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The ability to efficiently and accurately localize potentially threatening nuclear radiation sources in urban environ-
ments is of critical importance to national security. Techniques to infer the location and intensity of a source using
data from a configuration of radiation detectors, and the effectiveness of the source localization depends critically on
how the detectors are configured. In this paper, we introduce a framework that uses surrogate models to efficiently
compare and optimize different detector configurations. We compare our technique to others and demonstrate its effec-
tiveness for selecting optimal detector configurations in the context of urban source localization.
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1. INTRODUCTION

The interception of smuggled nuclear materials, prevention of nuclear terrorism, and recovery of hazardous radiolog-
ical sources requires accurate and efficient methods for radiation source detection and localization. Hence, the de-
velopment, implementation, and experimental validation of mathematical and statistical algorithms for detecting and
locating nuclear devices in urban environments constitutes a critical nuclear security and nonproliferation problem.

Radiation source detection is the process of determining the presence or absence of a radiation source in a given
area, whereas radiation source localization is the estimation of the location and intensity of one or more sources
that are assumed to be present. Both localization and detection require computing the response induced at a detector
by a source. Because of the computational cost associated with computing detector responses, surrogate models
are employed to approximate detector responses or functions of detector responses. In this paper, we will consider
an approach that optimizes surrogate models of design criteria to find optimal configurations of radiation detectors
that will yield precise localization results for sources in urban environments. Whereas some authors address both
detection and localization [1–3], we will focus on the localization problem assuming a radiation source is present. We
will consider a single, fixed-location source, and refer readers to [3,4] for moving sources and [1] for multiple sources.

Radiation source localization employs a configuration of radiation detectors to collect data used to estimate a
source’s location and intensity parameters. If there are no obstructions between the source and the detector and no
noise or error in detector readings, a simple four-detector method suffices to localize the source [5]. Obstructions or
sources of random noise in the environment induce error and variation in detector measurements making it necessary
to fuse data collected from several detectors to perform localization accurately.

In the absence of obstructions, Chin et al. [6] introduced methods that cluster the candidate source locations
obtained using the ratios of squared distances computed from several three-detector subsets to identify the true source
location. Another approach is to treat detector measurements as random variables generated by a statistical model
parameterized by the source parameters. Maximum likelihood estimation (MLE) can be used to estimate the source
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parameters [2,7,8]. While MLE methods provide point estimates for the source parameters, it can be difficult to obtain
exact or asymptotic variances for these estimates, making uncertainty quantification of these estimates challenging.
This has led many investigators to employ Bayesian inference methods, which provide a posterior distribution for
source parameters that can be used to easily compute point estimates for the source parameters and quantify the
uncertainty of these estimates [9–11]. We will employ a Bayesian formulation for source localization.

Radiation source localization is most important, and often most challenging, when the source is in an urban en-
vironment. The detonation of a nuclear device in a densely populated urban environment could cause major loss of
life, serious infrastructural damage, and severe health hazards. Lost or stolen medical radiation sources or misplaced
radioactive waste can also pose health threats to an urban population. Various characteristics of the urban environ-
ment, however, make source localization particularly difficult. In contrast to the noise-free, obstruction-free scenario,
buildings with varying materials as well as moving objects such as vehicles can obstruct the source. The presence of
background radiation, which may vary in time and space within a city, also introduces noise that may be difficult to
separate from radiation emitted by the source of interest.

To account for fixed position attenuating objects, such as buildings, that may block the path between the de-
tector and the source, a simplified version of the Boltzmann transport model can be employed [9,11]. To account
for background radiation, Penny et al. [12] showed that the environment can be partitioned so that each region has
approximately uniform background. Alternatively, by employing a hierarchical Bayesian model, background radi-
ation estimation and source localization can be accomplished simultaneously [13,14]. For simplicity, we will treat
background radiation observed at each detector as a Gaussian random variable with fixed parameters.

Another challenge of urban source localization is the sensitivity of the localization results to the employed config-
uration of the radiation detectors. In the Bayesian localization context, different detector configurations will produce
different posterior distributions for the source parameters. An optimal configuration will produce a posterior distribu-
tion with minimal uncertainty. Michaud [13] and Schmidt [14] used mutual information to quantify the reduction in
uncertainty for the source parameters achieved by knowing the responses observed at a detector configuration. Find-
ing a detector configuration that maximizes mutual information is equivalent to finding a configuration that yields
the greatest reduction in uncertainty about the source parameters. Michaud [13] and Schmidt [14] optimized mutual
information over combinations of a finite subset of detectors. The cost of computing the response at hundreds or thou-
sands of source detector pairs makes this approach appealing because it limits the number of detectors considered.
The primary disadvantage of this approach is that the ideal configuration may not exist as a combination of some
fixed set of possible detector locations.

Instead of computing mutual information explicitly for each detector configuration, we can construct a surrogate
model between detector configurations and mutual information that does not require thousands of detector response
computations. In this paper, we will present an approach for maximizing mutual information over all possible de-
tector configurations by constructing a surrogate model between mutual information and detector configuration and
then optimizing over this surrogate model. This approach is computationally efficient and considers general detector
configurations instead of only a finite subset of possible configurations. The generality of this approach is particu-
larly important in larger urban environments or three-dimensional space where small subsets of candidate detector
locations may not be representative of the space.

