
Robust Policy Design in Agent-Based Simulators
using Adversarial Reinforcement Learning

Akash Agrawal1, Joel Dyer1, Aldo Glielmo2, Michael Wooldridge1

1University of Oxford, Oxford, UK
2Applied Research Team, Directorate General for IT, Bank of Italy, Rome, Italy*

agrawal.akash9702@gmail.com, joel.dyer@cs.ox.ac.uk, aldo.glielmo@bancaditalia.it, mjw@cs.ox.ac.uk

Abstract

Agent-based models (ABMs) of complex socioeconomic sys-
tems provide policymakers with highly detailed synthetic en-
vironments in which policy interventions can be designed
and optimised, for example through reinforcement learning
(RL). Although they model systems at a fine level of gran-
ularity, ABMs will in general be imperfectly specified, such
that there exists non-negligible distributional shifts between
agent-based simulators and the complex socioeconomic sys-
tems they attempt to model. Policies that are tested and opti-
mised in these simulated environments may therefore exhibit
brittleness in the face of such distributional shifts, presenting
a challenge to the use of ABMs in real-world policy design. In
this work, we investigate the robustness of policies designed
on ABMs using RL-based methods. We show that the naive
application of RL to discover optimal policies can result in
policies that are vulnerable to simulated distributional shifts,
where small changes in the model lead to noticeable drops
in policy effectiveness. To address this, we explore multiple
types of adversarial training methods aimed at improving pol-
icy robustness. We show that these methods not only make
policies resilient to the specific simulation-to-reality shifts
they were trained on, but also to unforeseen types of shifts.
In experiments, we demonstrate these effects in a complex
macroeconomic ABM with multiple types of agents, includ-
ing households, firms, a central bank, and government. Our
work highlights the importance of robustness in RL-based
policy optimisation using ABMs, and showcases the poten-
tial of adversarial training as a robustification strategy.

Introduction
Agent-based models (ABMs) have gained considerable at-
tention for their capacity to simulate complex socioeco-
nomic phenomena by modeling the interactions of diverse,
heterogeneous agents. By directly simulating the behavior
of various entities, such as individuals, organizations, and
institutions, ABMs provide a flexible framework for analyz-
ing emergent phenomena, and offer insights into how micro-
level interactions give rise to macro-level patterns (Axtell
and Farmer 2022). In economics, for instance, ABMs may

*The views and opinions expressed in this paper are those of the
authors and do not necessarily reflect the official policy or position
of Banca d’Italia.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

facilitate a more granular exploration of disequilibrium dy-
namics and emergent behaviors, such as financial crises or
business cycles (Bookstaber 2017; Gatti et al. 2008; Raberto,
Teglio, and Cincotti 2012; Wiese et al. 2024).

This gives agent-based modelling the potential to be a
very valuable tool for policymakers, who can use ABMs to
simulate the effects of potential interventions before imple-
menting them in the real world (Deissenberg, Van Der Hoog,
and Dawid 2008). In particular, ABMs may provide pol-
icymakers with highly detailed synthetic environments in
which policies and interventions can be designed, evaluated,
and optimised by simulating various scenarios and observ-
ing their potential outcomes (Lempert 2002; Dawid, Fagiolo
et al. 2008). Indeed, some recent work has investigated the
use of reinforcement learning (RL) in such environments to
optimize policies, allowing decision-making agents to adapt
and learn strategies through trial and error (Mi et al. 2023;
Brusatin et al. 2024; Yao et al. 2024). Such RL-based ap-
proaches are particularly effective in complex environments
where traditional analytical methods fall short, such as in
the problems of designing fiscal policies or managing in-
flation in a simulated economy (Olmez et al. 2024; Dong,
Dwarakanath, and Vyetrenko 2024).

Policy Optimization in Misspecified ABMs
Despite their advantages as highly detailed testbeds for pol-
icy experimentation and optimization, ABMs share funda-
mental limitations common to all models. A primary issue is
the simulation-to-reality gap: models are imperfectly spec-
ified representations of real-world systems. Socioeconomic
systems in particular are highly complex; modeling them of-
ten entails sacrifices in granularity, and the implemented be-
havioural rules will generally fail to fully capture the com-
plex decision-making processes of real-world agents. This
means that models generally do not fully capture the true
dynamics of the system, such that there can be discrepan-
cies between ABMs and the real-world environments they
emulate.

As a result of these distributional shifts, the real-world
utility of policies optimised in ABMs via RL methods is
threatened: policies that perform well in the simulated en-
vironment may fail to generalize effectively to real-world
conditions, leading to diminished performance or, even more
dangerously, unintended or unsafe consequences when ap-



plied in practice. For this reason, strategies for account-
ing for non-negligible simulation-to-reality gaps are an ex-
tremely valuable component to simulation-based policy op-
timisation via RL in ABMs. Unfortunately, to date, such
techniques have been neglected in the literature on policy
optimisation in ABMs via RL (Mi et al. 2023; Olmez et al.
2024).

Our Contribution
In light of this problem, we investigate in this paper tech-
niques for improving the robustness of policies discovered
and optimised in agent-based simulators with respect to dis-
tributional shifts. In particular, we investigate the use of ro-
bust training methods to train RL polices such that they per-
form well across a range of simulated distributional shifts.
Our work makes the following contributions:

• We demonstrate that RL based policies perform worse
on environments with simulated distributional shifts in
parameters governing behavioural dynamics in both a
simple epidemic ABM and a complex macroeconomic
ABM.

• We identify and evaluate suitable training methods in the
literature on robust RL.

• We show, using both the aforementioned small-scale epi-
demic agent-based simulator and the macroeconomic
ABM, that such robust RL methods can train policies that
exhibit considerably improved performance in simulated
distributional shifts, in comparison to policies trained
with standard RL methods.

• Through the above, we highlight the importance of robust
policy design in ABMs, and signal the need for future re-
search on this topic in the field of agent-based modelling.

