
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNREALZOO: ENRICHING PHOTO-REALISTIC VIRTUAL
WORLDS FOR EMBODIED AI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The embodied artificial intelligence agents should be capable of sensing, rea-
soning, planning, and acting in complex open worlds, which are unstructured,
high-dynamic, and uncertain. To apply agents in the real world, the realism of the
simulated worlds is important for training and evaluating the built agents. This
paper introduces UnrealZoo 1, a rich collection of photo-realistic 3D environments
that mimic the complexity and variability of the real world based on Unreal Engine.
For embodied AI, we provide a diverse array of playable entities in the environ-
ments and a suite of tools, based on UnrealCV, for data collection, reinforcement
learning, and evaluation. In the experiments, we benchmark the agent on visual
navigation and tracking, two fundamental tasks for embodied vision agents, in
complex open worlds. The results provide valuable insights into the strengths of
enriching the diversity of the training environments and the challenges to current
embodied vision agents in the open worlds, e.g., the latency in the closed-loop
control to interact with the dynamic objects, reasoning the accordance of the spatial
structure in the complex scenes.

Collected Scenes Playable Entities

… ×

…

Heterogeneous CooperationActive Tracking Social Tracking

Embodied AI Agents

Visual Navigation

Figure 1: UnrealZoo enriches photo-realistic virtual worlds for embodied AI research by aggregating
diverse scenes and playable entities. These environments facilitate the training and testing of
embodied AI agents on tasks such as visual navigation, social tracking, and multi-agent cooperation,
addressing challenges in open-world deployments.

1Project page: https://unrealzoo.notion.site/
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1 INTRODUCTION

Currently, embodied artificial intelligence (Embodied AI) agents are often homebodies, primarily
confined to controlled indoor environments and rarely venturing outside to explore the diversity of
the open world. While several simulators have advanced the field, including AI2-Thor (Kolve et al.,
2017), OmniGibson (Li et al., 2023), VirtualHome (Puig et al., 2018), and Habitat (Puig et al., 2024),
they often focus on specific scenarios, such as daily activities in homes, which limits the development
of generalist embodied AI in open worlds. The lack of richness and variability in simulators hampers
agents’ ability to adapt and generalize to the diverse challenges of real-world environments, from
bustling urban areas to rugged natural landscapes.

Thus, it is crucial to build diverse photo-realistic 3D virtual environments to simulate challenges in
open worlds for advancing embodied AI. Such environments will help agents develop robust skills to
sense, reason, plan, and control for accomplishing various tasks. By simulating complex scenarios and
interactions, researchers can evaluate how embodied agents respond to uncertainty, adapt to dynamic
challenges, and learn from their experiences in a controlled yet rich context. This process not only
fosters the development of sophisticated perception and decision-making abilities but also enhances
the agents’ capacity to collaborate with humans and other AI systems, paving the way for seamless
integration into real-world applications. As these virtual worlds grow increasingly sophisticated,
incorporating realistic physics, intricate social dynamics, and varying levels of abstraction, they offer
the potential for agents to experience a wider spectrum of situations. This diversity is essential for
training robust agents that can generalize well to unseen environments and tasks. Furthermore, the
iterative feedback loop between the agents and environments will enable continuous improvement,
allowing agents to refine their skills through both simulated challenges and real-world encounters.

In this work, we introduce UnrealZoo, a comprehensive collection of photo-realistic virtual environ-
ments set, based on Unreal Engine 2 and UnrealCV (Qiu et al., 2017), featuring a diverse range of
complex open worlds and playable entities to advance research in embodied AI. This high-quality
set encompasses a wide range of complex indoor and outdoor scenes, such as houses, supermarkets,
train stations, industrial factories, villages, temples, and natural landscapes, providing a platform
to study how AI agents perceive and interact within a variety of complex dynamic environments.
Each environment is carefully crafted by artists to replicate realistic lighting, textures, and dynamics,
closely resembling real-world experiences. Our collection also includes diverse entities—humans, an-
imals, robots, drones, motorbikes, and cars—each with unique appearances and movements, enabling
researchers to investigate the generalization of the agents on different embodiments. To enhance
usability, we have optimized UnrealCV and offer a suite of tools and APIs (UnrealCV+), including
environment augmentation, demonstration collection, and distributed training/testing. These tools
allow customization and extension of the environments to meet various research needs. This flexibility
ensures UnrealZoo remains adaptable as the field of embodied AI evolves.

We conduct experiments to demonstrate the applicability of UnrealZoo for embodied AI. First,
we benchmark frames per second (FPS) across various commands, highlighting the significant
improvement in image rendering and multi-agent interactions with the UnrealCV+ API. We use
embodied visual navigation and tracking as two example tasks to benchmark embodied vision agents
in complex dynamic environments with moving objects and unstructured maps. We also introduce
a set of simple yet effective baseline methods for developing embodied vision agents, including
distributed online reinforcement learning algorithms, offline reinforcement learning algorithms, and a
reasoning framework for large vision-language models (VLMs). Our evaluations across different
settings emphasize the importance of diverse training environments for enhancing agent generalization
and robustness, the necessity of low latency in closed-loop control to handle dynamic factors, and the
potential of reinforcement learning for training agents to navigate complex scenes.

