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Abstract

We consider the problem of computing optimal policies in average-reward Markov decision
processes. This classical problem can be formulated as a linear program directly amenable
to saddle-point optimization methods, albeit with a number of variables that is linear in the
number of states. To address this issue, recent work has considered a linearly relaxed version
of the resulting saddle-point problem. Our work aims at achieving a better understanding of
this relaxed optimization problem by characterizing the conditions necessary for convergence
to the optimal policy, and designing an optimization algorithm enjoying fast convergence
rates that are independent of the size of the state space.

1. Introduction

Computing optimal policies in Markov decision processes (MDPs) is one of the most important
problems in sequential decision making and control (Puterman, 1994). Arguably, the
most classical approach to solve this task is through the method of dynamic programming,
understood in this context as computing fixed points of certain operators (Bellman, 1957;
Howard, 1960; Bertsekas, 2007). The use and influence of dynamic-programming methods
like value and policy iteration extend well beyond the world of decision and control theory,
as the underlying ideas serve as foundations for most algorithms for learning optimal policies
in unknown MDPs: the setting of reinforcement learning (Szepesvari, 2010; Sutton and
Barto, 2018). While being hugely successful, DP-based methods have the downside of being
somewhat incompatible with classical machine-learning tools that are rooted in convex
optimization. Indeed, most of the popular reductions of dynamic programming to (non-
Jeonvex optimization are based on heuristics that are not directly motivated by theory.
Examples include the celebrated DQN approach of Mnih et al. (2015) that reduces value-
function estimation to minimizing the “squared Bellman error”, or the TRPO algorithm of
Schulman et al. (2015) that reduces policy updates to minimizing a “regularized surrogate
objective”. While these methods can be justified to a certain extent, it is technically unknown
if solving the resulting optimization problems actually leads to a desirable solution to the
original sequential decision-making problem.

In this paper, we explore a family of methods that reduce MDP optimization to a form
of convex optimization in a theoretically grounded way. Our starting point is an alternative
approach based on linear programming (LP), first proposed roughly at the same time as the
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DP methods of Bellman (1957); Howard (1960): the idea of LP-based methods for sequential
decision-making goes back to the works of de Ghellinck (1960); Manne (1960); Denardo (1970).
While LP-based methods seem to be more obscure in present day than DP methods, they
have the clear advantage that they lead to an objective function directly amenable to modern
large-scale optimization methods. Recent reinforcement-learning methods inspired by the LP
perspective include policy-gradient and actor-critic methods (Sutton et al., 1999; Konda and
Tsitsiklis, 1999) and various “entropy-regularized” learning algorithms (Peters et al., 2010;
Zimin and Neu, 2013; Neu et al., 2017). While these methods promise to directly tackle the
policy-optimization problem through solving the underlying linear program, most of them
still require the computation of certain value functions through dynamic programming.

In the present work, we argue for the viability of a method fully based on a form of
convex optimization, rooted in the LP approach. Our approach is based on a bilinear
saddle-point formulation of the linear program, building on a well-known equivalence between
the two optimization problems. One particular advantage of this formulation is that it
enables a straightforward form of dimensionality reduction of the original problem through a
linear parametrization of the optimization variables, which provides a natural framework for
studying effects of “function approximation” in the underlying policy optimization problem.
Our main contribution lies in characterizing a set of assumptions that allow a reduced-order
saddle-point representation of the optimal policy. These include a realizability assumption
and a newly identified coherence assumption about the subspaces used for approximation.
Our main positive result is showing that these conditions are sufficient for constructing an
algorithm that outputs an e-optimal policy with runtime guarantees of O (TfniXN 3/ 5), where
N is the number of variables in the relaxed optimization problem, and 7y is a notion of
mixing time. Our approach is based on the celebrated Mirror Prox algorithm of Nemirovski
(2004) (see also Korpelevich, 1976). We complement our positive results by showing that
our newly defined coherence assumption is necessary for the relaxed saddle-point approach
to be viable: we construct a simple example violating the assumption, where achieving full
optimality on the relaxed problem leads to a suboptimal policy.

We are not the first to consider saddle-point methods for optimization in Markov decision
processes. Wang (2017) proposed variants of Mirror Descent to solve the original saddle-point
problem without relaxations and provide runtime guarantees of 6((a7mix)2 | X||A]/€?), where
X and A are the finite state and action spaces, and « is a parameter that characterizes
the uniformity of the stationary distributions of every policy. Specifically, their assumption
implies' that for the stationary distribution d, any policy , one has ﬁffim < . In most
cases of practical interest, this ratio is at least as large as |X|, and can ez;Sily be exponentially
large in |X'|. When specialized to this setting, our bounds replace o by the much more
manageable |X| and also improve the dependence on ¢ from 1/¢% to 1/. One downside of
our method is that we need full access to the transition probabilities of the MDP, whereas
the algorithm of Wang (2017) only requires a generative model.

