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ABSTRACT

Robust generalization aims to deal with the most challenging data distributions
which are rarely presented in training set and contain severe noise corruptions.
Common solutions such as distributionally robust optimization (DRO) focus on
the worst-case empirical risk to ensure low training error on the uncommon noisy
distributions. However, due to the over-parameterized model being optimized
on scarce worst-case data, DRO fails to produce a smooth loss landscape, thus
struggling on generalizing well to the test set. Therefore, instead of focusing on the
worst-case risk minimization, we propose SharpDRO by penalizing the sharpness
of the worst-case distribution, which measures the loss changes around the neighbor
of learning parameters. Through worst-case sharpness minimization, the proposed
method successfully produces a flat loss curve on the corrupted distributions, thus
achieving robust generalization. Moreover, by considering whether the distribution
annotation is available, we apply SharpDRO to two problem settings and design a
worst-case selection process for robust generalization. Through simulating real-
world noisy distributions using CIFAR10/100 and ImageNet30 datasets, we show
that SharpDRO exhibits strong generalization ability against severe corruptions
and exceeds well-known baseline methods with large performance gains.

1 INTRODUCTION

Learning against noise corruption has been a vital challenge in the practical deployment of machine
learning, as the learning models are much more fragile to subtle perturbations than human perception
systems (Goodfellow et al., 2015; Hendrycks & Gimpel, 2017). During the training process, the
encountered corruptions are essentially perceived as distribution shift, which would significantly
hinder the learning results (Liang et al., 2018; Long et al., 2015; Tzeng et al., 2017). Therefore, to
mitigate the performance degradation, learning a robust model that generalizes well to corrupted data
distributions has drawn lots of attention (Arjovsky et al., 2019; Sagawa et al., 2020).

Figure 1: Illustration of real-world noisy distri-
butions. We take Gaussian Noise for example.

In the real world, noise corruptions often come with
different levels of severity. As a result, such a vari-
ety of severity would form multiple data distributions
which impose varied negative impacts on our learning
model (Hendrycks & Dietterich, 2019). Specifically,
we assume the encountered corruption E is a compo-
sition of multiple noise unit u. Each noise unit is trig-
gered by some discrete factors that appear with a certain
probability during a given time interval. For example,
a noise unit u is caused by one single data compres-
sion process which would happen during each plat-
form changing, re-distribution, transmission, and so on.
More compression is conducted, and severer corruption
would be applied to the data. Therefore, the severity s

of the corruption E can be reasonably modeled by Poisson distribution, i.e., s ∼ P (s;λ) = e−λλs

s! ,
which is illustrated in Figure 1. As a result, the real-world training set is not completely composed of
clean data, but contains corrupted data with a smaller proportion as the severity goes stronger.
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Figure 2: Illustration of our motivation. (a) Visualization of the loss surface of GroupDRO and the proposed
SharpDRO. The columns from left to right stand for corrupted distributions with severity s = 0 to 5. (b)
Illustration of why a sharp loss surface hinders generalization to test data.

Dealing with such a realistic problem by vanilla empirical risk minimization can achieve satisfactory
averaged accuracy on the whole training set. However, due to the extremely limited number of
severely-corrupted data, the learning model would produce large training errors on the corrupted
distributions, further hindering the robust performance under challenging real-world situations. A
popular approach to achieving low error on the scarce corrupted data is distributionally robust
optimization (DRO) (Namkoong & Duchi, 2016; Sagawa et al., 2020; Zhai et al., 2021), which
commonly optimizes the model parameter θ by the following objective:

min
θ∈Θ

sup
Q∈Q

E(x,y)∼Q [L(θ; (x, y))] , (1)

where Q denotes the uncertainty set that is utilized to estimate the possible test distribution. Intuitively,
DRO assumes that Q consists of multiple sub-distributions, among which exists a worst-case distribu-
tion Q. By concentrating on the risk minimization of the worst-case distribution, DRO hopes to train
a robust model which can deal with the potential distribution shift during the test phase. However,
existing DRO methods usually leverage over-parameterized models to focus on a small portion of
worst-case training data. Therefore, the worst-case data contaminated with severe corruption is highly
possible to get stuck into sharp minima. As shown in the upper of Figure 2 (a), a stronger corruption
severity would cause existing method to learn a sharper loss surface. Consequently, optimization via
DRO fails to produce a flat loss landscape over the corrupted distributions, which further leads to a
large generalization gap between training and test set (Keskar et al., 2017; Chaudhari et al., 2017).

To remedy this defect, in this paper, we propose SharpDRO method to focus on learning a flat loss
landscape of the worst-case data, which can largely mitigate the training-test generalization gap
problem of DRO. Specifically, we adopt the largest loss difference formed by applying weight pertur-
bation (Foret et al., 2020; Wu et al., 2020) to measure the sharpness of the loss function. Intuitively, a
sharp loss landscape is sensitive to noise and cannot generalize well on the test set. On the contrary, a
flat loss landscape produces consistent loss values and is robust against perturbations (Figure 2 (b)).
By minimizing the sharpness, we can effectively enhance the generalization performance. However,
directly applying sharpness minimization on multiple distributions would yield poor results Cha
et al. (2021), as the computed sharpness could be influenced by the largest data distribution, and thus
cannot generalize well to small corrupted data. Therefore, we only focus on worst-case sharpness
minimization. In this way, as the lower of Figure 2 (a) shows, SharpDRO successfully produces a flat
loss surface, thus achieving robust generalization on the severely corrupted distributions.