The paper is organized as follows: in Section 2, we discuss the Bayesian framework used for source localization,
mutual information estimation, and the combinatorial optimization of mutual information demonstrated in [13,14]. In
Section 3, we develop a continuous optimization approach using surrogate models, which, in Section 4, we compare
to the performance of the combinatorial optimization approach for a localization problem with movable detector
networks. We present concluding remarks in Section 5.

2. BAYESIAN SOURCE LOCALIZATION AND DETECTOR CONFIGURATION SELECTION

2.1 Bayesian Framework for Constructing Posterior Distributions of Source Parameters

Our objective is to estimate the source parameter vectorθθθ = (θ1, θ2,θ3), whereθ1 andθ2 are the two-dimensional
location coordinates of the source, andθ3 is the source intensity. We assume the source is located in a bounded search
space. We use the block of downtown Washington, DC described by Stefanescu et al. [11] as our search space.

International Journal for Uncertainty Quantification



Surrogate Based Mutual Information Approximation and Optimization 41

To obtain estimates and perform uncertainty quantification forθθθ, we treatθθθ as a random vector and compute the
posterior distribution,p(θθθ|Y), given the dataY whereY = (Y1, ..., Yn) are the radiation count measurements taken
from a configuration ofn detectors,x = {d1j , d2j}n

j=1, whered1j andd2j are the location coordinates of thejth
detector. To computep(θθθ|Y), we require the probability of the data givenθθθ, p(Y|θθθ), and a prior distribution forθθθ,
p(θθθ). We employ delayed rejection adaptive Metropolis (DRAM) [15] Markov chain Monte Carlo (MCMC) methods
to samplep(θθθ|Y).

In specifying thep(Y|θθθ) andp(θθθ), we will describe the process we use to generate detector response dataY for a
set of radiation sources. In practice,Y would be collected from real detectors. Instead of using real detector data as in
[9] or expensive, high-fidelity radiation transport codes [16], we have simulated detector response using a statistical
framework employing a simplification of the Boltzmann transport model. All detector response data used in this paper
will be generated using this framework.

We begin by drawingN parameter vectors,θθθ, from the source parameter prior distribution,p(θθθ),

p(θs) =
I(θs,min < θs < θs,max)

θs,max− θs,min
, s = 1, 2, 3, (1)

p(θθθ) = p(θ1) · p(θ2) · p(θ3). (2)

Hereθs,min andθs,max are, respectively, the smallest and largest values thatθs can take fors = 1, 2, 3. Notice that
the source parameters are assumed to be independent. Because our search space is246.615m× 176.333m, we set
θ1,min = 0, θ1,max = 246.615, θ2,min = 0, θ2,max = 176.333. We setθ3,min = 109, andθ3,max = 5× 109.

After generatingN source parameter vectors, we evaluate the expected detector response due to the radiation
source for each of theN sources atn detectors. The expected detector responseγi due to a source located at(θ1,θ2)
with intensityθ3 for detectori located atdi = {di1, di2} is calculated using an approximation to the Boltzmann
transport model [11],

γi = θ3 ·∆ti · εi · Ai

4π||di − (θ1, θ2)||22
exp


−

N∑̀

p=1

`p · Σ(p)
T


, (3)

Hereεi is the efficiency of the detector, andAi is the face area of the detector. We assume all the detectors are the
same and have the same dwell time,∆ti, soεi, Ai, and∆ti will not vary with i. HereN` is the number of buildings
in the bounded search space intersected by a ray from the source to the detector,`p is the length of the portion of

the ray intersecting buildingp, andΣ(p)
T is the macroscopic cross section of buildingp. We note thatγi quantifies

uncollided flux, the flux of photons on the path from the source to the detector that are not absorbed or scattered.
To generate the observed radiation count at detectori, we drawBi from a Gaussian distribution with mean 140.8

and variance 9.61, multiply it by∆ti, and add this toγi to get

λi = γi + Bi ·∆ti, Bi ∼ N(140.8, 9.61).

HereBi simulates the background radiation in the urban environment in counts per second. The mean and variance
based on radiation concentration measurements collected from a site replicating a small urban environment at Fort
Indiantown Gap National Guard Training Center [17]. The concentration measurements were used to compute detec-
tor responses with the gamma detector response and analysis software detector response function (GADRAS-DRF)
[18]. These mean and variannce parameters were also used in [13].

Observed radiation counts are often treated as Poisson random variables [19], with the Poisson accounting for
detector measurement error. Thus, after computingλi, the expected radiation count due to the radiation source, and
the random radiation count due to background, we draw the radiation count observed at detectori from a Poisson
distribution withλi as the mean parameter. The probability of the data observed atn detectors, givenθ andBi is

p(Y|θθθ, B) =
e−

∑n
i=1 λi

∏n
i=1 λ

yi

i∏n
i=1 yi!

. (4)
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2.2 Mutual Information Estimation

To select an optimal configuration,xopt, at which to collect the detector data, we maximize the mutual information
between the source parametersθθθ and the data collected at a particular detector configurationY. We denote this
quantity asI(θθθ, Y).