The linearly relaxed saddle-point problem we consider was first studied by Lakshmi-
narayanan and Bhatnagar (2015); Lakshminarayanan et al. (2018) and Chen et al. (2018).
Our runtime guarantees improve over the ones claimed by Chen et al. (2018) in a similar
way as our first set of results improve over those of Wang (2017). Notably, their results still

1. The actual assumption made by Wang (2017) is even more restrictive.
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feature a factor of a?, which generally depends on the size of the original state space rather
than the number of features, rendering these guarantees void of meaning in very large state
spaces. In contrast, our bounds replace this factor by the number of features N. Furthermore,
our characterization highlighting the importance of the coherence assumption discussed above
hints at some potential technical issues with the results of Chen, Li, and Wang (2018), who
claimed convergence to the optimal policy without the coherence assumption.

The rest of the paper is organized as follows. After providing background on MDP
optimization in Section 2, we describe the linearly relaxed saddle-point problem in Section 3.
We provide our algorithm and state its performance guarantees in Section 4, and conclude
with Section 5. Due to space constraints, we relegate all proofs and numerical results to the
full version of the paper (Bas-Serrano and Neu, 2019).

Notation. Inner products over vector spaces will be denoted by (-, ). We use Ag to denote
the set of probability distributions on the finite set S: Ag = {p € ]Rf_ Y sesP(s) = 1}.

2. Preliminaries

Consider an undiscounted Markov decision process M = (X, A, P,r), where X is the finite
state space, A is the finite action space, P is the transition function with P(2'|x,a) denoting
the probability of moving to state ' € X from state z € X when taking action a € A and
r is the reward function mapping state-action pairs to rewards with r(x,a) denoting the
reward of being in state x and taking action a. We assume that r(z,a) € [0, 1] for all z, a.
In each round ¢, the learner observes state x; € X, selects action a; € A, moves to the next
state xy+1 ~ P(-|x¢, a;), and obtains reward r(zy, at).

In this paper we focus on the infinite-horizon average-reward scenario where the goal of
the learner is to select its actions a; in a way that maximizes the average reward per time step,

liminf; o E [% Z?:l ri(x¢,ae)|. We will work with randomized stationary policies with

m(a|z) denoting the probability of taking action a in state x. Under technical assumptions
discussed shortly, each such policy 7 generates a unique stationary state distribution d, € Ay
over the state space satisfying d(z) = limy—,o P [z; = x| for all  when the trajectory (x;); is
generated by following policy . Similarly, each policy 7w generates a stationary state-action
distribution pu, € Axxa satisfying pr(x,a) = limpoo Pz = 2,0 = a] = dr(x)7(alx).
Given these definitions, the average reward of a policy 7 can be written as

L I
T Z re(ze, at)] = Z p(x,a)r(z,a),
t=1 T,a

where the notation E [] indicates that the trajectory (zy, a;); was generated by following
policy 7: ay ~ m(-|z¢) and x¢y1 ~ P(-|z¢,ar). Under our assumptions, the optimal policy can
be shown to be a stationary one; we will denote its average reward as p* = max; p;. Thus,
one can show that finding the optimal policy is equivalent to solving the following linear
program:

pr = lim inf E
t—o00

maximize Z w(z,a)r(x,a)

z,a

st pEAya, Yol d) =Y Plnau(za) (% € ).
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To simplify our notation, we will represent p and r by |X x AJ-dimensional vectors and also
define the [X' x A| x |X|-dimensional matrix Q with entries Q. 4) o = P(2'|z,a) — Ti—g.
Then, one can easily see? that solving the linear program stated above is equivalent to finding
the following saddle point:
nin, max L(v, p) = nin, me {1y Qu) + ;7). (1)

Here, we introduced the Lagrangian function £ and the shorthand A = Axyx 4. Optimal
solutions (v*, 1*) to the above saddle-point problem are easily seen to correspond to the
stationary distribution p* of the optimal policy and the optimal differential value function v*
(also known as the optimal bias function, cf. Puterman, 1994). Besides the full saddle-point
optimization problem, we will consider a relaxed version based on the introduction feature
maps. Details on this variant are provided in Section 3.