Related Work
RL has seen significant advancements in its application to
socioeconomic models, including ABMs, with studies ex-
ploring its potential to design more adaptive and effective
policies. Typically, the RL agent represents a central plan-
ning authority like the government and learns optimal de-
cisions on issues such as monetary policies. Examples of
the application of RL to design policies in non-agent-based
socioeconomic simulators include Atashbar and Shi (2023),
who discuss the application of deep RL within a Dynamic
Stochastic General Equilibrium (DSGE) model, showing
that agents converge to close-to-optimal policies. A fur-
ther example is Koster et al. (2022), who demonstrate in a
DSGE model that RL can learn directly from human feed-
back to design socially accepted and optimal economic poli-
cies. Here, the authors train an RL agent to design policies
about redistribution of shared resources that were favoured
by a majority of human participants during voting. Chen
et al. (2021) additionally showed that deep RL algorithms
were promising tools for learning optimal monetary policy
when the agent represents the central bank.

In the context of agent-based socioeconomic simulators,
Olmez et al. (2024) use RL in an ABM of the UK housing
market to explore the mitigation of market shocks through

policy interventions. The agent, which represents the central
bank, learns to adjust interest rates to maintain market stabil-
ity. Further, Zheng et al. (2022) simulate a small society with
RL agents representing households, who play a “gather-and-
build” game, along with a central planner (the government),
who decide the marginal taxation policy at various income
levels. They show that the tax policy found by the RL agent
outperforms traditional tax policies like the Saez formula or
the US federal tax policy in improving overall productivity
and economic equality. Brusatin et al. (2024) use MARL in a
macroeconomic ABM to make policies about price-quantity
strategies for consumer goods firms. The paper shows that
RL agents adapt strategies based on competition, improv-
ing output but sometimes increasing instability. Despite the
growing interest in and use of RL to design optimal poli-
cies using agent-based simulators as training environments,
the use of RL training procedures that encourage robust-
ness to, and account for, distributional shifts arising from
simulation-to-reality gaps is lacking.

Method
Our goal is to demonstrate how agent-based simulators of
complex socioeconomic systems can be used to design and
optimise social policies, while accounting for the fact that
the simulator will generally not perfectly capture the true
data-generating process. To this end, we investigate the use
of robust RL procedures as a means to optimise policies in
simulated complex systems.

Formalization

We formalize the problem of optimizing various kinds
of policy decisions from the government’s perspective as
a Markov Decision Process (MDP) defined by the tuple
(S, S,O,A, T, TS , R, γ, ϕ, ϕ0). This MDP is built on an
agent-based simulator, S. S is the state space representing
the full system state of the simulator. O is the observation
space for the government agent. A: Action space, contain-
ing all possible actions the agent can take (independent of
observation space). T : S × A → ∆(S) is the MDP’s tran-
sition function governing state transitions, which subsumes
the simulator’s evolution function, TS : S → ∆(S). Note
that the agent-based simulator in itself does not need an ac-
tion to evolve – it evolves due to various stochastic and de-
terministic processes on its own. R : S ×A× S → R is the
reward function, providing feedback based on state-action
transitions. γ is the discount factor. ϕ is the set of parame-
ters governing the simulator’s evolution dynamics and ϕ0 is
the initial parameters (e.g. number of agents), required for
setting up the system.

The agent interacts with the environment by observing a
partial observation of the state s, o(s) ∈ O, taking actions
a ∈ A, and receiving rewards R(s, a, s′). Transitions de-
pend on both the agent’s actions and the simulator dynamics
– in each step, the agent’s actions change some parameters
governing the simulator’s dynamics, and the simulator pro-
ceeds with a simulation step that evolves its state, which is
the next environmental state.



Problem Setting
To assess robustness, we simulate distributional shifts that
reflect the modeller’s uncertainty regarding the true data-
generating process, which will in general not match that of
the simulator exactly. These shifts are modeled as variations
in key parameters, which reflect the assumptions made by
the ABM designer about agent behaviors. Since real-world
agent behaviors often differ from these assumptions, modi-
fying parameters allows us to simulate more unpredictable,
realistic scenarios, providing a better test of policy robust-
ness.

We define robustness using two evaluation criteria: fixed
parameter-shifts and adversarial parameter-shifts. Absolute
robustness is not defined due to the unknown nature of an
optimal policy. The definitions of these two kinds of robust-
ness are dependent on the expected cumulative reward of a
policy µ in environment E characterised by an MDP M :

R(µ) = Eµ

[
T∑

t=1

rt

]
(1)

where T is the number of steps in the episode and rt is the
reward in the tth step.

Fixed-Parameter Shift Robustness
Definition 1 (Fixed Parameter Shift). A fixed-parameter
shift on an MDP M is the a change in the specification of
its simulator, specifically the parameters governing the sim-
ulator’s dynamics. Hence, it can be represented by an MDP
M ′, which has the pair (ϕ′, T ′

S) instead of (ϕ, TS). ϕ′ are
the new parameters of the simulator and TS′ is the updated
evolution function.

We say that µ1 is more robust to the M →M ′ parameter
shift than µ2 if the expected reward of µ1 on M is better than
or similar to that of µ2 i.e. R(µ1) ⪆ R(µ2), and if there is
an increase in the expected reward on M ′ i.e. R′(µ1) >
R′(µ2).

Adversarial Parameter Shift Robustness
Definition 2 (Adversarial Parameter Shift). An adversarial
parameter shift on an MDP M involves an adversary op-
erating with a policy ν that dynamically alters the param-
eters governing the simulator’s dynamics, ϕ, at each step.
Hence, the MDP changes at each step. This results in a non-
stationary environment, which has parameters (ϕt, TS,t) at
time step t such that (ϕ0, TS,0) = (ϕ, TS).

We modify the definition of the reward over the episode
for a government policy µ:

Rν(µ) = Eµ,ν

[
T∑

t=1

Rt(st, a1,t, a2,t, st+1)

]
, (2)

where Rt is the reward function of the MDP Mt.
We again say that µ1 is more robust than µ2 to the (M,ν)

adversarial parameter shift if the expected reward of µ1 on
M is better than or similar to that of µ2 i.e.R(µ1) ⪆ R(µ2),
and if there is an increase in the expected reward on (M,ν)
i.e.Rν(µ1) > Rν(µ2).