Our contributions can be summarized in the following: 1) We build UnrealZoo, a collection of
100 high-quality photo-realistic scenes and a set of playable entities with diverse features, covering
the most challenging to embodied AI agents in open worlds. 2) We optimize the communication
efficiency of UnrealCV APIs and provide easy-to-use Gym interfaces with a toolkit for diverse
requirements. 3) We conduct experiments to demonstrate the usability of UnrealZoo, showing the
importance of the diversity of the environments to the embodied agents, and analyzing the limitations
of the current RL-based and VLM-based agents in the open worlds.

2www.unrealengine.com
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Table 1: The comparison with related photo-realistic virtual worlds for embodied AI. The comparison
of visual realism across different engines is presented in Figure 6 and the emoji descriptions are
listed in Table 6. (Unstr. Terr. indicating the presence of unstructured terrain. Nav. Sys. specifying
whether the agent in the environment includes an autonomous navigation system.)

Table 1: The comparison with related virtual worlds for embodied AI.
Virtual
Worlds

Scene:
Categories

Scene:
Scale Level

Scene:
Unstr. Terr.

Scene:
Base Engine

Agent:
Body

Agent:
Nav. Sys.

Agent:
Multi-agent

VirtualHome Room - Unity X X
AI2THOR Room - Unity - -

ThreeDWorld Room, Building, Landscape X Unity - X
OmniGibson Room - Omniverse - - -
Habitat 3.0 Room - Habitat-Sim X X

CARLA Building, Town - UE 4 - X
AirSim Building, Town, Landscape - UE 4 - X

LEGENT Room, Building X Unity X -
V-IRL Town, Landscape X Google Map X X

UnrealZoo Room, Building,
Town, Landscape X UE 4/5 X X

2

2 RELATED WORKS

Realistic Simulators for Embodied AI. Realistic simulators are extensively utilized in embodied
artificial intelligence due to their appealing benefits, including high-quality rendering, cost-effective
ground truth generation, low-cost interaction, and environmental controllability. They are crucial for
training and testing AI agents to handle increasingly complex tasks. Notable realistic 3D simulators
have been created for specific applications, such as indoor navigation (Kolve et al., 2017; Puig et al.,
2018; Xia et al., 2018; Wu et al., 2018), robot manipulation (Yu et al., 2020; Ehsani et al., 2021;
Chen et al., 2024), and autonomous driving (Gaidon et al., 2016; Shah et al., 2018; Dosovitskiy
et al., 2017). Recent advances in computer graphics have spurred interest in developing general-
purpose virtual worlds with photo-realistic rendering, allowing agents to collect high-fidelity data
and learn skills applicable across various tasks and scenes. ThreeDWorlds (TDW) (Gan et al., 2021)
and LEGENT (Cheng et al., 2024) are notable simulators that offer photo-realistic, multi-modal
platforms, based on Unity, for interactive physical simulation. However, their built-in scenes and
playable entities are somewhat limited. Additionally, the performance of the simulator decreases
significantly in large outdoor environments, a typical weakness of Unity. V-IRL (Yang et al., 2024)
is a recent approach that leverages Google Maps’ API to simulate agents with real-world street
view images, significantly reducing the gap between virtual and real-world settings. However, since
V-IRL is inherently composed of static images, it lacks the capability to simulate the dynamics of the
physical worlds for agent-object interactions. Recently, the community has also begun to explore
dynamic environments with social interactions and unexpected events. However, existing solutions
like Habitat 3.0 (Puig et al., 2024) focus on a limited number of agent interactions in indoor scenes,
while HAZARD (Zhou et al., 2024b) addresses only single-agent simulations in dynamic scenarios
like fires, floods, and winds. In contrast, UnrealZoo offers a comprehensive collection of scenes
that feature dynamic situations and diverse playable entities for embodied AI. With advancements
in Unreal Engine and optimized UnrealCV, our environment achieves real-time performance in
large-scale scenes with multiple agents (around 10) and photo-realistic rendering. A comprehensive
comparison across the related photo-realistic simulators is shown in Table 1.

