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ABSTRACT

Diffusion models have become central to generative modeling, yet the discrete
structure of graphs has prompted the development of specialized approaches and
calls for new theoretical tools to understand their dynamics. In this work, we take
a step toward addressing this gap by investigating how the noising and denoising
processes in the graph discrete diffusion model DiGress manifest in the spectral
domain. We first assess whether the learned reverse process faithfully mirrors
the forward noise process and analyze the temporal evolution of graph spectra.
Our results reveal a gradual shift toward a random graph configuration, with the
different noising trajectories depending on the noise model employed. Notably,
unlike in image diffusion, we do not observe a clear separation between low- and
high-frequency perturbations in the graph spectra. This suggests that alternative
perturbation strategies that more effectively leverage the graph spectral domain
may warrant further exploration.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have become ubiquitous in generative
modeling and are now dominant across many data modalities, with the notable exception of NLP
where autoregressive approaches still prevail. Similarly, in graph generation, the prominence of
discrete diffusion techniques stems not only from the discrete nature of the data but also from the
lack of a canonical node ordering, which makes autoregressive models impractical due to their
exponential combinatorial complexity (Niu et al., 2020; Jo et al., 2022).

In continuous domains, such as images, numerous empirical studies have identified progressive
small Gaussian perturbations as a crucial component for outstanding performance in diffusion mod-
els (Ho et al., 2020; Song et al., 2020). Deeper analyses have sought to explain the success of dif-
fusion models by casting them as spectrally autoregressive models, where generation occurs from
low to high frequencies Rissanen et al. (2022). Similar trends have been observed for other continu-
ous data modalities, such as audio, under appropriate transformations Dieleman (2024); Hawthorne
et al. (2022); Zhu et al. (2023). In contrast, such a comprehensive understanding is notably absent in
graph diffusion. While gaining this insight is crucial for uncovering pitfalls and identifying the key
factors that drive performance, it remains a particularly challenging problem. Specifically, because
the graph structure changes throughout the diffusion process, the corresponding spectral basis also
evolves at each step, making it unclear how to transfer insights from continuous domains and leaving
the underlying mechanisms largely unexplored.

In this work, we seek a deeper understanding of graph discrete diffusion by examining how the
noising and denoising processes manifest in the spectral domain. To this end, we conduct a detailed
analysis of DiGress (Vignac et al., 2022), a well-established model in this setting. Our goal is to
characterize its spectral behavior and assess to what extent insights from image diffusion carry over
to the graph domain. Specifically, we aim to answer:

1. Does the model-based reverse process accurately reflect the forward noise process, and how
do different noise models influence this relationship?

2. What should we theoretically expect regarding graph spectrum perturbations throughout
the forward stage (and generative one, if they align)?

3. Do our observations of the forward pass confirm these expectations, and is there any sign
of a separation between low- and high-frequency components as observed in images?

∗Work done during a research internship in LTS4, EPFL.
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Our results indicate that the generative pass generally mirrors the forward process in both spectral
and structural features (Section 3). We observe that the graph spectrum gradually converges to-
ward that of a ER graph, with the final density depending on the chosen noise model (Section 4),
underscoring the role of the noise model in shaping the generative trajectories. Moreover, while
the theoretical predictions for the forward process are confirmed, we do not observe a separation
between low- and high-frequency components in the graph spectral domain, contrarily to image dif-
fusion settings (Section 5), highlighting fundamental differences in how graphs are perturbed and
opening the door to the potential exploration of spectrum-aware perturbation strategies. Overall,
this work presents a first step towards a deeper investigation of the spectral dynamics of graph dif-
fusion, aiming to underscore the importance of such analyses for advancing the understanding and
development of graph diffusion models.

2 BACKGROUND AND PROBLEM SETTING

In this Section, we describe the setting of our study.

Model. To model graph diffusion in discrete time, we employ DiGress (Vignac et al., 2022). This
discrete diffusion model provides a flexible and principled approach to progressively perturb and
then denoise graphs, analogous to diffusion models in continuous spaces. In particular, DiGress is
based on a D3PM (Austin et al., 2021) adapted for graphs whose nodes and edges have categorical
features. In the forward process, a clean graph G0 is gradually corrupted until it becomes fully noisy
after T steps (GT ), yielding a trajectory (G0, G1, . . . , GT ). In this work, we consider T = 500. In
the reverse process, a graph transformer network (a type of GNN) is trained to progressively denoise
the trajectories generated during the forward process. To overcome the limited representational
power of standard GNNs Xu et al. (2018); Morris et al. (2018), graph-theoretic auxiliary features
based on cycles and spectral properties are concatenated to the node and edge features, which are
then fed to the transformer model at each reverse step.

