics equations or molecule
structures; meanwhile, simulations function as experimental platforms, providing
observational feedback and optimizing via differentiability for continuous parts,
such as physical parameters. We conduct extensive experiments to demonstrate our
framework’s efficacy in constitutive law discovery and molecular design, unveil-
ing novel solutions that differ from conventional human expectations yet remain
coherent upon analysis.

1 Introduction

Physical science automation aims to accelerate discovery [55]. Key aspects of human scientific
process include: iterative hypothesis testing [40], discrete and continuous solution components [55],
knowledge exploitation with occasional exploration [58], and universal principles with discipline-
specific nuances [44]. LLMs excel as generalist tools with vast knowledge [1], aiding scientific
discovery through reasoning and natural language interfaces. However, they lack computational
capabilities crucial for physical sciences that requires specific domain knowledge.

To this end, inspired by the overarching philosophy of human scientists, we introduce Scientific
Generative Agent (SGA), a bilevel optimization approach wherein the outer-level engages LLMs
as knowledgeable and versatile thinkers for generating and revising scientific hypothesis, while the
inner-level involves simulations as experimental platforms for providing observational feedback.
Overall, our contributions are concluded as:

• We present a generic framework for physical scientific discovery that combines LLMs with physical
simulations.

• We propose a bilevel optimization with LLMs for discrete-space search-based optimization and
differentiable simulations for continuous-space gradient-based optimization.

• We conduct extensive experiments to demonstrate the effectiveness and generality of the proposed
framework in physics law discovery and molecular design.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Top-K Heap

Continuous Parameterization

Discrete Expression

Class Header

1 class Physics(nn.Module):

2 def __init__(self):

3 super().__init__()

4 self.a = ...

5 def forward(self, F):

6 F_new = self.a * F

7 return F_new

LLM

Next?

Exploit!

Explore!

Python Code

Continuous Parameterization

Discrete Expression

4 - self.a = ...

4 + self.b = ...

6 - F_new = self.a * F

6 + F_new = F / self.b

Simulation

Iteration

L
o

ss

Feedback

topk()

Outer-Level Optimization

Code Evaluation

Inner-Level Optimziation

append()

LLM-Driven Outer-Level Optimization Sim-Driven Inner-Level Optimization

t=0 t=1 t=2 t=3 t=0 t=1 t=2 t=3

Purely Elastic Material Weakly Compressible Fluid

Loss = 10.0 Loss = 0.1

i
n
i
t
(
)

t
o
p
1
(
)

Figure 1: The overall pipeline of Scientific Generative Agent (SGA). Taking the constitutive law
searching problem as an example, the input is an initial guess (a purely elastic material), and the
output is another constitutive law optimized towards the ground truth (weakly compressible fluid).

2 Scientific Generative Agent

SGA is a bilevel optimization framework where the upper level features LLMs as proposers of
scientific solutions, and the lower level utilizes simulations as experimental platforms for validation.
We illustrate the overall pipeline in Fig. 1.

2.1 Bilevel Optimization Pipeline

First, we describe the simulation as a process where a simulator takes in a scientific expression
and continuous components as inputs and gives simulated physical phenomenon and additional
observational feedback as outputs. Next, the LLM acts as a thinker to propose expressions based
on past experimental results from simulation. This process involves the LLM taking in a set of past
simulation results containing an evaluation of the scientific problem, other physical feedback, and
past proposals, along with a prompt. The LLM then outputs proposed expressions and continuous
parameterization for the decision variables. With these elements, we define a bilevel optimization
problem: the objective is to minimize the evaluation of the simulated physical phenomenon, which
depends on the proposed expression, continuous parameterization, and optimal continuous parameters.
The optimization problem has two levels: (i) the outer optimization searches for an expression that
defines what experiments to be conducted and continuous parameterization that defines the search
space of the inner continuous optimization; (ii) the inner optimization, which depends on the outer-
level variables, searches for the optimal continuous parameters given the proposed expression via
differentiable simulation. We detail the complete algorithm with a python-like pseudo-code in Alg. 1.

2.2 LLM-Driven Outer-Level Search

LLM-driven Optimization LLMs are effective for generic optimization through prompting and
context [60, 43]. Inspired by [31], we use evolutionary search with multiple offspring per iteration.
Our approach selects several high-performing candidates, enhancing hypothesis feasibility and
facilitating crossover, with LLMs generating new hypotheses from past experiments [43].

2

Table 1: Benchmark. We use column #Iter. as the number of iterations, #Hist. as the K value for
the top-k retrieval, #Exploit

#Explore as the number of offspring for exploitation versus exploration, Bilevel as
if bilevel optimization is enabled. The best method with the lowest loss is highlighted in bold text.