Adversarial Training Methods
In this section, we describe adversarial training methods
for learning robust policies via RL. In particular, we con-
sider two related flavours of adversarial RL – Stepwise Ad-
versarial RL and Episode-wise Adversarial RL – in which
an additional agent, called the adversary, imposes distribu-
tional shifts to the agent-based simulator in an attempt to
reduce the reward observed by the policy agent. We as-
sume throughout that the distributional shifts imposed by the
Adversary are parameterised distributional shifts, such that
the action space of the Adversary is a space of parameter
values. To begin, we describe the standard, non-adversarial
(“Vanilla”) RL training method.

Vanilla The vanilla method is the simplest RL approach
used to train the government agent to optimize a given re-
ward function in the environment. It follows a standard RL
training loop, where the policy is updated Niter times. After
each update, a rollout is generated over k episodes, each of
length T . A sufficiently large Niter is selected to ensure pol-
icy convergence. The Vanilla training method is described in
Algorithm 1.

Algorithm 1: Vanilla Training

Input: Environment E , stochastic government policy µ,
length of episode T , episodes per rollout k
Initialize: Learnable parameters θµ0
for i = 1, 2, . . . , Niter do
{(sit, ait, rit)} ← roll(E , µθµ

i−1
, k · T )

θµi ← update policy
(
{(sit, ait, rit)}, µ, θ

µ
i−1

)
end for

Stepwise Adversarial (Step-Adv) This approach is based
on Robust Adversarial Reinforcement Learning from Pinto
et al. (2017). In stepwise adversarial training, during each
step, both the government and the adversary act, rather than
just the government. The goal of the adversary is to mini-
mize the government’s reward through its actions.

The adversary’s observation space is the same as that of
the government. The adversary has a distinct action space,
through which it can alter the environment’s parameters (i.e.
it can change ϕ). The government’s reward at time step t is
r1t – which is the same (rt) as before – and the adversary’s
reward is r2t = −rt = −r1t .

Both agents are trained in an alternating manner: for k
episodes, the adversary’s policy is kept constant while the
government’s policy is updated; and then, for the next k
episodes, the government’s policy is kept constant while the
adversary’s policy is updated. In essence, this method tries
to model unknown train-test distribution shifts as adversarial
changes in the environment’s configuration during training.
We describe this method formally in Algorithm 2.

Episodic Adversarial (Ep-Adv) In episodic adversarial
training, the adversary acts once before each episode begins,
altering the environment for the entire episode to reduce the
government’s reward. Both the government and adversary
are trained alternately: for some episodes, the government’s



Algorithm 2: Stepwise Adversarial Training

Input: Environment E , stochastic government and ad-
versary policies µ and ν, length of episode T
Initialize: Learnable parameters θµ0 and θν0
for i = 1, 2, . . . , Niter do
{(sit, a1it , a2it , r1it , r2it )} ← roll(E , µθµ

i−1
, νθν

i−1
, 2 · T )

θµi ← update policy
(
{(sit, a1it , r1it )}, µ, θµi−1

)
{(sit, a1it , a2it , r1it , r2it )} ← roll(E , µθµ

i
, νθν

i−1
, 2 · T )

θνi ← update policy
(
{(sit, a2it , r2it )}, ν, θνi−1

)
end for

policy is updated while the adversary’s remains constant,
and vice versa.

Unlike in stepwise training, here, it does not make sense
for the adversary to have a proper observation space, since
it always observes the same initial configuration of the en-
vironment. Hence, we set the observation space of the ad-
versary nominally to be a singlet, {0}. This makes it a Ban-
dit problem (Robbins 1952), as the adversary selects actions
without observing the environment. The action space of the
adversary is defined similarly as in the section on stepwise
adversarial training. The reward function of the adversary is
the negative of the reward the government receives over the
course of the episode:

radv = −
T∑

t=1

rt. (3)

We describe the episodic adversarial training method in
Algorithm 3.

Algorithm 3: Episodic Adversarial Training

Input: Environment E , stochastic government and ad-
versary policies µ and ν, length of episode T , number
of episodes per rollout k
Initialize: Learnable parameters θµ0 and θν0
for i = 1, 2, . . . , Niter do
{(sit, a1it , r1it )} ← roll1(E , µθµ

i−1
, νθν

i−1
, k · T )

θµi ← update policy
(
{(sit, a1it , r1it )}, µ, θµi−1

)
{(sit, a2it , r2it )} ← roll2(E , µθµ

i
, νθν

i−1
, k)

θνi ← update policy
(
{(sit, a2it , r2it )}, ν, θνi−1

)
end for

Unlike stepwise training, the adversary acts only once be-
fore each episode, treating the episode as a single step. Thus,
we use different rollout functions: roll2 for the adversary,
with k tuples, and roll1 for the government, with k ·T tuples.
The adversary’s reward r2it applies to the entire episode,
while the government’s r1it applies to each step within the
episode.

Experimental setup
In this section, we discuss two case studies that demonstrate
the utility of robust RL methods when designing optimal
policies using socioeconomic agent-based simulators.

Agent-based simulators tested
A SIRS Epidemic Simulator We employ a Susceptible-
Infected-Recovered-Susceptible (SIRS) model (Kermack
and McKendrick 1927) to simulate disease spread within
a fixed population. The SIRS model captures the cyclical
nature of infection, recovery, and re-susceptibility. Starting
with a population size N , a fraction i0 is initially infected,
with the rest being susceptible. The model’s dynamics are
defined by three parameters: α (infection rate), β (recovery
rate), and γ (re-susceptibility rate). At each time step, proba-
bilistic transitions between susceptible (S), infected (I), and
recovered (R) states occur based on these parameters. The
transitions are defined as follows:

N t+1
S→I = Binomial

(
N t

S , 1− exp

(
−α ·N t

I

N

))
,(4)

N t+1
I→R = Binomial

(
N t

I , 1− exp(−β)
)
, (5)

N t+1
R→S = Binomial

(
N t

R, 1− exp(−γ)
)
. (6)

The simulation runs for a fixed time of T time steps. In the
SIRS model, the government’s role is to minimize infections
by imposing lockdowns. A lockdown reduces the infection
rate to zero, preventing new infections. However, lockdowns
incur a cost, so the government must balance the timing of
lockdowns with periods of interaction, which may increase
infections.

