
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph
Neural Networks
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Abstract
Self-Organized Criticality (SOC) is a ubiquitous
dynamical phenomenon believed to be responsi-
ble for the emergence of universal scale-invariant
behavior in many, seemingly unrelated systems,
such as forest fires, virus spreading or atomic ex-
citation dynamics. SOC describes the buildup of
large-scale and long-range spatio-temporal corre-
lations as a result of only local interactions and
dissipation. The simulation of SOC dynamics is
typically based on Monte-Carlo (MC) methods,
which are however numerically expensive and do
not scale beyond certain system sizes. We investi-
gate the use of Graph Neural Networks (GNNs)
as an effective surrogate model to learn the dy-
namics operator for a paradigmatic SOC system,
inspired by an experimentally accessible physics
example: driven Rydberg atoms. To this end, we
generalize existing GNN simulation approaches
to predict dynamics for the internal state of the
node. We show that we can accurately reproduce
the MC dynamics as well as generalize along the
two important axes of particle number and parti-
cle density. This paves the way to model much
larger systems beyond the limits of traditional MC
methods. While the exact system is inspired by
the dynamics of Rydberg atoms, the approach is
quite general and can readily be applied to other
systems.

1. Introduction
Deep Learning methods deliver impact for many applica-
tions ranging from Computer Vision, Natural Language
Processing, Audio and Speech Processing to Optimal Con-
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Figure 1. Results from the 60000-timestep rollout of the GNN,
after being trained only on single timestep data. The available
density (sum of ground and active state atom densities) shows the
characteristic SOC behavior: all initial densities above the critical
value of nc ≈ 1 converge to the same point, whereas all curves
that start below nc show only a slow decay.

trol. In recent years we also see these methods drive inno-
vation in areas of scientific interest, such as drug discov-
ery (Jim’enez-Luna et al., 2020), protein folding (Jumper
et al., 2021), molecule dynamics (Noé et al., 2020; Gilmer
et al., 2017; Henderson et al., 2021) as well as the dynam-
ics of classic multi-particle systems (Battaglia et al., 2016;
Sanchez-Gonzalez et al., 2020) and many more. In the
context of particle dynamics the class of Graph Neural Net-
works (GNNs) (Bronstein et al., 2021; Sanchez-Gonzalez
et al., 2020; Shlomi et al., 2021; Lemos et al., 2022) are
particularly successful. We build up on this success and in-
vestigate the application of GNNs to learn the time-evolution
of a complex many-body system in the regime of so-called
self-organized criticality (SOC).

SOC represents a widespread phenomenon observed in
many different fields, ranging from noise in electric circuits
(Bak et al., 1987), earthquakes (Sornette & Sornette, 1989),
forest fires (Malamud et al., 1998; Drossel et al., 1993) over
the spread of information or diseases (Gleeson et al., 2014;
Rhodes & Anderson, 1996) to atomic excitation dynamics
(Helmrich et al., 2020). The term refers to the property of a



complex system to drive itself towards the critical point be-
tween two dynamical phases in the relevant parameter space
during its time evolution without any external control or fine-
tuning. Remarkably, even though the microscopic processes
in these systems may be very different, certain properties
such as the scaling laws of the critical behaviour remain the
same, a phenomenon termed universality. This allows to
study the properties of SOC dynamics in one system, e.g.
forest fires, through controlled simulation and experimenta-
tion of other systems, e.g. atoms. An important challenge
in studying SOC-behavior is the efficient simulation of the
dynamics of large systems. State-of-the-art methods em-
ploy Markov-Chain Monte-Carlo (MCMC) methods that
are limited in terms of number of particles and system size
(Wintermantel et al., 2021). This renders the study of large-
scale systems, required for reliable predictions of key SOC
properties such as critical exponents, hard. Additionally,
the simulation requirements in time and memory increase
with the system size and make the simulations prohibitively
expensive in the absence of high-performance computation
infrastructure.

In this study, we investigate the use of GNNs to accurately
approximate the time-evolution operator of a complex sys-
tem inspired by the dynamics of a classical ensemble of
Rydberg atoms in the SOC regime. The GNN acts as an
effective surrogate model and replaces the costly MCMC
step operator. We model the atoms as nodes in a GNN
with internal degrees of freedom encoded in the node at-
tribute and the Euclidean distances between the endpoints
attached as edge attributes. We learn the one-timestep up-
date function of the node attributes from data simulated
using classical MCMC methods. We demonstrate that the
GNN is capable to efficiently learn this operator and reli-
ably reproduce the characteristic properties of the system
such as the facilitation dynamics, Rydberg blockade effects
and SOC excitation trajectories. Moreover, we show early
indications that the model generalizes over several orders
of magnitudes along two important axes: particle number
and system size (particle density). This property enables the
application of this model to system sizes beyond what can
be simulated using classical MCMC methods, while also
enabling computations on moderate hardware.

