
Extended Abstract Track
Under Review - Extended Abstract Track 1–22, 2023 Symmetry and Geometry in Neural Representations

Learning Symmetric Contexts for Anomaly Detection

Editors: List of editors’ names

Abstract

Anomaly detection focuses on identifying samples that deviate from the norm. When
working with high-dimensional data such as images, a crucial requirement for detecting
anomalous patterns is learning lower-dimensional representations that capture concepts
of normality. Recent advances in self-supervised learning have shown great promise in
this regard. However, many successful self-supervised anomaly detection methods assume
prior knowledge about anomalies to create synthetic outliers during training. Yet, in real-
world applications, we often do not know what to expect from unseen data, and we can
solely leverage knowledge about normal data. In this work, we propose Con2, which learns
representations through context augmentations that model invariances of normal data while
letting us observe samples from two distinct perspectives. At test time, representations of
anomalies that do not adhere to these invariances deviate from the representation structure
learned during training, allowing us to detect anomalies without relying on prior knowledge
about them.

Keywords: anomaly detection, one-class classification, contrastive representation learn-
ing, deep learning

1. Introduction
Reliably detecting anomalies is essential in many safety-critical fields such as healthcare
(Schlegl et al., 2017; Ryser et al., 2022), finance (Golmohammadi and Zaiane, 2015), indus-
trial fault detection (Atha and Jahanshahi, 2018; Zhao et al., 2019), or cyber-security (Xin
et al., 2018). In healthcare, a common real-world example of anomaly detection (AD) is
standard screenings, i.e., data from doctors who regularly examine the general population
for anomalies that would indicate a health risk. These datasets predominantly comprise
samples from healthy people since most screened individuals do not exhibit any diseases.
Detecting anomalies in this setting is challenging, as anomalies can arise from an arbitrary
set of potentially rare diseases while we predominantly encounter normal samples in the
dataset. The field of AD tackles this problem by learning representations that reflect nor-
mality during training and, at test time, detecting anomalies as deviations from the learned
normal structure (Ruff et al., 2021).

Recent works have demonstrated that learning a representation space containing fea-
tures that tightly represent normality is essential for AD (Ruff et al., 2018; Oza and Patel,
2018; Sabokrou et al., 2020). Current state-of-the-art methods further carefully design syn-
thetic anomalies and explicitly encourage anomalous representations to be different from
normal ones (Tack et al., 2020; Wang et al., 2023). However, anomalies can be diverse and
unexpected, which can make it difficult to simulate them in real-world settings.

This work presents a novel AD objective, Con2, which learns informative, tightly clus-
tered representations of normal samples without assuming prior knowledge about anomalies.
Con2 leverages context augmentations that let us observe samples in different contexts while
preserving their normal information. Our new Con2 objective clusters representations ac-
cording to these new contexts while encouraging similar representations within each cluster.
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Our approach ensures a highly informative structure within each cluster by preserving the
relative normality of samples independent of their context.

In the following, we will provide some intuition behind context augmentations and in-
troduce the two properties that define them. We then demonstrate how Con2 uses context
augmentations to learn highly informative, tightly clustered representations of normal data.
We further define two anomaly score functions that measure the anomalousness of new
samples. Finally, we demonstrate the advantage of modeling invariances of normal data by
detecting anomalies on two medical datasets.

2. Methods

Here, we first introduce the notion of context augmentations and demonstrate how to use
them for context contrasting with Con2. We then present how to use these representations
to detect anomalies at test time. Appendix F contains an overview of our approach.

2.1. Context Augmentation
Our approach leverages the fact that certain transformations can transform a sample into
another context, creating a distinct new view without altering the information content of
the sample. Our goal is to use such transformations to learn context-specific representation
clusters that align in content, letting us detect anomalies as samples that deviate from the
learned structure. Here, let X be our dataset, let tC ∶ X → X be a data augmentation, and
let X ′ = {tC(x) ∣ x ∈ X} be the dataset transformed by tC . The function tC is a context
augmentation if it fulfills the following two properties:

Distinctiveness There are no two samples x ∈X, x′ ∈X ′ such that x ≈ x′, i.e., there
is a clear distinction between the original and the context augmented distribution after
applying tC . For instance, if our normal class consists of images of melanoma, flipping the
image violates distinctiveness, as melanoma can be photographed from any angle. Con-
versely, histogram equalizing or color inversion of the image satisfies distinctiveness, as the
resulting color distribution is clearly distinct from the original samples of such a dataset.

Alignment Let x,x′ ∈ X, and let d(x,x′) denote an appropriate similarity measure
for samples in the input space. Then, we require that d(x,x′) ≈ d(tC(x), tC(x′)), i.e.,
originally similar normal samples should stay just as similar in the new context, meaning
that the original and the context-augmented normal distributions should align. For instance,
masking part of a torso x-ray image would violate alignment, as we could potentially remove
important regions, such as the lungs, from the image altogether. On the other hand, two
vertically flipped x-rays are as similar to each other as their original counterparts.

While these conditions may be dataset-dependent, some examples of context augmen-
tation that often fulfill distinctiveness and alignment are vertical flipping (Flip), color in-
version (Invert), or histogram equalization (Equalize). We present some examples of these
augmentations in Appendix F.

2.2. Context Contrasting
In the following, we demonstrate how to use context augmentations to learn aligned, context-
specific representation clusters with our new Con2 loss. More background and preliminaries
on contrastive learning can be found in Appendix B.1.