Method #Iter. #Hist. #Exploit
#Explore Bilevel Constitutive Law Search Molecule Design

(a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓ (h) ↓
CoT 1 5 N/A ✗ 298.5 1462.3 150.0 384.1 3.0 32.1 18.6 6.0
FunSearch 20 2 0 / 4 ✗ 210.3 872.2 82.8 139.5 1.1 7.1 8.3 1.1
Eureka 5 1 0 / 16 ✗ 128.0 531.0 101.7 150.1 4.3 9.8 3.3 9.7e-1
OPRO 5 5 0 / 16 ✗ 136.2 508.3 99.2 128.8 2.4 9.4 3.1 1.3

Ours (no bilevel) 5 5 4 / 12 ✗ 90.2 517.0 83.6 68.4 8.6e-1 9.1 1.8 1.4
Ours (no exploit) 5 5 0 / 16 ✓ 3.0e-3 3.9e-1 6.6e-2 1.4e-12 4.0e-4 1.5e-1 6.1e-1 2.8e-5
Ours 5 5 4 / 12 ✓ 5.2e-5 2.1e-1 6.0e-2 1.4e-12 1.3e-4 1.1e-1 5.4e-1 3.6e-5

Interfacing with Simulation Integrating LLMs with simulation requires efficient, structured com-
munication. We use equation searching and entity searching for LLM-to-simulation communication,
unified as an abstraction. Equation searching allows LLMs to propose equations and search spaces,
while entity searching focuses on structural descriptions. For simulation-to-LLM communication, we
use expert knowledge to extract relevant information as feedback, similar to a senior scientist guiding
a junior colleague. The inner optimization results also serve as feedback from simulation to LLMs,
detailed in the next section.

Exploitation and Exploration We employ an exploit-and-explore strategy by adjusting LLMs’
decoding temperature [60], mimicking human scientists’ approach to breakthroughs. When generating
offspring, we divide them into two groups: cautious followers (exploit) and daring adventurers
(explore). We observed that the exploit group often repeats previous solutions, while the explore
group tends to yield overly random or invalid solutions. A 1:3 ratio between exploit and explore
groups has proven effective emperically based our experiments.

2.3 Differentiable Inner-Level Optimization

Inner optimization uses gradient-based methods to find optimal parameters within the search space
defined by the outer level. Domain-specific knowledge is distilled through gradients from the
simulation to intermediate optimization results. These results, along with the final output, are fed
back to LLMs for solution refinement. The feedback may include loss curves and auxiliary recordings,
providing information on various aspects of improvement.

3 Experiments

3.1 Problem Definitions

Constitutive Law Discovery Identifying the constitutive law from motion observations stands
as one of the most difficult challenges in fields such as physics, material science, and mechanical
engineering. Here we follow the recent advances in physical simulation and formulate the constitutive
law discovery task as an optimization problem [29].

Molecule Design We focus on a prevalent task in molecule design: discovering molecules with
specific quantum mechanical properties. Our objective is to determine the optimal molecular structure
and its 3D conformation to match a predefined target quantum mechanical property. The design
process involves both the discrete expression – the molecular structure represented by SMILES
strings [57], and the continuous parameters – the 3D coordinates of each atom in the molecule.

3.2 Experiment Setup

We design a diverse set of challenging tasks for evaluation. For constitutive law discovery, we propose
4 tasks including: (a) fitting the non-linear elastic material starting from a linear elastic material,
(b) fitting the von Mises plastic material starting from a purely elastic material, (c) fitting the granular
material starting from a purely elastic material, and (d) fitting the weakly compressible fluid starting

3

1 2 3 4 5
Iteration

0

100

200

300

400

500

600

Lo
ss

1 2 3 4 5
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

FunSearch Eureka OPRO Ours

Z
o

o
m

 I
n

(a) Loss trends comparison.

1 2 3 4 5
Iteration

10−1

100

101

Lo
ss

outer optim (LLM)
inner optim (sim)
w/o bilevel
w/ bilevel (pre-inner-optim)
w/ bilevel (ours)

(b) Bilevel optimization.

from a purely elastic material. For molecular design task, we consider 4 popular tasks, centering
on 3 commonly evaluated quantum mechanical properties [13, 65]: (e) HOMO (Highest Occupied
Molecular Orbital) set to 0, (f) LUMO (Lowest Unoccupied Molecular Orbital) set to 0, (g) the
HOMO-LUMO energy gap set to 0, and (h) the HOMO-LUMO energy gap set to -2.

3.3 Physical Scientific Discovery

We consider 6 strong baselines for evaluation: (i) Chain-of-Thoughts (CoT) prompting [56] solves
the problem by looking at step-by-step solutions from examples. We provide 5 examples with an
explanation to CoT as the initial solution. (ii) FunSearch [43] utilizes evolutionary strategy to
avoid local optimum. We adopt the given hyperparameters from the original implementation with
2 optimization histories and 4 explorers. We set the number of iterations to 20, yielding the same
number of solutions evaluated, for a fair comparison to other methods. (iii) Eureka [31] generates
multiple solutions in each iteration to improve the success rate of the generated code. We keep the
hyperparameters from the original implementation. (iv) Optimization by PROmpting (OPRO) [60]
highlights the advantages of involving a sorted optimization trajectory. We set the hyperparameters to
be equal to Eureka except for the number of historical optimization steps. In all these works (i-iv),
we notice the temperatures for LLM inference are all 1.0, which is equal to the exploring temperature
in our method, so we denote them with 0 exploiter. We also consider 2 variants of our method: (v)
Ours (no bilevel) removes the bilevel optimization by only searching with LLM. (vi) Ours (no
exploit) removes the exploitation by setting the temperature to 1.0 all the time.