In addition, we are, to the best of our knowledge, the first to
extend the simulation capabilities of GNNs to systems with
dynamics in internal as well as external degrees of freedom.
While previous work was mostly focused on simulating the
position dynamics of the nodes (Battaglia et al., 2016; Kipf
et al., 2018; Sanchez-Gonzalez et al., 2020), an external
degree of freedom, we also discuss the dynamics of the
node attribute, i.e. the internal degree of freedom, based on
the interaction of a node with its neighbors.

We make both the code for our experiments as well as the

Monte Carlo code to create our datasets publicly available
upon acceptance.

2. Related Work
GNNs have been used in a multitude of applications. Most
relevant to our study is the work by Sanchez-Gonzalez et
al. (2020) to learn the dynamics of challenging physics mo-
tions such as viscous fluids and elastic bodies simulated
using third party tools. They do so by breaking the objects
into a discrete set of volumes that are subsequently rep-
resented as nodes in a graph. The position update of the
volume is learned by predicting the next position using an
encoder-decoder system with several message passing (MP)
layers.

Pfaff et al. (2021) expand on this work to simulate the dy-
namics of wings and flags under external forces. They do
so by introducing two different meshes, one for the surface
of the object under study and a second one encoding the
real-world, Euclidean distance between the nodes of the
surface mesh. Using MP they learn to predict the surface
mesh positions in the next time-step from simulated data.

Battaglia et al. (2016) study the use of graph representations
in the data to enable a multi-layer perceptron to reason about
complex interactions of physical systems. By making the
relationships between physical objects explicit in the graph
data structure, they are able to predict the orbital motion of
planets as well as the dynamics of solids under non-trivial,
external constraints.

Shlomi et al. (2021) give a review of the use of GNNs
in high-energy particle physics. They draw attention to
the benefits of using GNNs to model the different particle
interactions through clever design of the node, edge and
vertex attributes when representing the data as relationship
graphs.

Lemos et al. (2022) use GNN simulators in conjunction with
symbolic regression to rediscover Newton’s law of gravity
from simulated data of multi-planetary motions. This serves
as a demonstration to infer physical laws from complex
dynamics as multi-planetary motion can behave chaotically
under certain circumstances.

Martinkus et al. (2021) discuss the construction of a hier-
archical GNN in order to scale the simulation of particle
dynamics from a few hundreds to tens of thousands. By
recursively partitioning the space and compute interactions
between the cells at each hierarchy they are able to reduce
the O(N2) interaction computation to O(N logN) com-
plexity.

Prakash & Tucker (2021) investigate the use of multi-task
learning in GNNs to simultaneously learn the dynamics
and the unknown physical parameters of an ensemble of



objects with Newtonian dynamics. They show that using this
approach one can circumvent the design of inductive biases
in the GNN construction, making the GNN architecture
more versatile across datasets.

Olsson & Noé (2019) use a graphical model to de-
scribe molecular kinetics, where each molecular subsys-
tem changes its internal state based on interactions with the
neighboring subsystems. Instead of using a single global
state, the approach of using interacting subsystems is key in
reducing the computational effort.

Jin & Voth (2018) study interfacial systems using an ultra-
coarse grained model that is constructed by including the
local particle density in the internal states of the coarse-
grained sites. This construction allows to distinguish differ-
ent phases and to successfully capture phase coexistence.

Zhang et al. (2022) use a GNN architecture not for physical
simulations, but for sequential recommender systems in
social networks. Instead of using only the previous user-item
interactions of a single person to predict future interactions,
the authors include dynamic collaborative signals among
different users.

In contrast to these works, we are the first to discuss the
dynamics of a complex atomic many-body system whose
entities have an additional internal state, i.e. where the node
attributes can change depending on the neighbors. This
extends the use of GNNs to efficiently simulate systems that
have internal as well as external degrees of freedom. On
top of this we also demonstrate the ability of the GNNs to
learn non-trivial spatio-temporal correlations, despite being
trained on a spatially local, one-step prediction task.

3. Self-Organized Criticality in Rydberg
Atoms

A typical SOC system consists of many identical entities,
each taking one of three internal states. The entity’s state
can vary over time as a function of the system’s dynam-
ics. Since in our case the entities are Rydberg atoms, we
label these three states as the ground, active and inactive
states, respectively (see Figure 2(b)). For illustration, in
disease spread models these states are commonly referred to
as susceptible, infected and recovered. The key ingredient
to produce the characteristic SOC dynamics lies in the tran-
sitions between the internal states of each atom, as shown
in Figure 2(a): the ground state |g⟩ can only become active
via the neighborhood-dependent rate pg→a(N), called the
facilitation process. The active state |a⟩ can undergo the
reverse process and return to the ground state again with a
neighborhood-dependent rate pa→g(N), or transition into
the inactive state |0⟩, which is a terminal state in the process.