Assume a set of normal samples Xtrain, a context augmentation tC , a set of content-
preserving augmentations T like in Chen et al. (2020), and let XC = {(x,0) ∣ x ∈ Xtrain} ∪
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{(tC(x),1) ∣ x ∈ Xtrain} denote the context-augmented dataset, labeling each sample with
its context. We then apply augmentations from T to our dataset to create X̃C , where
(x̃2i, yi), (x̃2i+1, yi) ∈ X̃C denote two transformations of the same context-augmented sample
using random augmentations from T . More specifically, for t, t′ ∈ T , x̃2i = t(xCi ) and
x̃2i+1 = t′(xCi ), where xCi ∈XC . Further, let f(X̃C) ∶= {(f(x), y)∣x ∈ X̃C} for any function f .
Con2 then consists of two parts.

First, by leveraging the distinctiveness property of context augmentations, we can learn
tightly concentrated, context-specific representation clusters with our context contrasting
loss. Similar to Chen et al. (2020), let fΦ(x) = hϕ(gθ(x)) project representations z =
gθ(x) with a projection head hϕ(z) that gets discarded after training and ℓ is the instance
discrimination loss as defined in Appendix B.1. We then define the context contrasting loss
as LContext(X̃C) = ∑

(x̃i,yi)∈X̃C

1

2N − 1 ∑
(x̃j ,yj)∈X̃C
x̃j≠x̃i∧yi=yj

ℓ(fΦ(x̃i), fΦ(x̃j), fΦ(X̃C)).

Intuitively, context contrasting encourages representations of the same context to be clus-
tered together while pushing other context clusters away, similar to class representations of
supervised contrastive learning (Khosla et al., 2020).

While LContext allows us to learn context-dependent representation clusters, it does
not enforce a specific structure within each cluster. To make the cluster structure more
informative, Con2 leverages the alignment property of context augmentations to align rep-
resentations across clusters through context-independent instance discrimination. More
specifically, let Λ(i) = {2i,2i + 1,4i,4i + 1}, i.e., Λ(i) corresponds to all indices of samples
in X̃C which are augmentations of the original sample xi ∈ X. We then define the content
alignment loss as

LContent(X̃C) =
N

∑
k=1

1

12
∑

i∈Λ(k)

∑
j∈Λ(k)∖i

ℓ(fΨ(x̃i), fΨ(x̃j), fΨ(X̃C)),

where fΨ(x) = hψ(gθ(x)), and hψ denotes another projection head that is different from
hϕ. Content alignment ensures that all representations of the same normal sample can be
matched across different contexts, encouraging alignment of the representations within each
context cluster.

Finally, we combine context contrasting and content alignment to our loss function
Con2, which enables us to learn context-specific, content-aligned representations of normal-
ity: LCon2(X̃C) = LContext(X̃C) + αLContent(X̃C)
To account for the different scaling of LContext and LContent, we need to introduce a weighting
factor α ∈ R+. We discuss our specific choice for α in Appendix E.
2.3. Anomaly Detection
In the AD setting, we typically assume an unlabeled training set containing predominantly
normal samples, whereas we want to discriminate between normal and anomalous samples at
test time (Ruff et al., 2021). We detect anomalies using two anomaly score functions SNND

and SLH that measure how well a test sample adheres to the context representation clusters.
SNND is based on a simple non-parametric nearest neighbor approach using the cosine
similarity, whereas SLH assumes Gaussian distributions on the context clusters and uses the
sample likelihood to measure anomalousness. We provide some additional background on
the setting and more details about our anomaly scores in Appendix B.2.
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3. Medical Anomaly Detection Experiment

Table 1: Anomaly detection results on two
real-world medical imaging datasets. We train
each model with three different seeds and re-
port mean ± standard deviation.

Method Score S Pneumonia Melanoma

SimCLR SNND 91.0 ±0.9 72.9 ±2.8
SSD SMahalanobis 90.9 ±0.2 79.0 ±2.2
CSI SCSI 73.9 ±1.6 92.3±0.02
UniCon-HA SUniCon 86.4 ±0.1 91.1 ±0.8

Con2 (Equalize)
SLH

93.3 ±0.6 93.1 ±0.04
Con2 (Invert) 90.6 ±1.0 91.7 ±0.2
Con2 (Flip) 91.5 ±0.6 80.5 ±3.0

Con2 (Equalize)
SNND

93.9 ±3.1 90.5 ±0.9
Con2 (Invert) 91.1 ±0.7 91.8 ±0.2
Con2 (Flip) 92.8 ±1.1 83.3 ±1.3

We compare the performance of Con2 with
recent unsupervised AD methods on two
challenging medical imaging datasets. We
train Con2 on the healthy samples of a
real-world medical chest x-ray dataset (Ker-
many et al., 2018) and a melanoma imaging
dataset (Javid, 2022), discriminating be-
tween unseen healthy and anomalous sam-
ples at test time. Here, we model invari-
ances of normal samples with the three con-
text augmentations Flip, Invert, and Equal-
ize described in Section 2.1. Note that
Flip violates distinctiveness on melanoma
images as they could be taken from any an-
gle. See Appendices D and E for more details on the datasets, the experimental setup, and
baselines.