In addition, identification of the worst-case distribution requires expensive annotations, which are not
always practically feasible (Liu et al., 2021). In this paper, we apply SharpDRO to solve two problem
settings: 1) Distribution-aware robust generalization which assumes that distribution indexes are
accessible, and 2) Distribution-agnostic robust generalization where the distributions are no longer
identifiable, making the worst-case data hard to find. Existing approaches such as Just Train Twice
(JTT) require two-stage training which is rather inconvenient. To tackle this challenge, we propose a
simple OOD detection (Hendrycks & Gimpel, 2017; Liang et al., 2018) process to detect the worst-
case data, which can be further leveraged to enable worst-case sharpness minimization. Through
constructing training sets according to the Poisson distributed noisy distribution using CIFAR10/100
and ImageNet30, we show that SharpDRO can achieve robust generalization results on both two
problem settings, surpassing well-known baseline methods by a large margin.
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To sum up, our contributions are threefold:

• We proposed a sharpness-based DRO method that overcomes the poor generalization perfor-
mance on worst-case distribution in distributionally robust optimization.

• We apply the proposed SharpDRO method to both distribution-aware and distribution-
agnostic settings, which brings a practical capability to our method. Moreover, we propose
an OOD detection approach to select worst-case data to enable robust generalization.

• We form a real-world noisy training set that follows Poisson distribution, and conduct
extensive analyses to show a strong generalization ability of SharpDRO as well as its
superiority to compared baseline methods.

This paper is organized as follows: In Section 2, we first briefly introduce several well-known
baseline methods and give details about the problem setting. Then we specify our worst-case
sharpness minimization over two problem settings in Section 3. To validate the proposed method, we
empirically support our SharpDRO by carefully conducting experimental analyses in Section 4. At
last, we conclude this paper in Section 5.

2 ROBUST GENERALIZATION METHODS AGAINST DISTRIBUTION SHIFT

Due to the practical significance of robust generalization, various approaches have been proposed
to deal with distribution shift. Here we briefly introduce three typical baseline methods, namely
Invariant Risk Minimization, Risk Extrapolation, and GroupDRO.

Invariant Risk Minimization (IRM) (Arjovsky et al., 2019; Chang et al., 2020; Creager et al., 2021)
aims to extract the invariant feature across different distributions (also denoted as environments).
Specifically, the learning model is separated into a feature extractor G and a classifier C. IRM
assumes an invariant model C ◦ G over various environments can be achieved if the classifier C
constantly stays optimal. Then, the learning objective is formulated as:

min
C∗◦G

{
LIRM :=

∑
e∈E

Le(C∗ ◦G)

}
subject to C∗ ∈ argmin

G
Le(C ◦G), for all e ∈ E ,

(2)

where C∗ stands for the optimal classifier, and e denotes a specific environment from a given
environmental set E . By solving Eq. 2, the feature extractor G can successfully learn invariant
information without being influenced by the distribution shift between different environments.

Risk Extrapolation (REx) (Krueger et al., 2021) targets at generalization to out-of-distribution
(OOD) environments. Inspired by the discovery that penalizing the loss variance across distributions
helps achieve improved performance on OOD generalization, REx proposes to optimizing via:

min
θ∈Θ

{
LREx :=

∑
e∈E

Le(θ) + βV ar(Le, ...,Lm)

}
, (3)

where β controls the penalization level. Intuitively, REx seeks to achieve risk fairness among all m
training environments, so as to increase the similarity of different learning tasks. As a result, the
training model can capture the invariant information that helps generalize to unseen distributions.

GroupDRO (Sagawa et al., 2020; Hashimoto et al., 2018; Piratla et al., 2021) deal with the situation
when the correlation between class label y and unknown attribute a differs in the training and test
set. Such a difference is called spurious correlation which could seriously misguide the model
prediction. As a solution, GroupDRO considers each combination of class and attribute as a group g.
By conducting risk minimization though:

min
θ∈Θ

{
LGroupDRO := max

g
E(x,y)∼Pg

[L(θ; (x, y))]
}
, (4)

the worst-case group from distribution Ps which commonly holds spurious correlation is emphasized,
thus breaking the spurious correlation.
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Figure 3: Sharpness during networking training on clean (s = 0) and corrupted distributions (s = 1 to 5).

Discussion: IRM and REx both focus on learning invariant knowledge across various environments.
However, when the training set contains extremely imbalanced noisy distributions, as shown in
Figure 1, the invariant learning results would be greatly misled by the most dominating distribution.
Thus, the extracted invariant feature would be questionable for generalization against distribution
shift. Although emphasizing the risk minimization of worst-case data via GroupDRO can alleviate
the imbalance problem, its generalization performance is still sub-optimal when facing novel test data.
However, SharpDRO can not only focus on the uncommon corrupted data but also effectively improve
the generalization performance on the test set by leveraging worst-case sharpness minimization. In
the next section, we elaborate on the methodology of SharpDRO.

3 METHODOLOGY

In robust generalization problems, we are given a training set Dtrain containing n image examples,
each example x ∈ X is given a class label y ∈ Y = {1, 2, ..., c}. Moreover, the training set is
corrupted by a certain type of noise whose severity s follows a Poisson distribution P (s;λ). Here we
assume λ = 1 which indicates that the mean number of the noise unit u that occurred during a time
interval is 1. Therefore, the distribution P of the whole training set is composed of S sub-distributions
Ps, s ∈ {1, 2, ..., S} with varied levels of corruption. Our goal is to learn a robust model θ ∈ Θ that
can achieve good generalization performance on challenging data distributions Ps with large severity.