The physical realization of the SOC system we study here

is based on a gas of Rydberg atoms subject to external laser
fields. The microscopic transition rates for each atom i per
time interval δt of the model are given by

pi,g→a = 1− e−Riδt (1)

pi,a→g = (1− ϵi)
(
1− e−(Ri+γ)δt

)
(2)

pi,a→0 = ϵi

(
1− e−(Ri+γ)δt

)
(3)

Ri =
2Ω2γ

γ2 +∆2
i

(4)

ϵi =
b

1 +Ri/Γ
(5)

∆i = ∆0

(
−1 +

∑
ℓ∈N

1

r6i,ℓ
κℓ

)
(6)

κℓ =

{
1, if sℓ = |a⟩
0, otherwise

(7)

The parameters ∆0,Γ, b, γ, and Ω are details of the sys-
tem and can be treated as hyper-parameters to the problem.
N denotes the total number of atoms in the system. The
symbol κℓ in Equation (6) ensures that the sum includes
only the active atoms (state sℓ = |a⟩). Additionally, ri,ℓ
denotes the Euclidean distance between atom i and ℓ in
natural units, where we set the length scale RF = 1 (see
Figure 2(b)). A more detailed introduction to this system
is presented in Appendix A. Equations (1) to (6) describe
a strongly interacting many-body system, for which nei-
ther trivial nor analytic solutions exist. In order to solve
the system for large particle numbers and long times, ap-
proximate techniques such as MCMC (Wintermantel et al.,
2021) or coarse-graining (Helmrich et al., 2020) have histor-
ically been used. It is worth pointing out that Equation (6)
displays a resonance behavior dependent on the number
and distance of the neighboring active atoms, giving rise to
the neighborhood-dependent state transition rates: If |∆| is
large, the transition rate is suppressed and no change in the
dynamics is happening. If an active atom is present at the
right distance to an atom i, then ∆i = 0 and the transition
is facilitated. The facilitated atom can in turn facilitate the
excitation of another atom. Above a critical density this
leads to an explosive spread of excitations. The system
hence shows two distinct phases:

• The active phase is characterized by a large number of
active atoms that spread through the entire system. The
density of inactive atoms is small, and each active atom
facilitates on average more or equal to one ground state
atom before it ceases to be active.

• The absorbing phase is a state where the available
density of ground state atoms is so low that transitions
into the active state typically become inactive quickly



(a) (b)

Figure 2. Schematics for the SOC problem construction. Figure 2(a): The model entities (atoms) have each three internal states. The
ground state |g⟩, the active state |a⟩ and the inactive state |0⟩. The atoms have a distance-dependent interaction scaling as 1/r6. Figure 2(b):
When constructing the input graph there are two length scales that are relevant: the facilitation radius RF denoting the relevant interaction
distances and the cutoff radius RC used to limit the number of edges in the graph to avoid all-to-all connectivity.

before they can spread, i.e. facilitate the transition of
another ground state atom into the active state.

The critical point of the system occurs at the point where
the two phases meet, i.e. where an active atom facilitates
exactly one ground state atom on average before it decays.
Since the inactive state is a dead-end, the available density
of ground and active state atoms can only decrease over time.
Consequently, the active phase automatically moves towards
the critical point, which constitutes a self-organization of
the critical phase termed SOC. Since SOC systems at the
critical point share certain universal properties, being able
to simulate a single SOC system with high accuracy and
scalability allows investigations of many different physical
systems.

4. Learning the Rydberg SOC Dynamics with
a GNN

Training data. We model the atoms as the nodes of a
GNN with the internal states of the atoms mapped to node at-
tributes and the distance between them as the edge attributes
(see Figure 2(b)). An advantage of the GNN structure over
conventional discretization schemes is the independence of
system density from the discretization length and thus an
easier computational description of the problem at hand.
Note that throughout this study we always use training data
for two-dimensions, where all atoms are placed into a square
box in the xy-plane.

The training data is generated using classical Monte-Carlo
methods (see Appendix B) and we create a large dataset
covering a broad range of particle numbers and densities
to expose the model to a diverse set of scenarios during
training. Each training sample consists of X , a matrix of
shape (N,Nf ), and the ground truth Y , a matrix of shape
(N, 3). Here, Nf denotes the number of node features,
which are the position and internal state of each node. Note
that X is not directly the input to the GNN, since we replace

the absolute positions with relative distances. The ground
truth matrix Yi = (Pi(g|si), Pi(a|si), Pi(0|si)) contains
for each node i with the internal state si the probabilities
to change to or remain in each of the three states in the
next timestep. Before feeding a graph into the GNN, we
apply the following physically motivated processing steps
to facilitate easier learning for the model:

• We mask out all nodes in the inactive state |0⟩, since
they do not contribute to the dynamics and can be
neglected without loss of accuracy.