Noise models. In this study, we focus on edge perturbation to capture structural changes in
graphs and therefore do not consider node features. We denote the space of edge attributes by
E , of cardinality |E|. For each edge (i, j), ei,j ∈ Rb is its one-hot encoding, and these are col-
lected in a tensor E ∈ Rn×n×b, where n corresponds to the number of nodes. The noise model
adopted by DiGress is applied independently to edges via transition matrices. Suppose that the
noise on edges is represented by a sequence of transition matrices (Q1

E , . . . ,Q
T
E), where each

entry [Qt
E ]ij = q(et = j | et−1 = i) denotes the probability of transitioning from state i to

state j. Consequently, the categorical distribution that advances the graph one step towards the
fully noisy state is given by q(Et | Et−1) = Et−1Qt

E . The transition matrices take the form
Qt

E = αtI + (1 − αt)1Ev
′
E , where αt decreases from 1 to 0 with t following the popular co-

sine scheduling (Nichol & Dhariwal, 2021), 1E ∈ {1}|E| is a vector of ones, and v′
E ∈ R|E| is

a row vector representing the limit noisy distribution of edge types. We consider four noise mod-
els: marginal, where vE is set to the training set’s marginal distribution of edge types, promoting
transitions towards more prevalent edge types; uniform, where vE = (1/|E|, . . . , 1/|E|); absorbing-
to-dense, where vE is a one-hot encoded vector with a 1 in the entry corresponding to the existing
edge state; and absorbing-to-sparse, where vE is one-hot encoded with a 1 in the entry correspond-
ing to the non-existing edge state.

Figure 1: Examples of a Community-small graph (left) and of an SBM graph with 4 communities
(center) and 5 communities (right).
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Figure 2: Top: Forward pass perturbations of eigenvalues (left), the eigenvector corresponding to
the first non-zero eigenvalue (center), and density (right) under a uniform noise schedule for a graph
from the Community-small dataset. Bottom: Generative pass results for the same quantities. Note
that the generative pass proceeds from right (T = 500) to left (T = 0).

Datasets. The notion of frequency domain in the context of graph data refers to the spectral decom-
position of the graph Laplacian (or related matrices), where eigenvalues and eigenvectors describe
how signals diffuse through the graph. For detailed definition of the Laplacian, see Appendix A.2.
Analyzing graphs in this domain can shed light on structural properties, such as the presence of com-
munities. We focus on community-structured datasets, specifically Community-small and Stochastic
Block Model (SBM) (Martinkus et al., 2022) (examples in Figure 1), because their clear community
organization has a direct spectral interpretation. In particular, the k-th smallest eigenvalue λk of
the symmetrically normalized Laplacian characterizes how difficult it is to partition the graph into k
communities (smaller values indicate a stronger structural division). The spectral gap, i.e., the first
non-zero eigenvalue λ1, specifically highlights the presence of a bottleneck in the graph. In contrast,
datasets without clear clusters exhibit less obvious relationships between eigenvalue behavior and
changes in connectivity. Further details are in Appendix A.1.

3 FORWARD VS GENERATION PASS: A COMPARISON

In our framework, we use the eigenbasis of the graph Laplacian at each timestep as the frequency
domain basis functions. Since node and edge perturbations occur at every timestep, the eigenbasis
itself changes accordingly, and even minor structural modifications can lead to significant spectral
differences. As a result, it is unclear whether the forward or generative perturbations follow a smooth
trend, or even if they align with each other. Both aspects, therefore, merit further analysis.

To compare the forward (noising) and generation passes, we start by analyzing how they affect both
spectral and structural features of the graphs. For every graph in the training set and for each timestep
t ∈ [0, ..., T ], we generate 10–20 noisy samples and compute relevant metrics. In particular, on the
spectral side, we track the eigenvalues of the symmetrically normalized Laplacian and compute the
ℓ2 distance between the eigenvectors at a general timestep t > 0 and those at t = 0. For the
structural analysis, we monitor the evolution of the graph density over time. Together, these metrics
enable a detailed comparison between the forward and reverse processes by highlighting when and
where discrepancies occur. For a more detailed description of these metrics, see Appendix A. These
results are depicted in Figure 2 for community-small graphs and uniform noise distribution. A visual
inspection suggests that the forward and generation processes are largely consistent. In Figure 7, in
Appendix A.2, we demonstrate that the same trend holds for the other prior distributions.
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Figure 3: Visualization of eigenvalue perturbation for a 20-node graph from the Community-small
dataset under the considered noise models (from left to right): marginal, uniform, absorbing-to-
sparse, and absorbing-to-dense, with final densities of 0.3, 0.5, 0, and 1, respectively.

For a more rigorous analysis, we quantify the distributional difference between the forward and
reverse processes by computing the Maximum Mean Discrepancy (MMD) between their respective
eigenvalue distributions and the distributions of ℓ2 distances of eigenvectors. The results for the
SBM dataset are presented in Appendix A.5. While the discrepancy between both processes is
slightly more pronounced when the prior generates very sparse (absorb-to-sparse) or very dense
(absorb-to-dense) graphs, our results further reinforce the overall similarity between the forward
and generative stages.