The mutual information between continuous random vectorsY andθθθ is

I(θθθ, Y) =
∫

θθθ

∫

Y
p(θθθ, Y) log

(
p(θθθ, Y)

p(θθθ)p(Y)

)
dθθθdY, (5)

or equivalently,

I(θθθ, Y) = H(θθθ)−H(θθθ|Y), H(θθθ) = −
∫

θθθ

p(θθθ) log p(θθθ)dθθθ, (6)

whereH(θθθ) is the Shannon entropy ofθθθ, a measure of the uncertainty ofθθθ. Thus, mutual information betweenθθθ and
Y is the total uncertainty ofθθθ minus the uncertainty ofθθθ given we knowY.

In general, Eq. (5) cannot be evaluated analytically. Consequently, many estimators of mutual information have
been proposed to estimate this quantity [20–23]. We use the Kraskov-Stögbauer-Grassberger (KSG) k-nearest neigh-
bors estimator [23]. Although biased, the KSG estimator is straighforward and efficient to compute and has been
shown to perform well in selecting optimal configurations based on the maximization of the mutual information
criterion [13].

The KSG mutual information estimator, employingN draws fromp(θθθ), {θθθi}N
i=1, and the corresponding realiza-

tions of data,{Yi}N
i=1, from some detector configuration is

Î(θθθ, Y) = ψ(N) + ψ(k)− 1
N

N∑

i=1

ψ(nθθθ(εθθθ(i)))− 1
N

N∑

i=1

ψ(nY(εY(i)))− 1
k

, (7)

where

nθθθ(εθθθ(i)) =
N∑

j=1

I

(
||θθθj − θθθi||∞ ≤ εθθθ(i)

2

)
and nY(εY(i)) =

N∑

j=1

I

(
||Yi − Yj ||∞ ≤ εY(i)

2

)
, (8)

and where
εθθθ(i)

2
= max1≤j≤k||θθθj

i − θθθi||∞ and
εY(i)

2
= max1≤j≤k||Yj

i − Yi||∞. (9)

Here(θθθj
i , Yj

i ) is thejth nearest neighbor to(θθθi, Yi) in the joint space forθθθ andY, N is the number of(θθθi, Yi) pairs
in the data, andψ(·) is the digamma function. The estimator uses the form of mutual information in (6). The average
count of points in a ball with radius equal to a point’s distance to itskth nearest neighbor is employed to estimate
entropy. We direct the reader to [23] for a full derivation of this estimator and its connection to entropy.

For fixed{θθθi}N
i=1, Î(Y,θθθ) is a noisy function of detector configurationx, requiringN × n evaluations of (3).

The noise in̂I(Y,θθθ) is due to the random background radiation detector readings,Bi, andYi being a Poisson random
variable. To emphasize the dependence onx, we denotêI(Y,θθθ) asÎ(Y(x),θθθ).

Our objective is to determine the detector configuration that maximizesE(Î(Y(x),θθθ)|θθθ), which we denote as
g(x), a function ofx because the expectation taken overY eliminates the dependence onY. Thus our objective is

xopt = argmax
x∈D

g(x). (10)

Herex ∈ D if and only if θ1,min ≤ d1j ≤ θ1,max andθ2,min ≤ d2j ≤ θ2,max for all j = 1, ..., n.
In general, solving (10) requiresK evaluations of̂I(Y(x),θθθ) andN × n ×K evaluations of Eq. (3), forK on

the order of104 or more to insure the space overx is thoroughly searched. Because of the cost of evaluating (3), (10)
can be prohibitively expensive to solve over allD.
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2.3 Combinatorial Optimization of Detector Configurations

To facilitate the solution of Eq. (10), Michaud [13] and Schmidt [14] proposed maximizingÎ(Y(x),θθθ|θθθ) over a finite
2D set{d1m, d2m}p

m=1 instead ofD. This strategy is illustrated for our scenario in Fig. 1. For this strategy, there are
only p possible detector locations, and we only need to evaluate (3)N × p times. The data for anyK configurations
we wish to consider will be some subset of theseN×p computations. Instead of using this combinatorial optimization
approach, we will propose a new surrogate-model based approach that allows us to perform continuous optimization
over the whole detector configuration space.

(a)

(b)

FIG. 1: Optimization of detector configurations over finite subset. (a) Finite set ofp detector locations and (b) optimal three-
detector configuration.
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3. CONTINUOUS OPTIMIZATION OF DETECTOR CONFIGURATIONS

3.1 Surrogate Based Mutual Information Approximation and Optimization

Rather than constrainD to some finite set, we could find an approximate solution to Eq. (10) by creating a surrogate
model that approximatesg(x) and is less expensive to compute. We first describe a method for constructing sets of
input-output pairs that can be used to fit these models. We then review a variety of popular surrogate models that
can be used for our application and compare the performance of these models in capturing the relationship between
mutual information and detector configuration.

For some fixed{θθθj}N
j=1, let zi = Î(Y(xi),θθθ) be the KSG estimated mutual information corresponding to theith

n-length detector configuration,xi. We assume

zi = g(xi) + ei. (11)

Hereei
iid∼ N(0,σ2) is noise due to random background radiation and the stochastic nature of the detector readings.