We present our experiments against the 8 designed tasks and show the results in Table 1. Compared
to baselines (i-iv), our method is significantly better by a number of magnitudes. When the bilevel
optimization is removed from our method, the performance drops dramatically, but still statistically
better than baselines (i-iv), indicating the choice of hyperparameters and the integration of exploitation
is helpful for the task. When we remove the exploitation but restore the bilevel optimization, we
notice the performance grows back. It has comparable performance compared to our method in
(d) or even better results in (h). However, in some tasks, especially hard ones (e.g., (b) and (f))
that we care more in reality, the performance gap is over 50%, indicating the effectiveness of our
exploit-and-explore strategy. We also present the loss trend in task (a) in Figure 2a, our method
outstands with a much lower loss and a converging trend. We present more experiments in Sec. C.

3.4 Bilevel Optimization

Here we evaluate the importance of bilevel optimization in Figure 2b using the task (h). Comparing
the blue triangle curve and the red dot curve, which represent the LLM-driven outer-level optimization
and the simulation-driven inner-level optimization, it is easy to conclude that the loss performance
with bilevel optimization is better. Nevertheless, we are also interested in how bilevel optimization
works inside each optimization step and how much LLMs and simulations help respectively. As
shown as a zigzag curve, we found that LLMs and simulations help each other over all optimization
steps: the next proposal from LLMs will be better with simulation-optimized results, and vice versa.
We argue that LLMs and simulations have different expertise: LLMs are generalist scientists who have
cross-discipline knowledge, while simulations are domain experts who have specialized knowledge.

4

References
[1] Microsoft Research AI4Science and Microsoft Azure Quantum. The impact of large lan-

guage models on scientific discovery: a preliminary study using gpt-4. arXiv preprint
arXiv:2311.07361, 2023.

[2] Anthropic. Introducing the next generation of claude, 2024.

[3] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression genetic
programming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, pages 879–886, 2014.

[4] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Under-
standing and simplifying one-shot architecture search. In International conference on machine
learning, pages 550–559. PMLR, 2018.

[5] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Paras-
candolo. Neural symbolic regression that scales. In International Conference on Machine
Learning, pages 936–945. Pmlr, 2021.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations, 2019.

[8] Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models
as tool makers. In International Conference on Learning Representations, 2024.

[9] William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason Moore. Learning
concise representations for regression by evolving networks of trees. In International Conference
on Learning Representations, 2019.

[10] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[11] Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization.
Annals of operations research, 153:235–256, 2007.

[12] Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech
Matusik. Diffpd: Differentiable projective dynamics. ACM Transactions on Graphics (TOG),
41(2):1–21, 2021.

[13] Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan
Wang, Hua Wu, and Haifeng Wang. Geometry-enhanced molecular representation learning for
property prediction. Nature Machine Intelligence, 4(2):127–134, 2022.

[14] Thomas A Halgren. Merck molecular force field. i. basis, form, scope, parameterization, and
performance of mmff94. Journal of computational chemistry, 17(5-6):490–519, 1996.

[15] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation: Advances in the estimation of distribution algorithms, pages 75–102, 2006.

[16] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[17] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

[18] Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. Bayesian symbolic regression.
arXiv preprint arXiv:1910.08892, 2019.

5

[19] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

[20] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, San Diega, CA, USA, 2015.

[21] Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affenzeller. Parameter
identification for symbolic regression using nonlinear least squares. Genetic Programming and
Evolvable Machines, 21(3):471–501, 2020.

[22] Stefan Kramer, Mattia Cerrato, Sašo Džeroski, and Ross King. Automated scientific discovery:
From equation discovery to autonomous discovery systems. arXiv preprint arXiv:2305.02251,
2023.

[23] William La Cava, Thomas Helmuth, Lee Spector, and Jason H Moore. A probabilistic and multi-
objective analysis of lexicase selection and ε-lexicase selection. Evolutionary Computation,
27(3):377–402, 2019.

[24] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio de Franca, Marco Virgolin,
Ying Jin, Michael Kommenda, and Jason Moore. Contemporary symbolic regression methods
and their relative performance. In Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, 2021.

[25] Greg Landrum et al. Rdkit: A software suite for cheminformatics, computational chemistry,
and predictive modeling. Greg Landrum, 8:31, 2013.

[26] Wenqiang Li, Weijun Li, Linjun Sun, Min Wu, Lina Yu, Jingyi Liu, Yanjie Li, and Songsong
Tian. Transformer-based model for symbolic regression via joint supervised learning. In The
Eleventh International Conference on Learning Representations, 2022.