We will make two structural assumptions about the underlying Markov decision process.
The first of these guarantees the existence of stationary distributions for all policies.

Assumption 1 (Uniform ergodicity) Every policy w generates an ergodic Markov chain.
Specifically, letting Py be the transition operator of w defined as the matriz with elements
Pr(a'|x) = Y, m(alx)P(2'|x,a), and d,d" be any two distributions over X, the following
inequality is satisfied for some C,7 > 0 and for all k:

|(@—a)pt| <cetmla-a],.

We say that our MDP is uniformly ergodic if it satisfies Assumption 1. Notice that this
assumption is significantly weaker than the 1-step mixing assumption often made in the
related literature (Even-Dar et al., 2009; Neu et al., 2014), and can be easily seen to hold
when all policies induce aperiodic and irreducible Markov chains (cf. Theorem 4.9 in Levin
et al., 2017). Clearly, this assumption implies that every policy admits a unique stationary
distribution as required in the discussion above. In what follows below, we will often use the
notation Tmix = 2C (7 + 1) and refer to this quantity as the mizing time of the MDP?.

Given this assumption and the above definitions, we can establish a number of useful
facts about the optimal solutions (v*, 1*) to the saddle-point problem (1). We first note
that an optimal policy 7* can be extracted from p* in the states where p*(z,-) > 0 as
™ (alz) = % Regarding v*, the following proposition summarizes some of its most
important properties:

Proposition 1 Let (v*, u*) be a solution of the problem (1). Then, v* satisfies the following
properties:
o v* satisfies the Bellman optimality equations v*(x) = r(x) — p* + > P(2'|z,a)v* (')
for all x; for any ¢ € R, v* + ¢ is also a solution to (1);
o for any x, 2, |v*(x) — v*(2')| < Tz = 2C (7 + 1).

All of these properties can be proven by standard arguments; we refer the reader to Lemma 1
in Wang (2017) for a proof of the first item and Lemma 3 in Neu et al. (2014) for a proof of
the second one.

2. This can be seen, e.g., by introducing the KKT multipliers for the constraints in the linear program.
3. Note that this is just one of many possible definitions of a mixing time, see, e.g., Seneta (2006); Levin
et al. (2017).
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3. The linearly relaxed saddle-point problem

While one can directly derive optimization algorithms to solve the saddle-point problem (1),
such a direct approach would suffer from serious scalability issues due to the sheer number
of variables involved in the problem: the size of the objects of interest u and v are linear
in the size of the state space, which results in prohibitive memory and computation costs
for most algorithms. To address this issue, we study a linearly relazed version of the full
saddle-point problem that reduces the order of the original optimization problem by linearly
parametrizing the variables v and p through two sets of feature maps. Formally, we consider
the matrices F' of size |X'| x N and W of size M x |X x A|, introduce the new optimization
variables y € RM and u € RY, and use these to (hopefully) approximate the solutions to (1)
as pu* =~ yW and v* =~ Fu. For a tractable problem formulation, we will assume that the
rows of W are non-negative and sum to one: Wy, , > 0 for all z,m and ), W,,, =1 for
all m. We will also assume that all entries of I are bounded by 1 in absolute value. These
conditions enable us to optimize y over the probability simplex A = A7 and to formulate
our relaxed saddle-point problem as

min max £(u,y) = min max (WTy, QFu) + (WTy, 7). (2)
u€RN yeﬁ u€RN yeﬁ

The relaxed optimization problem above has been studied before by Lakshminarayanan and
Bhatnagar (2015); Lakshminarayanan et al. (2018), and Chen et al. (2018). Lakshminarayanan
and Bhatnagar (2015); Lakshminarayanan et al. (2018) studied the relaxed linear program
underlying (2) as a natural extension of the classic relaxed LP analyzed by de Farias and Van
Roy (2003), and have focused on understanding the discrepancies between the optimal value
function and the relaxed value function attaining the minimum in the above expression. On
the other hand, Chen et al. (2018) focused on proposing stochastic optimization algorithms
and analyzing the rate of convergence to the optimum, but provide little insight about the
quality of the optimal solution of the relaxed problem.