4 THEORETICAL EXPECTATIONS

The previous section shows that the forward and generation processes exhibit similar patterns. This
justifies our focus on the forward diffusion when defining theoretical expectations, since the forward
is explicitly formulated, while the reverse is learned by a neural network. Specifically, we are
interested in quantifying the convergence rate of an SBM graph toward an Erdős–Rényi (ER) random
graph by the end of the forward process. In fact, all noise schemes progressively randomize the
graph structure, ultimately producing an ER graph with an edge probability set by the noise prior
(e.g., p = 0.5 for uniform noise). Thus, we expect the spectral configuration of the perturbed graph
to match that of an ER graph with the same number of nodes and corresponding edge probability,
so that its eigenvalues are uniformly distributed over a symmetric interval around 1. Figure 5 in the
center shows an example of ER eigenvalue configuration with 20 nodes.

In an SBM with intra- and inter-community probabilities p and q, the forward process gradually
pushes pt and qt closer, until they converge to the ER prior-determined value. To assess the rate at
which this convergence occurs, we conduct a likelihood-ratio test (LRT) comparing an SBM to an
ER model at each timestep. The statistical significance of the likelihood ratio test (LRT) indicates,
given the parameters p, q, the number of communities k, and the number of nodes n characterizing
an SBM graph, whether the graph can be confidently identified as an ER graph. Testing across
different k and n values, we observe that the significance typically rises for t ∈ [0.7T, 0.85T ] (with
larger n causing a later increase). Overall, this analysis helps identify the timescale over which the
SBM converges to an ER structure. More details on this analysis are provided in Appendix B.

5 FORWARD PASS ANALYSIS

Figure 4: Eigenvector ℓ2 forward
perturbation of a Community-
small graph with marginal noise
schedule.

In this section, given the strong alignment between the forward
and reverse processes, we further analyze DiGress’s forward pro-
cess in isolation. Again, given a graph in the training set and for
each timestep t ∈ [0, ..., T ], we sample 10-20 forward graph per-
turbations and compare their distribution of spectral and struc-
tural metrics. In particular, for spectral features, we examine
the evolution of eigenvalues over timesteps (Figure 3) and ex-
tend our study beyond the Community-small and SBM datasets
to include Comm-k-NN graphs (see Appendix A.3 for details),
allowing us to investigate the behavior of a less conventional
type of community-structured graph. We also assess the ℓ2 dis-
tances between eigenvectors over timesteps (Figure 4). Regard-
ing structural features, our primary focus is on graph density.

4



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Figure 5: Left: Forward-pass eigenvalue perturbation of a 20-node graph from the Community-
small dataset under a marginal noise schedule (final p = 0.3). Right: The same forward-pass
perturbation using a uniform noise schedule (final p = 0.5). Center: Eigenvalue distributions for
20-node Erdős–Rényi graphs at different p-values, with confidence intervals over five samples. In
both noise distributions, the dotted lines indicate how the eigenvalues align with those of an ER
graph with corresponding p after a certain amount of steps, reflecting the theoretical expectations.

Additionally, we introduce the Bottleneck Measure to quantify the graph’s bottleneck-ness and the
Total Effective Resistance as a measure of overall connectivity. Both metrics are formally defined
and analyzed in Appendices A.2 and A.4. The main takeaways of the observed results are as follows:

1. The density (a value between 0 and 1) converges at the final timestep to the probability
defined by the noise model (see Figures 2 and 6). For example, it reaches 0.5 under the
uniform noise scheme, while in the marginal case it remains nearly constant, matching the
original graphs’ edge probability. It increases monotonically in a sigmoid-like pattern, with
a concavity change at half the timesteps, possibly due to the use of a cosine noise schedule.

2. For each graph, the eigenvalues and eigenvectors converge to those of an ER graph by
t ≈ 0.7T , confirming our theoretical expectations (see Figures 3 and 5). Although this
may seem counterintuitive for the two absorbing distributions shown in Figure 3, only the
density, i.e., the ER edge probability, changes after t ≈ 0.7T (compare first and second
column to the third in Figure 2). This is also evident when comparing the final steps of
the absorbing distributions with either the highest or lowest probabilities in the ER plot in
Figure 5. Notably, eigenvalues across the entire spectrum undergo perturbations at each
timestep, differing from the selective treatment of low- and high-frequency components in
image diffusion models (Ho et al., 2020; Rissanen et al., 2022).