• The edges between nodes are created by a radius-graph
scheme: For two nodes to be connected their relative
(Euclidean) distance needs to be smaller than a critical
radius Rc, which is a hyperparameter for our model.
Increasing Rc yields higher accuracy, but also increases
the computational burden due to a quadratic rise in the
number of neighbors. However, as the interaction drops
off as 1/r6 the benefit of a large Rc is minimal. For all
our calculations we use Rc = 2 (in natural units).

• Two nodes in the ground state |g⟩ do not interact with
each other, allowing us to remove edges between them.
This causes no loss of accuracy and reduces the total
number of edges in a graph by up to 80%, since the
fraction of active atoms is typically lower than 15%.

• Each edge is given the Euclidean distance between its
nodes as an edge attribute. The absolute position data
is not encoded to encourage translation and rotational
invariance of the model, since only relative distances
are relevant for the SOC behavior.

Network architecture. To construct the network archi-
tecture we first note some characteristics of the probability
distribution for the state transition probabilities. As the data
is generated using Monte-Carlo simulations of a continuous
process, the state transition probabilities are small in order



Figure 3. We use a residual architecture for the network structure
to encourage the model to learn the background mean-field and
the fluctuations on top of the mean field separately. To this end
we feed the node embeddings into a simple MLP that learns the
factorized node distribution. The fluctuations are learned using
a Graph Convolution network that receives the node as well as
edge embeddings as input. Finally, we add the mean-field and
fluctuations before feeding them through the final MLP to predict
the update probabilities.

to minimize the numerical error of the simulation. As a
result, the probability of each atom to remain in its current
state is large in order to preserve probability. This results
in a bimodal distribution of the state transition probabilities
with the actual transitions orders of magnitude smaller, i.e.
O(10−7 − 10−1) than the probabilities to remain in the cur-
rent state O(1) (For more details see Appendix B). However,
the dynamics of the system are encoded in the changes in
the state transition probabilities and without accounting for
the sizable differences in the probabilities the model will
simply learn the large background probabilities and not pay
much attention to the subtle fluctuations in the transition
probabilities that are caused by neighborhood interaction
effects.

To address this challenge, we make use of a residual net-
work architecture as depicted in Figure 3, where we give
the network the opportunity to model the large background
distribution, termed the mean-field contribution, and the
neighborhood effects of the changes in the state transition
probabilities, termed fluctuations. This terminology is in
accordance with corresponding techniques in the traditional
modelling of dynamic systems, where one tries to describe
the system in terms of small variations, the fluctuations,
around a stationary point, the mean-field. More specifically,
we embed the state of each node into a higher-dimensional
embedding space. Note that we removed the inactive state
|0⟩ from the data. We then feed each node state individ-

ually through a simple feed forward network. Since this
network does not take into account the edge attribute, it ef-
fectively learns only the factorized, non-correlated features
of the nodes, which corresponds to the mean-field part of
the dynamics. To capture the correlations, we combine the
embedded node states and edges and feed them through a
Message Passing Graph Convolution layer (Gilmer et al.,
2017). We then add the outputs of the mean-field and fluc-
tuation modules before passing them through a final MLP
network to predict the state transition probabilities of each
node. We use RELU nonlinearities as activation funtions
and normalize the activations using LAYERNORM for the
MLPs.

Loss function. As noted before the transition probability
distribution changes over many orders of magnitude and
hence we need a loss function that works over such a large
interval. We experimented with mean-squared-error (MSE)
and Kullback-Leibler divergence (KLD) and found the latter
to be more stable. This can be motivated by the fact that the
logarithmic dependency of the KLD penalizes differences
in the exponents of the probabilities much more severely
than the MSE loss that ignores such differences if the prob-
abilities are small in favor of minimizing the differences for
large probabilities.

5. Experiments & Results
Having established the modelling approach, we now turn
to the experimental validation. We implement the GNN
based on PYTORCH (Paszke et al., 2019) using the PY-
TORCH LIGHTNING framework (Falcon & the PyTorch
Lightning team, 2019) as well as PYTORCH GEOMETRIC
(Fey & Lenssen, 2019). The network consists of a 2D em-
bedding module for the internal node state with an output
dimension of 10, a state encoder network (mean-field com-
ponent) consisting of 2 fully connected layers with hidden
dimension of 50 and a final output dimension of 32, a Graph
Convolution layer with a single message passing step and
a final decoder with 2 fully connected layers and hidden
dimension 50. The Graph Convolution uses the NNCONV
module from (Gilmer et al., 2017) that is implemented in
PYTORCH GEOMETRIC and has an output dimension of 64.
The MLP inside of the NNCONV has a single hidden layer
with 50 units. Inside the fluctuations component we apply
another MLP of 2 hidden layers with 100 units each and an
output dimension of 32, before adding both components. In
total the network has approximately 81000 parameters.