In general, the learning objective of our SharpDRO can be formulated as:

min
θ

{
LSharpDRO := E(x,y)∼Q [L(θ; (x, y))] + E(x,y)∼Q [R(θ; (x, y))]

}
, (5)

where the first term denotes the risk minimization using loss function L, meanwhile a worst-case
distribution Q is selected based on the model prediction. The second term indicates the sharpness
minimization which aims to maximally improve the generalization performance on the worst-case
distribution Q. Specifically, as shown in Figure 3, the sharpness gradually increases as the corruption
severity enlarges. Therefore, to accomplish robust generalization, we are motivated to emphasize
the worst-case distribution. As a result, we can produce much smaller sharpness compared to other
methods, especially on the severely corrupted distributions.

In the following content, we first introduce sharpness on worst-case data for robust generalization.
Then, we demonstrate our worst-case data selection on two problem settings. Finally, we give details
on the practical implementation of SharpDRO.

3.1 SHARPNESS FOR ROBUST GENERALIZATION

The main challenge of robust generalization is that the training distribution is extremely imbalanced,
as shown in Figure 1. The learning performance on the abundant clean data is quite satisfactory, but
robustness regarding the corrupted distribution is highly limited, owing to the severe disturbance of
corruption as well as the insufficiency of noisy data. To enhance the robust generalization performance,
we leverage sharpness to fully exploit the worst-case data. Specifically, sharpness (Foret et al., 2020;
Wu et al., 2020; Zheng et al., 2021) is measured by the largest loss change when model weight θ is
perturbed with ϵ, which is formulated as

R := max
∥ϵ∥≤ρ

L(θ + ϵ; (x, y))− L(θ; (x, y)), (6)
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where ρ is a scale parameter to control the perturbation magnitude. By supposing the weight
perturbation is small enough, we can have:

L(θ + ϵ)− L(θ) ≈ ∇L(θ)ϵ. (7)

Further, we hope to obtain the largest loss difference to find the optimal weight perturbation ϵ∗, which
can be computed as:

ϵ∗ := argmax
∥ϵ∥≤ρ

∇L(θ)ϵ. (8)

By following dual norm problem, the optimal ϵ∗ can be solved as ρ sign(∇L(θ)) (Foret et al., 2020),
which is essentially the ∞-norm of the gradient ∇L multiplied with a scale parameter ρ. To this end,
our sharpness minimization can be formulated as:

min
θ

E(x,y)∼QR := L(θ + ρ sign(∇L(θ; (x, y))))− L(θ; (x, y)). (9)

The intuition is that the perturbation along the gradient norm direction increases the loss value
significantly. When training on corrupted distributions, the scarce noisy data scatter sparsely in the
high-dimensional space. As a consequence, the neighbor of each datum could not be sufficiently
explored, thus producing a sharp loss curve. During test, the unseen noisy data is likely to fall on an
unexplored point with a large loss, further causing inaccurate model predictions.

Therefore, instead of directly applying sharpness minimization on the whole dataset, which leads
to poor generalization performance Cha et al. (2021) (as demonstrated in Section 4.3), we focus on
sharpness minimization over the worst-case distribution Q. By conducting the worst-case sharpness
minimization, we can enhance the flatness of our classifier. Consequently, when predicting unknown
data during test phase, a flat loss landscape is more likely to produce low loss than a sharp one, hence
our SharpDRO can generalize better than other DRO methods. However, the robust performance
largely depends on the worst-case distribution Q, so next, we explain our worst-case data selection.

3.2 WORST-CASE DATA SELECTION

Generally, the worst-case data selection focuses on finding the most uncertain data distribution Q
from the uncertainty set Q, which is a f -divergence ball from the training distribution P (Ben-Tal
et al., 2013; Duchi & Namkoong, 2018; Hu et al., 2018). Most works assume each distribution is
distinguishable from each other. However, when the distribution index is not available, it would be
very hard to select worst-case data. In this section, we investigate two situations: distribution-aware
robust generalization and distribution-agnostic robust generalization.

3.2.1 DISTRIBUTION-AWARE ROBUST GENERALIZATION

When given annotations to denote different severity of corruptions, the image data x is paired with
class label y and distribution index s. Then, the worst-case distribution Q can be identified as the
sub-distribution Ps that yields the largest training error. Hence, we can optimize though:

min
θ

{
LSharpDRO := max

Ps∈P

{
E(x,y)∼Ps

[L(θ; (x, y))]
}
+ E(x,y)∼Ps

[R(θ; (x, y))]

}
. (10)

The first term simply recovers the learning target of GroupDRO (Sagawa et al., 2020; Hu et al., 2018),
and the second sharpness minimization term acts as a regularizer. Specifically, we not only emphasize
the risk minimization on worst-case distribution Ps, but also enforce low sharpness on Ps. As a result,
SharpDRO can learn a flatter loss surface on the worst-case data, thus generalize better compared to
GroupDRO, as discussed in Section 4.