The observation that the government receives is
(N t

S , N
t
I , N

t
R) at time t. The government takes a binary ac-

tion – whether to impose a lockdown or not. The adversary’s
action consists of setting the value of only 1 parameter –
but we train separate policies adversarially for each of the 3
transition parameters (α, β, γ) in the description of the SIRS
model above. The government receives the following reward
at each time step:

rt = −N t
I − C. (7)

Here, C represents our belief about the cost of a lockdown
imposed at any time step.

Figure 1: Rewards observed for Vanilla RL agents tested
across different recovery rates (β) in the SIRS model.
The blue line represents the Fixed-Parameter Performance,
where a policy trained on fixed parameters (β = 0.14)
is tested on varying β values. The orange line represents
the Matched-Parameter Performance, where policies were
trained and tested on matching β values (β ranging from
0.02 to 0.37).



Figure 2: Rewards observed by testing Vanilla (green) and adversarially trained (blue) policy agents on different parameter
settings in the SIRS (top row) and M-ABM (bottom row) models. The shaded region indicates the maximum and minimum
rewards obtained by various policies with different seeds/initialisations, but trained in the same manner; the line plot indicates
the mean of policies’ rewards. Adversarially trained RL agents exhibit enhanced robustness to single-parameter shifts, achieving
better worst-case rewards.

M-ABM The M-ABM model (Assenza, Delli Gatti, and
Grazzini 2015) is an agent-based macroeconomic model
that simulates interactions among various economic agents.
The model aims to capture realistic macroeconomic dynam-
ics through the actions of different agents in interconnected
markets. In its design, the model includes four main types of
agents: households, consumption-good producing firms (C-
firms), capital-producing firms (K-firms), and banks. These
agents interact across several markets, such as labor, goods,
and credit markets, to represent a complex economic system.

The behavior of each agent type is characterized by a set
of rules that govern their decision-making processes. The
basic behaviours of each agent as well as any specific be-
haviours important to our experiments are described as fol-
lows:

• Households: Households are the primary suppliers of
labour and the main consumers of goods produced in the
economy. For simplicity, they are either workers (who
work at firms and supply labour) or capitalists (who own
a firm and get returns on investments). Workers earn in-
come through wages if employed and through govern-
ment transfers if unemployed. Households’ consumption
decisions depend on their disposable income and overall
wealth. At time step t, household c has a notion of stable
income Ȳc,t and targets of particular amount of consump-
tion Cc,t. Specifically,

Ȳc,t = ξ · Ȳc,t−1 + (1− ξ) · Yc,t (8)

Cc,t = Ȳc,t + χ ·Dc,t (9)

where ξ is called the memory parameter and χ is the ratio
of consumption to wealth. Further, Yc,t is the income and
Dc,t are the deposits (total wealth) stored in the bank.

• C-firms (Consumption-Good Producing Firms): C-
firms produce consumption goods demanded by house-
holds. They set prices for their goods and wages for la-
bor. Their goal is to maximize profits, and they do so by

adjusting the quantity of goods produced, denoted as Yi,t,
based on demand forecasts and production costs. At full
capacity, the ith firm produces:

Ŷi,t = min (αNi,t, κKi,t) (10)

where α is the productivity of labour and κ, is the pro-
ductivity of capital Ni,t is the amount of labour and Ki,t

is the amount of capital the firm has at time t. The firm
can decide to invest at each time step, which allows it to
adjust its capital stock. The probability of investing at any
time step is γ.

• K-firms (Capital-Good Producing Firms): K-firms are
responsible for producing capital goods, which are re-
quired by C-firms for their production processes. These
capital goods are typically long-term assets like machin-
ery or equipment. For simplicity, they only need labour
to produce capital-goods, and not any durable inputs.

• Banks: Banks facilitate the financial operations in the
economy by providing credit to both C-firms and K-firms
and taking deposits from consumers. Banks thereby play
a key role in funding investments and enabling firms to
finance their operations. For simplicity, the number of
banks in the economy is set to 1.

We note that the 5 parameters defined above are chosen by
the designers of the model, and are constants during the sim-
ulation i.e. are set beforehand and are not affected by the
processed of the simulation.

The Government in the M-ABM model plays a critical
role in stabilizing the economic system and ensuring welfare
across agents (Assenza et al. 2018). The government’s pri-
mary role is to collect taxes from both households and firms,
based on their income and profits, respectively. This tax rev-
enue is redistributed through public expenditures, such as
unemployment subsidies. The net effect of taxes and sub-
sidies influences disposable income, firm profitability, and,
consequently, household consumption and firm investment
decisions.



Figure 3: Rewards observed by testing Vanilla (left-most panels) and adversarially trained (middle and right-most panels) policy
agents on different parameter settings in the SIRS (top row) and M-ABM (bottom row) models. Red (resp. blue) indicates higher
(resp. lower) rewards. Adversarially trained RL agents exhibit enhanced robustness to double-parameter shifts, achieving better
rewards across a range of distributional shifts.

Observation Space Given that M-ABM is a complex
model with a high-dimensional state space, we leverage our
prior knowledge of the model and the features most relevant
to optimizing the reward function to design a partial obser-
vation space for the government agent. Specifically, we se-
lect a subset of features that should be visible to the agent.
Additionally, in an economic setting, the temporal evolution
of macroeconomic variables is crucial for policy decisions,
so each observation includes data from two consecutive time
steps. Thus, the observation is not strictly Markovian, as it
depends on information from multiple time steps. However,
we treat this as an approximation of an MDP for the pur-
poses of formalization. The government agent receives ob-
servations of the Gross Domestic Product (GDP) and Bank
Deposits (total money deposited in the bank) for both the
current and previous time steps.