For all experiments we use the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 10−3, beta values of
(0.9, 0.999) and batch size 15. We set the cutoff radius
Rc = 2 (in natural units) and train the model for 25 epochs
with 6000 training instances each on an Intel® Xeon® Gold



Processor 6154 with a peak memory usage of about 240MB.
The training instances are drawn from three datasets that
we created that all contain N ≈ 150 atoms per instance but
had varying densities. In two datasets we used dx = 0.25
and dx = 0.5, respectively. Here, we define dx as dx =
L/

√
N , where L is the length of one edge of the square

box in which we place the atoms. Intuitively, dx represents
the distance between the atoms if they were placed in an
ideal square lattice. In the third we artificially increased
the fraction of active state atoms to 50% at a density of
dx = 1.25 to address the fact that active atoms are otherwise
rare in the training data. Finally, for reasons of numerical
stability we transform the probabilities using a square-root
transformation. This ensures the probabilities stay in the
range [0, 1] while mitigating the extreme bimodal nature of
the ground-truth probability. See the Appendix B for more
details.

Transition rates of internal node dynamics. To the best
of our knowledge there is no comparable publication that
predicts transition probabilities in SOC systems or consid-
ers the dynamics of internal degrees of freedom of a node.
Hence we developed metrics to assess the quality and vali-
date the learning of the GNN. We base these metrics on key
aspects of the Rydberg-SOC dynamics.

The fastest process in the SOC system is the facilitation pro-
cess by which an active atom promotes surrounding ground
state atoms to the active state, according to the resonance
feature of Equation (6). The facilitation probability of a
ground state atom at a distance r to an active atom is char-
acterized by an extremely sharp peak at r = 1 (in natural
units), several orders of magnitudes larger than the non-
interacting (r → ∞) case. Additionally, as r → 0 the
facilitation probability decreases rapidly to zero, due to the
Rydberg blockade (Lukin et al., 2001) (also see (Saffman
et al., 2010) for a review). For r ≫ RF , the facilitation
probability tends to a small, but finite value. To check this
behaviour we construct a custom graph where we place an
active state atom at the origin and a ground state atom at
the position (x, y) = (r, 0). Additionally, we randomly
place other ground state atoms in the graph to keep the to-
tal particle number and density close to those seen during
training. The value we record is then Pi(a|g) of the ground
state atom to become active at position (x, y) = (r, 0). We
then sweep this setting across different values of r, creating
a new random graph each time. The result of this experi-
ment is shown in Figure 4(a) and shows excellent agreement
with the exact solution of the facilitation rate around the
facilitation peak r = 1 (in natural units) and in the r → ∞
limit. In the blockade regime for r ≪ 1 the GNNs predic-
tion converges to Pi(a|g) ∼ 10−11, six orders of magnitude
smaller than the limit r → ∞. The true convergence to zero
however is not captured. This is an expected result given

Task Configuration KLD
num. particles N=50, dx=0.5, d=2 1.17e-4

N=150, dx=0.5, d=2 1.50e-4
N=500, dx=0.5, d=2 1.83e-4
N=1000, dx=0.5, d=2 1.97e-4
N=1500, dx=0.5, d=2 2.04e-4

density N=150, dx=0.125, d=2 3.00e-5
N=150, dx=0.25, d=2 8.17e-5
N=150, dx=0.5, d=2 1.50e-4
N=150, dx=1, d=2 7.54e-5
N=150, dx=2.5, d=2 1.99e-5

Table 1. Test loss averaged over 2000 graphs each from different
datasets, where either the particle number or density was varied.
For the case of particle number generalization, we test on up to
10 times as many particles as seen during training and observe
that the loss rises slowly with the particle number. For the case
of varying densities we go a factor of 2 smaller than the smallest
density seen during training (including the engineered dataset with
more active atoms), as well as a factor of two above. In both cases,
the loss is reduced compared to dx = 0.5, which we attribute to
less facilitation events and more blockade (for higher density, low
dx) or more non-interacting cases (for lower density, high dx).

the fact that even making large relative errors on very small
ground-truth probabilities incurs a small loss penalty for
the algorithm. Nonetheless, since the predicted blockaded
facilitation probability is sufficiently small compared to all
SOC timescales, we hypothesize that this deviation from
the ground truth does not lead to qualitative changes in the
GNNs predictions.