3.2.2 DISTRIBUTION-AGNOSTIC ROBUST GENERALIZATION

Due to the annotations being extremely expensive in real-world applications, a practical challenge is
how to learn a robust model without distribution index. Unlike JTT (Liu et al., 2021) which trains the
model through two stages, we aim to solve this problem more efficiently by detecting the worst-case
data during network training. As the corrupted data essentially lie out-of-distribution from the clean
data, so we are motivated to conduct OOD detection (Hendrycks et al., 2019; Liang et al., 2018; Liu
et al., 2020; Wei et al., 2022) to find the worst-case data.
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Particularly, we re-utilize the previously computed weight perturbation ϵ∗ to compute an OOD score:

w = E(x,y)∼P

[
max
i∈Y

fi(θ; (x, y))−max
i∈Y

fi(θ + ϵ∗; (x, y))

]
, (11)

where f(·) stands for the c-dimensional label prediction in the label space, whose maximum value
is considered as prediction confidence. Intuitively, as the model is much more robust to the clean
distribution than the corrupted distribution, the prediction of clean data usually exhibits more stability
than scarce noisy data when facing perturbations. Hence, if an example comes from a rarely
explored distribution, its prediction certainty would deviate significantly from the original value, thus
producing a large OOD score, as shown in Section 4.3. Note that the major difference is that we
target generalization on worst-case data, but OOD detection aims to exclude OOD data.

To this end, we can construct our uncertainty set as Q :=
{∑n

i=1 w̄i · (xi, yi) : w̄i =
wi

1
n

∑n
i=1 wi

}
,

where normalization on wi is performed simultaneously. Then, the learning target of our distribution-
agnostic SharpDRO is formulated as:

min
θ

{
LSharpDRO := sup

Q∈Q

{
E(x,y)∼Q [L(θ; (x, y))]

}
+ E(x,y)∼Q [R(θ; (x, y))]

}
. (12)

Therefore, the worst-case data can be selected by focusing on the examples with large OOD scores.
In this way, our sharpDRO can be successfully deployed into the distribution-agnostic setting to
ensure robust generalization, whose effectiveness is demonstrated by quantitative and qualitative
results in Sections 4.2 and 4.3. Next, we give details about implementing SharpDRO.

3.3 PRACTICAL IMPLEMENTATION

Algorithm 1 Training process of SharpDRO

Input: Training set Dtrain = {xi, yi}ni=1 containing Poisson
distributed noisy corruptions.

Output: Model parameter θ
1: for epoch = 1 to E do
2: ▷ First Step
3: Compute loss value L(θ; (x, y));
4: Compute ∇L(θ) to obtain ϵ∗ by first backward pass;
5: Compute sharpness via Eq. 9;
6: ▷ Second Step
7: if Distribution-aware then
8: Choose Ps = argmaxPs∈P E(x,y)∼PsL as worst-

case distribution;
9: Second backward pass by minimizing Eq. 10;

10: else if Distribution-agnostic then
11: Compute OOD score w via Eq. 11 and normalize;
12: Construct uncertainty set through Q :={∑n

i=1 w̄i · (xi, yi)
}

;
13: Second backward pass by minimizing Eq. 12;
14: end if
15: end for

Overall, the training process of Sharp-
DRO is summarized in Algorithm 1.
Note that our SharpDRO requires two
backward phases, so the time complexity
of this form is twice as much as plain
training, for efficient sharpness compu-
tation, please refer to (Du et al., 2022;
Zhao et al., 2022). In the first step, we
record the label prediction p of each
data during inference, and simultane-
ously compute the loss L. Additionally,
in the first backward pass, we store the
computed gradient ∇L(θ). Further, by
adding ϵ∗, we use the perturbed model
to compute the second label prediction
p̂, which is further leveraged to com-
pute the sharpness R. Moreover, in the
distribution-agnostic setting, the predic-
tions p and p̂ from two forward steps are
used to compute the OOD score w. Then,
we adding the recorded gradient ∇L(θ)
back to the model parameter, and conduct sharpness minimization over the selected worst-case data.
In this way, our SharpDRO can be correctly performed. In the next section, we give specific details
about our experimental setting and conduct extensive quantitative as well as qualitative analyses to
empirically validate the proposed SharpDRO.

4 EXPERIMENTS

In our experiments, we first give details about our experimental setup. Then, we conduct quanti-
tative experiments to compare to proposed SharpDRO with the most popular baseline methods by
considering both distribution-aware and distribution agnostic settings, which shows the capability of
SharpDRO to tackle the most challenging distributions. Finally, we conduct qualitative analyses to
investigate the effectiveness of SharpDRO in achieving robust generalization.
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Table 1: Quantitative comparisons on distribution-aware robust generalization setting. Averaged accuracy (%)
with standard deviations are computed over three independent trails.

Dataset Type Method Corruption Severity
0 1 2 3 4 5

CIFAR10

Gaussian

ERM 90.9 ± 0.02 89.2 ± 0.02 86.4 ± 0.03 85.9 ± 0.01 83.5 ± 0.01 78.8 ± 0.01
IRM 91.8 ± 0.01 90.3 ± 0.01 89.5 ± 0.01 86.7 ± 0.02 81.8 ± 0.02 80.0 ± 0.02
REx 91.3 ± 0.03 89.5 ± 0.02 88.1 ± 0.02 86.7 ± 0.02 83.3 ± 0.01 80.5 ± 0.02
GroupDRO 90.2 ± 0.03 89.1 ± 0.02 88.4 ± 0.04 84.3 ± 0.01 83.0 ± 0.02 78.2 ± 0.02
SharpDRO 92.4 ± 0.02 91.2 ± 0.02 90.4 ± 0.01 88.1 ± 0.02 86.5 ± 0.01 82.8 ± 0.01