Embodied Vision Agents. Embodied vision agents, which perceive and interact with their envi-
ronments through vision, are a key focus in artificial intelligence research. These agents perform
tasks like navigation (Zhu et al., 2017; Gupta et al., 2017; Yokoyama et al., 2024; Long et al., 2024),
active object tracking (Luo et al., 2018; Zhong et al., 2019; 2021; 2023; 2024), and other interactive
tasks (Chaplot et al., 2020; Weihs et al., 2021; Ci et al., 2023; Wang et al., 2023), mimicking human
behavior. Their development involves various methods, including state representation learning (Ya-
dav et al., 2023; Yuan et al., 2022; Gadre et al., 2022; Yang et al., 2023), reinforcement learning
(RL) (Schulman et al., 2017; Xu et al., 2024; Ma et al., 2024), and large vision-language models
(VLMs) (Zhang et al., 2024; Zhou et al., 2024a). Despite significant progress, challenges remain. RL
methods often require extensive trial-and-error interactions and computational resources for training,
and they usually struggle to generalize to new environments. Conversely, VLM-based methods excel
at interpreting language instructions and images but may lack the fine-grained control and adaptability
necessary for real-time interactions. The computational demands and time needed for inference with
such large models are critical, especially in dynamic scenes. Moreover, previous simulators mainly

3
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Accident Detection

Scene Understanding
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Path Planning

Offline Data Generation

Ego-centric Video UnrealCV+

Online Interaction

Multi-Agent System

Human-robot 
collaboration

Assets:
- Scenes
- Objects
- Morphologies
- Motions

Scene Assets
• Maps
• (Interactive) Objects
• Weather System
• ……

Playable Entities
• Skeletons & Meshes
• Locomotion System
• Navigation System
• ……

Environment 
Augmentation

UnrealCV+ Client

Toolkit
• Env. Augmentation
• Population Control
• Time Dilation
• ……

Batch Commands

OpenAI Gym 
Interface

TCP/IPC Sockets
Python APIs

Basic Interactions
• Step Function
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Task Configuration
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• Action
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Toolkit
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Human

Data Capturer
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Object/Agent Control

Command System

Figure 2: The detailed architecture of UnrealZoo. The Gray box indicates the UE binary, collecting
the scenes and playable entities. The UnrealCV+ Server is built in the binary as a plugin. We
have bolded the names of the optimized or new modules in UnrealCV+ Server and Client. For
agent-environment interaction, we provide OpenAI Gym Interface, which has been widely used in
the community. Our gym interface supports customizing the task in a configuration file and contains
a toolkit with a set of gym wrappers for environment augmentation, population control, etc.

focus on indoor rooms or urban roads, which mask the potential challenges to the embodied agents
when deploying in open worlds, e.g., unstructured terrain, dynamic changing factors, inference costs
of the perception-control loop, and social interactions with other agents. Therefore, it is required to
benchmark agents in large-scale, photo-realistic open worlds, taking into account various real-world
challenges in the virtual worlds. In this work, we collect a subset of environments from UnrealZoo
and benchmark embodied visual navigation and tracking agents, to emphasize the weakness of the
existing methods.

3 UNREALZOO

UnrealZoo is a collection of photo-realistic, interactive open-world environments with diverse
embodied characters, built on Unreal Engine and UnrealCV (Qiu et al., 2017). The environments are
sourced from the Unreal Engine Marketplace 3, which shares 3D resources from artists, and were
accumulated over two years at a cost exceeding 10, 000. UnrealZoo features a diverse array of scenes
with varying sizes and styles. Among them, the largest scene, i.e., Medieval Nature Environment,
covers more than 16km2 areas. The environments also include a wide range of embodiment, such
as human avatars, vehicles, drones, animals, and virtual cameras, all of which can interact with the
environment and equipped with ego-centric sensing systems. We offer easy-to-use Python APIs
based on UnrealCV to facilitate interaction between Python programs and the game engine. Note that
UnrealCV is optimized for rendering and communication, particularly in large-scale and multi-agent
scenarios, namely UnrealCV+. Additionally, we provide OpenAI Gym interfaces to standardize agent-
environment interactions. The gym-like interface also contains a set of toolkits, e.g., environment
augmentation, population control, time dilation, and JSON-style task configurations to help the user
customize the environments for various tasks with minimal effort. The project website includes the
details of the collected contents, and documents about tutorials, Python APIs, and the gym interface.

3.1 SCENE COLLECTION

UnrealCV Zoo contains 100 scenes based on Unreal Engine 4 and 5. We select the scene based on
the public reviews in the marketplace and the difference to the collected scenes, aiming at covering
a wide range of styles from realistic to fictional, ensuring diversity. We provide an overview of the
environments in the scene gallery.

3https://www.unrealengine.com/marketplace
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We have tagged the collected scenes with a number of feature labels allowing researchers to select
appropriate scenes for testing or training based on the tags associated with each scene. Our tags cover
the following aspects:

• Scene Categories: We categorize scenes into three main types: interior, exterior, and both.
The interiors include private houses, museums, supermarkets, train stations, factories, gyms,
and caves. The exteriors include various outdoor terrains such as ruins, islands, plazas,
neighborhoods, and mountains. Additionally, there are 25 scenes that feature both interior
and exterior features, requiring enhanced spatial reasoning to comprehend their structure.