It is difficult to optimizeg(x) directly. We never observe it or compute it directly; instead we only compute the
noisy zi estimates. Eachzi is expensive to generate. A singlezi estimate from 1000 data points for a five-detector
configuration can take 8–10 min to generate on a standard laptop computer. Rather than optimizingg(x) directly, we
will generate a set of outputs{zi}M

i=1 at a set of inputs{xi}M
i=1, called design points, and use these design points to

build a surrogate model̂g(x) that approximatesg(x). Surrogate models can be used to efficiently find approximate
optima of expensive objective functions [24,25].

Under this surrogate based optimization framework we replaceg(x) with ĝ(x) to obtain the new optimization
problem,

xopt = argmax
x∈D

ĝ(x). (12)

When the surrogate model is built only once for a fixed set of design points prior to optimization, the surrogate-based
optimization is called the one-shot solution [25]. This is the solution method we will employ to perform detector
configuration optimization.

3.2 Design Point Selection

To construct̂g(x), we require a set ofM input-output pairs,{zi, xi}M
i=1, from the model in Eq. (11). The set{xi}M

i=1,
called the design points set, should be space-filling, so that the design points are spread throughout the input space we
are investigating to insure the surrogate model is accurate for the entire space. One popular space-filling design is the
Latin hypercube design (LHD) [26]. A LHD of sizeM is generated by treating each input variable as an independent
random variable and then dividing each variable’s range intoM intervals having equal probability. IfU is an input
variable with assumed distribution functionFU (u), then a LHD selects interval boundariest1 < ... < tM in the range
of Uk such thatFU (t1) = FU (t2) − FU (t1) = ... = FU (tM ) − FU (tM−1). After performing this procedure for all
variables in the input, design points are selected so that every interval for each variable is represented in the design
by exactly one design point.

A key advantage of using a LHD is that it allows us to manipulate the resolution at which different regions
of the input space will be represented. If there are parts of the input space that we are less interested in, we can
select distribution functions for the input variables that assign low probability to those regions and those regions
will be sparsely sampled. Figure 2 shows the LHD from (a) two independent uniform (–3, 3) input variables and (b)
two independent standard Gaussian random variables. Note that because the standard Gaussian has more probability
mass concentrated near its mean of zero, the majority of the points in the Gaussian LHD are clustered in the box
[−1, 1] × [−1, 1]. The uniform LHD, however, distributes points evenly across the range of the two input variables.
For our application, we wish to have more configuration design points with detectors in regions of the search space
where the source location has high probability. To achieve this using the LHD method, we will use the marginal
prior distribution functions of the source location coordinates as described in [27] for independent input variables.
We denote the generated matrix of design points asX.
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(a) (b)

FIG. 2: Uniform versus Gaussian Latin hypercube design. LHD from two independent (a) uniform(−3, 3) variables and (b)
Gaussian(0, 1) variables.

From Section 2.3, computing the mutual information forM design points, each withn detectors, requires eval-
uating (3)N × n ×M times, whereN is the number of source locations used to approximate mutual information.
We needn × M evaluations for each of theN source locations because each of then detectors in theM design
points is distinct and has distinct responses for each source. Instead of computing the response at then×M distinct
detectors in the design, we could reduce the computational cost by reducing the number of distinct detectors in the
M point design to somep < n×M , and then use thep distinct detectors to construct a design that approximates the
originaln×M design. In particular, we can generate ap point LHD across the space of possible detector locations:
P = {(d′11, d

′
21), (d

′
12, d

′
22), ..., (d

′
1p, d

′
2p)} and compute the detector response at these locations inp×N model eval-

uations. We then approximateX by replacing each(d1ij , d2ij) ∈ X with arg min
(d′1k,d′2k)∈P

||(d′1k, d′2k)− (d1ij , d2ij)||2. This

constructs the best elementwise`2-norm approximation toX with the elements ofP . We denote this approximation
asX̃. Simulation studies show that while using̃X instead ofX has a small impact on localization precision, it does
not have a significant impact on localization accuracy (see Appendix A).

3.3 Surrogate Model Selection

We consider three surrogate models forg(x): Gaussian processes (GP) (a.k.a. kriging), Bayesian Multivariate Adap-
tive Regression Splines (BMARS), and thin-plate spline radial basis functions (RBF). Each method is trained using
M estimated mutual information values,{zi}M

i=1 = z, and a full LHD,X, or an approximated LHD,̃X.

3.3.1 Gaussian Processes

Gaussian processes are a class of nonparametric, nonlinear models. Consider anM × 1 vector of KSG estimates,z,
and anM × 2n design matrix of detector configuration coordinates,X. We assume that

zi = g(xi) + ei, ei
iid∼ N(0,σ2

e). (13)

Gaussian processes approximateg(x) for new configuration pointsx∗i by constructing a conditional distribution
for unobserved function valuesz∗i = g(x∗i ) givenz andX, allowing us to make predictions for the underlying function
and assess the uncertainty of these predictions.