Shot

ERM 92.5 ± 0.02 91.1 ± 0.02 89.9 ± 0.01 85.6 ± 0.03 85.7 ± 0.01 78.8 ± 0.01
IRM 90.4 ± 0.01 90.3 ± 0.02 89.4 ± 0.02 86.3 ± 0.01 84.3 ± 0.02 79.1 ± 0.02
REx 91.1 ± 0.02 90.6 ± 0.02 90.2 ± 0.03 86.8 ± 0.02 84.7 ± 0.02 80.5 ± 0.01
GroupDRO 92.2 ± 0.01 91.4 ± 0.01 89.4 ± 0.02 84.0 ± 0.01 84.7 ± 0.02 78.3 ± 0.01
SharpDRO 92.4 ± 0.02 91.1 ± 0.02 90.3 ± 0.02 87.5 ± 0.02 86.4 ± 0.02 83.3 ± 0.02

Snow

ERM 90.8 ± 0.01 90.1 ± 0.02 88.1 ± 0.02 88.1 ± 0.02 85.7 ± 0.02 82.6 ± 0.01
IRM 91.1 ± 0.02 90.7 ± 0.01 89.7 ± 0.02 88.0 ± 0.03 84.6 ± 0.02 83.2 ± 0.03
REx 91.8 ± 0.02 91.9 ± 0.01 88.4 ± 0.01 88.3 ± 0.01 88.6 ± 0.01 83.0 ± 0.02
GroupDRO 91.5 ± 0.02 91.0 ± 0.01 88.7 ± 0.02 88.6 ± 0.02 85.2 ± 0.03 83.5 ± 0.02
SharpDRO 93.1 ± 0.01 91.8 ± 0.01 90.5 ± 0.02 90.8 ± 0.02 87.9 ± 0.01 84.3 ± 0.02

CIFAR100

Gaussian

ERM 68.2 ± 0.01 64.8 ± 0.01 60.6 ± 0.01 56.9 ± 0.01 53.9 ± 0.01 50.2 ± 0.03
IRM 64.7 ± 0.02 64.7 ± 0.01 62.2 ± 0.01 54.5 ± 0.02 53.4 ± 0.03 50.4 ± 0.01
REx 68.0 ± 0.03 65.1 ± 0.03 61.8 ± 0.01 56.8 ± 0.01 53.2 ± 0.01 51.5 ± 0.01
GroupDRO 66.1 ± 0.01 61.7 ± 0.02 59.3 ± 0.03 53.6 ± 0.01 54.0 ± 0.02 50.6 ± 0.02
SharpDRO 71.2 ± 0.02 70.1 ± 0.01 68.6 ± 0.01 58.8 ± 0.01 57.5 ± 0.02 53.8 ± 0.03

Shot

ERM 67.6 ± 0.03 65.1 ± 0.01 62.9 ± 0.01 56.0 ± 0.01 55.1 ± 0.01 47.3 ± 0.01
IRM 67.5 ± 0.02 65.7 ± 0.01 62.7 ± 0.01 59.5 ± 0.01 55.8 ± 0.01 48.3 ± 0.01
REx 65.7 ± 0.01 63.8 ± 0.02 61.9 ± 0.01 59.3 ± 0.03 53.8 ± 0.01 48.1 ± 0.01
GroupDRO 67.0 ± 0.02 65.8 ± 0.01 63.1 ± 0.01 58.9 ± 0.01 57.5 ± 0.01 49.3 ± 0.01
SharpDRO 69.2 ± 0.01 67.3 ± 0.02 65.4 ± 0.03 62.5 ± 0.01 57.7 ± 0.02 50.3 ± 0.01

Snow

ERM 67.7 ± 0.01 68.1 ± 0.01 64.7 ± 0.01 63.1 ± 0.01 60.5 ± 0.02 57.3 ± 0.01
IRM 69.3 ± 0.01 67.5 ± 0.02 64.9 ± 0.02 61.0 ± 0.01 58.2 ± 0.01 55.1 ± 0.01
REx 66.4 ± 0.01 65.9 ± 0.01 62.4 ± 0.01 61.2 ± 0.02 57.5 ± 0.03 56.0 ± 0.02
GroupDRO 68.0 ± 0.02 68.2 ± 0.01 65.1 ± 0.01 60.9 ± 0.03 59.8 ± 0.01 58.1 ± 0.02
SharpDRO 71.5 ± 0.01 70.8 ± 0.03 67.5 ± 0.02 65.5 ± 0.01 62.3 ± 0.01 59.2 ± 0.03

ImageNet30

Gaussian

ERM 87.5 ± 0.01 84.6 ± 0.01 81.9 ± 0.01 76.5 ± 0.01 71.2 ± 0.01 65.3 ± 0.01
IRM 86.6 ± 0.01 84.4 ± 0.03 80.6 ± 0.01 75.2 ± 0.01 70.7 ± 0.03 64.8 ± 0.01
REx 86.3 ± 0.01 83.8 ± 0.03 81.1 ± 0.02 75.6 ± 0.02 71.5 ± 0.01 66.1 ± 0.03
GroupDRO 85.1 ± 0.02 84.2 ± 0.01 81.2 ± 0.03 76.3 ± 0.03 72.0 ± 0.02 66.3 ± 0.01
SharpDRO 88.4 ± 0.02 87.6 ± 0.01 83.3 ± 0.01 79.1 ± 0.02 73.6 ± 0.03 67.7 ± 0.01