[27] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.
In International Conference on Learning Representations, 2019.

[28] Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A general descent
aggregation framework for gradient-based bi-level optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):38–57, 2022.

[29] Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics. In International Conference on Machine Learning. PMLR, 2023.

[30] Pingchuan Ma, Tao Du, Joshua B Tenenbaum, Wojciech Matusik, and Chuang Gan. Risp:
Rendering-invariant state predictor with differentiable simulation and rendering for cross-
domain parameter estimation. In International Conference on Learning Representations, 2021.

[31] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design
via coding large language models. In International Conference on Learning Representations,
2024.

[32] Miles Macklin. Warp: A high-performance python framework for gpu simulation and graphics,
March 2022. NVIDIA GPU Technology Conference.

[33] Trent McConaghy. Ffx: Fast, scalable, deterministic symbolic regression technology. Genetic
Programming Theory and Practice IX, pages 235–260, 2011.

[34] T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel M. Fais-
sol, and Brenden K. Petersen. Symbolic regression via neural-guided genetic programming
population seeding. In Advances in Neural Information Processing Systems, 2021.

[35] OpenAI. OpenAI: Introducing ChatGPT, 2022.

[36] OpenAI. OpenAI: GPT-4, 2023.

6

[37] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[39] Brenden K Petersen, Mikel Landajuela Larma, Terrell N Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gradients. In International Conference on Learning
Representations, 2020.

[40] Karl Popper. The logic of scientific discovery. Routledge, 2005.

[41] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,
2014.

[42] Sereina Riniker and Gregory A Landrum. Better informed distance geometry: using what we
know to improve conformation generation. Journal of chemical information and modeling,
55(12):2562–2574, 2015.

[43] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, pages 1–3, 2023.

[44] Alex Rosenberg and Lee McIntyre. Philosophy of science: A contemporary introduction.
Routledge, 2019.

[45] Robert E Schapire. The boosting approach to machine learning: An overview. Nonlinear
estimation and classification, pages 149–171, 2003.

[46] Gisbert Schneider. Automating drug discovery. Nature reviews drug discovery, 17(2):97–113,
2018.

[47] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Evolutionary algorithm for bilevel optimization
using approximations of the lower level optimal solution mapping. European Journal of
Operational Research, 257(2):395–411, 2017.

[48] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: From
classical to evolutionary approaches and applications. IEEE Transactions on Evolutionary
Computation, 22(2):276–295, 2017.

[49] Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive ar-
chitectures for language agents. Transactions on Machine Learning Research, 2024. Survey
Certification.

[50] Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

[51] Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in
Neural Information Processing Systems, 33:4860–4871, 2020.

[52] Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative
transformer model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

[53] Marco Virgolin, Tanja Alderliesten, and Peter AN Bosman. Linear scaling with and within
semantic backpropagation-based genetic programming for symbolic regression. In Proceedings
of the genetic and evolutionary computation conference, pages 1084–1092, 2019.

7

[54] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter AN Bosman. Improving
model-based genetic programming for symbolic regression of small expressions. Evolutionary
computation, 29(2):211–237, 2021.

[55] Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal
Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the
age of artificial intelligence. Nature, 620(7972):47–60, 2023.

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

[57] David Weininger. Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of chemical information and computer sciences,
28(1):31–36, 1988.

[58] Mignon Wuestman, Jarno Hoekman, and Koen Frenken. A typology of scientific breakthroughs.
Quantitative Science Studies, 1(3):1203–1222, 2020.

[59] Chao Xue, Xiaoxing Wang, Junchi Yan, Yonggang Hu, Xiaokang Yang, and Kewei Sun.
Rethinking bi-level optimization in neural architecture search: A gibbs sampling perspective.
In AAAI Conference on Artificial Intelligence, volume 35, pages 10551–10559, 2021.

[60] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In International Conference on Learning Repre-
sentations, 2024.

[61] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik R Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. In Conference on Neural Information Processing Systems, 2023.

[62] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. ReAct: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations, 2023.

[63] Naruki Yoshikawa, Kei Terayama, Masato Sumita, Teruki Homma, Kenta Oono, and Koji Tsuda.
Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters,
47(11):1431–1434, 2018.

[64] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large
language models using sglang. arXiv preprint arXiv:2312.07104, 2023.

[65] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
In International Conference on Learning Representations, 2023.

[66] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific reports, 9(1):10752, 2019.