The inverse process is called de-facilitation and is, to the
best of our knowledge, a process unique to Rydberg atoms.
In this case, a de-excitation (return to the ground state) of
an active atom is facilitated by the presence of a second
active atom. If these two active atoms are close to each
other, the probability of one atom to return to the ground
state increases sharply at the relative distance r = 1. Even
though both the facilitation and the de-facilitation share the
same physical origin, their ground-truth curves in Figures
4(a) and 4(b) look dissimilar on short distances. The is due
to the second process that allows active atoms to return to
the ground state, which is independent of the neighborhood
(see γ in eqn. (2)). We check this behaviour the same
way as for the facilitation metric, but in this case the atom
at position (x, y) = (r, 0) is also active and we record
Pi(g|a). The results are shown in Figure 4(b). The de-
facilitation is much harder to learn as the case of two active
atoms at close distance is very rare in the dataset, especially
in the already very narrow region around r = 1 where
the behavior changes drastically. We find that the GNN
accurately predicts the non-resonant case as well as the
position of the peak ar r = 1. However, the interval between
r ∈ [0.995, 1.005], where the ground truth values increase
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(a) Model prediction of the facilitation process of a ground state
atom as well as the ground-truth curve from Monte Carlo.
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atom as well as the ground-truth curve from Monte Carlo. The
inset shows a magnification of the peak around r = 1.

Figure 4. Benchmark and validation curves to assess correct learning of key interaction features for the SOC dynamics in Rydberg atoms.

by a factor of 10, is not reproduced, as the GNNs prediction
does not exceed 0.009, an order of magnitude short of the
ground truth.

Particle number and density generalization. In addition
to the SOC specific metrics we investigate the prediction
accuracy on graphs consisting of more nodes, i.e. higher
particle number, or denser, i.e. shorter average distance be-
tween particles, than those seen during training. The results
are summarized in Table 1. We see that when trained on
N ≈ 150 atoms, the model suffers no significant loss of
accuracy when predicting on a varying number of atoms
up to N = 1500. The lowest test loss occurs at smaller N
than during training, which might be the result of boundary
effects that the model learns when trained on small sys-
tem sizes. This scalability of the GNN has been observed
in other particle-based regression tasks (Sanchez-Gonzalez
et al., 2020) and is most likely due to the local scope of the
message passing, which encodes spatial translation invari-
ance of the dynamics operator.

In addition, we see that the test loss of the GNN predicting
on datasets with different densities is also small across a
range of average dx distances. During training, the model is
confronted with densities dx = 0.5 and dx = 0.25 as well
as artificial graphs with dx = 1.25. The test case of dx =
0.5 on an unseen dataset shows the highest test loss, which
is most likely due to the fact that more facilitation events
happen at this density than at lower or higher densities. In
the case of lower densities, the chance of a ground state
atom to be located in the small interval around r = 1 to an
active atom is reduced, and in the case of larger densities
the case of r ≪ 1 occurs more frequently, where we see
extremely small state-change probabilities (blockade).
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Figure 5. Comparison between the 60000-timestep predictions of
the GNN (solid) and the Monte-Carlo simulation (dashed) from
which the training data was obtained. We do not show all initial
conditions in the interest of readability. The available density is
the sum of ground and active state densities.

SOC excitation trajectories. Having established that the
model captures key aspects of the SOC dynamics and is
able to generalize over particle numbers as well as densities,
we can use the trained model to iteratively predict the time
evolution of an initial ensemble of atoms. To this end we
randomly create an initial 2D distribution of atoms, each
in the ground state. Additionally, we assign a velocity to
each atom which we sample from a Maxwell-Boltzmann
distribution with the most probable velocity v̂ = 1. We
input this initial state into the graph network and use the
output probabilities to roll new internal states for each node
and construct a new graph, where we record the fraction of
atoms not in the inactive state. Then, we input the new graph
into the GNN and repeat this procedure for 60, 000 steps. In
each step, we update the positions of each node using the ve-



locity: x⃗ → x⃗+ v⃗δt. We use repelling boundary conditions,
where the corresponding velocity component is reflected
when a particle collides with the boundary. Lastly we av-
erage the resulting excitation trajectories of 50 runs with
equivalent initial conditions (N,L). The number of steps
is chosen such that the total predicted time T is equivalent
to T = 60, 000 δt = 150Γ−1 since it takes approximately
T = 150Γ−1 for the system to reach the critical state. Here
Γ = 1 (the decay rate of the active state) serves as the nat-
ural unit of (inverse) time in the system. The results are
shown in Figure 1. All curves that have an initial density
above the critical density nc ≈ 1 (in the active phase) fea-
ture three distinct regimes: (i) a fast initial decay, (ii) a
convergence to the same critical density nc and (iii) a slow
decay beyond that. All curves that start below the critical
density (absorbing phase) exhibit only feature (iii). This is a
hallmark characteristic of SOC behavior. When comparing
the GNN predictions to the MCMC results in Figure 5 we
see that the GNN shows a slower decay in phase (i). This
effect is less pronounced the lower the initial density, which
suggests the deviation stems from imperfect reproduction of
the facilitation peak in Figure 4(a). Indeed, since the GNN
underestimates the transition probability very close to r = 1,
less facilitation events occur here than in the Monte Carlo
baseline, causing a slower initial spread of excitations.