Let g(X) be theM -length vector ofg(·) evaluated for each row ofX. A prior for g(X) is

g(X) ∼ MV N(β0111M ,σ2R). (14)

Here111M is anM -length vector of ones,I is theM × M identity matrix, andR is anM × M matrix with Rij =
K(xi, xj), for kernel functionK(·, ·).
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In predictingM∗ new function valuesz∗ for a set of new inputsX∗ we derive the conditional expected value,
which we use as the predicted value for the underlying function, and the conditional variance as

E[z∗|z, X] = β0 + σ2r∗T (σ2
eI + σ2R)−1(z− β01M ), (15)

V ar[z∗|z, X] = σ2R∗ − σ4r∗T (σ2
eI + σ2R)−1r∗, (16)

wherer∗ is anM ×M∗ matrix with r∗ij = K(xi, x∗j ), andR∗ is anM∗ ×M∗ matrix withR∗ij = K(x∗i , x∗j ).
The parametersβ0 andσ2 are fit using maximum likelihood estimation. The noise variance,σ2

e, is estimated by
computing the sample variance of mutual information for several replications of the mutual information estimator at
the same detector configuration.

Due to the presence of buildings and other obstacles in our input space, mutual information is expected to be
a nonsmooth function of detector configuration. The kernel functionK(·, ·) can be used to encode smoothness of
the underlying functiong(x) being modeled [28]. The Matérn 3/2 or Mat́ern 5/2 kernels are often used for modeling
nonsmooth functions. Simulation studies confirmed the superiority of the Matérn 3/2 kernel for our problem. The
Matérn 3/2 kernel is

K(xi, xj) =
(

1 +
√

3h(xi, xj)
)

exp
{
−
√

3h(xi, xj)
}
, (17)

whereh(xi, xj) =
√∑2n

k=1 [(xik − xjk)2/`2
k], where each̀k is a scaling factor that is fit using maximum likelihood.

We use the DiceKriging package in R for fitting GP models [29].

3.3.2 Bayesian Multivariate Adaptive Regression Splines

One common alternative to GPs is the multivariate adaptive regression spline (MARS) [30]. MARS models are
flexible, nonparametric models. They often scale better than GP models to training sets with high dimension or a
large number of design points because they do not require the inversion and multiplication of large matrices [31,32].
As with GP models, we assume the observed mutual information valuesz represent noisy observations of some
function of the input configuration coordinatesxi,

zi = g(xi) + ei, ei
iid∼ N(0,σ2). (18)

MARS approximates the underlying functiong(·) with a basis function expansion,

ĝ(xi) = a0 +
Q∑

q=1

aqBq(xi), (19)

where the basis functions,Bq(xi), are

Bq(xi) =
Kq∏

k=1

[skq(xvkq
− tkq)]+. (20)

HereKq is the maximum degree of interaction between terms,vkq indexes a variable selected from the set of all input
variables,tkq is a knot location selected from the design points forxvkq

, andskq is –1 or 1. The truncation function
is [x]+ = max{0, x}. In Friedman’s original paper [30], MARS models are fit using a two-stage process. In the first
stage, the forward pass, the algorithm generates a large pool of candidate basis functions by adding to the model the
basis function which most reduces the model fit error given the other basis functions already in the model. In the
second stage, the backward pass, candidate basis functions are sequentially eliminated using the generalized cross-
validation criterion until some stopping criterion is met. The forward pass insures that all relevant basis functions are
considered as candidates for the model; the backward pass insures the model is not overfit to the training data.

The Bayesian formulation of MARS, first proposed in [33], samples the posterior distribution of the param-
eter vector{σ2, Q, a, K , s, v, t} given the observed dataz. Herea is the vector of the basis function coefficients
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(a0, ..., aQ); K is the vector of degrees of interaction for each basis function;s, v, and t are the vectors of signs,
variables, and knots used for each basis function, respectively. Similar to GP surrogates, BMARS constructs a poste-
rior distribution over approximations ofg(x). Instead of a closed form posterior, however, we have samples from the
posterior for̂g(x). The details for the parameter prior specification and the posterior sampling strategy used are found
in [34]. Each Monte Carlo sample generated by BMARS represents a MARS model forg(x). To predict response
valuesz∗ for new design pointsX∗ we evaluate each of the sampled MARS models atX∗ and take the sample mean
of responses to be our vector of predicted responses. We use the BASS package in R for fitting the models [35].

3.3.3 Radial Basis Functions

The final surrogate model we consider is the radial basis function model. As with the previous surrogate models, the
relationship between the mutual information estimateszi and the detector configuration coordinate design pointsxi

is
zi = g(xi) + ei, ei

iid∼ N(0,σ2). (21)

As with the MARS models,g(xi) is modeled as a basis function expansion,

ĝ(xi) = a0 +
Q∑

q=1

aqφ(||xi − xq||2). (22)

TheM design points{x1, ..., xM} are formed intoQ clusters using theK-means algorithm. The pointxq is the
cluster center of theqth cluster. There are several common choices for the basis function,φ(·); for our analysis, we
found the multiquadratic basis function performed the best. The form of the multiquadratic basis function is

φ(||xi − xq||2) =
√
||xi − xq||22 + s2. (23)

Heres is a hyperparamter that must be selected by the user; we select this parameter using maximum likelihood. The
model forĝ(xi) is fit by estimating the basis function coefficientsa = {a0, ..., aQ} using ordinary least squares. We
employ an implementation based on the radial basis function implementation by Neto [36].