A Related Work

A.1 Automated Scientific Discovery

Automated scientific discovery, enhanced by machine learning methods, serves as a powerful ac-
celerator for research, enabling scientists to generate hypotheses, design experiments, interpret vast
datasets, and unearth insights that may elude traditional scientific methodologies [1, 22, 55]. This
multifaceted process unfolds through two synergistically linked stages: hypothesis formation and the
collection and analysis of experimental data. The integration of automated systems not only augments
the scientific inquiry process but also streamlines the discovery pipeline, from conceptualization to
empirical validation. This paper places a particular emphasis on, but is not limited to, constitutive

8

Algorithm 1 Scientific Generative Agent
Require: Discrete expression and continuous param (E,θ ∈ Θ), Num of exploiting Ml, Num of exploring

Mh, Exploiting temperature Tl, Exploring temperature Th

1: # Store ranked (solution,param) by heap
2: H ← heap()
3: # Continuous optimization
4: θ̂ ← optim(E,θ;Φ)
5: H.append((E,θ̂))
6: for i = 1, . . . , N do
7: # Generate Ml solutions from LLM
8: (E,Θ)[:Ml] ← LLM(H.topk(K),Tl)
9: # Generate Mh solutions from LLM

10: (E,Θ)[Ml:Ml+Mh] ← LLM(H.topk(K),Th)
11: for m = 1, . . . ,Ml +Mh do
12: # Continuous optimization
13: θ̂ ← optim(E,θ ∈ Θ;Φ)
14: H.append((E,θ̂))
15: end for
16: end for
Ensure: H.topk(1) # Return the best

law discovery and molecular design. These areas exemplify the profound impact of automation
in unraveling complex material behaviors and in the innovative design of molecules with tailored
properties. Automatic identification of constitutive material models has been a long-standing problem
and recent works utilizes differentiable simulation [12, 29, 30] to address it as a system identification
problem. Leveraging machine learning and artificial intelligence, researchers are able to predict
molecular behavior, optimize chemical structures for specific functions, and thus, rapidly accelerate
the development of new drugs, materials, and chemicals [17, 66, 46].

A.2 Large Language Models and Agents

The advancement of Large Language Models (LLMs) such as ChatGPT and GPT-4 has sparked
considerable interest in their potential as autonomous agents [6, 35, 36]. Recent developments have
shown that LLMs can be enhanced to solve complex problems by creating and utilizing their own
tools, as demonstrated in the LATM framework [49], and by acting as optimizers in the absence of
gradients, as seen in the OPRO methodology [60]. These approaches signify a shift towards more
independent and versatile LLM-based agents capable of generating solutions through self-crafted
tools and optimization techniques [8, 62, 61], showcasing their evolving problem-solving capabilities.
In the realm of scientific discovery, LLMs have begun to make significant contributions, particularly
in mathematics and computational problems. The FunSearch method [43] pairs LLMs with evaluators
to exceed known results in extremal combinatorics and online bin packing, illustrating LLMs’ ability
to discover new solutions to established problems. Similarly, AlphaGeometry’s success [50] in
solving olympiad-level geometry problems without human demonstrations highlights the potential of
LLMs in automating complex reasoning tasks. These examples underline the transformative impact
of LLMs in pushing the boundaries of scientific inquiry and automated reasoning.

A.3 Bilevel Optimization

Bilevel optimization involves a hierarchical structure with two levels of optimization problems,
where the solution to the upper-level problem is contingent upon the outcome of the lower-level
problem [11]. Bilevel optimization problems are inherently more complex than their single-level
counterparts due to the nested nature of the optimization tasks and the intricate interdependencies
between them. Recent advancements have focused on developing efficient algorithms, including
evolutionary algorithms [48], gradient-based approaches [28], and approximation techniques [47], to
tackle the computational challenges presented by the non-convex and non-differentiable characteristics
of many bilevel problems. Among a wide span of application domains of bilevel optimization, neural
architecture search (NAS) [27, 4, 7, 59] is prominent and close to the problem setting in this paper:
the upper level optimizes the discrete neural network architecture while the lower level optimizes

9

Table 2: Symbolic Regression.
Method R2 ↑ MSE ↓ MAE ↓ Symbolic
AIFeynman [51] 0.05105 22814675.8 2520.0 ✓
DSR [39] 0.57527 10966411.0 2045.0 ✓
BSR [18] 0.66526 8642965.0 1938.6 ✓
AdaBoost [45] 0.75058 6439962.9 1777.7 ✗
GP-GOMEA [54] 0.77734 5749076.4 1580.1 ✓
SBP-GP [53] 0.81773 4706077.0 1367.5 ✓
LightGBM [19] 0.83368 4294433.7 1129.9 ✗
XGBoost [10] 0.87775 3156500.5 1109.2 ✗
MRGP [3] 0.91074 2304682.5 950.5 ✓
EPLEX [23] 0.91851 2104070.1 122.2 ✓
FFX [33] 0.93124 1775263.7 801.7 ✓
MLP 0.98240 454461.5 366.3 ✗
FEAT [9] 0.98761 319800.6 336.1 ✓
DSO [34] 0.99642 92374.9 168.6 ✓
Operon [21] 0.99684 81577.9 92.4 ✓
SymbolicGPT [52] 0.52333 6862154.7 1680.7 ✓
NeSymReS [5] N/A to >3 variables ✓
T-JSL [26] N/A to >2 variables ✓

Ours 0.99901 17424.6 86.4 ✓

the continuous weights of the neural network. However, typical NAS methods require a predefined
search space, constraining the exploration of discrete network architectures to manually specified
boundaries. Our framework distinguishes itself by employing LLM encoded with general knowledge
and gets rid of the limitations imposed by manual design constraints.