Ablation study of the GNN architecture. We chose a
residual architecture for the GNN model. The two branches
can be interpreted as the mean-field and the fluctuations
branch. The former is a simple MLP and only receives as
input the node embeddings, while the latter contains a graph
convolutional layer and is supplied with both the node and
edge embeddings. Since the fluctuations branch alone could
learn the MCMC update function, we perform an ablation
study to test the performance changes of the model when
switching off the mean-field branch of the architecture.

Using the identical training procedure as for the full model,
we find that the test loss of the non-residual model is in-
creased by a factor of two. The performance on the fa-
cilitation metric shown in Figure 4(a) remains unaffected;
however learning the de-facilitation (4(b)) is significantly
worse. The de-facilitation peak at r = 1 is predicted at
r = 0.975 (full model: r = 1.005) at a transition proba-
bility of P (g|a) = 0.0026, which is 36× smaller than the
correct result (full model: 10×). Additionally, the training
of the non-residual model appears significantly less stable
as indicated by noisier training curves, including frequent
large-magnitude jumps, which are absent in the training of
the full model. In this sense, the residual architecture in
form of a mean-field branch, although not strictly necessary,
represents an important ingredient to obtain high-quality
predictions.

Discussion of the results. There are a few key implica-
tions we want to discuss based on the experimental results.
We showed that the GNN learns the one-step time-evolution
operator successfully and can display the hallmark charac-
teristics of SOC dynamics. However, by construction, the
GNN convolution operators are spatially translation invari-
ant and local in nature. This implies that the long-range
correlation of the SOC phase requires a time-dimension and
is truly spatio-temporal as the spatial locality of the Graph
Convolution does not allow to learn long-range spatial cor-
relations.

A second aspect is that the spatial translation invariance
of the Graph Convolution operator allows us to scale the
time-evolution of the system to very large particle numbers,
as all that matters is the local connectivity of the graph, not
the overall particle number. Hence, the traditional O(N2)
scaling for MCMC does not apply.

Finally, the use of a graph data structure enables us to also
scale over many densities, if the model has learned the
facilitation metrics correctly. This is in contrast to standard
simulations based on the discretization of the real-space
coordinate. Due to the necessity of having a fine-grained
grid, the simulated densities are typically small in that case
in order to approximate continous systems. However, this
limitation does not exist for GNNs as the relevant scale is
the distance encoded in the edge attribute r as a fraction of
the natural distance RF . Taken together with the particle
number scaling, it might allow the study of dense systems
with large particle numbers.

6. Summary
We present a new method to model the time dynamics of
SOC systems using machine learning on graphs. We use
a physically motivated, lightweight GNN architecture to
learn the one-step time-evolution operator of each atom
of the SOC system. In contrast to previous studies, we
extend the GNN simulation toolkit to learn the dynamics of
internal degrees of freedom, i.e. the node-state, in addition
to the external degrees of freedom, i.e. the distance between
atoms. We demonstrate high accuracy of the predictions via
excellent agreement of the learned facilitation rate compared
to exact ground-truth rates. Additionally, we show that
the model generalizes to at least one order of magnitude
more particles than seen during training without significant
loss of accuracy, as well as higher and lower densities than
it was trained on. Moreover, we showed that the model
can successfully reproduce the decay to a common critical
density and the separation of time-scales in the excitation
trajectories, a hallmark characteristic of SOC, despite having
been trained on single-timestep data only.

We leave the extraction of critical exponents and other SOC



elements as well as scaling to even larger particle numbers
to future work. Additionally, our model could most likely
benefit from hierarchical graph methods as presented in
(Martinkus et al., 2021), which could reduce the computa-
tional complexity of larger systems. Although we see that
the graph creation and distance calculation scales linearly
for our GNN compared to the quadratic scaling of all-to-
all Monte-Carlo algorithms, a quantitative analysis of the
computational cost and runtime of our model compared to
the currently used MCMC approaches is left to future work.
Lastly, the Monte Carlo training data that we used could be
replaced by real observations of SOC systems. In that case,
the GNN model could learn directly the interaction laws and
circumvent the time discretization of differential equations,
thereby providing an independent check of the underlying
theory.
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A. Derivation of Rate Equations from Optical Bloch Equations / State-transition description of a
Driven Rydberg Gas

In this section, we shortly summarize the derivation of the rate equations discussed in the main text. To help readers draw
parallels with the physics literature, we will use the subscript r for the active (rather: Rydberg) state and the subscript g for
the ground state. The derivation considers the density matrix ρ for a two-level system consisting of the ground and Rydberg
states that is coupled to an external light field which we assume to be classical (not in the single-photon limit). Since we
take the full quantum mechanics of the two-level atom into account, this is called the semi-classical approach. For a two
level system with atom-light interaction in the semi-classical limit, the optical Bloch equations are then given as (Scully &
Zubairy, 1997)