• Spatial Structure: We also tag the spatial structure of the scenes, including multi-floor,
topological, flat, steep, etc. Such categorization is vital for benchmarking embodied agents,
where the agent’s performance is greatly impacted by the geometric structures.

• Dynamics: Environments featuring significant weather and animation change that create
random dynamic lighting variations, visual obstructions, and effects such as sandstorms,
snowfall, and thunderstorms, enhancing the environment’s interference with visual tasks.
Besides, we also label the environments with interactive objects where agents can interact
with objects, e.g., open a door. These dynamics are essential for the open world.

• Scale: Each scene is labeled by the scale, such as small (room-level), medium (building-
level), and large (city-level or landscape-level). Extra-large maps with delicate buildings,
terrain, and illumination, are available for complex, long-term tasks such as rescues, which
require extensive environments and high exploration needs.

• Style: The scenes may also reflect different cultural backgrounds, such as Asian Temple,
Western Church, Middle East Street, or Modern City, Science Fiction. Identifying cultural
styles will help us build a new data set to benchmark how social agents adapt to diverse
cultures and social norms.

After categorizing the scenes, we integrate UnrealCV+ into the UE project (Refer to Section 3.3) and
add the controllable player assets (Refer to Section 3.2) to each scene. Due to licensing restrictions,
content purchased from the marketplace cannot be open-source, so we will package the projects into
an executable binary for sharing with the community. These executable binaries will be compatible
with various operating systems, including Windows and Linux, allowing users to download and run
them via the Python interface without needing any knowledge of Unreal Engine, which is primarily
built on C++ and Blueprint.

3.2 PLAYABLE ENTITIES

UnrealZoo includes seven types of entities: humans, animals, cars, motorbikes, drones, mobile robots,
and flying cameras (See Figure 1). Specifically, it comprises 19 human entities, 27 animal entities,
3 cars, 14 quadruped robots, 3 motorcycles, and 1 quadcopter drone. This diversity, with varying
affordances like action space and viewpoint, allows us to explore new challenges in embodied AI,
such as cross-embodiment generalization and heterogeneous multi-agent interactions.

Each entity includes a skeleton with appropriate meshes and textures, a local motion system, and
a navigation system. We offer a set of callable functions for each entity, enabling users to modify
attributes like size, appearance, and camera positions, as well as control movements. Each entity can
switch between different textures and appearances via UnrealCV API, enhancing visual diversity

Figure 3: The first-person view images (Top) while playing different entities and motions across
various scenes.

5
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Table 2: Comparison of FPS in Unreal Engine 4.27 with UnrealCV and UnrealCV+.

Image Capture Multi-agent Interaction
Color Obj. Mask Suf. NorDepth N=2 N=6 N=10

UnrealCV 74 70 109 52 35 13 8
UnrealCV+ 83(↑ 12%) 154(↑ 120%) 131(↑ 20%) 97(↑ 86%) 54(↑ 54%) 25(↑ 92%) 16(↑ 100%)

and adaptability for various scenarios. Each entity is equipped with an ego-centric camera, allowing
researchers to capture various types of image data such as RGB, depth, surface normal, and instance-
level segmentation from the agent’s ego-centric view. Figure 3 shows examples of the captured
first-person view and third-person view images of different entities with varying locomotion. For
multi-agent interaction, the population of the entities in a scene can be easily adjusted using the
spawn or destroy functions.

The locomotion system is built on Smart Locomotion, a well-designed and smooth locomotion
system. It contains a number of high-quality animations that enable the agent to interact with
the scene, such as opening and closing doors, crouching under obstacles, jumping over obstacles,
climbing onto a platform, and simulating injury or death. With the locomotion system, we can explore
the agent’s ability to reason, plan, and interact in large-scale complex 3D scenes in advance, ignoring
learning skills for low-level action control that requires high-fidelity physical simulation.

The navigation system is built on NavMesh allowing agents to autonomously navigate with the built-
in AI controller in the Unreal Engine. This includes path-finding and obstacle-avoidance capabilities,
ensuring smooth and realistic movement throughout diverse terrains and structures. For urban-style
maps, we segment the roads to distinguish between pedestrian and vehicle pathways. When agents
use the navigation system for autonomous control, they will navigate the shortest path based on
the priority of the different areas. For example, pedestrians and animals will prioritize walking on
sidewalks, while vehicles and motorcycles will prioritize driving on roadways. An example of the
navigation area is shown in Figure 9.

3.3 PROGRAMMING INTERFACE

We provide UnrealCV+ as the basic application programming interface (API) on Python to capture
data and control the entities and scenes, and provide an OpenAI Gym interface for general agent-
environment interactions. The architectures of the programming interfaces are shown in Figure 2.