B More Explanations

B.1 Implementation Details

We run all our experiments 5 times with different random seeds following previous practices [31].
Due to the complexity of the task, we provide a simple bootstrapping example of a valid design to
ensure the success rate. We use warp [32] for the differentiable MPM simulation, and we develop our
inner-level optimization upon PyTorch [38]. In all our experiments, we use mean square error as the
criteria and Adam optimizer [20]. We choose gpt-4-turbo-preview as the backbone model for
LLM and tentatively set the exploiting temperature Tl = 0.5 and exploring temperature Th = 1.0.

For the generation of 3D conformations, we utilize the ETKGD algorithm [42] followed by op-
timization using the Merck Molecular Force Field (MMFF) [14], both implemented within the
RDKit [25]. To get the quantum mechanical property values, we employ UniMol [65], a pre-trained
transformer-based large model, which has been fine-tuned on the QM9 dataset [41].

B.2 Algorithm

We attach the full python-like pseudo-code of Scientific Generative Agent pipeline in Alg. 1.

B.3 Data Workflow

The full input to LLM has 3 main parts: (i) system prompt, (ii) iteration information, and (iii) format
prompt. For the system prompt, we insert it into the LLM at the beginning or input it as a special
instruction depending on the type of LLM. For the iteration information, we first concatenate the code
and its feedback and then simply stack the top K solutions. Finally, we append the format prompt at
the end of the prompt to regularize the expected output. From our experiments, it is important to keep
the order of prompts to ensure the performance and the successful parsing. More precisely, we show
this process in the following python-like code:

10

Table 3: Comparison with population-based molecule design.
Method (e) ↓ (f) ↓ (g) ↓ (h) ↓
GhemGE 4.8e-3 1.8 1.5 9.8e-5
Ours 1.3e-4 1.1e-1 5.4e-1 3.6e-5

Table 4: Experiment in imaginary constitutive law.
Method FunSearch Eureka OPRO Ours
Loss 105.0 89.1 98.0 1.3e-3

1 prompts = []
2 prompts.append(system_prompt)
3 for solution in reversed(solutions.topk()):
4 iteration_prompt = solution.code + ’\n’ + solution.feedback
5 prompts.append(iteration_prompt)
6 prompts.append(format_prompt)
7 full_prompt = ’\n’.join(prompts)

B.4 Differences to Symbolic Regression Task

• Our problem focuses on loss-guided general scientific discovery, which is a super-set of regular
regression problems. In the constitutive law search tasks, we do not directly feed the input/output
pair to our method. Instead, we consider a much more challenging task: apply the generated
constitutive law recursively and use the overall loss as the performance metric. Concretely, a
classic SR methods solve argminf∥f(X)− y∥ given < X, y > pairs, whereas our method solves
argminf∥g(f(X))∥ given < X, g(f(X)) > pairs and g is a complex function like physical
simulation. It is easy to construct g to cover the former case using the later formulation, proving
the generality of our problem setup. We formulate our problem as such to reflect a more realistic
scenario in scientific discovery, where direct supervision is extremely sparse.

• Our method supports arbitrary number of input variables and output features, where most of SR
methods [52] have limitation on the number of input and output. The input limitation strongly caps
the complexity of tasks they can solve, and the output limitation forces them ignore the structural
correlation between each output dimension. In a comparison, our method supports arbitrary
problem settings thanks to the code-based representation, which enables multi-dimensional arrays
and tensor operations.

• Our model adapts to multi-discipline application easily, while traditional SR methods typically
incorporate with domain-experts’ priors via hard-coded constraints and heuristic [51], which is
limited, domain-specific, and difficult to customize. Our method is built upon LLMs pre-trained on
internet-level data that contains multi-discipline natural languages, mathematical expressions, and
codes. As a result, it is easy for users to customize it and adapt to their own diverse applications
via natural language guidance.

C More Experiments

C.1 Symbolic Regression

We also compare our method with traditional methods in each specific area to demonstrate the
generalizability of our method. First, we reformulate our constitutive law search task (a) into a
symbolic regression task by (i) capture the ground-truth output (the stress tensors) as the supervision,
and (ii) separate the 9 output dimension into 9 independent problems and ensemble them for evaluation.
Note that these modifications dramatically simplified the original task: we removed back-propagation
through time (BPTT) and directly discover the constitutive law without surrogate loss. We evaluate
14 traditional baselines in SRBench [24] and 3 data-driven pre-trained baselines. As shown in Table 2,
our method topped on this task even with a much more challenging setting. Also, since our method
depends on the in-context learning ability of LLMs, it has little constraint in the number of variables
than the data-driven pre-trained baselines.

11

(a)

(b)(c)

(d)

(e)

(f) (g)

(h)

GPT-3.5
Claude-3

Mixtral-8x7B
GPT-4

1

2

4

3

Figure 3: Backbone LLM.