Table 1 contains the results of this experiment, including a comparison to our baselines.
While most of our runs perform similarly, we indeed see that Con2 with Flip performs
drastically worse on melanoma, demonstrating that fulfilling distinctiveness and alignment is
indeed crucial for context augmentations. Further, we observe that our method outperforms
our baselines, confirming that modeling invariances of normal data offers an advantage over
simulating anomalies for learning normal representations. We provide additional ablations
on more traditional AD benchmark datasets in Appendix F.

4. Conclusion

In this work, we focused on anomaly detection by learning representations that capture
normality. We identified that although methods based on self-supervised representation
learning show promising results in this area, their reliance on prior knowledge of the struc-
ture of anomalies is a limitation. As such knowledge might not be available in real-world
settings, we proposed Con2 instead. Our Con2 approach lets us learn representations of
normal data by leveraging context augmentations. These transformations set the normal
space into a new context, allowing us to observe normal data from different perspectives
and thus learn context-specific representation clusters that are aligned according to the
properties of the normal samples in the dataset. We demonstrated how our new representa-
tion learning method allows us to detect anomalies by introducing two anomaly scores that
measure sample anomalousness by how much a representation deviates from the learned
context cluster. Finally, we presented the applicability of our method in two experiments
where we performed anomaly detection on real-world medical datasets. In conclusion, Con2

is a reliable approach to learning highly informative representations of normality across var-
ious settings without making any assumption about anomalies, which is especially useful in
safety-critical domains such as healthcare.
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Appendix A. Related Work

Recently, learning useful normal representations of high-dimensional data to perform anomaly
detection has become a popular line of research. Prior work has tackled the problem from
various angles, for instance, using hypersphere compression (Ruff et al., 2018). Other popu-
lar methods define pretext tasks such as learning reconstruction models (Chen et al., 2017;
Zong et al., 2018; You et al., 2019) or predicting data transformations (Golan and El-Yaniv,
2018; Hendrycks et al., 2019b; Bergman and Hoshen, 2019). While these approaches had
some success in the past, the learned representations are not very informative. On the
other hand, methods learning more informative representations have recently been shown
to improve over prior work (Sun et al., 2022; Sehwag et al., 2021).

Another line of work focused on estimating the training density with the help of gen-
erative models, detecting anomalies as samples from low probability regions (An and Cho,
2015; Schlegl et al., 2019; Nachman and Shih, 2020; Mirzaei et al., 2022). However, these
methods tend to generalize better to unseen distributions than to the observed training
distribution (Nalisnick et al., 2018).

In addition to the traditional setting, where we assume training data without any labels,
some works have slightly weakened this restriction and assumed access to a limited number
of labeled samples. This setting is called anomaly detection with Outlier Exposure (OE)
(Hendrycks et al., 2019a), and it has been shown that even just a few labeled samples can
greatly boost performance over an unlabeled dataset (Ruff et al., 2020; Qiu et al., 2022;
Liznerski et al., 2022). Using large, pretrained models as feature extractors is a special case
of OE, as additional data is not explicitly accessible. Some approaches have been introduced
that use representations from pretrained models directly in zero-shot fashion(Bergman et al.,
2020; Liznerski et al., 2022), while others demonstrate the benefit of fine-tuning (Cohen
and Avidan, 2022; Reiss and Hoshen, 2023). OE has been very successful in the past, often
outperforming traditional AD settings across many benchmarks, though at the cost of either
requiring labeled samples or vast amounts of data for pretraining, which are both often not
available or hard to obtain in more specialized domains.

Another setting that has recently gained popularity is out-of-distribution (OOD) detec-
tion. In OOD detection, we have additional information about our dataset in the form of
labels. Anomaly detection is thus a special case of OOD detection with only a single label.
While the problem is similar, most approaches that tackle OOD detection make specific use
of a classifier trained on the dataset labels (Hendrycks and Gimpel, 2017; Lee et al., 2018;
Wang et al., 2022), which AD.

In comparison, our method operates in the traditional anomaly detection setting and
can be applied to datasets without any knowledge about anomalies. Further, while we do
assume access to a dataset containing only normal samples, our method does not rely on
any additional labels, as they are potentially difficult and expensive to obtain, particularly
in more specialized settings.

Appendix B. Background

In this section, we provide some terminology for contrastive learning and background about
the anomaly detection setting.
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B.1. Contrastive Learning

Recently, contrastive learning has emerged as a popular approach for representation learn-
ing (van den Oord et al., 2019; Chen et al., 2020). By design, contrastive learning has the
capability to learn representations that are agnostic to certain invariances (von Kügelgen
et al., 2021; Daunhawer et al., 2023), which makes contrastive learning a particularly in-
teresting choice to learn informative representations of normal samples (Tack et al., 2020;
Wang et al., 2023), as it allows us to incorporate prior knowledge about our data into
the representing learning process in the form of data augmentations. More specifically, in-
variances are learned by forming positive and negative pairs over the training dataset by
applying data augmentations that should retain the relevant content of a sample.

The goal of contrastive learning is to learn an encoding function gθ(x), where represen-
tations of positive pairs of samples are close and negative pairs are far from each other. For
a given pair of samples x,x′ ∈ X, we can define the instance discrimination loss as (Sohn,
2016; Wu et al., 2018; van den Oord et al., 2019)

ℓ(x,x′,X) = − log exp (sim(x,x′)/τ)
∑

x′′∈X ∶ x′′≠x
exp (sim(x,x′′)/τ) .