3.3.4 Surrogate Model Comparisons

To compare the accuracy of these three surrogate models, we computed a training set of 200 LHD design points,
{xi}M=200

i=1 . Using the data generating process described in Section 2.1, we compute the detector responseyij , for
detectorj in configurationi, i = 1, ..., M = 200, j = 1, ..., n, givenN = 1000source parameters drawn fromp(θθθ).
We do this forn = 3 andn = 5, corresponding to three and five-detector configurations. The computed response
vectorsyi as well as the 1000 source parameter vectors are used to compute KSG estimateszi for each configuration.
The set{zi, xi}M=200

i=1 is a training set for fittinĝg(x) using each of the surrogate models discussed in Sections 3.3.1–
3.3.3. We repeat this process to form a test set of 200 input-output points. We randomly divide the set of 200 test
points into 20 subsets of ten points each. For each test set, we use one of the three fitted surrogate models to predict
the output for each input in the test set and compute the error between the surrogate model response and the test set
response. For each test set, we fit the model and compute the error 15 times to account for the stochastic nature of
each surrogate model-fitting process. We do this for all three surrogate models.

We measure surrogate model prediction error using root mean squared error (RMSE),

RMSE=

√∑M
i=1(zi − ẑi)2

M
, (24)

wherezi is the test set mutual information output andẑi is the surrogate prediction forzi.
Figure 3 presents a boxplot comparison of RMSE across the three methods for the three- and five-detector prob-

lem. For this application, the RBF and GP models appear to perform better than the BMARS model in both the three-
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(a) (b)

FIG. 3: RMSE comparison for surrogate methods: (a) three-detectors and (b) five-detectors

and five-detector cases. For the 20 test sets, we reported the median RMSE of the 15 repeated fits for each of the
surrogate model types.

For the three-detector case, we found that for for all test sets, GP and RBF both had a lower median RMSE
than BMARS. For 70% of the test sets, GP had a lower median RMSE than RBF. Thus for this problem in the
three-detector case, GP fits the best.

For the five-detector case, we found that for 80% of the test sets, RBF had a lower median RMSE than BMARS
and for 90% of the test sets, GP had a lower median RMSE than BMARS. For 85% of the test sets GP had a lower
RMSE than RBF. Thus, the GP model seems to also be the best choice for the five-detector case in this application.

While the GP model is best for this particular example, this may not be the case when the method is applied
in different urban settings. For different applications, we encourage the comparison of different surrogate models to
compare accuracy, precision, and computational performance.

4. MOVABLE DETECTOR PLACEMENT EXPERIMENT

To compare the performance of the surrogate based configuration optimization method described in Section 3 and
the combinatorial optimization method described in Section 2.3, we compare the results of these two methods in
localizing a source in the block of Washington, DC using movable detector placement. Movable detector networks
are networks of radiation detectors where each detector can be moved so that the network is easily reconfigurable. We
describe how to construct and execute movable detector experiments and metrics that are useful for analyzing the re-
sults of these experiments. We will compare the source localization performance of the continuous and combinatorial
configuration optimization methods in both the three- and five-detector cases.

4.1 Movable Detector Placement

Because of the difficulty in localizing a source due to varying background and obstructions, obtaining data from
only a single detector configuration may be insufficient for precisely localizing the source. One strategy to improve
source localization is movable detector placement. After we obtain data from an initial detector configuration and
then employ the data along with the framework in Section 2.1 to computep(θθθ|Y), we can find a subsequent detector
configuration based onp(θθθ|Y) to collect more data. This iterative process of constructing detector configurations,
collecting data, and updating the source parameter distribution can be repeated until we obtain an estimate of the
source location with sufficient precision.

In this section, we compare the performance of the combinatorial optimization method and the continuous surro-
gate based optimization method in the movable detector placement problem. For both methods, we start by drawing
N = 1000source parameter vectors from the source priorp(θθθ).

The combinatorial method generates detector response datay at each of 29 prespecified detector locations for
each of theN source parameter vectors. These prespecified locations are depicted in Fig. 1(a) and are the same
detector locations used in [13] for combinatorial optimization. We use a genetic algorithm [37] with the KSG mutual
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information estimator as the fitness function to perform global optimization over the set of all possible three- and
five-detector configurations composed of the 29 detector locations. We compute the detector response for each of the
detectors in the selected optimal configuration using the data generating process in Section 2.1 for a true radiation
source with location coordinatesθ1 = 118.073 andθ2 = 134.388 and intensity parameterθ3 = 3.472× 109. We
use these generated data as well as the Bayesian framework in Section 2.1 to draw MCMC samples fromp(θθθ|Y)
using DRAM MCMC as implemented in the Python library pymcmcstat [38]. We find a subsequent configuration by
drawingN = 1000MCMC samples fromp(θθθ|Y), and then repeating the process of computing detector responses and
finding a configuration that optimizes the KSG estimator. We draw samples from the updated posterior distribution
using the data generated from the subsequent detector deployment using the same true source. We obtain an initial
and subsequent deployment for the three- and five-detector scenarios.

For surrogate based continuous optimization, we generate a LHDX with M = 200 over the configuration
space. This design is large enough to fill the configuration space, but is small enough to be approximated byX̃. We
approximateX with X̃ wherep = 30. To generate detector response data, we only generate detector responses at the 30
LHD detectors for each of the 1000 source parameter vectors. Thus, the time required to generate detector response
data is comparable to the combinatorial case with 29 detector locations. We employ the 1000 source parameter
vectors and the generated detector data to compute the set of KSG mutual information estimatorsz for each detector
configuration inX̃. We employz andX̃ to fit a GP surrogate model in the three-detector and five-detector case. We
then employ a genetic algorithm [39] using the surrogate model as the fitness function to find a detector configuration
that approximately maximizes mutual information. We use data generated from this optimal configuration and the
same fixed source used in the combinatorial optimization procedure to draw MCMC samples fromp(θθθ|Y).