C.2 Population-based Molecule Design

For molecule design tasks, we also compare our method with GhemGE [63], which employs a
population-based molecule design algorithm. As shown in Table 3, our method presents a much
lower loss, demonstrating the general effectiveness of our method.

C.3 Generalization or Memorization

In order to figure out if the improvement introduced by our method is merely because the LLM
saw the solutions in its training phase, we design an experiment ablating it by making it invent an
imaginary constitutive law that does not exist on the earth. We mix the constitutive law of von Mises
plasticity, granular material, and weakly compressible fluid by 50%, 30%, and 20%, so that the new
constitutive law represents an imaginary material whose behavior is extremely complex. We repeat
our experiment setup as in Figure 1. We compare our method against the baselines and report the
performances in Table 4. As shown in the table, our method can still discover the constitutive law
with a low quantitative loss. From our observation, there is very little visual difference between the
ground-truth material and the optimized constitutive law.

C.4 LLM Backbone

In addition to GPT-4 [36], we repeat the experiments in Table 1 using 3 additional LLM backbones:
(i) GPT-3.5 [37], (ii) Claude-3-Sonnet [2], and (iii) Mixtral-8x7B [16], and report the rank of them
in Figure 3. Indicated by the largest area, GPT-4, as our choice, statistically outperforms the other
methods. Interestingly, we found Claude-3-Sonnet is the second top method on most of constitutive
law search task, while Mixtral-8x7B even tops on 2 molecule design tasks. As a result, our workflow
also works for other LLMs, however, our suggestion for practitioners is to try GPT-4 as the first
choice but also consider open-source model (e.g., Mixtral-8x7B) for budget or customizability.

C.5 Exploitation v.s. Exploration

We visualize the statistics of the simulation execution status in Figure 4 (a) using the task (b), which
is one of the most challenging tasks in our experiments. When the exploitation is removed, the
error rate dramatically increases, as shown by a decrease in green bars. It leads to a degeneration in
the performance of the methods with exploitation as shown in Figure 4 (b). However, even though
the success rate remains high, when exploration is removed, the optimization result is still worse
than keeping them both. We argue that exploration is significant when the optimization problem is
challenging, especially in our case, where the search space is highly non-linear and unstructured and
resulting in numerous local optimum.

12

0 1 2 3 4
Iteration

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

Lo
ss

Ours
No Exploration
No Exploitation

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0

10

20

30

40

50

60

70

80

#
So

lu
ti
on

s

33

44

3

43

20

17

40

20

20

54

16

10

60

5

15

34

28

18

59

11

10

52

22

6

48

21

11

60

14

6

24

42

14

25

25

30

29

24

27

40

12

28

26

26

28

Success Training Error Syntax Error Success Rate Curve

Ours No Exploration No Exploitation
Iteration Iteration Iteration

(a) (b)

Figure 4: Exploitation v.s. Exploration.

Table 5: Longer Iteration.
#Iterations (a) ↓ (b) ↓ (c) ↓ (d) ↓ (e) ↓ (f) ↓ (g) ↓ (h) ↓
5 5.2e-5 2.1e-1 6.0e-2 1.4e-12 1.3e-4 1.1e-1 5.4e-1 3.6e-5
20 4.2e-6 4.0e-4 2.5e-3 1.4e-12 1.3e-4 6.5e-2 1.2e-1 5.6e-6
Improvement +1138.1% +52400.0% +2300.0% 0.0% 0.0% +69.2% +350.0% +542.9%

C.6 Longer Iteration

In order to further investigate the potential of our method and ablate the hyper-parameters for
practitioners, we add a new study in terms of the number of iterations (question-answering cycles).
We repeat our experiment in Table 1 with a prolonged number of iterations to 20 and report the
performance in Table 5.

As shown in the table, the number of iterations turns out to be a determining hyper-parameter
with significant impart on the performance. While it has little affect on relatively easier tasks, it
dramatically improves the performance of the most challenging tasks including (b) and (c). For
practitioners, the number of iteration should be first considered as the most important hyper-parameter
when adapting our method to their own tasks.

D Case Study

D.1 Constitutive Law Search

We provide a trimmed snippet of our searched constitutive law in Figure 5 (a) for task (a) where a
highly non-linear material is provided as the trajectory to fit. We reformat the code slightly to fit into
the text. Starting from a linear material, our method is able to automatically generate the constitutive
law with a quadratic deviatoric term. Note that our method also provides a concrete implementation
of __init__ function that defines the continuous parameters in the computational graph for later
inner-level optimization.