Shot

ERM 86.9 ± 0.01 84.8 ± 0.01 83.6 ± 0.01 79.7 ± 0.01 75.4 ± 0.01 64.6 ± 0.01
IRM 86.8 ± 0.01 85.1 ± 0.03 81.5 ± 0.01 73.5 ± 0.02 68.5 ± 0.03 62.5 ± 0.03
REx 83.8 ± 0.01 86.3 ± 0.03 82.5 ± 0.02 73.9 ± 0.01 70.6 ± 0.03 64.0 ± 0.02
GroupDRO 86.7 ± 0.01 85.6 ± 0.03 84.5 ± 0.01 80.7 ± 0.01 76.2 ± 0.04 65.4 ± 0.01
SharpDRO 88.1 ± 0.01 87.2 ± 0.02 84.7 ± 0.01 82.2 ± 0.01 75.8 ± 0.01 66.5 ± 0.02

Snow

ERM 86.7 ± 0.03 85.2 ± 0.01 83.4 ± 0.01 81.1 ± 0.01 75.3 ± 0.01 75.6 ± 0.01
IRM 85.6 ± 0.01 84.0 ± 0.02 82.1 ± 0.03 79.7 ± 0.01 75.0 ± 0.01 75.6 ± 0.01
REx 85.4 ± 0.01 84.6 ± 0.02 82.7 ± 0.02 80.5 ± 0.03 75.7 ± 0.03 75.9 ± 0.03
GroupDRO 86.7 ± 0.01 85.5 ± 0.03 83.4 ± 0.01 81.2 ± 0.02 76.3 ± 0.01 76.6 ± 0.01
SharpDRO 88.2 ± 0.02 88.2 ± 0.01 85.4 ± 0.02 81.9 ± 0.01 79.8 ± 0.03 79.5 ± 0.02

4.1 EXPERIMENTAL SETUP

For distribution-aware situation, we choose GroupDRO (Sagawa et al., 2020), IRM (Arjovsky et al.,
2019), REx (Krueger et al., 2021), and ERM for comparisons. As for distribution-agnostic situation,
we pick JTT (Liu et al., 2021) and Environment Inference for Invariant Learning (EIIL) (Creager
et al., 2021) for baseline methods. For each problem setting, we construct corrupted dataset using
CIFAR10/100 (Krizhevsky et al., 2009) and ImageNet30 (Russakovsky et al., 2015) datasets. Specif-
ically, we following (Hendrycks & Dietterich, 2019) to perturb the image data with severity level
varies from 1 to 5 by using three types of corruptions: “Gaussian Noise”, “Shot Noise”, and “Snow”.
Moreover, the clean data are considered as having a corruption severity of 0. For each corrupted dis-
tribution, we sample them with different probabilities by following Poisson distribution P (s;λ = 1),
i.e., for s varies from 0 to 5, the sample probabilities are {0.367, 0.367, 0.184, 0.061, 0.015, 0.003},
respectively. Then, we test the robust performance on each data distribution. For hyper-parameter ρ,
we follow (Foret et al., 2020) by setting it to 0.05 to control the magnitude of ϵ∗. For each experiment,
we conduct three independent trials and report the average test accuracy with standard deviations.

4.2 QUANTITATIVE COMPARISONS

In our quantitative comparisons, we focus on three questions: 1) Can SharpDRO perform well on
two situations of robust generalization? 2) Does SharpDRO generalize well on the most severely
corrupted distributions? and 3) Is SharpDRO able to tackle different types of corruption? To answer
these questions, we conduct experiments on both two settings by testing on different levels of severity.
Moreover, we consider three types of corruption.
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Table 2: Quantitative comparisons on distribution-agnostic robust generalization setting. Averaged accuracy
(%) with standard deviations are computed over three independent trails.

Dataset Type Method Corruption Severity
0 1 2 3 4 5

CIFAR10

Gaussian
JTT 89.9 ± 0.02 88.8 ± 0.02 86.5 ± 0..02 86.1 ± 0.02 83.4 ± 0.03 79.8 ± 0.02
EIIL 88.6 ± 0.02 87.5 ± 0.03 86.3 ± 0.03 85.4 ± 0.02 83.2 ± 0.03 78.8 ± 0.01
SharpDRO 91.3 ± 0.01 90.2 ± 0.02 88.7 ± 0.01 86.1 ± 0.02 84.2 ± 0.02 82.7 ± 0.02

Shot
JTT 91.3 ± 0.02 90.5 ± 0.03 89.3 ± 0.01 86.5 ± 0.02 83.1 ± 0.02 79.8 ± 0.02
EIIL 90.3 ± 0.03 90.1 ± 0.02 88.3 ± 0.01 86.2 ± 0.02 82.3 ± 0.03 78.5 ± 0.02
SharpDRO 91.6 ± 0.01 90.5 ± 0.02 89.8 ± 0.02 87.1 ± 0.01 85.3 ± 0.02 81.7 ± 0.01

Snow
JTT 88.6 ± 0.02 87.8 ± 0.03 86.5 ± 0.02 87.2 ± 0.02 84.2 ± 0.02 83.2 ± 0.03
EIIL 88.3 ± 0.02 87.8 ± 0.01 85.6 ± 0.02 87.3 ± 0.03 85.2 ± 0.04 82.3 ± 0.01
SharpDRO 91.6 ± 0.01 91.1 ± 0.02 90.8 ± 0.01 89.7 ± 0.02 86.2 ± 0.01 83.8 ± 0.02