Action Space It can take actions to set the tax rate (income
tax of households) and subsidy rate (benefits provided to un-
employed workers) at each time step – both within (0, 1).
The adversary’s action consists of setting the value of only 1
parameter – but we train separate policies adversarially for
each of the 5 behaviour-governing parameters (ξ, χ, γ, α, κ)
in the description of the M-ABM model above.

Reward Function The reward function is intelligently de-
signed to balance economic growth and stability, focusing
on current GDP relative to potential GDP and penalizing
fluctuations. The maximum potential GDP in the M-ABM
model is:

Max GDP = α×W × P0 (11)

where W is the number of workers and P0 is the initial price
level. GDP crashes at time t are measured as the drop from
the previous period:

GDP Crasht = max(0,GDPt−1 − GDPt). (12)

The overall reward is:

rt =
GDPt

Max GDP
−B

(
GDP Crasht

Max GDP

)2

, (13)

where B balances growth and stability. This encourages sus-
tainable growth by rewarding high, stable GDP and penaliz-
ing sharp drops.

Experimental Results
We will begin by illustrating through a simple experiment
in the SIRS model that policies trained using the Vanilla
method degrade in performance even on simple simulated
distributional shifts; hence, they are not robust to these
shifts.

To combat this, we will show that robustness of poli-
cies can be improved through adversarial training. Specifi-
cally, we show positive results in three types of distributional
shifts: (a) when one parameter is shifted, (b) when two pa-
rameters are simultaneously shifted, and (c) when parame-
ters are shifted during episodes adversarially.

For each type of training – Vanilla, Episode-Adv, and
Step-Adv – and for each type of adversary involved in train-
ing, we train multiple policies using different seeds/initial-
izations to ensure that our results are not artifacts of spe-
cific initializations or random fluctuations. Further, for each
testing-time environment, given that the environments them-
selves have stochasticity, we use multiple seeds to initlialize
them, test the policies on each, and compute the average re-
ward.

In the SIRS experiments, we train our policies for stan-
dard values of the infectivity rate (α) and recovery rate (β).
During training, the infectivity rate was 4.48, which corre-
sponds to a probability of infection of 20− 50%, depending
on the number of infected people at that time step, NI,t. The
recovery rate was 0.14, corresponding to a probability of re-
covery of around 14%.

In the M-ABM experiments, we train our policies for
standard values of the following parameters: probability of
investing (γ), memory parameter (ξ), and productivity of
capital (κ). During training, the probability of investing was
0.25, the memory parameter was 0.96, and the productivity
of capital was 0.33.

For SIRS, the adversarially trained models are trained



against an adversary that controls the re-susceptibility
rate within (0.00091, 0.37). For M-ABM, the adversarially
trained models are trained against an adversary that controls
the value of the memory parameter within (0.5, 0.99).

Further details of training (libraries used, simulators used,
etc.) can be found in Appendix 10.

Robustness Issues in Vanilla Training
Using the SIRS model, we test policies across environments
where the recovery rate β varies between 0.02 and 0.37. We
generate two line plots to illustrate this in Figure 1:

• Fixed-Parameter Performance: Shows the rewards of
a Vanilla policy trained on fixed parameters (α =
4.48, γ = 0.02, β = 0.14) and tested across different
environments.

• Matched-Parameter Performance: Displays rewards from
multiple Vanilla policies trained on (α = 4.48, γ =
0.02), where the training and testing environments share
the same β value, with β varying between 0.02 and 0.37
across different policies.

While it’s expected that a policy performs best when
tested on the parameters it was trained on, this comparison
will highlight the poor robustness of Vanilla training across
even slight shifts in β. We will later show how adversarial
training addresses these issues and improves robustness.

As we can see in Figure 1, the relative performance of the
Vanilla policy trained on β = 0.14 becomes increasingly
worse when compared to Vanilla policies trained and tested
on the same β value, as we go further from β = 0.14.

Single Fixed-Parameter Shifts
For single-parameter fixed parameter shifts, we will use
Max-Min-Mean plots to compare the performance of the
Vanilla policy against that of an adversarially trained pol-
icy. In these plots, we evaluate policy performance across
a range of values for each parameter using a line plot. The
line represents the mean performance, while the shaded re-
gion indicates the maximum and minimum values. These
statistics are calculated from the differently seeded policies
trained for each configuration.

Figure 4: Rewards observed by testing Vanilla (left) and
adversarially trained (middle and right) policy agents on a
range of different continuously adversarially shifted param-
eter settings (mentioned above plots) in the SIRS model.
The error bars indicate the maximum and minimum rewards
and the plotted point is the mean. Adversarially trained RL
agents exhibit enhanced robustness on adversarial parameter
shifts, achieving better rewards across the board.

SIRS As we can see in the top row of Figure 2, for the
SIRS experiments, there are certain values of “best-case”
values of parameters that lead to good rewards for all poli-
cies. In these, Vanilla trained policies perform slightly better
than adversarially trained policies. However, for the “worst-
case” values, the adversarially trained policies perform sig-
nificantly better than Vanilla trained policies. Further, this
is seen not only when tested on shifts of the recovery rate
(which they were adversarially trained against), but also on
shifts of the infectivity rate. This suggests a level of general-
ity in the robustness of adversarially trained policies. More
examples of such generality (both when the training adver-
sary is changed and when tested on different parameters’
shifts) can be seen in Appendix 1.

M-ABM We plot the results of some of our experiments
in the bottom row of Figure 2. We find that adversarially
training leads to policy agents that perform much better than
Vanilla trained policy agents even on shifts where the shifted
parameter was not the one that the adversary controlled. This
result is statistically significant, because the worst perform-
ing adversarially trained policy agents generally perform
better than the best performing Vanilla agents, across seed-
s/initialisations. We provide further examples in Appendix
2.