D.2 Molecule Design

When comparing the two molecules with respect to their HOMO-LUMO energy gap based on
optimized results from the LLM as shown in Figure 5 (b), we observe distinct characteristics in
each: (i) Molecule A (gap-0) includes sulfur and chlorine atoms attached to a ring, coupled with a
trifluoromethyl group, introducing electron-withdrawing effects, and (ii) Molecule B (gap-2) includes
oxygen (notably in ethers) and sulfur within the ring structures introducing localized non-bonding
electron pairs. Furthermore, the overall structure of Molecule B is more complex than that of
Molecule A, containing multiple rings. An intriguing aspect of Molecule B, which might initially
defy expectations, is the presence of a single fluorine atom. The high electronegativity of fluorine
typically leads to electron density withdrawal, influencing the gap value. However, due to the
complexity of Molecule B’s structure, the impact of the fluorine atom is somewhat localized, thereby
not significantly altering the gap value.

13

Molecule A Molecule B

C1CC(SC1Cl)C(C(F)(F)F)N C1OC2SC3C4OC(F)S4C13C2

(b)

(a)
class Physics(nn.Module):
 def __init__(self, youngs_modulus_log: float = 13.03,

 poissons_ratio_sigmoid: float = -1.99):
 super().__init__()

 self.youngs_modulus_log = nn.Parameter(
 torch.tensor(youngs_modulus_log)) # Log of Young's modulus

 self.poissons_ratio_sigmoid = nn.Parameter(
 torch.tensor(poissons_ratio_sigmoid)) # Sigmoid of Poisson's ratio

 def forward(self, F: torch.Tensor) -> torch.Tensor:
 youngs_modulus = self.youngs_modulus_log.exp()

 poissons_ratio = torch.sigmoid(self.poissons_ratio_sigmoid) * 0.49

 mu = youngs_modulus / (2 * (1 + poissons_ratio)) # Shear modulus
 lam = youngs_modulus * poissons_ratio / (

 (1 + poissons_ratio) * (1 - 2 * poissons_ratio))
 # Deformation gradient determinant J

 J = F.det().view(-1, 1, 1)
 F_invT = F.inverse().transpose(1, 2)

 # Volumetric part
 P_vol = lam * (J - 1) * F_invT

 # Deviatoric part

 P_dev = mu * (F - (1 / J) * F_invT)
 # Compute Kirchhoff stress tensor

 kirchhoff_stress = P_vol + P_dev @ F.transpose(1, 2)
 return kirchhoff_stress

Figure 5: Case Study.

E Conclusion and Limitations

We consider a few limitations and future directions. (i) Although we prompt the LLM to generate
pseudo-code plans and comments, it is generally hard to ensure the interpretability of LLM-generated
solutions. (ii) Since the LLM-generated codes are executed directly without any filtering in our
application, there exists potential AI safety risk that hazards the operating system. (iii) Our method
only utilizes the internal knowledge of LLMs as the prior, where in reality people design manual
constraints and rule to regularize and improve the optimization [51]. We leave these domain-
specific applications and human feedback-based regularization methods as our future work. (iv) The
performance our method highly depends on the differentiablity of the generated code. However,
Zero-order optimizers [15] should also shine since the number of continuous parameters is relatively
limited. (v) LLM inference requires large computational resources and thus increases expense. For
example, it spends around $10 for our method to complete one task using GPT-4, which will be
increasingly inacceptable when the number of iteration grows. (vi) Due to the reuse of previously
generated solutions in our proposed top-k heap, the KV cache in LLM will be highly similar between
neighbor iterations. It opens a gate for recent KV cache optimization methods [64] to speedup our
method by KV cache reusing.

In conclution, we present Scientific Generative Agent, a bi-level optimization framework: LLMs
serve as knowledgeable and adaptable thinkers, formulating scientific solutions like physics equations
or molecule structures; concurrently, simulations operate as platforms for experimentation, offering
observational feedback and optimizing continuous components like physical parameters. We focused
on two scientific problems: constitutive law search and molecular design. Our approach outperforms
other LLM-based benchmark methods, delivering consistent, robust, and nearly monotonic improve-
ment. Furthermore, it shows exceptional ability in identifying unknown, true constitutive laws and
molecular structures. Remarkably, our system generates innovative solutions that, despite being
unconventional, are deemed reasonable after being thoroughly analyzed by experts in their respective
domains. We view our process as a trailblazer, establishing a new paradigm for utilizing LLMs and
simulations as bilevel optimization to further advancements in physical scientific discoveries.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 2 and Section 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: We will release the code and data upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors confirm that the research conducted in the paper conform,
in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/
EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: See Section E.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

	Introduction
	Scientific Generative Agent
	Bilevel Optimization Pipeline
	LLM-Driven Outer-Level Search
	Differentiable Inner-Level Optimization

	Experiments
	Problem Definitions
	Experiment Setup
	Physical Scientific Discovery
	Bilevel Optimization

	Related Work
	Automated Scientific Discovery
	Large Language Models and Agents
	Bilevel Optimization

	More Explanations
	Implementation Details
	Algorithm
	Data Workflow
	Differences to Symbolic Regression Task

	More Experiments
	Symbolic Regression
	Population-based Molecule Design
	Generalization or Memorization
	LLM Backbone
	Exploitation v.s. Exploration
	Longer Iteration

	Case Study
	Constitutive Law Search
	Molecule Design

	Conclusion and Limitations