UnrealCV+ is our modification version of the UnrealCV (Qiu et al., 2017) for high-throughput
interactions. As the original version of UrnealCV primarily focuses on data generation, the frame rates
per second (FPS) are not optimized for real-time interactions. We optimize the rendering pipelines
in UnrealCV Server and the communication protocols between UnrealCV Server and Client to
improve the FPS. Specifically, we enable parallel processing while rendering object masks and depth
images, which can significantly improve the FPS in large-scale scenes. For multi-agent interactions,
we further introduce the batch commands protocol. In this protocol, the client can simultaneously
send a batch of commands to the server, which can process all the received commands and return a
batch of results. In this way, we can reduce the time spent on server-client communication. Since
reinforcement learning requires an extensive number of trial-and-error interactions for training, often
running multiple environments on a computer, we additionally introduce Inter-process communication
(IPC) sockets instead of the TCP sockets to improve the stability of the server-client communication
under high loads. We benchmark the FPS performance in Table 2. To enhance user-friendliness, we
have developed high-level Python APIs that are built upon the command systems of UnrealCV. These
APIs encapsulate all the request commands and their corresponding data decoders into a callable
Python function. This approach significantly simplifies the process for beginners, allowing them to
interact with and customize the environment using UnrealCV+.

OpenAI Gym Interface is used to define the tasks and standardize the agent-environment interaction,
following Gym-UnrealCV. Even though there are a lot of tasks for agents, they usually share common
interaction protocols, i.e., the agent gets observations from the environment and returns actions. The
main difference across different tasks usually is the reward functions, the modality of the observation,
and the available actions. Hence, we define the basic interaction functions for general usage and list
the task-specific configurations, e.g., scene name, and reward function, in a JSON File, as shown in
Figure 11. In this way, when adding new UE scenes, the users only need to set the parameters in the
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JSON files. Moreover, we contain a toolkit with a set of gym wrappers for training and testing the
agents, such as environment augmentation that has been in previous work for training generalizable
agents (Luo et al., 2018; 2020), population control to adjust the number of agents in the scene, and
time dilation to adjust the control frequency in dynamic scenes. In Section 4.3, we demonstrate an
example usage of the toolkit to analyze the robustness of social tracking agents to the population of
crowds and the impact of the control frequency in such dynamic scenes. We also provide a launch
tool to enable the user to run multiple environments with specific GPU IDs within a computer, which
is useful for distributed online reinforcement learning.

4 EXPERIMENTS

In this section, we use a subset of UnrealZoo to demonstrate the usability of the collected environments.
For visual navigation, we select two scenes with complex spatial structures to train and validate
the RL-based and VLM-based agents. For active tracking, we select at most 8 scenes as training
environments and validate the generalization of the learned policy in another 24 scenes, which are
divided into four categories according to the scene types. The results demonstrate the importance of
the diversity of the training environments to the cross-domain generalization. For social tracking, we
analyze the robustness of the agent in social environments with different control frequencies, using
the toolkit provided in the gym to generate crowds with varying populations and control frequencies.

4.1 VISUAL NAVIGATION

In-the-wild visual navigation introduces a new level of complexity compared to traditional navigation
tasks for indoor scenes or autonomous driving, which often run on structured maps. Differently, we
place the agent in open-world environments where it must take a set of locomotions, e.g., running,
climbing, jumping, crouching, to go over the various obstacles in unstructured terrains to reach the
target object. In this setting, the agent requires advanced scene reasoning and action affordance to
make real-time decisions about its path. The emphasis on such complex environments ensures the
agent can operate effectively in a broad range of challenging scenarios, moving beyond the constraints
of traditional navigation frameworks. The details of the task setting are introduced in Appendix B.1.

Evaluation Metrics. We employ two key metrics to evaluate visual navigation agents: 1) Average
Episode Length (EL), representing the average number of steps per episode over 50 episodes. 2)
Success Rate (SR), measuring the percentage of episodes the agent successfully navigates to the target
object out of 50 total episodes, which represents the navigation capability in the wild environment.

Baselines for Navigation. We build simple baselines to demonstrate the applicability of our envi-
ronments for training reinforcement learning agents and benchmark the agents based on pre-trained
large models. 1) Online RL: We trained the RL-based navigation agents separately in the Roof
and Factory environments using a distributed online reinforcement learning (RL) approach, e.g.
A3C (Mnih et al., 2016). The training curve is shown in Figure 15. The model takes the first-person
view segmentation mask and the relative position between the agent and target as input, and outputs
direct control signals (from the predefined action space) to navigate. This setup allows the agent to
learn and optimize navigation strategies during continuous interaction with the environment. Please
refer to Appendix C.1 for the implementation details. 2) GPT-4o: We employ the GPT-4o model to
take action, leveraging its powerful multi-modal reasoning capabilities. The model takes first-person
view images and the relative position between the agent and the fixed target as input. The GPT-4o
model follows our prompt template (See Table 13) as guidance, reasoning appropriate actions from
the predefined control space to guide the agent toward the target. 3) Human: We also have a human
player control the agent using a keyboard, similar to a first-person video game. The player navigates
the agent from a random starting point to a fixed target, making decisions based on visual observations
from the shared control space.