Two Simultaneous Fixed-Parameter Shifts

For dual-parameter fixed parameter shifts, we will shift two
different parameters simultaneously during testing i.e. the
simulator’s specification would be different on two differ-
ent parameters. We will use 2D heatmap plots to display the
rewards of a given policy across a grid of two varying pa-
rameter values, when shifted simultaneously.

SIRS As we can see in the top row of Figure 3, adversar-
ial training leads to policies that perform similarly or only
slightly worse in the case of best-case shifts, as we saw in
the single fixed-parameter shift experiments. Further, again,
the adversarially trained policies perform significantly better
on worst-case shifts – even more so than in the single shift
case. These gains in robustness exist even when neither of
the two simultaneously shifted parameters was the one that
the adversary controlled during training, demonstrating the
potential utility of such RL training procedures methods for
introducing robustness to unseen distributional shifts. More
examples of such improved performance can be seen in Ap-
pendix 3.

M-ABM We plot the results of a subset of experiments
done with two simultaneous fixed parameters in Figure 3. As
we can see, similar to the results we obtained for SIRS, even
though the adversary, during training, only controlled the
memory parameter, we see more robust performance even
when the pairs of parameters shifted do not include it. Addi-
tional examples of such robust performance on other types
of adversarial training are presented in Appendix 4. Further,
we have analysed the differences in the types of robustness
found in SIRS and M-ABM in Appendix 8.



Figure 5: Rewards observed by testing Vanilla and adversarially trained policy agents on a range of different continuously
adversarially shifted parameter settings (mentioned above plots) in the M-ABM model. The error bars indicate the maximum
and minimum rewards and the plotted point is the mean. Adversarially trained RL agents exhibit enhanced robustness on
adversarial parameter shifts, achieving better rewards across the board.

Adversarial Parameter Shifts
For adversarial parameter shifts, we assess the performance
of models in environments where an adversary is actively
manipulating the value of a single parameter during each
step of the episodes to minimize the reward of the govern-
ment. For each adversary, we will use error-bar plots to com-
pare the three types of training. Given that each we have
trained multiple policies with different seeds, we once again
show the max, min, and mean rewards. Adversarial parame-
ter shifts bring a high amount of non-stationarity in the envi-
ronment, since the adversary is changing the value of a key
parameter governing its dynamics at each step.

SIRS We show results for two types of adversaries, which
control:

• Infectivity Rate within (0.22, 90)

• Recovery Rate within (0.0067, 2.7)

As we can see in Figure 4, adversarially trained polices
perform better than Vanilla trained policies not only when
tested on shifts of the recovery rate, but also on shifts of the
infectivity rate. This reinforces our claim about the general-
ity in the robustness of adversarially trained policies. We ob-
serve that for all types of testing-time adversaries, the worst-
performing adversarially trained policies perform better than
the best-performing Vanilla trained policy. We provide more
such figures in Appendix 5.

M-ABM We show results for three types of adversaries,
which control:

• Productivity of Capital within (0.1, 0.9)

• Probability of Investing within (0.1, 0.5)

• Memory Parameter within (0.01, 0.99)

We plot the results of these experiments in Figure 5. As
shown, adversarial training of both types leads to consid-
erably better performance across the board – whether or
not the testing-time adversarial shifts are of parameters con-
trolled by the training-time adversary. As seen in the SIRS
results, this is a stronger result than fixed shifts. Further, we
note that the episodic adversarially trained agents perform
well – even though they were tested against a stepwise ad-
versary. However, the stepwise adversarially trained agents
generally perform the best, as expected. We provide more
such figures in Appendix 6.

Further Results

We can further visualize the impact of adversarial training
using the graphs in Appendix 9. In them, we can see that (1)
Vanilla trained policies require more training episodes than
adversarially trained policies to reach the optimal solution,
(2) they are less stable once they’re at the optimum, (3) they
reach a slightly worse optimum, and (4) this difference in
optimum performance increases when we shift the environ-
ments.

Conclusions
Our work addresses the critical challenge of ensuring that
policies optimized in complex socioeconomic simulation
models perform reliably in real-world environments. To
achieve this, we investigate robust reinforcement learning
methods as a means of finding policies that are both per-
formant and resilient to non-trivial changes in model behav-
ior. Such distributional shifts mimic the simulation-to-reality
gaps that arise when translating learned policies from simu-
lation to the real world.

We are the first to explore robust reinforcement learn-
ing for designing policies in ABMs to bridge this gap.
We demonstrate that policies trained in simulation can
“break” under seemingly simple distributional shifts in-
troduced within the agent-based simulator. We also show
that adversarial training improves policy robustness to these
shifts—not only to those encountered during training but
also to other types of shifts. Notably, policies trained against
an episodic adversary perform as well as those trained
against a stepwise adversary. Furthermore, we find that the
robustness of policies in simpler models like SIRS differs
qualitatively from that in more complex models like M-
ABM.

Our work highlights the pitfalls of non-robust policy opti-
mization, the value of training for robustness alongside per-
formance, and the need for greater emphasis on bridging the
simulation-to-reality gap in agent-based modeling. Strength-
ening these methods will be essential for applying agent-
based simulators to real-world policy design, enabling pol-
icymakers to maximize the benefits of imperfect simulation
models of complex socioeconomic systems. This paper is
part of a greater project in which we are currently exploring
more statistically relevant ways of modeling distributional
shifts across a wider range of ABMs.



References
Assenza, T.; Colzani, P.; Delli Gatti, D.; and Grazzini, J.
2018. Does fiscal policy matter? Tax, transfer, and spend in
a macro ABM with capital and credit. Industrial and Cor-
porate Change, 27(6): 1069–1090.

Assenza, T.; Delli Gatti, D.; and Grazzini, J. 2015. Emergent
dynamics of a macroeconomic agent based model with cap-
ital and credit. Journal of Economic Dynamics and Control,
50: 5–28.

Atashbar, T.; and Shi, R. A. 2023. AI and macroeconomic
modeling: Deep reinforcement learning in an RBC model.
International Monetary Fund.