In the subsequent deployment, we sampleN = 1000source parameter vectors fromp(θθθ|Y). For the initial de-
ployment, we used the marginal prior distributions ofθ1 andθ2 to generateX. In order to generate a LHD that adapts
to our updated beliefs about source location, we should generate a LHD using the marginal posterior distributions of
θ1 andθ2. We do not have these in closed form, but we obtain approximate closed form expressions by fitting two-
component Gaussian mixture models to the MCMC samples from the posterior. Under the posterior,θ1 andθ2 may
no longer be independent, an assumption for the procedure described in Section 3.2. We employ the method described
in [27] for generating LHDs using dependent random variables. Since we are primarily interested in configurations
containing detector locations that are close to the likely location of the source, we only need to accurately model
the reduced portion of the configuration space with detector locations in this small, high-density region. Accurately
modeling this reduced space requires fewer generated design points. Thus, we generate anX with M = 50 andX̃
with p = 30. The rest of the procedure is the same way as for the initial deployment except that the search space for
the genetic optimization algorithm is restricted to the box whose boundary is formed by the most extreme coordinates
from the MCMC sample from the posterior distribution.

Both the combinatorial and continuous surrogate based optimization strategies yield a posterior distribution for
the source parameters. In comparing the two approaches for configuration optimization, we compare the quality
of the produced posterior distributions. We employ two metrics that quantify accuracy and precision. Maximum a
posteriori (MAP) error compares the posterior mode of source location to the true location. The 95% highest-density
region (HDR) is the smallest region containing 95% of the probability density of the posterior. For our application a
higher-quality posterior distribution has a lower MAP error and a smaller HDR area.

4.2 Simulation Results: Initial Deployment

We compute an initial detector configuration deployment for both three- and five-detector configurations using both
the combinatorial and continuous optimization approaches and generate the resulting posterior distributions using data
generated from the optimal configurations as described in Section 4.1. We repeat this 30 times for each combination of
optimization method and number of detectors to account for variation in the optimal configuration found using genetic
algorithm optimization. We compute the MAP error and HDR area metrics for all 30 generated posterior samples.

We compare the distributions of the MAP error and HDR area metrics for the 30 runs by ranking the 30 metrics for
the continuous and combinatorial approaches and then counting the number of times the metric for the combinatorial
approach exceeds the metric of the same rank for the continuous approach.
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Figure 4 shows the boxplots of the HDR area and MAP error for the combinatorial and continuous optimization
methods in the three-detector case. For 29 of the 30 ranked MAP errors, the combinatorial method produced a higher
error. In 16 of the 30 ranked HDR area metrics, the combinatorial method produced a posterior with higher HDR area.
Thus, the continuous method is more accurate than the combinatorial approach and they have comparable precision.
The superior accuracy of the continuous surrogate-based optimization method is likely due to its greater flexibility in
selecting optimal detector configurations.

The same analysis is carried out for the five-detector case as depicted in Fig. 5. We found that for 17 of the 30
ranked MAP errors, the combinatorial method produced a higher error. Only three of the 30 ranked HDR area metrics,
however, were higher for the combinatorial method than for the continuous method. Thus, while the continuous
method still tends to be more accurate, it is less precise than the combinatorial metric in the five-detector case. This
may be due to the greater flexibility gained by both methods in selecting five detectors instead of three. This would
indicate that the continuous method has a greater advantage in situations where we have a limited number of detectors
to deploy relative to our search space. Because we are dealing with a higher-dimensional input in the five-detector
case but using the same training set size as in the three-detector case, it could be that the surrogate models are less
accurate relative to those used in the three-detector case. We did find that the surrogates for the five-detector case had
higher MSE for all surrogate modeling methods.

4.3 Simulation Results: Subsequent Deployment

After comparing the results of the two optimization methods for an initial deployment of the detectors, we find subse-
quent deployments of three- and five-detector configurations using the strategy described in Section 4.1. To find a sub-
sequent deployment, we require a posterior distribution for source location from which to drawN source parameter
vectors. From the initial deployment results, we have 30 posterior distributions for each combination of optimization
method and configuration size. For each optimization combination, we choose a posterior distribution whose MAP
error and HDR area is close to the median MAP error and median HDR area for the 30 posterior distributions so
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FIG. 4: Comparison of initial posterior distributions in three-detector case. (a) HDR area and (b) MAP error comparisons.
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FIG. 5: Comparison of initial posterior distributions in five-detector case. (a) HDR area and (b) MAP error comparisons.
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that the posteriors chosen are comparable relative to the optimization method that produced them. Once subsequent
optimal configurations have been found, we generate the detector response data for each configuration using the same
fixed source as in the initial deployment. We use these generated data to draw MCMC samples from the updated
posterior distribution. We repeat this process 30 times for each combination of configuration size and optimization
method and compute the associated MAP error and HDR area metrics.