ρ̇rr = −iΩ(ρrg − ρgr)− Γρrr, (8)
ρ̇rg = −γρrg + i∆ρrg − iΩ(ρrr − ρgg), (9)

where ρij represents the entries of the density matrix. For large dephasing γ, ρ̇rg can be adiabatically eliminated. This gives

ρrg =
iΩ(ρrr − ρgg)

−γ + i∆
(10)

ρ̇rr = − 2Ω2γ

γ2 +∆2
(ρrr − ρgg)− Γρrr (11)

≡ −Γ↑ρrr + Γ↓ρgg. (12)

This gives the transition rates Γ↑ from the ground to excited state and Γ↓ from the excited to the ground state. To simulate
these rates, we choose the microscopic parameters in such a way as to achieve a sufficient separation of timescales, see table
2. Using these values, we find the following separation of timescales:

parameter value
∆/Γ 2000
Ω/Γ 20
Γ 1 (Unit of time)
γ/Γ 20
δtΓ 0.0025
b 0.5

Table 2. Microscopic parameters used in the creation of Monte-Carlo data. We use units where ℏ = 1.

Γfacil =
2Ω2

γ
= 40Γ (13)

bΓ = 0.5Γ, (14)

Γnon-int =
2Ω2γ

γ2 +∆2
0

≈ 0.004Γ, (15)

Γfacil = 80 bΓ (16)
bΓ ≈ 125Γnon-int. (17)

To observe SOC behavior, a separation of approximately a factor of 100 between each rate is recommended.

B. Monte-Carlo simulation of the Training Data
B.1. Creation of Training Data

As outlined in the main text, the training data for the GNN is generated using classical Monte-Carlo methods where
each training instance consists of X , a matrix of shape (N,Nf ), and the ground truth Y , a matrix of shape (N, 3).
Yi,s = (Pi(g|si), Pi(a|si), Pi(0|si)) contains for each node i with the internal state si the probabilities to change to or
remain in each of the three states in the next timestep.



Figure 6. Left: Histogram over the target probabilities. The leftmost bin contains all values smaller than 10−7. One notices the peaks at
0.9 and higher and at around 10−3. Right: Histogram of the ground truth probabilities after the square-root transformation.

In each training instance, even though the total number of particles is fixed for every dataset, the distribution of the three
internal node states may be different. Since over the course of a SOC simulation (see Figure 1) the fractions of ground,
active and inactive states change drastically, we set bounds for the fraction of each state and draw instances at random.
These bounds are

p(g) = [0.15, 1.0] (18)
p(a) = [0, 0.15] (19)
p(0) = [0, 0.9] . (20)

Since the |0⟩ atoms are masked out at every step, this leads to a varying particle number for each training instance.

B.2. Square Root Transformation

In defining a model architecture, we are guided by the expected distribution of transition probabilities P (i|s), where
i, s ∈ {ground, active, inactive} states. The training data stems from fixed-timestep Monte Carlo, where the timestep has to
be chosen to be small against the inverse rate at which the states of the atoms change, such that the error stemming from
time discretization is small. As a result, the probability of a node to remain in its current state is always large, independent
of the states of neighboring nodes. While neighborhood-effects can increase the probability of state-change by factors of
ten-thousand, the absolute probability of any state-change is nonetheless < 10%. Additionally, the SOC system imposes
further constraints on the transition probabilities. To observe critical behaviour in the SOC regime, the three timescales
in the system need to be separated by at least a factor of 100 each (see Appendix A). Since the time increment δt must
be chosen sufficiently short such that the transition probability connected to the largest rate is about 10−1, the transition
probability connected to the smallest rate can maximally be 10−5 (see Figure 4(a) for r → ∞). Lastly, to accurately capture
the Rydberg blockade effect for small inter-atomic distances (see Figure 4(a) for r → 0), we need to model transition
probabilities to at least two orders of magnitudes below the slowest transition rate at maximally 10−7. This results in a
bi-modal target distribution, where most values are in the interval [0.9, 1.0] as well as in the interval

[
10−4, 0.1

]
, including a

long tail for even smaller probabilities as shown in 6. Learning probabilities as small as 10−7 is very challenging, as noise
during training becomes significant for such small numbers. To avoid this, we decided to perform a transformation on the
ground truth data that increases the magnitude of very small numbers but keeps large ones effectively unchanged, while still
producing numbers in the interval [0, 1] as required by the loss function. For this purpose we chose the square root function,
which we apply node-wise on all three probabilities before normalizing their sum to unity. To obtain real predictions from
the model, it is then necessary to take the normalized square from the model’s output.

We found that this transformation generally increased training stability as well as performance on the (de-)facilitation
metrics.