Results. In Table 3, we report the performances of different methods in two unstructured scenes.
The RL-based agent performs moderately well, achieving better results in the simpler IndustrialArea
environment compared to the Roof environment, where the target object is located on different levels
of stairs. The agent based on GPT-4o struggles in both scenarios. This infers that the GPT-4o performs
poorly in complex 3D scene reasoning. As a reference, the human player completes both tasks with
the fewest steps and a 1.00 success rate, underscoring the significant gap between current embodied
AI agents and human performance, indicating substantial room for improvement to navigate in such
complex, open-world environments.

7
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Figure 4: An exemplar sequence from the RL-based agent in the Roof.

4.2 ACTIVE VISUAL TRACKING
Table 3: The results (EL/SR) of in-the-wild
visual navigation in two unstructured terrains.

Methods Roof IndustrialArea
Online RL 1660/0.32 261/0.52

GPT-4o 2000/0.00 369/0.20
Human 515/1.00 158/1.00

We evaluate the generalization of the tracking
agents across four environment categories: Inte-
rior Scenes, Palaces, Wilds, and Modern Scenes.
Each category contains 4 individual environments,
as shown in Figure 8. We aim to capture a broad
range of features in our environment collection by
selecting four distinct and representative scenes
from each category, ensuring a comprehensive eval-
uation of the agents’ capabilities. The details of the tasks are introduced in Appendix B.2. We
analyzed the effectiveness of the diversity of the training data by collecting demonstrations with
different numbers of training environments.

Evaluation Metrics. Our evaluation employs three key metrics: (1) Average Episodic Return (ER),
which calculates the mean episodic return over 50 episodes, providing insights into overall tracking
performance; (2) Average Episode Length (EL), representing the average number of steps per episode,
which reflects long-term tracking effectiveness; and (3) Success Rate (SR), measuring the percentage
of episodes that complete 500 steps out of 50 total episodes.

Baselines for Active Tracking. For the RL-based agents, we extend from the official implementation
settings from the recent offline RL method (Zhong et al., 2024), collecting offline datasets and
employing the original network architecture. To demonstrate the impact of data diversity on tracking
performance, we collect three sets of offline datasets, each containing 100k steps. The key difference
between these datasets is the number of environments used for data collection: one was collected in a
single environment (denoted as 1 Env.), another in two environments(denoted as 2 Envs.), and the
third in eight distinct environments (denoted as 8 Envs.). The offline training curve of each setting is
shown in Figure 14. The environment distribution of each dataset setting is shown in Figure 10. It is
worth noting that FlexibleRoom, one of the environments used for data collection, is a unique abstract
environment, with all objects represented as geometric shapes covered by randomized patterns. This
distinctive setup contrasts with the more realistic and diverse environments in the collection, offering
a unique scenario for testing agent adaptability. For the VLM-based agents, we utilize the latest large
models GPT-4o to directly generate actions based on observed images for tracking a target person. To
ensure smooth and precise transitions, we designed a system prompt that helps the model understand
the task while standardizing the output format to align with predefined action settings. This prompt
ensures the model produces actions coherent with the task’s requirements. Specifically, GPT-4o
is tasked with generating concrete action decisions from a predefined instruction space: moving
forward, moving backward, turning left, turning right, or maintaining the current position. Once an
instruction is generated, we map it to corresponding linear and angular velocities to update the agent’s
movement in the environment. It is important to note that while the system prompt can use raw image
observations as input, our experience shows poor alignment performance and significant time delays,
which pose challenges for real-time tracking. The full system prompt and mapping relationship are
provided in Appendix C.2.

Result Analysis. We first evaluate the performance of agents trained with offline datasets collected
from varying numbers of environments (1 Env., 2 Envs., 8 Envs.) across 16 distinct environments.
We list the detailed evaluation results across the entire 16 environments in Table 11. To better visualize
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the performance change of different training settings within various scene categories, we calculate
the average success rate (SR) of each agent in four categories, the results are shown in Figure 5.
The results reveal a clear trend: as the number of environments used for training increases,
agent long-term tracking performance generally improves across all categories. In the Wilds, a
significant increase in success rate is observed with the 8 Envs. dataset, which involves the highest
diversity of environments. This demonstrates that diverse environmental exposure plays a crucial role
in improving the agent’s generalization capabilities in more complex, open-world environments. The
lower success rate in the 1 Env. dataset highlights the limitations of training solely in abstract settings
like the FlexibleRoom. Similarly, in the Palace, the success rate improves notably from 1 Env. to 8
Envs., suggesting that training with a broader range of environments helps the agent better adapt to
intricate spatial structures typical of Palace-like maze environments.