One of our main goals in the present paper is to obtain a better understanding of the
effects of approximation on the policies that can be obtained through approximately solving
the the relaxed saddle-point problem (2). One peculiar challenge associated with our setting
is that it is not enough to ensure that the values of £ and £ are close at their respective
saddle points, but we rather need to understand the performance of the policy extracted
from the optimal solution y*. Precisely, defining the policy extracted from y as

W'y)(z,a)
2o WTy)(z,d)

for all z, a, and the corresponding stationary distribution as p, induced in the original MDP,
we are interested in the suboptimality gap (u* — p,, 7). In the present paper, we focus on
identifying assumptions on the feature maps that allow the computation of true optimal
policies with (almost) zero suboptimality gap. Specifically, we will show that the following
two assumptions have a decisive role in making this gap small:

my(alr) =

Assumption 2 (Realizability) The optimal solution is realizable by the feature maps:
there exists (u*,y*) such that v* = Fu* and p* = WTy*. Additionally, ||u*||.. < UTmiz holds
for some U > 0.
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Assumption 3 (Coherence) The image of the set A under the map Q"W is included
the column space of F: for ally € A such that Q"W Ty # 0, there exists a u € RN such that
(Q"WTy, Fu) # 0. Additionally, for all v e RI*! with vl <1, there exists a u € RN with
|lul| < U such that (Q"W Ty, Fu) = (Q"W Ty, v).

The second condition of each assumption is to ensure that the columns of F' are well-
conditioned and are satisfied if the columns form an orthonormal basis. While the realizability
may already seem sufficient for the relaxed problem to be a good enough approximation of
the original one, we argue that the second assumption is also necessary for the relaxation
scheme to be reliable. Specifically, the following theorem shows that in the absence of the
coherence assumption, near-optimal solutions to the relaxed saddle-point problem (2) can
still lead to suboptimal policies in the original MDP.

Theorem 1 For any € > 0, there exists an MDP with relaxations W, ' satisfying Assump-
tion 2 and violating Assumption 3, and a solution (u,y.) simultaneously satisfying

L(FT,p*) = L0, W) =€

and

(0" — pg.,m)y =2/3.
The proof is provided in appendix of the full version of the paper. The key idea behind the
proof is building an MDP with three states and choosing W and F' so that they guarantee
realizability but for which there exist a y such that (WT'y,r) = p* and (W'y, QFu) = 0 for
all u, despite W'y being non-stationary.

4. Algorithm and main results

In this section, we provide our main positive results: deriving strong performance guarantees
for policies derived from approximate solutions of (2) under Assumptions 2 and 3. Our
algorithm attaining these guarantees is based on the Optimistic Mirror Descent framework
proposed by Rakhlin and Sridharan (2013a,b), and more specifically on its variant known as
Mirror Prox due to Nemirovski (2004) (see also Sections 4.5 and 5.2.3 in Bubeck (2015) for
an easily accessible overview of this method).

Our algorithm will compute a sequence of value functions and state-action distributions by
starting from vg = 0 and o chosen as the uniform distribution over X x A, and consecutively
computing each update as

Uppr = w —NFTQ™W Ty, Ypp14 yt,ien((wr)iJr(WQFut)i) (3)

U1 = up — NEFTQ WY1, Ypy1,i X yt,ien((Wr)ﬁ(Wth“)")a (4)

for all ¢ > 0, where we used the notation “o” to signify that ;11 and y¢11 are normalized
multiplicatively after each update so that ) Y1y = 1 is satisfied. Also introducing the no-
tations yp = % ZZ;I yr and up = % Zthl Uy, the algorithm outputs the policy extracted from
the distribution yp: 7 = 7y, Letting dr = dr; be the stationary distribution associated
with 77, the corresponding average reward can be written as pr = 3, dr(z)7r(alz)r(z, a).
The following theorem presents our main result regarding the suboptimality of the resulting
policy in terms of its average reward.
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Theorem 2 Suppose that Assumptions 1, 2 and 3 hold and n < 1/4AN. Then, the average
reward pr output by the algorithm satisfies

5oy < 1172, U*N + 7log M
T > 77T .

. . " 7_2 . N2U2
In particular, setting n = 1/4N, the bound becomes p* — ppr = O <7’W”T>

On a high level, the proof of this theorem builds on some well-known results regarding the
performance of Mirror Prox. One key component is using the classical bound on the duality
gap that can be written as <,u* — Wy, T> < % + <QTWT§T,U*>. The remaining
challenge is then to connect the quantity on the left-hand side to the suboptimality gap of
the extracted policy mp. This is achieved by a novel technique that asserts the relationship
WTyr,r) — pr < Tiix HQTWTZJTHI. The rest of the work is in bounding the remaining
terms by exploiting further properties of Mirror Prox. The detailed proof can be found in
appendix of the full paper.