Here, the function sim(x,x′) corresponds to a function that measures the similarity between
x and x′. For the rest of our work, we assume sim(x,x′) to be the cosine similarity between
the two input vectors, as this is one of the most popular choices in the contrastive learning
literature.

One of the most prominent contrastive methods is SimCLR (Chen et al., 2020), which
creates positive pairs through sample augmentations. There exists a supervised extension
called SupCon (Khosla et al., 2020), which incorporates class labels into the SimCLR loss.
For a given set of augmentations T , a dataset X = {(xi, yi)}Ni=1, and an augmented dataset
X̃ where ∣X̃ ∣ = 2N and (x̃2i, yi), (x̃2i+1, yi) ∈ X̃ denote two transformations of the same
sample using random augmentations from T , SimCLR and SupCon introduce the following
loss functions:

LSimCLR(X̃) =
1

2N

N

∑
i=1

(ℓ(fΘ(x̃2i), fΘ(x̃2i+1), fΘ(X̃)) + ℓ(fΘ(x̃2i+1), fΘ(x̃2i), fΘ(X̃)) ,

LSupCon(X̃) = ∑
(x̃i,yi)∈X̃

1

N(yi) − 1
∑

(x̃j ,yj)∈X̃ ∶
x̃j≠x̃i∧yi=yj

ℓ(fΘ(x̃i), fΘ(x̃j), fΘ(X̃)) .

Here, Θ = {θ, θ′} and N(y) = ∣{(x̃i, yi) ∣ (x̃i, yi) ∈ X̃ ∧yi = y}∣ denotes the number of samples
in X̃ with label y. We further denote fΘ(X̃) = {fΘ(x̃) ∣ (x̃, y) ∈ X̃} and fΘ(x) = hθ′(gθ(x)),
where z = gθ(x) is a feature extractor and hθ′(z) is a projection head that is typically only
used during training (Chen et al., 2020).

B.2. Anomaly Detection

In the anomaly detection setting, we are given an unlabeled dataset {x1, . . . ,xn} =X ⊂ X ,
while assuming that most samples are normal, i.e., the dataset is practically free of outliers
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(Ruff et al., 2021). The goal is to learn a model from the given dataset that discriminates
between normal and anomalous data at test time.

In this work, we assume the challenging case where our dataset is completely free of
anomalies. Hence, we aim to discriminate between the normal class and a completely unob-
served set of anomalies at test time. This setting is sometimes called one-class classification
or novelty detection.

To achieve this goal, one straightforward approach is to approximate the distribution
pX (x) directly using generative models (An and Cho, 2015; Schlegl et al., 2019). Because
we assume normal data to lie in high-density regions of pX , we can discriminate between
normal and anomalous samples by applying a threshold function pX (x) ≤ τ , where τ ∈ R
is an often task-specific threshold (Bishop, 1994). As density-based approaches are often
difficult to apply to high-dimensional data directly (Nalisnick et al., 2018), we follow a
slightly different line of work.

In this paper, we focus on learning a function gθ ∶ X → Z that provides us with represen-
tations that capture the normal attributes of samples in the dataset (Sehwag et al., 2021;
Tack et al., 2020; Wang et al., 2023), by mapping normal samples close to each other in
representation space. On the other hand, anomalies that lack the learned normal structure
should be mapped to a different part of the representation space.

Given gθ(x), a popular approach to detect anomalies is by defining a scoring function
S ∶ Z → R (Breunig et al., 2000; Schölkopf et al., 2001; Tax and Duin, 2004; Liu et al., 2008).
The score function maps a representation onto a metric that estimates the anomalousness
of a sample. To identify anomalies at test time, we can use S similarly to the density pX ,
i.e., we consider a new sample x to be normal if S(gθ(x)) ≤ τ , whereas S(gθ(x)) > τ means
x is an anomaly.

In this paper, we define two anomaly score functions that measure how well a test
sample adheres to the context representation clusters. The simplest way to achieve this is
a simple non-parametric nearest neighbor approach using the cosine similarity similar to
(Bergman et al., 2020; Sun et al., 2022). Specifically, we define the cosine distance between
the training set Xtrain and a given test sample x with transformation t as

sNND(x; t) = − max
x′∈Xtrain

⟨gθ(t(x)), gθ(t(x′))⟩
∥gθ(t(x))∥∥gθ(t(x′))∥

While this approach works well in practice, it is rather memory-inefficient, as we need to
store the representations of all samples in Xtrain.

We address this problem by introducing a likelihood-based score function sLH assuming

Gaussian context clusters. More specifically, let Z
(t)
train = {

gθ(t(x))
∥gθ(t(x))∥

∣ x ∈Xtrain} , we then

compute the density of a multivariate normal distribution based on the empirical mean

µ (Z(t)train) and covariance Σ (Z(t)train) given a transformation t. We thus define

sLH(x; t) = − log(N (
gθ(t(x))
∥gθ(t(x))∥

∣ µ (Z(t)train) ,Σ (Z
(t)
train))) .

Similar to previous works (Tack et al., 2020; Wang et al., 2023), we leverage test-
time augmentations to improve the anomaly detection performance. More formally, let
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Ttest = {t1, . . . , tA} be a set of A test time augmentations. We define our final anomaly score
functions SD ∶ X → R as

SD(x) =
1

A

⎛
⎝

A/2

∑
i=1

sD(x; ti) +
A

∑
i=A/2

sD(x; ti ○ tC)
⎞
⎠
, where D ∈ {NND,LH}.