4.3 SOCIAL TRACKING

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

 Interior Scenes Palaces Wilds Modern Scenes

The averaged success rate of embodied tracking agents 
across four kinds of scenes

FlexibleRoom

FlexibleRoom + 1 Realistic Scene

FlexibleRoom + 7 Realistic Scenes

Figure 5: Average success rate of agents across
four environment categories: Compact Interior,
Wildscape Realm, Palace Maze, and Lifelike Ur-
banity, evaluated under three offline dataset set-
tings (1 Env, 2 Envs., 8 Envs.). The results show
the generalization capability improves significantly
as more diverse environments are included in the
dataset. However, environments with complex spa-
tial structures, such as Compact Interior and Palace
Maze, exhibit lower success rates, highlighting
challenges in obstacle avoidance and navigation.

We further evaluate the tracking agents in a so-
cial tracking setting, where the agent needs to
follow the target in crowds. Such a setting con-
tains varying high-dynamics objects with sim-
ilar appearances. We can directly apply the
toolkit provided in the Gym interface to extend
the DowntownWest environment used for active
tracking to this setting.

Robustness to Active Distractions. A key chal-
lenge in active visual tracking tasks is managing
active distractions, a critical issue for real-world
deployment in crowds. Thus, we conducted an
experiment in the DowntownWest environment
and generated crowds with varying numbers of
human characters as distractors notated as 4D,
8D, and 10D. We compared the performance
of the offline RL method, trained under three
dataset configurations (1 Env., 2 Envs., 8 Envs.),
against the VLM-based method, evaluating the
agents’ ability to maintain robust tracking un-
der these different levels of active distractions.
The results in Table 5 show clear performance
differences between the offline RL methods (1
Env., 2 Envs., 8 Envs.) and the GPT-4o model in
handling active distractions. As the number of distractors increases, the offline RL methods maintain
relatively stable success rates (SR), with the highest performance seen in the 8 Envs. setting, which
achieves an SR of 0.8 in the 4D condition and remains robust with slight declines in the 8D and 10D
conditions (0.72 and 0.68, respectively). This suggests that the agent benefits from the richer diversity
of training data, enabling it to handle increasingly complex crowd scenarios more effectively. On the
other hand, the GPT-4o model consistently struggles with active distractions, showing significantly
lower average returns (ER) and success rates across all settings. The model’s inability to cope with
dynamic, crowded environments is evidenced by its poor performance, particularly in the 10D condi-
tion where it records a success rate of just 0.1. This highlights a major limitation of the VLM-based
method in dynamic environments with active distractions, as it lacks the temporal consistency and
real-time adaptabilit required for effective tracking.

Cross-Embodiment Generalization. We transfer the agent trained for the human character to the
robot dog, which observes the world from a lower perspective. We can see that the results in Table 5
drop, particularly the success rate, indicating that the research community should pay more attention
to the cross-embodiment generalization.

The Impact of Control Frequency. We employ the time dilation wrapper to simulate different
control frequencies during deployment. The frequency of the perception-control loop is crucial
for handling dynamic environments. As is shown in Table 4, when the rate drops below 10 FPS,
performance significantly declines. We observe that higher control frequencies enable RL-based
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Table 5: Performance comparison of different methods in the DowntownWest environment with
varying numbers of distractors (4D, 8D, 10D). Each cell presents three metrics from left to right:
Average Episodic Return (ER), Average Episode Length (EL), and Success Rate (SR).

Method 4D 8D 10D
Offline RL 1 Env. 251/450/0.70 201/406/0.58 230/247/0.64
Offline RL 2 Envs. 309/456/0.74 259/424/0.68 258/428/0.68
Offline RL 8 Envs. 245/458/0.80 225/435/0.72 218/444/0.68

Offline RL 8 Envs. (Robot dog) 220/409/0.48 189/386/0.42 143/367/0.40
GPT-4o -102/264/0.16 -64/270/0.14 -80/240/0.10

agents to perform better in social tracking. These results emphasize the importance of building
efficient models for embodied agents, to accomplish tasks in dynamic open worlds.

4.4 LIMITATION ANALYSIS AND SUMMARY

Table 4: The impact of control fre-
quency on tracking performance.
We evaluate the agent (Offline RL 1
Env.) in the FlexibleRoom environ-
ment using the time dilation wrap-
per to simulate varying control fre-
quencies.

ER/ EL/ SR.
3 FPS 184/377/0.34

10 FPS 303/449/0.62
30 FPS 368/482/0.92

w/o Control 275/425/0.74

The current RL method shows some capacity to learn spatial-
temporal information and dynamically respond to target move-
ment in most scenarios, but it struggles with executing advanced
actions like bypassing obstacles. In compact Interior cate-
gories and some special environments such as TerrainDemo,
IndustrialArea, and ModularSciFiSeason1, which feature irreg-
ular landscapes, narrow passageways, and maze-like structures,
the agent often collides with casually placed low-level objects.
While the agent can track targets, its insufficient to handle
unpredictable hindrances, especially in key moments like by-
passing corners or tight spaces, which increases the likelihood
of failure. This highlights a significant limitation: although
the agent can learn and react to its environment, it lacks the
higher-level reasoning to anticipate and avoid obstacles effec-
tively. Advanced behaviors like bypassing obstacles are crucial
for improving performance, especially in cluttered environments where basic reactive controls are
insufficient. Incorporating such reasoning mechanisms would help reduce failure rates, particularly
in critical scenarios, and improve overall tracking performance.