CIFAR100

Gaussian
JTT 68.0 ± 0.02 65.3 ± 0.02 61.3 ± 0.01 56.3 ± 0.01 54.2 ± 0.03 51.2 ± 0.02
EIIL 67.2 ± 0.01 66.2 ± 0.02 61.0 ± 0.02 55.8 ± 0.02 54.6 ± 0.03 52.1 ± 0.02
SharpDRO 69.6 ± 0.03 68.0 ± 0.02 63.6 ± 0.03 58.2 ± 0.02 55.6 ± 0.03 52.4 ± 0.03

Shot
JTT 66.3 ± 0.02 65.3 ± 0.03 63.4 ± 0.02 56.6 ± 0.04 55.5 ± 0.04 48.6 ± 0.04
EIIL 66.5 ± 0.02 65.3 ± 0.03 62.8 ± 0.04 57.5 ± 0.02 56.5 ± 0.01 49.5 ± 0.01
SharpDRO 68.9 ± 0.02 66.2 ± 0.03 64.9 ± 0.03 59.8 ± 0.02 56.5 ± 0.03 51.0 ± 0.02

Snow
JTT 67.5 ± 0.01 68.1 ± 0.02 65.3 ± 0.02 64.3 ± 0.02 60.2 ± 0.02 57.8 ± 0.02
EIIL 68.2 ± 0.03 69.1 ± 0.03 65.2 ± 0.02 64.0 ± 0.02 61.0 ± 0.04 57.5 ± 0.04
SharpDRO 70.6 ± 0.02 69.9 ± 0.03 66.7 ± 0.03 64.4 ± 0.02 61.9 ± 0.03 60.7 ± 0.03

ImageNet30

Gaussian
JTT 87.3 ± 0.02 84.5 ± 0.02 82.3 ± 0.04 75.6 ± 0.01 72.1 ± 0.04 66.5 ± 0.02
EIIL 88.2 ± 0.02 85.2 ± 0.03 81.3 ± 0.02 74.5 ± 0.02 71.5 ± 0.02 65.0 ± 0.04
SharpDRO 87.1 ± 0.02 86.9 ± 0.02 83.5 ± 0.03 78.0 ± 0.02 72.2 ± 0.02 66.6 ± 0.03

Shot
JTT 86.5 ± 0.02 85.4 ± 0.03 82.6 ± 0.04 79.6 ± 0.04 77.2 ± 0.04 65.0 ± 0.01
EIIL 85.5 ± 0.01 86.3 ± 0.04 81.6 ± 0.02 80.2 ± 0.03 75.3 ± 0.02 64.4 ± 0.03
SharpDRO 86.8 ± 0.02 87.2 ± 0.03 83.2 ± 0.03 81.4 ± 0.06 76.6 ± 0.03 65.3 ± 0.03

Snow
JTT 86.0 ± 0.04 85.8 ± 0.02 82.3 ± 0.03 80.4 ± 0.02 74.6 ± 0.02 73.5 ± 0.02
EIIL 87.5 ± 0.01 85.4 ± 0.02 83.5 ± 0.04 81.6 ± 0.01 76.3 ± 0.01 75.8 ± 0.02
SharpDRO 87.5 ± 0.03 86.7 ± 0.02 85.4 ± 0.02 81.5 ± 0.03 78.9 ± 0.02 78.5 ± 0.03

Distribution-Aware Robust Generalization As shown in Table 1, we can see that SharpDRO
surpasses other methods with larger performance gains as the corruption severity goes stronger.
Especially, in ImageNet30 dataset on “snow” corruption, improvement margin between SharpDRO
and second-best method is 1.5% with severity of 0, which is further increased to about 3% with
severity of 0, which indicates the capability of SharpDRO on generalization against severe corruptions.
Moreover, SharpDRO frequently outperforms other methods on all three types of corruption, which
manifests the general robustness of SharpDRO against various corruption types.

Distribution-Agnostic Robust Generalization As shown in Table 2, we can see a similar phe-
nomenon in Table 1 that the more severe corruptions are applied, the larger performance gains
SharpDRO achieves. Especially, in the CIFAR10 dataset corrupted by “Gaussian Noise”, SharpDRO
shows about 1.4% performance gains upon the second-best method with severity 0, which is further
increased to almost 3% with severity 5. Moreover, SharpDRO is general to all three corruption types,
as it surpasses other methods in most cases. Therefore, the proposed method can perfectly generalize
to worst-case data even without the distribution annotations.

4.3 QUALITATIVE ANALYSIS

To investigate the effectiveness of SharpDRO, we first conduct an ablation study to show that
the Sharpness minimization on the worst-case data is essential for achieving generalization with
robustness. Then, we utilize the gradient norm, an important criterion to present training stability, to
validate that our method is stable for severely corrupted distributions. Then, we analyze the hyper-
parameter ρ and OOD score w̄ to disclose the effectiveness of sharpness minimization and worst-case
data selection. All analyses are conducted using CIFAR10 with “Gaussian Noise” corruption.

Table 3: Ablation study.

Method Corruption Severity
0 1 2 3 4 5

w/o worst-case data selection 93.2 90.5 87.6 82.1 80.5 75.4
w/o sharpness minimization 90.2 89.1 88.4 84.3 83.0 78.2
SharpDRO 92.4 91.2 90.4 88.1 86.5 82.8

Ablation Study By eliminating the worst-
case data selection, we recover the original
sharpness minimization method, which is de-
noted as SAM Foret et al. (2020). Then, we
remove the sharpness minimization module,
which is basically training via GroupDRO. The
ablation results are shown in Table 3. We can
see that deploying SAM on the whole training dataset can achieve improved results on the clean
dataset. However, the robust performance on corrupted distributions are even worse than GroupDRO.
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This could be because that sharpness is easy to be dominated by principle distributions, which is
misleading for generalization to small distributions. Thus, the sharpness of corrupted data would
be sub-optimal. As for GroupDRO, it fails to produce a flat loss surface for worst-case data, hence
cannot generalize as well as the proposed SharpDRO.