Appendix C. Compute & Code

We run all our experiments on single GPUs on a compute cluster using a combination of
RTX2080Ti, RTX3090, and RTX4090 GPUs. Each experiment can be run with 4 CPU
workers and 16 GB of memory. We provide an overview of the compute for our experiments
in Table 2. Our experiments are written using PyTorch (Ansel et al., 2024) with Lightning
(Falcon and The PyTorch Lightning team, 2019).

In the following, we list for each of our methods and baselines how we arrive at results
and which code we use.

Con2: We implement Con2 using PyTorch (Ansel et al., 2024) together with Lightning
(Falcon and The PyTorch Lightning team, 2019). To evaluate our method, we use various
open-source Python libraries such as NumPy (Harris et al., 2020), scikit-learn (Pedregosa
et al., 2011), Pandas (McKinney, 2010; team, 2020), or SciPy (Virtanen et al., 2020).
Implementation of the Con2 objective is partially based on code provided by Khosla et al.
(2020) (https://github.com/HobbitLong/SupContrast).

SimCLR: For this baseline, we implement SimCLR (Chen et al., 2020) and compute
anomaly scores in a similar fashion as (Sun et al., 2022). For this baseline, we rely on similar
packages as Con2.

SSD: We take results for SSD on CIFAR10 from Sehwag et al. (2021). For the other
experiments, we implement the baseline following the paper. Our implementation follows a
similar structure as SimCLR.

CSI: We CSI results on CIFAR10, CIFAR100, and ImageNet30 from Tack et al. (2020).
For all other experiments, we download the code from https://github.com/alinlab/CSI

and run it with new dataloaders.

UniCon-HA: Similar to CSI, we take results on CIFAR10, CIFAR100, and ImageNet30
from Wang et al. (2023). For all other experiments, the authors shared their code with us,
such that we could run the experiments for the other datasets by using the original code
with new dataloaders.

Appendix D. Datasets

In the following, we provide details about preprocessing, sources, and licenses of the datasets
we use in our experiments.

Pneumonia

Our Pneumonia dataset was originally published by Kermany et al. (2018) and consists of
5′863 lung xrays, which are labeled with Pneumonia and Normal labels. We first resize im-
ages to 256 and apply center-cropping to feed 224×224 images to our model. We ran all our
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Table 2: Approximate compute hours for the experiments for each dataset and method.
SimCLR and SSD use the same representations, so we can evaluate both methods in one
go and list their compute hours together.

Method
Dataset

CIFAR10 CIFAR100 ImageNet30 Dogs vs. Cats Muffin vs. Chihuahua Pneumonia Melanoma

SimCLR/SSD 35 120 315 60 21 12 15
CSI - - - 81 27 24 19
UniCon-HA - - - 240 108 36 54
Con2 465 135 360 78 40 58.5 63

experiments on the Pneumonia dataset with a batch size of 128. The dataset can be down-
loaded from https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

and is published under CC BY 4.0 license.

Melanoma

We use the Melanoma dataset of Javid (2022), which consists of 10′600 images of Melanoma
labeled with being benign or malignant. We resize each image to size 128×128 before passing
them to the model with batch size 128. The dataset is publicly available at https://www.
kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images

and is published under the CC0: Public Domain license.

CIFAR10/CIFAR100

CIFAR10 and CIFAR100 are natural image datasets with 32 × 32 samples. Both datasets
consist of a total of 60′000 samples, with a total of 10 and 100 samples for CIFAR10
and CIFAR100, respectively. As CIFAR100 comes with only 600 samples per class, the
dataset authors additionally define a set of 20 superclasses, aggregating 5 labels each. In
our one-class classification experiments on CIFAR100 we use the superclasses to ensure a
manageable number of runs and a sufficient amount of training data. We ran all our exper-
iments on CIFAR10 and CIFAR100 with a batch size of 512. Both datasets were published
by Krizhevsky et al. (2009) and can be downloaded from https://www.cs.toronto.edu/

~kriz/cifar.html. To the best of our knowledge, these datasets come without a license.

Imagenet30

The ImageNet30 dataset is a subset of the original ImageNet dataset (Russakovsky et al.,
2015). It was created by Hendrycks et al. (2019b) for the purpose of one-class classification.
The dataset consists of 42′000 natural images where each is labeled with one of 30 classes.
We preprocess the dataset by resizing the shorter edge to 256 pixels, from which we randomly
crop a 224 × 224 image patch every time we load an image for training. We ran all our
experiments on ImageNet with a batch size of 128. The dataset can be downloaded from
https://github.com/hendrycks/ss-ood, which comes with the MIT License. Further,
while we could not find a license for ImageNet, terms of use are provided on https://

image-net.org/.
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Dogs vs. Cats

The Dogs vs. Cats was originally introduced in a Kaggle challenge by Microsoft Research
(Cukierski, 2013) and consists of 25′000 images of cats and dogs. We preprocess the dataset
by resizing the shorter edge to 128 pixels and then perform center cropping, feeding the
resulting 128 × 128 image to our model. We ran all our experiments on Dogs vs. Cats
with a batch size of 256. The dataset can be downloaded from https://www.kaggle.

com/competitions/dogs-vs-cats/data. To the best of our knowledge, there is no official
license for the dataset, but the Kaggle page points to the Kaggle Competition rules https:
//www.kaggle.com/competitions/dogs-vs-cats/rules in the license section.