3. For each eigenvalue, the perturbation along the noising trajectory depends primarily on its
initial deviation from the corresponding ER eigenvalue at the same index. The greater the
divergence from the ER configuration associated with the end probability, the more steps
are required for stabilization, as reflected in the trends of the eigenvector ℓ2 differences. For
the Community-small and SBM datasets, this initial divergence primarily affects the lowest
frequencies, which is a well-known property of community-structured graphs, where the
presence of k communities is reflected in the lowest k eigenvalues being close to zero. The
less conventional community structure of the Comm-k-NN dataset allows this pattern to
also be observed in the highest frequencies.

Finally, note that since the reverse process closely mirrors the forward process, as shown in Section
3, we expect it to exhibit the same spectral trends, naturally in reverse.

6 RELATED WORK

Spectral Analysis on Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015) have
gained widespread adoption for their strong generative performance, prompting deeper analysis of
their underlying mechanisms. Early work identified a low-to-high frequency generation process (Ho
et al., 2020), which later studies leveraged to enhance data efficiency, latent disentanglement (Ris-
sanen et al., 2022), sampling acceleration, and image manifold characterization (Wang & Vastola,
2023). This coarse-to-fine generation can also be exploited in non-image modalities (Dieleman,
2024). More recently, diffusion models have also been shown to operate across different hierarchi-
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cal feature levels throughout their generative process, unveiling the compositional structure of image
and text data (Sclocchi et al., 2025; 2024)

Graph Diffusion Models. Similarly to other modalities, diffusion models have become state-of-
the-art for graph generation. Early works applied continuous diffusion to graph data (Niu et al.,
2020; Jo et al., 2022; 2024), while later approaches introduced discrete diffusion models (Austin
et al., 2021; Hoogeboom et al., 2021) to account for the inherent discreteness of adjacency matrices
(Vignac et al., 2022; Haefeli et al., 2022). These models rely on Discrete-Time Markov Chains
to capture the stochastic diffusion process. While the noise model is crucial to their performance,
their connection remains underexplored (Tseng et al., 2023). This work aims to contribute towards
bridging this gap.

7 CONCLUSION

Our findings confirm that the community-based graph structures and their spectral properties grad-
ually converge towards those of a random ER graph, which is consistent with our theoretical expec-
tations. Notably, we do not observe a decoupling of low- and high-frequency eigenvalues over time,
contrasting with image diffusion. Instead, the eigenvalues progressively align with those of a ran-
dom graph, with the most pronounced shifts observed for those that initially differed the most from
their ER counterparts. These observations point to the importance of reevaluating both the design of
noise models and the choice of perturbation domain. Future work should investigate whether pertur-
bation strategies that appropriately exploit the structure of the spectral domain, rather than operating
in the vertex domain, could lead to improved generation quality or control, and extend this analysis
to other models and datasets.
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A FORWARD AND GENERATION PASS ANALYSIS

A.1 MORE ON PROBLEM SETTING

Datasets. For our analysis we consider community-structured datasets with non informative node
features (they are constant), hence we only draw our attention to how the graph connectivity is
perturbed, and not the node features. Furthermore, the edge attributes are binary: they just express
whether an edge exists or not. The considered datasets have the following properties, and two
examples are in Figure 1:

• Community-small: 136 graphs, 12-20 nodes each, 2 communities, density 0.3.

• SBM: 255 graphs, 2-5 communities, 20-40 nodes per community, density 0.08.

In the analysis of the forward and generation passes, for each graph in the training and generated set
and for each timestep t ∈ 0, ..., T , a fixed amount of noisy graphs are sampled (between 10 and 20),
and some metrics are computed on them. These metrics are related to spectral or structural features
of the graphs, and the average is computed over samples for each graph and timestep, and plotted
with the corresponding confidence bound (+/- std). Results are shown in Figures 2 and 7.

For what concerns structural features, we show in Figure 6 additional plots showing density pertur-
bation.

Figure 6: Density perturbation with marginal (left) and uniform (right) noise schedule across
timesteps of the forward pass, computed for a graph in SBM dataset.

A.2 MORE ON SPECTRAL FEATURES

Some useful facts from spectral graph theory that can be useful to keep in mind to better interpret
the results are the following:

• All eigenvalues of the symmetrically normalized Laplacian satisfy 0 = λ0, λ1, ..., λn−1 ≤
2, with n being the number of nodes in the graph.

• For the complete graph on n vertices, the eigenvalues are λ0 = 0, λi =
n

n−1 ,∀i > 0.

• Just as the spectral gap λ1 measures the obstruction to bipartitioning a graph (the bottle-
neck), the k-th smallest eigenvalue λk is related to partitioning a graph into k parts.