Figure 6 shows the box plots for the MAP error and HDR area for the two methods in the three-detector case. For
all 30 runs, the ranked MAP errors and ranked HDR area metrics were larger for the combinatorial method than for
the continuous method. This in conjunction with Fig. 6 indicates the superiority across all metrics of the continuous
optimization method for subsequent deployments of three detectors.

The strong performance of the continuous method in the subsequent deployment scenario is illustrated in Fig. 7.
The combinatorial method can only place detectors at prespecified candidate locations, and thus can only place detec-
tors as close as the closest candidate locations. As illustrated in Fig. 7, the continuous method can select configurations
with detectors that are arbitrarily close to the true source location.

In the initial deployment, the search space is the entire city block because the source location prior is uniform
across this whole region. In the subsequent deployment, the search space is reduced by the posterior distribution
constructed in the initial deployment. Since the combinatorial method employs a set of candidate detector locations
fixed for all deployments, the density of candidate detector locations available in the subsequent search space is sub-
stantially reduced relative to the initial search space. Thus, the flexibility of the combinatorial optimization approach
in constructing configurations is even more limited than it was in the initial deployment. The continuous optimization
approach, because it searches the continuous configuration space, automatically adjusts itself to the smaller search
space. Resampling the design points using the posterior distribution and rebuilding the surrogate models insures the
surrogates are still accurate in this smaller search space. Thus, the continuous optimization approach automatically
adapts itself to search spaces of different resolutions.
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FIG. 6: Comparison of subsequent posterior distributions in three-detector case. (a) HDR area and (b) MAP error comparisons.

FIG. 7: Subsequent detector deployments for using continuous optimization and combinatorial optimization
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Figure 8 displays analogous results for the five-detector case. For all 30 runs, the ranked HDR area metrics
and the ranked MAP errors were larger for the combinatorial method than for the continuous method. Again, the
continuous optimization method clearly outperforms the combinatorial method. Unlike in the initial deployment,
in the subsequent deployment, the continuous optimization method for the five-detector case performs significantly
better. Even with five detectors, the candidate location grid used by the combinatorial optimization approach is too
coarse to produce the same quality results as the continuous method.

5. CONCLUSION AND FUTURE WORK

Localizing nuclear radiation sources in an urban environment is important for securing urban populations against
nuclear hazards resulting from negligence or hostility. This task is particularly challenging in urban environments
where obstructions and background radiation make localization difficult. In this paper, we have presented a framework
for constructing configurations of radiation detectors that are optimal for performing radiation source localization.
This framework optimizes mutual information to select the detector configuration that yields the greatest reduction in
uncertainty about source location.

This framework constructs surrogate models of mutual information using Latin hypercube designs. We found
that these surrogates are sufficiently accurate for identifying detector configurations that produce data and posterior
distributions that are comparable or superior to the combinatorial optimization method. The advantage of this method
over a combinatorial optimization method is that it optimizes over the continuous space of detector configurations
while remaining computationally tractable because of the efficiency of surrogate models. The greater generality of
this surrogate based optimization allows for greater flexibility when selecting optimal detector configurations. This
greater flexibility is critically important in large search spaces or domains represented in three dimensions, where sets
of candidate detector locations may not be representative of the space of possible detector configurations.

In future work, we will apply Bayesian optimization, a technique that simultaneously estimates and optimizes
an objective function for which we only have input-output pairs, to detector configuration optimization. In our case,
mutual information between source parameters and detector configuration data is an expensive unknown objective
function we wish to optimize. The Bayesian optimization framework is thus a natural choice for solving this opti-
mization problem.

We plan to use this Bayesian optimization framework in three-dimensional urban environments, rather than the
two-dimensional urban environment used for illustration in this paper. In this case, the efficiency and flexibility of the
continuous optimization method should produce significant advantages over the combinatorial optimization approach
without incurring greater computational costs.
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APPENDIX A. SIMULATION USING THE APPROXIMATE LATIN HYPERCUBE DESIGN

In order to compare the effect on source localization of using the approximate LHD,X̃, instead ofX, the conven-
tional LHD generated using the method in [27], we employ a similar procedure to the one employed for comparing
the combinatorial and continuous detector configuration optimization methods. We useX̃ andX to fit a surrogate
between mutual information and detector configuration, and we optimize this surrogate to obtain an optimal detector
configuration. We then use this configuration to obtain MCMC samples fromp(θθθ|Y). We repeat this 30 times. We
compare the two procedures by using the HDR area and MAP error metrics.

The procedure for generating the MCMC samples when usingX̃ is exactly the same as the procedure described
in Section 4.1. The procedure when usingX is also the same substitutingX for X̃.

Plots of the HDR area and MAP error for the three-detector and five-detector cases for initial detector configura-
tion selection are shown in Figs. A1 and A2. For the three-detector case, the approximate LHD produces less precise
results, but with the exception of the outliers produced when using the approximate LHD, the accuracy of the two
approaches seems comparable. For the five-detector case, with the exception of the outliers, the HDR area and MAP
error metrics appear comparable for the two approaches.
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FIG. A1: Comparison of posterior distributions in three-detector case. (a) HDR area and (b) MAP error comparisons.
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FIG. A2: Comparison of posterior distributions in five-detector case. (a) HDR area and (b) MAP error comparisons.
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