Distributional Stability To show our method can be stable even in the most challenging distribu-
tions, we show the gradient norm on a validation set including corruption severity from 0 to 5. As
shown in Figure 4, SharpDRO not only produces the smallest norm value but also can ensure almost
equal gradient norm across all corrupted distributions, which indicates that SharpDRO is the most
distributionally stable method among all compared methods.

Figure 4: Gradient norm comparisons between different methods over all corrupted distributions.

Figure 5: Parameter sensitivity of ρ whose
value is set to {0.01, 0.05, 0.1, 0.5, 1, 2}.

Parameter Analysis To understand how the scale
parameter ρ affects our generalization performance,
we conduct sensitivity analysis by changing this value
and show the test results of different distributions. In
figure 5, we find an interesting discovery that as ρ in-
creases, which indicates the perturbation magnitude ϵ∗

enlarges, would enhance the generalization of severely
corrupted data but degrades the performance of slightly
corrupted data. This might be because the exploration
of hard distributions needs to cover wide range of neigh-
borhood to ensure generalization. On the contrary, ex-
ploration too far on easy distributions can reach out-of-
distribution, thus causing performance degradation. Therefore, for practitioners who aim to generalize
on small and difficult datasets, we might be able to enhance performance by aggressively setting a
large perturbation scale.

Figure 6: Distribution of the normalized OOD
score w̄ on clean distribution (s = 0), and cor-
rupted distribution from s = 1 to 5. Values are
selected in epoch 30.

OOD Score Analysis The OOD score is leveraged
to select worst-case data for the distribution-agnostic
setting. To show its effectiveness in selecting the noisy
data, we plot the value distribution of OOD scores
from all corrupted distributions in Figure 6. We can
see the tendency that more severely corrupted data to
have larger OOD scores. Therefore, our OOD score
is a valid criterion to select worst-case data. Note that
during the training process, the worst-case data would
be gradually learned, thus the OOD score can become
smaller, which explains why the value distribution of
our score is not as separable as OOD detection does.

5 CONCLUSION

In this paper, we proposed a SharpDRO approach to enhance the generalization performance of DRO
methods. Specifically, we focus on minimizing the sharpness of worst-case data to learn flat loss
surfaces. As a result, SharpDRO is more robust to severe corruptions compared to other methods.
Moreover, we apply SharpDRO to distribution-aware and distribution-agnostic settings and proposed
an OOD detection process to select the worst-case data when the distribution index is not known.
Extensive quantitative and qualitative experiments have been conducted to show that SharpDRO can
deal with the most challenging corrupted distributions and achieve improved generalization results
compared to well-known baseline methods.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.
Robust solutions of optimization problems affected by uncertain probabilities. Management
Science, 59(2):341–357, 2013.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. In Advances in Neural
Information Processing Systems, volume 34, pp. 22405–22418, 2021.

Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. Invariant rationalization. In International
Conference on Machine Learning, pp. 1448–1458. PMLR, 2020.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. In ICLR, 2017.

Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In ICML, pp. 2189–2200. PMLR, 2021.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent YF Tan, and Joey Tianyi Zhou. Sharpness-aware
training for free. arXiv preprint arXiv:2205.14083, 2022.

John Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally
robust optimization. arXiv preprint arXiv:1810.08750, 2018.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In ICLR, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. In ICML, pp. 1929–1938. PMLR, 2018.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In ICLR, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In ICLR, 2017.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. In ICLR, 2019.

Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust supervised
learning give robust classifiers? In ICML, pp. 2029–2037. PMLR, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In ICLR,
2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapola-
tion (rex). In ICML, pp. 5815–5826. PMLR, 2021.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. In ICLR, 2018.

10



Under review as a conference paper at ICLR 2023

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In ICML, pp. 6781–6792. PMLR, 2021.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
In NeurIPS, volume 33, pp. 21464–21475, 2020.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
deep adaptation networks. In ICML, pp. 97–105. PMLR, 2015.

Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust
optimization with f-divergences. In NeurIPS, volume 29, 2016.

Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Focus on the common good: Group
distributional robustness follows. In ICLR, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
In ICLR, 2020.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In CVPR, pp. 7167–7176, 2017.

Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural
network overconfidence with logit normalization. In ICML, 2022.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization. In NeurIPS, volume 33, pp. 2958–2969, 2020.

Runtian Zhai, Chen Dan, Zico Kolter, and Pradeep Ravikumar. Doro: Distributional and outlier
robust optimization. In ICML, pp. 12345–12355. PMLR, 2021.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
generalization in deep learning. In ICML, 2022.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
model perturbation. In CVPR, pp. 8156–8165, 2021.

11


	Introduction
	Robust Generalization Methods against Distribution Shift
	Methodology
	Sharpness for Robust Generalization
	Worst-Case Data Selection
	Distribution-Aware Robust Generalization
	Distribution-Agnostic Robust Generalization

	Practical Implementation

	Experiments
	Experimental Setup
	Quantitative Comparisons
	Qualitative Analysis

	Conclusion