Eigenvalues. For each graph in the input dataset, we computed the symmetrically normalized
Laplacian matrix and performed the eigenvalue decomposition of such matrix. The resulting eigen-
values 0 = λ0, λ1, ..., λn−1 ≤ 2 take values within the interval [0, 2] ⊂ R because of the Laplacian
being symmetrically normalized. For each graph, we plotted how all eigenvalues simultaneously
vary over timesteps. We observe the following in the forward pass:

• As expected, the lowest eigenvalues, corresponding to the partitions that can be defined on
the graph, start from values close to 0 and progressively increase, reaching the eigenvalue
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Figure 7: Top: Perturbation of eigenvalues of a 20-node graph from Community small with uni-
form (left), absorbing-to-dense (center), and absorbing-to-sparse (right) noise models. Bottom:
Corresponding perturbations during the generative pass. All plots depict mean values and standard
deviations computed over 20 samples.

configuration that reflects the one of ER graphs with the same amount of nodes and a
probability determined by the considered prior distribution.

• A similar trend in the variation of eigenvalues is observed even when setting different values
for the total timesteps T .

• All eigenvalues reach the stable configuration of ER graphs at the same timestep, and get
perturbed at the same pace in the timesteps previous to that one. We don’t observe dif-
ference in how high and low eigenvalues get perturbed across timesteps, differently from
what is observed between low and high frequencies in diffusion models for images (Scloc-
chi et al., 2025).

Eigenvectors. Eigenvectors are not as easy to visualize and interpret as eigenvalues, because of
them being n-dimensional vectors and not scalars. In particular, we consider the orthonormal basis
of the eigenvectors of the unnormalized graph Laplacian, so that the first eigenvector - the one
corresponding to the lowest eigenvalue - is constant, and all other eigenvectors are orthogonal to it.

In order to get an idea of how eigenvectors change over timesteps, we considered, for each eigenvec-
tor, the difference between its perturbed version at timestep t and timestep 0, with 0 < t ≤ T . The
difference is defined as ℓ2 norm. We plot, for each graph, how the differences vary over timesteps
for all eigenvectors.

We observe the following for the forward pass:

• The ℓ2 norm plots for all eigenvectors reach a plateau after a certain amount of steps that
differs for different eigenvectors.

• As in the case of eigenvalue trends, we observe two different behaviors in how the ℓ2
norm varies over timesteps, that is determined by whether the eigenvalue/eigenvector pair
expresses a potential partition of the graph or not. Specifically, if the graph is composed by
k communities, then the eigenvectors corresponding to the eigenvalues with indices 1..k are
the ones expressing such partitions. These eigenvectors reach stable values (the plateaus
mentioned in the point before) more slowly than the others, specifically after an amount
of steps that are the same needed by eigenvalues to get to the stable configuration of ER
graphs. The rest of eigenvectors (except the first one), instead, reach a plateau faster.
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Bottleneck Measure on Eigenvectors. In addition to ℓ2, we have designed another way to mea-
sure changes in eigenvectors called the Bottleneck Measure (BM). This new measure aims to better
capture how the partition in different communities in the data becomes less clear over timesteps.
Since we apply this measure to Community-small, which consists of only two communities, an-
alyzing how the subdivision into communities is affected essentially involves examining how the
bottleneck between the two changes. This is why the measure is named as such.

The idea behind this measure is based on the use of an orthonormal basis of eigenvectors. Since the
first eigenvector is constant, all other eigenvectors must have entries that sum to zero due to their
orthogonality to the first. In fact, if we denote the first eigenvector as v0 = c1 and another randomly
chosen one as v, then the orthogonality implies c1 · v = 0 → c

∑
i vi = 0 →

∑
i vi = 0. The

second eigenvector, which is the first non-constant one, expresses the most natural division of the
graph into two communities. In Community-small, where two communities are already present, it
has positive values for one of the communities and negative values for the other. We consider the
set of node indices in the original graph for which the values were positive (the same would apply if
negative values were considered instead). We then compute the sum of these positive values and find
the absolute difference with the absolute value of the sum of the corresponding entries at successive
timesteps. Given the index set I := {j ∈ {0, ..., n− 1} s.t. x0

i > 0} we define it analytically as:

BM(xt
i) := ||

∑
i∈I

x0
i | − |

∑
i∈I

xt
i||.

We observe that, because the first term in the absolute difference is constant while the second varies
with t, the value for BM is 0 for t = 0 and reaches its maximum when |

∑
i∈I x

t
i| is minimum. In

particular, the minimum is reached when the positive entries balance out with the negative ones on
the indices I . This happens when the perturbed graph reaches a completely random configuration,
in which it’s not straightforward to identify two different communities.

We see that the plots for the BM measure are quite similar to those measuring the ℓ2 norm, with the
difference that BM seems to grow more slowly and reach a plateau slightly later in timesteps. An
example of this behavior is shown in Figure 8.

Figure 8: Comparison between the Bottleneck Measure (left) and ℓ2 distance between eigenvectors
(right) for a 20-node graph from Community-small. We report average and standard deviation over
10 samples, computed during the forward pass with marginal noise schedule.