Axtell, R. L.; and Farmer, J. D. 2022. Agent-based modeling
in economics and finance: Past, present, and future. Journal
of Economic Literature, 1–101.

Bookstaber, R. 2017. Agent-based models for financial
crises. Annual Review of Financial Economics, 9(1): 85–
100.

Brusatin, S.; Padoan, T.; Coletta, A.; Gatti, D. D.; and
Glielmo, A. 2024. Simulating the economic impact of ratio-
nality through reinforcement learning and agent-based mod-
elling. arXiv preprint arXiv:2405.02161.

Chen, M.; Joseph, A.; Kumhof, M.; Pan, X.; and Zhou, X.
2021. Deep reinforcement learning in a monetary model.
arXiv preprint arXiv:2104.09368.

Dawid, H.; Fagiolo, G.; et al. 2008. Agent-based models for
economic policy design: Introduction to the special issue.
Journal of Economic Behavior & Organization, 67(2): 351–
354.

Deissenberg, C.; Van Der Hoog, S.; and Dawid, H. 2008.
EURACE: A massively parallel agent-based model of the
European economy. Applied mathematics and computation,
204(2): 541–552.

Dong, J.; Dwarakanath, K.; and Vyetrenko, S. 2024. Tax
Credits and Household Behavior: The Roles of Myopic
Decision-Making and Liquidity in a Simulated Economy.
arXiv preprint arXiv:2408.10391.

Gatti, D.; Gaffeo, E.; Gallegati, M.; Giulioni, G.; and
Palestrini, A. 2008. Emergent macroeconomics: an agent-
based approach to business fluctuations. Springer Science
& Business Media.

Kermack, W. O.; and McKendrick, A. G. 1927. A contribu-
tion to the mathematical theory of epidemics. Proceedings
of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character, 115(772): 700–
721.

Koster, R.; Balaguer, J.; Tacchetti, A.; Weinstein, A.; Zhu,
T.; Hauser, O.; Williams, D.; Campbell-Gillingham, L.;
Thacker, P.; Botvinick, M.; et al. 2022. Human-centred
mechanism design with Democratic AI. Nature Human Be-
haviour, 6(10): 1398–1407.

Lempert, R. 2002. Agent-based modeling as organizational
and public policy simulators. Proceedings of the national
academy of sciences, 99(suppl 3): 7195–7196.

Mi, Q.; Xia, S.; Song, Y.; Zhang, H.; Zhu, S.; and Wang,
J. 2023. Taxai: A dynamic economic simulator and bench-
mark for multi-agent reinforcement learning. arXiv preprint
arXiv:2309.16307.
Olmez, S.; Heppenstall, A.; Ge, J.; Elsenbroich, C.; and
Birks, D. 2024. Mitigating housing market shocks: an agent-
based reinforcement learning approach with implications for
real-time decision support. Journal of Simulation, 1–19.
Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust adversarial reinforcement learning. In International
conference on machine learning, 2817–2826. PMLR.
Raberto, M.; Teglio, A.; and Cincotti, S. 2012. Debt,
deleveraging and business cycles: An agent-based perspec-
tive. Economics, 6(1): 20120027.
Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus,
M.; and Dormann, N. 2021. Stable-baselines3: Reliable re-
inforcement learning implementations. Journal of Machine
Learning Research, 22(268): 1–8.
Robbins, H. 1952. Some aspects of the sequential design of
experiments.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Wiese, S.; Kaszowska-Mojsa, J.; Dyer, J.; Moran, J.; Pan-
gallo, M.; Lafond, F.; Muellbauer, J.; Calinescu, A.; and
Farmer, J. D. 2024. Forecasting Macroeconomic Dynamics
using a Calibrated Data-Driven Agent-based Model. arXiv
preprint arXiv:2409.18760.
Yao, Z.; Li, Z.; Thomas, M.; and Florescu, I. 2024. Rein-
forcement Learning in Agent-Based Market Simulation: Un-
veiling Realistic Stylized Facts and Behavior. arXiv preprint
arXiv:2403.19781.
Zheng, S.; Trott, A.; Srinivasa, S.; Parkes, D. C.; and Socher,
R. 2022. The AI Economist: Taxation policy design via two-
level deep multiagent reinforcement learning. Science ad-
vances, 8(18): eabk2607.



Appendix

1. Further Plots for Single Fixed Parameter Shifts
in SIRS

Figure 6: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the SIRS model. Adversarially trained
RL agents exhibit enhanced robustness to single-parameter
shifts, achieving better worst-case rewards. During training,
adversary controlled γ within (0.00091, 0.37).

Figure 7: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the SIRS model. Adversarially trained
RL agents exhibit enhanced robustness to single-parameter
shifts, achieving better worst-case rewards. During training,
adversary controlled α within (0.22, 90).

Figure 8: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the SIRS model. Adversarially trained
RL agents exhibit enhanced robustness to single-parameter
shifts, achieving better worst-case rewards. During training,
adversary controlled β within (0.0067, 2.71).

2. Further Plots for Single Fixed Parameter Shifts
in M-ABM

Figure 9: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the M-ABM model. Adversarially trained
RL agents exhibit enhanced robustness to double-parameter
shifts across the board. During training, adversary controlled
Memory Parameter within (0.5, 0.99).



Figure 10: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the M-ABM model. Adversarially trained
RL agents exhibit enhanced robustness to double-parameter
shifts across the board. During training, adversary controlled
Ratio of Consumption to Wealth within (0.1, 0.9).

3. Further Plots for Two Simultaneous Fixed
Parameter Shifts in SIRS

Figure 11: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the SIRS model. Adversarially trained
RL agents exhibit enhanced robustness to double-parameter
shifts, achieving better worst-case rewards. During training,
adversary controlled γ within (0.00091, 0.37).

Figure 12: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the SIRS model. Adversarially trained
RL agents exhibit enhanced robustness to double fixed-
parameter shifts, achieving better worst-case rewards. Dur-
ing training, adversary controlled β within (0.0067, 2.71).