Chihuahua vs. Muffin

The Chihuahua vs. Muffin dataset consists of 6′000 images scraped from Google Images. We
preprocess the dataset similar to ImageNet30, resizing the shorter edge of the images to 128
pixels while feeding random 128 × 128 sized image crops to the model during training. We
ran all our experiments on Chihuahua vs. Muffin with a batch size of 256. The dataset was
published by Cortinhas (2023) and can be downloaded from https://www.kaggle.com/

datasets/samuelcortinhas/muffin-vs-chihuahua-image-classification/data. Ac-
cording to the datasets Kaggle page, the dataset is licensed under CC0: Public Domain.

In addition to the preprocessing mentioned above, we normalize each image with a mean
and standard deviation of 0.5 after applying the augmentations of Con2.

Appendix E. Experimental Details

We evaluate our method in the so-called one-class classification setting (Ruff et al., 2021).
More specifically, during training we assume to have access to only the normal (healthy)
class. At test time, the goal is to detect whether a new sample stems from the normal
class seen during training or whether it seems anomalous, i.e., deviates from the training
distribution.

Typically, there is a high-class imbalance between normal and anomalous samples in the
one-class classification setting. Further, setting an appropriate threshold for the anomaly
score is often task-dependent. Therefore, a popular approach to evaluating the performance
of anomaly detection methods is to use the area under the receiver operator characteristic
curve (AUROC) (Ruff et al., 2021). This metric is threshold agnostic and robust to class
imbalance.

We compare our work to a number of contrastive anomaly detection baselines, such as
SSD (Sehwag et al., 2021), CSI (Tack et al., 2020), and UniCon-HA (Wang et al., 2023). We
further compare against a baseline that learns SimCLR embeddings and detects samples in
nearest neighbor fashion similar to KNN+ (Sun et al., 2022), which was originally developed
for out-of-distribution detection. To ensure comparability, we run all experiments with the
same ResNet18 architecture (He et al., 2016).

Similar to our method, all baselines make use of test-time augmentations. By default,
both CSI and UniCon-HA use 40 test time augmentations, which we adopt for all baselines.
In our experiments, we set the augmentation class T to the set of augmentations introduced
by Chen et al. (2020). For the context augmentation, we experiment with vertical flips
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Figure 1: Overview of Con2. Samples get context augmented and passed through an en-
coder. The context contrasting loss ensures context-specific representations (∎ and ∎ clus-
ters) while the content alignment loss encourages a context independent structure ( )
within each context cluster. We learn representations in a contrastive fashion, matching
corresponding positive ( ) and discriminating between negative ( ) pairs of represen-
tations separately for context contrasting and content alignment.

(Flip), inverting the pixels of an image (Invert), i.e., tInvert(xij) = 1 − xij , and histogram
equalization (Equalize), see Figure 2 for an illustration.

We choose hyperparameters for Con2 based on their performance on the CIFAR10
dataset and keep them constant across all experiments. We linearly anneal the hyperpa-
rameter α in LCon2 from 0 to 1 over the course of training to encourage the model to first
learn the context-specific cluster structure while gradually aligning representations over the
course of training. We optimize our loss using the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with β1 = 0.9, β2 = 0.999, weight decay λ = 0.001, and using a learning rate of 10−3

with a cosine annealing (Loshchilov and Hutter, 2017) schedule. We run all experiments
for 2048 epochs.

For all our experiments, we report mean and standard deviation over three seeds per
class of the dataset. Note that the average results of a dataset are aggregated over different
one-class classification settings, one per class of the dataset.

Appendix F. Ablations

Here, we provide an overview figure summarizing our approach in Figure 1 and addition-
ally show some examples of context augmentations on samples of the Pneumonia and
Melanoma datasets in Figure 2. We further provide some additional experiments, illus-
trating the structure of the learned representations (Appendix F.1), additional experiments
on natural images (Appendix F.2), and experiments going beyond only two context clusters
(Appendix F.3).
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Figure 2: Examples of context augmentations for four samples from our experiments. ,
”Flip” denotes vertical flipping, ”Invert” denotes the transformation that sets each pixel
value xij = 1 −xij , and ”Equalize” stands for histogram equalization.

F.1. Context Clusters

We illustrate the structure of representations learned by Con2 in Figure 3, demonstrating
how our intuition from Section 2 translates to what our model learns. More specifically,
Figure 3 presents the PCA embeddings of train, normal test, and anomalous test samples
when training Con2 on the car class of CIFAR10.

We see that the normal samples cluster nicely according to their context for both train
and unobserved normal test data. Further, we also observe that normal samples align well
across contexts, as their relative positions within their respective cluster appear consistent
from the parallel lines that mark correspondence. Conversely, anomalous data often fails
to adhere to the context clustering structure or align well across contexts.

F.2. Natural Image Benchmarks

In addition to the experiments on the medical datasets in Section 3, we also train our
method in the common one-class classification setting (Ruff et al., 2021) on different natural
imaging datasets on one-class CIFAR10/CIFAR100 (Krizhevsky et al., 2009), ImageNet30
(Russakovsky et al., 2015; Hendrycks et al., 2019b), Dogs vs. Cats (Cukierski, 2013),
and Muffin vs. Chihuahua (Cortinhas, 2023), and compare to the baselines described in
Appendix E. We present the results of this comparison in Table 3.