A.3 COMPARISON TO DIFFERENT TYPES OF DATASETS: COMM-k-NN

The points above are further verified and confirmed by executing the same noise perturbation and
plotting the same metrics on different graph datasets. In these, edges are defined with a specific
policy (hence not completely random) but differently with respect to SBM. This leads to a different
initial eigenvalue configuration compared to the ones observed for Community-small and SBM.
These alternative datasets are referred to as Comm-k-NN-intra and Comm-k-NN-inter. We provide
their definition in what follows.

Datasets definition. Both datasets consist in an incremental evolution of a base graph G0, where
random edges progressively replace the original graph connectivity. The base graph G0 consists of
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a set of 1500 nodes uniformly divided into C = 3 communities. For each node vi ∈ V with fixed
community membership ci ∈ {1, 2, 3}, we sample its node features xi as follows:

xi | ci ∼ N (µci , σI)

where σ is fixed to 3, and

µc1 =

(
0
0

)
, µc2 =

(
0
1

)
, µc3 =

(
1
1

)
,

such that the three distributions have large overlapping regions. The edges of the base graph are
defined to obtain a k-nn graph, where nodes are connected to their k nearest neighbors inside the
same community according to a distance function d, which in our case is the ℓ2 distance between
node features.

Then, starting from G0, we define a sequence of perturbed graphs G1 . . . G10, where each Gi is
obtained from Gi−1 by randomly removing i · 10% of edges and randomly adding the same number
of edges, thereby maintaining the total amount of edges constant. We employ three distinct policies
for this perturbation process:

• Intra-only edges: The newly added edges connect only nodes inside the same community.

• Inter-only edges: The newly added edges connect only nodes belonging to different com-
munities.

These two policies give rise to the aforementioned Comm-k-NN-intra and Comm-k-NN-inter
datasets, respectively.

By examining the perturbation of eigenvalues during the forward pass—as illustrated by two ex-
amples in Figure 9—we confirm the observations made in Section 5. In particular, we find that
variations in eigenvalue perturbations depend not on the timesteps but on the deviation between an
eigenvalue’s initial value (for a fixed index) and its corresponding value in the target ER graph. The
larger this deviation from the ER configuration determined by the end probability, the more steps
are required for stabilization. For the Community-small and SBM datasets, this marked initial di-
vergence is primarily observed in the lowest frequencies, a characteristic of community-structured
graphs where the presence of k communities is associated with the lowest k eigenvalues being near
zero. In contrast, the less conventional community structure of the Comm-k-NN dataset allows this
pattern to also appear in the highest frequencies, as can be observed in this case.

A.4 TOTAL EFFECTIVE RESISTANCE

We now provide basic definitions for the concept of effective resistance in a graph and then proceed
to explain how we used the concept to conduct measurements and the results we obtained.

The following definitions are partly taken from Devriendt & Lambiotte (2022).

Let’s consider a graph G = (V, E), possibly weighted, with associated Laplacian matrix L.

Definition. The pseudoinverse of the Laplacian is denoted L† and is determined by the equations
L†L = LL† = proj(ker(L)⊥) and can be calculated by inverting the nonzero eigenvalues of the
Laplacian matrix.

Definition. The effective resistance between pairs of nodes is defined based on this pseudoinverse
Laplacian as

ωij := (ei− ej)TL†(ei − ej)

for any i, j in the same connected component, where ei is the ith unit vector. The resistance matrix
Ω is the n× n matrix containing all pairwise effective resistances, as (Ω)ij = ωij .

The concept of effective resistances originates from the theory of electrical circuits, where it captures
the resistance exerted by the whole network on a current flowing between any two nodes; more
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Figure 9: Examples of Comm-k-NN-inter graphs (left) and corresponding eigenvalue perturbation
(right) during the forward pass with marginal noise schedule.

precisely, if a unit current flows through the graph from node i to j, where it passes through the
links with resistances 1/c and obeys Kirchhoff’s laws, then the effective resistance is measured as
the voltage difference between i and j (resistance = voltage/current).

The effective resistance has many mathematical properties and one of the most useful ones is that it
is a metric between the nodes of a graph:

Theorem. (Devriendt & Lambiotte, 2022) The effective resistance is a metric (a distance) between
the nodes of a graph.

Theorem 1 in Devriendt & Lambiotte (2022) provides a good way to think intuitively about effec-
tive resistances: if the resistance distance ωij is large, this reflects that nodes i and j are not well
connected in the network – there are few and mainly long (low weight) paths connecting i, j –,
whereas a small ωij means that they are well connected – there are many short paths between i, j.
The effective resistance thus reflects a more integrated notion of distance compared to the shortest
path distance, since it takes into account all the different paths between two nodes and how they are
interconnected.