In the special case where F' and W are the identity maps, the relaxed saddle-point
problem becomes the original problem (1), and our Assumptions 2 and 3 are clearly satisfied
with U = 1. In this case, our algorithm satisfies the following bound:

Corollary 3 Suppose that Assumption 1 holds, W and F are the identity maps, and
n < 1/4. Then, the average reward pp of the policy output by our algorithm satisfies

o= pp < U7l X + Tlog (| X]A])
< T :

In particular, setting n = 1/4, the bound becomes p* — pp = 0] (r%?x|).

A brief inspection of Equations (3)-(4) suggests that each update of our algorithm can be
computed in O (M N) time, the most expensive operation being computing the matrix-vector
products WQFu and y"WQF. While this suggests that the algorithm may have runtime
and memory complexity independent of the size of the state space, we note that exact
computation of the matrix WQF can still take O (|X|?|.A|) time in the worst case. This can
be improved to O (K) when assuming that only K entries of the transition matrix P are
nonzero, which can be of order |X||.A] in many interesting problems where the support of
P(:|x,a) is of size O (1) for all z,a. We stress however that the matrix WQF only needs to be
computed once as an initialization step of our algorithm. In contrast, a general algorithm like
value iteration needs at least © (K) = O (|X||.A]) time for computing each update, showing a
clear computational advantage of our method.

5. Discussion

Our most important contributions concern the relaxed saddle-point problem (2), most
notably including our discussion on the necessity and sufficience of the coherence assumption
(Assumption 3). As we’ve mentioned earlier, several relaxation schemes similar to ours have
been studied in the literature. In fact, relaxing the linear program underlying (1) through
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the introduction of the feature map F' for approximating the value function v* is one of the
oldest ideas in approximate dynamic programming, originally introduced by Schweitzer and
Seidman (1985). The effects of this approximation were studied by de Farias and Van Roy
(2003) in the context of discounted Markov decision processes. A relaxation scheme involving
both the feature maps F' and W was considered by Lakshminarayanan and Bhatnagar (2015);
Lakshminarayanan et al. (2018). Both sets of authors carefully observed that introducing
relaxations may make the linear program unbounded, and proposed algorithmic steps and
structural assumptions of F' and W to fight this issue. The results of these works are
incomparable to ours since they focus on controlling the errors in approximating the optimal
value function v* rather than controlling the suboptimality of the policies output by the
algorithm. Interestingly, the widely popular REPS algorithm of Peters et al. (2010) is also
originally derived from the relaxed linear program analyzed by de Farias and Van Roy (2003),
even if this connection has not been pointed out by the authors.

The work of Chen et al. (2018) is very close to ours in spirit. Chen et al. consider a
variation of the relaxed saddle-point problem (2) with W being block-diagonal with F'" in
each of its blocks, and claim convergence results for their algorithm to the optimal policy
under only a realizability assumption. Unfortunately, their choice of W does not necessarily
ensure that the coherence assumption holds, which raises concerns regarding the generality
of their guarantees. Indeed, the results of Chen et al. require an additional assumption
that implies that % remains bounded by a constant for any policy m, which is
extremely difficult to ensure in problems of practical interest. In fact, this ratio is already
exponentially large in |X| in very simple problems like the one we consider in our experiments.
Additionally, the analysis of Chen et al. is based on the potentially erroneous claim that
under the realizability assumption, the representation (u*,y*) of the original optimal solution
(v, p*) = (Fu*, WTy*) always remains an optimal solution to the relaxed saddle-point
problem. It is currently unclear if this claim is indeed true, or to what extent their condition
regarding the boundedness of stationary distribution can be relaxed.

In any case, we believe that our coherence assumption is more fundamental than the
previously considered conditions, and it enables a much more transparent analysis of opti-
mization algorithms addressing the relaxed saddle-point problem (2). Beyond this particular
positive result, our work also cleans the slate for further theoretical work on approximate
optimization in Markov decision processes. Indeed, the form of our coherence assumption
naturally leads to the question: can we compute good approximate solutions to the original
problem when our assumptions are only satisified approximately? Similar questions are
not without precedent in the reinforcement-learning literature. Translated to our notation,
classical results concerning the performance of (least-squares) temporal difference learning
algorithms imply that the approximation errors are controlled by the projection error of
QFu* +r to the column space of F' (Tsitsiklis and Van Roy, 1997; Bradtke and Barto, 1996;
Lazaric et al., 2010). When using more general function classes to approximate v*, Munos
and Szepesvari (2008) show that the approximation errors are controlled by the inherent
Bellman error of the function class, which captures an approximation property related to our
coherence condition. Whether or not we can generalize our techniques to construct provably
efficient algorithms under such milder assumptions remains an exciting open problem that
we leave open for future research.
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