First, we note an interesting discrepancy between the Invert and Flip context augmen-
tations and Equalize. On average, Equalize seems to perform quite a bit worse than the
other two context augmentations. We suspect that this comes from the fact that Equalize
does not always properly fulfill the distinctiveness assumption of context augmentations,
as equalized samples are visually quite similar to the original sample for natural images
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(a) Alignment of normal test samples.

(b) Alignment of anomalous test samples.

Figure 3: Two dimensional PCA embedding of the train, normal test (a) and anomalous
test samples (b). Lines connecting representations mark embeddings corresponding to the
same sample in different contexts. Parallel lines indicate that sample representations are
positioned approximately at the same location across context clusters, i.e., are aligned across
contexts.

(see Figure 2). Therefore, equalized samples could easily appear as part of the training set,
which would violate distinctiveness. In contrast, Flip and Invert satisfy distinctiveness and
alignment on these datasets and consequently perform relatively well across all datasets.
Our method also compares well against established baselines on natural images, consistently
displaying the best or second-best results among all baselines.

From the relatively low standard deviations, we can further see that we are consistently
achieving high AUROCs across all one-class settings within each dataset. Apart from results
with the Equalize context augmentation, the highest variability across one-class settings
appears in Imagenet30 with the Flip context augmentation. A closer look at individual
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Table 3: One class classification results for CIFAR100, ImageNet30, Dogs vs. Cats, and
Muffin vs. Chihuahua. Results with a * are taken from the original paper. For each dataset,
we train models over three different seeds per dataset class. We report mean and standard
deviation over all one-class settings of each dataset. We bold the best and underline the
second best results.

Method Score CIFAR10 CIFAR100 ImageNet30 Dogs vs. Cats Muffin vs. Chihuahua

SimCLR SNND 89.2±6.7 81.5±8.6 74.7±12.2 84.7±2.2 78.6±11.4
SSD SMahalanobis 97.4 ±8.1 79.1±9.5 76.8±13.0 84.5±0.6 75.0±14.0
CSI SCSI 94.3* 89.6* 91.6* 90.3±0.4 95.1±2.4
UniCon-HA SUniCon 95.4* 92.4* 93.2* 67.9±6.2 91.9±1.3

Con2 (Equalize)
SLH 91.0±5.4 86.1±5.5 85.2±12.6 77.0±1.1 83.0±12.2
SNND 91.5±5.0 87.5±4.4 86.0±12.0 81.2±1.9 87.5±8.0

Con2 (Invert)
SLH 93.0±4.8 89.5±5.4 90.9± 8.8 87.8±1.0 91.4±4.2
SNND 93.9±4.2 90.6±4.9 91.2± 8.4 88.7±1.5 93.8±3.0

Con2 (Flip)
SLH 94.0±4.1 89.1±4.6 88.9±11.9 90.0±1.1 92.6±2.9
SNND 94.6±3.7 89.7±4.2 89.8±11.1 90.3±1.7 94.0±1.7

performances in Table 6 reveals that this is mainly due to two one-class settings for which our
method seems to produce slightly worse results. More specifically, the normal classes ”nail”
and ”pillow” perform very poorly with average AUROCs of 51.8 and 67.3, respectively. We
suspect the poor performance is due to using the Flip context augmentation, which violates
the distinctiveness assumption for nails and pillows, as these objects could be recorded
from any arbitrary angle. However, apart from these outliers, we perform very well on
ImageNet30, with a median AUROC of 93.4. For the Flip Context Augmentation, we
provide a detailed overview of all the individual one-class classification results across all
datasets in Tables 4 to 8.

Table 4: AUROCs of the experiments on one-class CIFAR10. We compare Con2 with
different context augmentations to pretext and contrastive AD methods. Both the Invert
and Flip context augmentations fulfill our assumptions from Section 2.1, whereas samples in
the Equalize context are sometimes similar to the sample in the original context, violating
distinctiveness and thus resulting in slightly lower performance. For methods with a *, we
adopt results from the original paper.

Method Score S Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

SimCLR SNND 78.6±0.6 98.9±0.1 87.1±0.6 84.9±0.3 81.0±1.4 92.3±0.3 94.8±0.5 94.7±0.1 84.7±1.7 95.3±0.6 89.2±6.7
SSD* SMahalanobis 82.7 98.5 84.2 84.5 84.8 90.9 91.7 95.2 92.9 94.4 90.0
CSI* SCSI 89.9±0.1 99.1±0.0 93.1±0.2 86.4±0.2 93.9±0.1 93.2±0.2 95.1±0.1 98.7±0.0 97.9±0.0 95.5±0.1 94.3
UniCon-HA* SUniCon 91.7±0.1 99.2 ±0.0 93.9±0.1 89.5±0.2 95.1±0.1 94.1 ±0.2 96.6±0.1 98.9±0.0 98.1±0.0 96.6±0.1 95.4

Con2 (Equalize)
SLH

89.3±1.0 98.4±0.2 85.6±0.1 77.4±2.1 90.2±0.3 87.9±1.3 95.9±0.2 94.8±0.2 92.1±0.8 93.9±0.7 91.0±5.4
Con2 (Invert) 88.5±0.3 99.0±0.1 87.0±0.4 84.9±0.3 90.0±0.7 93.4±0.5 96.7±0.2 97.3±0.0 95.8±0.1 97.0±0.0 93.0±4.8
Con2 (Flip) 88.9±1.2 99.2±0.0 89.8±0.2 87.0±0.4 92.8±0.9 93.9±0.1 96.3±0.3 98.4±0.1 97.0±0.1 96.9±0.2 94.0±4.1