The total effective resistance (the sum of effective resistances over all pairs of nodes in a graph) fully
encloses the spectrum of the Laplacian (Black et al., 2023), intuitively representing a scalar measure
of how well-connected the network is overall (Ghosh et al., 2008).

The connection between this quantity and the eigenvalues of the network lies in the following equal-
ity (Ghosh et al., 2008):

Rtot = n

n∑
i=2

1

λi
.

Remark. For this equality, the eigenvalues are actually the ones from the unnormalized Laplacian
matrix, the matrix that we also considered for analyzing the eigenvector perturbation.
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Notably, the total effective resistance of a graph highly depends on the number of its nodes.
Therefore, in order to obtain a general measure independent from the amount of nodes in the
graph, we considered the normalized total effective resistance of the graphs, that we defined as
Rnorm

tot = Rtot

(n−1)2 . With this kind of normalization, Rnorm
tot = 1 for any complete graph indepen-

dently from the number of nodes. We observe that:

• The higher the prior probability, the closer the final Rnorm
tot is to 1;

• The speed of convergence towards a stable value for Rnorm
tot is high for all noise models.

In Figure 10 we report two examples of the total effective resistance trends.

Figure 10: Total effective resistance perturbation across timesteps with marginal (left) and uniform
(right) noise schedule for a 20-node graph from Community-small. We report average and standard
deviation over 20 samples.

A.5 MMD MEASUREMENTS

Relying solely on visual comparison may lack robustness, and it is also particularly difficult to do
with large graphs like those in the SBM dataset. To address this, we developed a scalar measure to
quantify the difference between the forward and generation pass, for what concerns eigenvalues and
ℓ2 difference of eigenvectors.

To explain the measurement in detail, let us focus on a specific feature we want to measure, such
as the eigenvalues or the ℓ2 difference of eigenvectors. For each timestep and each eigenvalue or
eigenvector index, we consider 20 different graph samples in both the forward pass and the gener-
ative pass. This gives us 20 eigenvalues or ℓ2 values for each case. We then assess the difference
between the forward and generative passes by calculating the Maximum Mean Discrepancy (MMD)
between the 20 values from the forward pass and the 20 values from the generative pass. The MMD
is a scalar measure that quantifies the difference between two distributions. Thus, we obtain a scalar
result for each timestep and each eigenvalue or eigenvector index.

To create a 2D plot and enhance visualization, we proceed in two ways. First, we can average over
the timesteps and plot the results depending on the indices. Alternatively, we can average over all
indices and plot the results with the timesteps as the independent variable. Additionally, for a more
in-depth analysis, rather than averaging over all timesteps or indices, we first divide their ranges
into four sub-intervals and then compute the average. This allows us to separately consider the first,
second, third, and fourth sub-intervals, and visualize these four plots together in the same image.
This approach enables us to observe differences in behavior between lower and higher eigenvalue or
eigenvector indices, as well as variations between low and high timestep values.

Results on Eigenvectors (ℓ2 norm). When considering eigenvectors, the trends for SBM and
Community-small appear to be quite similar, especially when the independent variable is the
timesteps (see Figures 11 and 12). In this setting, we observe a higher peak for lower timestep
values (closer to clean graphs) that tends to decrease with increasing timesteps, with peaks also in
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the higher values in the case of absorbing distributions. In this context, there is no evident sign of a
direct correlation between the prior distribution and the difference between forward and generation.

Figure 11: MMD measure of ℓ2 eigenvector difference with timestep as independent variable
for a Community-small graph with absorbing-to-sparse (top-left), marginal (top-right), uniform
(bottom-left) and absorbing-to-dense (bottom-right) noise schedules.

Results on Eigenvalues. When considering eigenvalue trends, there appears to be a stronger de-
pendency on the choice of the dataset. For SBM, there is a direct correlation between the prior
distribution and the forward/generation difference. More specifically, we observe the following
trends for SBM:

• When the timesteps are the independent variable (Figure 13), the curves decrease as the
timesteps increase; moreover, the higher the probability p, the faster the curves decrease.

• When the eigenvalues are the independent variable (Figure 14), we observe higher peaks
for low and high eigenvalues. In this case, the higher the prior probability p, the lower the
MMD curves trend towards the x-axis.

For Community-small, we can generally observe that the absorbing distributions (dense and sparse)
lead to lower MMD values, regardless of whether the independent variable is timesteps or eigenvalue
indices (see Figures 15 and 16).

It would be worth investigating further whether the observed dependencies occur by chance due to
the specific prior values p chosen for the analysis, or if the trends remain consistent over a wider
range of prior probabilities.