4. Further Plots for Two Simultaneous Fixed
Parameter Shifts in M-ABM

Figure 13: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the M-ABM model. Adversarially trained
RL agents exhibit enhanced robustness to single-parameter
shifts across the board. During training, adversary controlled
Ratio of Consumption to Wealth within (0.1, 0.9).



5. Further Plots for Adversarial Shifts in SIRS

Figure 14: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different pa-
rameter settings in the SIRS model. Adversarially trained
RL agents exhibit enhanced robustness to adversarial shifts,
achieving better worst-case rewards. During training, adver-
sary controlled β within (0.0067, 2.71).

6. Further Plots for Adversarial Parameter Shifts
in M-ABM

b

Figure 15: Rewards observed by testing Vanilla (green) and
adversarially trained (blue) policy agents on different adver-
sarial settings in the M-ABM model. Adversarially trained
RL agents exhibit enhanced robustness to adversarial param-
eter shifts across the board. During training, adversary con-
trolled Ratio of Consumption to Wealth within (0.1, 0.9).

7. Hyperparameters and Seeds

Simulation Length (Episode Length) T = 100 steps
Total Population Size N = 100
Initial Infected Fraction i0 = 0.3
Infection Rate α = 1.0
Recovery Rate β = −2.0
Re-susceptibility Rate γ = −4.0
Lockdown Cost C = 10

Table 1: SIRS Simulation Hyperparameters



Simulation Length (Episode Length) T = 300 steps
Number of Workers W = 250
Number of Consumption Firms F = 30
Number of Capital Firms N = 6
Burn-in Time tburn-in = 30 steps
Previous Time Steps in Observations tprev = 2
Reward Function Balance B = 100.0

Table 2: M-ABM Simulation Hyperparameters

Number of training updates Niter = 4000 iterations
Number of episodes per update k = 2 episodes
Batch Size 200
Clip Range 0.2
Entropy Coefficient 0.01

Table 3: SIRS Training Hyperparameters

Number of training updates Niter = 500 iterations
Number of episodes per update k = 2 episodes
Batch Size 50
Clip Range 0.2
Entropy Coefficient 0.01

Table 4: M-ABM Training Hyperparameters

Training 42, 43
Testing {1, 2, . . . , 10}

Table 5: SIRS Random Seeds

Training 42, 43, 44
Testing {1, 2, . . . , 10}

Table 6: M-ABM Random Seeds

8. Model Complexity Impacts Policy Robustness
We observed distinct types of robustness in the SIRS and M-
ABM models, highlighting the impact of model complexity
on the outcomes of adversarial training. In the SIRS model,
the adversarially trained policies demonstrated worst-case
robustness, meaning that they were particularly well-suited
to handle the most adverse conditions. In contrast, the M-
ABM model exhibited improved policy performance more
consistently across a wide range of scenarios, not just in the
worst-case situations.

This difference in robustness can likely be attributed to
the varying complexities of the two models. In the M-ABM
model, the training process appears to benefit from adversar-
ial training across the board, possibly because the adversary
exposes the policy to scenarios that, while unlikely to occur
in real life, serve to improve overall policy optimality. The
complexity and non-linearity of the M-ABM system make

it difficult for the adversary to consistently identify and ex-
ploit the worst-case shifts. As a result, the adversary tries
different strategies during training, inadvertently helping the
policy become more robust across a broader spectrum of sit-
uations, rather than just focusing on worst-case scenarios.

On the other hand, the SIRS model, with its simpler dy-
namics, allows the adversary to reliably identify the worst-
case parameter shifts during training. This forces the govern-
ment’s policy to optimize specifically for those worst-case
conditions. The adversary’s ability to consistently find and
exploit the worst-case scenarios means that the policy be-
comes specialized in responding to those particular shifts,
resulting in a form of robustness that is more narrowly fo-
cused on worst-case performance, rather than general ro-
bustness.

9. RL Training Graphs

As we can see in Figure 16, adversarially trained policies
take less time to reach the optimal policy and stay there in a
more stable way, regardless of the algorithm used. Further,
even for the non-shifted parameters (on which Vanilla poli-
cies are optimized), adversarially trained policies perform
slightly better.

Figure 16: Rewards observed by testing Vanilla (green
and adversarially trained (blue) policy agents during

different levels of training. The upper two graphs show
policy agents trained by the Advantage Actor Critic (A2C)

algorithm and the lower two show agents trained by the
Proximal Policy Optimization (PPO) algorithm.

If we consider how well the policies perform at differ-
ent levels of training when we test them on shifted environ-
ments, we find that adversarially trained policies fare even
better, relative to the Vanilla policies. This is regardless of
whether the shifts are similar to the shifts the adversarially
trained policies observed during training (in Figure 17) or
different (in Figure 18).



Figure 17: Rewards observed by testing Vanilla (green
and adversarially trained (blue) policy agents during

different levels of training on an environment where the
memory parameter was set to 0.6 instead of 0.96. The upper

two graphs show policy agents trained by the Advantage
Actor Critic (A2C) algorithm and the lower two show

agents trained by the Proximal Policy Optimization (PPO)
algorithm.

Figure 18: Rewards observed by testing Vanilla (green
and adversarially trained (blue) policy agents during

different levels of training on an environment where the
productivity of capital was set to 0.85 instead of 0.33. The

upper two graphs show policy agents trained by the
Advantage Actor Critic (A2C) algorithm and the lower two
show agents trained by the Proximal Policy Optimization

(PPO) algorithm.

10. Training details
We use the Stable-Baselines3 (Raffin et al. 2021) imple-
mentation of the Proximal Policy Optimization algorithm
(Schulman et al. 2017) to train the policies1. The episodes
are of fixed length: in the SIRS model, they are of 100 steps
each; and in the M-ABM model, of 300 steps. We provide
additional hyperparameters about the simulation and train-
ing as well as the seeds/initializations used for training in
Appendix 7.

1The code for the experiments is available at
https://github.com/akash9702/robust-rl-policy-abm.