Con2 (Equalize)
SNND

91.2±1.0 98.4±0.1 88.2±0.3 78.5±2.1 90.5±0.2 87.0±2.1 95.3±0.3 94.8±0.6 93.0±0.6 93.4±0.7 91.5±5.0
Con2 (Invert) 90.3±0.3 99.3±0.0 89.3±0.2 87.0±0.1 90.2±1.1 94.0±0.4 96.7±0.2 97.8±0.0 96.6±0.1 97.2±0.1 93.9±4.2
Con2 (Flip) 90.1±0.8 99.3±0.0 91.0±0.2 88.7±0.4 92.8±0.9 94.1±0.2 96.4±0.2 98.5±0.1 97.5±0.1 97.2±0.1 94.6±3.7
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Table 5: AUROCS for each superclass
of CIFAR100 for both of our scores
when applying the Flip context augmen-
tation. For each setting, we evaluated our
method across three seeds.

One Class Index Con2 (Flip)
SNND SLH

0 85.1±0.4 83.3±0.1
1 85.8±0.8 85.5±1.3
2 93.3±1.2 93.7±0.9
3 90.1±0.4 91.1±0.2
4 94.8±0.4 94.2±0.5
5 84.7±0.3 82.5±0.2
6 92.1±0.5 91.7±0.6
7 84.3±0.7 84.4±0.6
8 90.3±0.6 89.2±0.5
9 95.5±0.2 94.6±0.3
10 87.9±1.0 85.9±1.0
11 91.4±0.3 91.0±0.4
12 91.1±0.3 90.5±0.4
13 83.2±0.5 80.8±0.6
14 96.7±0.0 96.4±0.2
15 80.6±0.7 79.4±0.6
16 86.4±0.7 85.7±0.6
17 97.9±0.1 97.4±0.2
18 96.1±0.3 95.8±0.2
19 94.4±0.3 93.5±0.3

Mean 89.7±4.2 89.1±4.6

Table 6: AUROCS for each class of Im-
ageNet30 for both of our scores when
applying the Flip context augmenta-
tion. For each setting, we evaluated our
method across three seeds.

One Class Index Con2 (Flip)
SNND SLH

0 95.1±0.5 94.1±0.4
1 99.2±0.3 99.0±0.1
2 99.8±0.0 99.8±0.0
3 88.0±0.2 90.9±0.2
4 95.3±0.2 95.9±0.3
5 98.0±0.4 97.2±0.5
6 95.5±0.3 96.0±0.2
7 64.1±3.5 68.0±2.4
8 94.1±0.3 94.5±0.3
9 84.3±0.5 82.4±0.8
10 97.9±0.1 98.1±0.2
11 87.0±0.7 85.5±0.5
12 97.5±0.1 95.4±0.1
13 92.0±0.9 92.9±0.2
14 87.6±0.3 87.6±1.0
15 90.6±0.7 91.0±0.2
16 99.0±0.2 99.0±0.1
17 51.5±1.7 48.6±1.0
18 90.6±0.9 90.9±1.0
19 65.5±2.2 64.4±1.4
20 90.7±0.6 90.1±0.2
21 94.2±1.3 94.6±0.8
22 95.2±0.1 97.4±0.2
23 95.9±0.2 96.2±0.3
24 85.4±1.1 82.3±1.1
25 81.3±5.0 84.7±3.6
26 88.9±0.3 90.3±0.6
27 96.8±0.3 96.9±0.4
28 74.1±1.5 71.1±0.7
29 90.7±0.3 89.2±0.6

Mean 88.9±11.4 88.8±11.7

Table 7: AUROCS for the two classes
”Dog” and ”Cat” for both of our scores
when applying the Flip context augmen-
tation. For each setting, we evaluated our
method across three seeds.

One Class Index Con2 (Flip)
SNND SLH

0 91.7±0.2 91.0±0.2
1 88.8±0.8 89.1±0.4

Mean 90.3±1.7 90.0±1.1

Table 8: AUROCS for the two classes
”Muffin” and ”Chihuahua” for both of
our scores when applying the Flip con-
text augmentation. For each setting, we
evaluated our method across three seeds.

One Class Index Con2 (Flip)
SNND SLH

0 95.7±0.2 95.3±0.1
1 91.9±0.0 89.9±0.2

Mean 93.8±2.1 92.6±2.9
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Figure 4: Ablation illustrating the effect of adding more context augmentations. While the
performance of well-performing normal classes, such as ImageNet30 Ambulance or CIFAR10
Car stays consistent when adding more augmentations, we see a decrease for normal classes
such as ImageNet30 Toaster or CIFAR10 Cat that already perform poor to begin with.

F.3. Multiple Context Augmentations

Our formulation in Section 2.1 can easily be extended beyond only one additional context
by slightly adjusting LContext. However, in addition to a loss in efficiency due to requiring
more memory, we did not find additional context augmentations to provide a performance
benefit, as can be seen in Figure 4. There, we ran an ablation with different numbers of
context augmentations on different classes of CIFAR10 and ImageNet30. In particular, we
trained the adapted Con2 loss for 2, 3, 4, 5, 6, 7, and 8 context augmentations, which we
derived by combining Flip, Invert, and Equalize from our previous experiments. Adding
more augmentations does not seem to harm cases where we experience good performance in
the first place, however, we observe a diminishing performance for slightly more challenging
classes.
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