B DETAILED THEORETICAL ANALYSIS

Stochastic Block Models are characterized by an intra-community probability p, an inter-community
probability q, a number of different communities k, and the total number of nodes n. More gener-
ally, inter-community probabilities may vary for different pairs, but we stick to the simplified case
corresponding to the SBM dataset we are using with DiGress, in which is it always the same. Dur-
ing the forward diffusion process, the SBM graphs are perturbed, and consequently, p and q are also
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Figure 12: MMD measure of ℓ2 eigenvector difference with timestep as independent variable for
an SBM graph with absorbing-to-sparse (top-left), marginal (top-right), uniform (bottom-left) and
absorbing-to-dense (bottom-right) noise schedules.

progressively altered. We conducted a study with the goal of determining the “similarity” between
an SBM model with those varying probabilities and an ER graph.

Regarding the probabilities p and q themselves, we plotted the trend of how they vary over timesteps,
from t = 0 to t = T when using the cosine noise schedule, with initial values as considered for the
SBM dataset in DiGress (p = 0.3, q = 0.05) and with marginal transition probability. We see that
the variation of the probabilities considered individually depend on the transition matrix, but the
difference between the two does not: pt − qt = ᾱt(p0 − q0). Additionally, they reach the same final
value pT = qT that is the one determined by the prior.

There exists a specific line of research that aims to analytically characterize the difficulty in discrim-
inating between communities in Stochastic Block Model graphs through clustering techniques. For
example, this research derives conditions on SBM parameters to determine how easily they can be
distinguished from random graphs (Ding et al., 2022; Mao & Zhang, 2023; Cucuringu et al., 2024).

These works analytically set the conditions for p, q, k and n such that clustering algorithms can
identify the different clusters with high probability. This ability of clustering algorithms can be
interesting for us because we can think that if the communities are not recognized, then the graph is
seen as a random graph. However, this ability to differentiate between the SBM and ER is strictly
related to the clustering algorithm itself, which may not be the same for another model that may be
used to identify the type of graph.

So, in order to conduct a theoretical analysis independent of the clustering method, instead of using
the bounds provided in those papers, we computed a likelihood ratio test between an SBM and an
ER model, and then calculated the statistical significance of this statistic.

In short, we did as follows:

• We fixed some values for the total number of nodes and the number of communities (in the
example plot in slides, 120 and 4). For each timestep, there are specific values for p and q
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Figure 13: MMD eigenvalue measure with timestep as independent variable for an SBM graph with
absorbing-to-sparse (top-left), marginal (top-right), uniform (bottom-left) and absorbing-to-dense
(bottom-right) noise schedules.

shown in the aforementioned plot. With these values, we computed the expected number
of inter- and intra-community edges for an SBM graph with these properties.

• Starting from the graph with such expected edges, it’s possible to determine the likelihood
of this graph being an SBM graph with edge probabilities p and q, and the likelihood of it
being an ER graph with edge probability r = num edges/all possible edges. More in
detail, identifying the adjacency matrix of the considered graph as A, we could compute
the two probabilities:

PSBM(A | p, q) =
∏

1≤i<j≤n

[
pAij (1− p)1−Aij

]I(si=sj) [
qAij (1− q)1−Aij

]I(si ̸=sj)
,

PER(A | r) =
∏

1≤i<j≤n

rAij (1−r)1−Aij = rnum edges (1−r)all possible edges−num edges.

• We plotted the Log-Likelihood Ratio (LRT) statistic, that is the log of the ratio of the two
likelihoods computed as

Λ = ln

(
PSBM(A | p, q)
PER(A | r)

)
= lnPSBM(A | p, q) − lnPER(A | r),

and then we plotted the statistical significance of this statistic (p-value).

The plots obtained through these steps are shown in Figure 17.

The statistical significance should indicate whether, for the considered SBM graph with given p, q,
k and n values, it makes sense to identify it as an ER graph, statistically.

By testing with a wider range of node counts (from 50 to 200) and number of communities, the
significance always starts increasing at a timestep between 70 and 85 (the more nodes, the later it
starts to grow).
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Figure 14: MMD eigenvalue measure with timestep as independent variable for an SBM graph with
absorbing-to-sparse (top-left), marginal (top-right), uniform (bottom-left) and absorbing-to-dense
(bottom-right) noise schedules.

Figure 15: MMD eigenvalue measure with timestep as independent variable for a Community-
small graph with absorbing-to-sparse (top-left), marginal (top-right), uniform (bottom-left) and
absorbing-to-dense (bottom-right) noise schedules.
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Figure 16: MMD eigenvalue measure with timestep as independent variable for a Community-
small graph with absorbing-to-sparse (top-left), marginal (top-right), uniform (bottom-left) and
absorbing-to-dense (bottom-right) noise schedules.

Figure 17: Left: Evolution of p and q values over timesteps for an SBM graph perturbed using the
marginal model and cosine noise schedule. Right: Statistical significance (top); Likelihood ratio
(bottom) for each graph with corresponding p and q being an SBM graph.
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