For the VLM-based method, one key factor contributing to GPT-4o’s notably poor performance,
especially in comparison to the RL methods, is its susceptibility to time delays. From our experience,
this issue becomes particularly evident when the target makes abrupt movements, such as turning
around. Due to the API’s response lag, the GPT-4o system struggles to track the target in real-time,
often losing it before receiving updated instructions. This limitation highlights the difficulty of
real-time processing in embodied tracking tasks using models that rely on slower external API
communications, underscoring the need for more efficient integration methods for such systems.

5 CONCLUSIONS

In conclusion, we introduce UnrealZoo which offers a versatile platform for advancing embodied
AI research. The diverse, realistic complex environments challenge agents with varying tasks such
as visual navigation, active tracking across various environments, and social tracking in crowds.
The enhanced UnrealCV+ API supports efficient data collection, customization, and task creation,
enabling seamless interaction for both single and multi-agent systems. These features will open
up potential applications like multi-agent rescue missions, collaborative searching, and industrial
automation, making our platform a valuable tool for pushing the boundaries of embodied AI in
real-world scenarios.

Limitations. While our proposed environment provides diverse and complex scenarios for visual
navigation, tracking, and other visual-based tasks, it currently lacks high-fidelity physical simulation,
limiting the agent’s ability to interact with objects. The interaction between the agent and tiny objects,
such as manipulating objects, is also minimal. Additionally, transferring learned behaviors to different
embodied agents poses a challenge, as adapting models to various physical structures and control
schemes is not yet seamless. These issues highlight areas for further research to enhance interaction
dynamics and improve generalization across diverse agent embodiments.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdi-
nov. Learning to explore using active neural slam. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HklXn1BKDH.

Yuanpei Chen, Yiran Geng, Fangwei Zhong, Jiaming Ji, Jiechuang Jiang, Zongqing Lu, Hao Dong,
and Yaodong Yang. Bi-dexhands: Towards human-level bimanual dexterous manipulation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 46(5):2804–2818, 2024. doi: 10.1109/
TPAMI.2023.3339515.

Zhili Cheng, Zhitong Wang, Jinyi Hu, Shengding Hu, An Liu, Yuge Tu, Pengkai Li, Lei Shi,
Zhiyuan Liu, and Maosong Sun. Legent: Open platform for embodied agents. arXiv preprint
arXiv:2404.18243, 2024.

Hai Ci, Mickel Liu, Xuehai Pan, Fangwei Zhong, and Yizhou Wang. Proactive multi-camera
collaboration for 3d human pose estimation. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=CPIy9TWFYBG.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. In Conference on Robot Learning, pp. 1–16. PMLR, 2017.

Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha
Kembhavi, and Roozbeh Mottaghi. Manipulathor: A framework for visual object manipulation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4497–4506, 2021.

Samir Yitzhak Gadre, Kiana Ehsani, Shuran Song, and Roozbeh Mottaghi. Continuous scene
representations for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14849–14859, 2022.

Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual worlds as proxy for multi-
object tracking analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4340–4349, 2016.

Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De
Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias
Wang, Michael Lingelbach, Aidan Curtis, Kevin Tyler Feigelis, Daniel Bear, Dan Gutfreund,
David Daniel Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh Mcdermott,
and Daniel LK Yamins. ThreeDWorld: A platform for interactive multi-modal physical simulation.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2021. URL https://openreview.net/forum?id=db1InWAwW2T.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2616–2625, 2017.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. AI2-THOR: An interactive 3d environment
for visual ai. arXiv preprint arXiv:1712.05474, 2017.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In Conference
on Robot Learning, pp. 80–93. PMLR, 2023.

Yuxing Long, Wenzhe Cai, Hongcheng Wang, Guanqi Zhan, and Hao Dong. Instructnav: Zero-shot
system for generic instruction navigation in unexplored environment. In 8th Annual Conference on
Robot Learning, 2024. URL https://openreview.net/forum?id=fCDOfpTCzZ.

11

https://openreview.net/forum?id=HklXn1BKDH
https://openreview.net/forum?id=CPIy9TWFYBG
https://openreview.net/forum?id=db1InWAwW2T
https://openreview.net/forum?id=fCDOfpTCzZ


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenhan Luo, Peng Sun, Fangwei Zhong, Wei Liu, Tong Zhang, and Yizhou Wang. End-to-end active
object tracking via reinforcement learning. In International Conference on Machine Learning, pp.
3286–3295. PMLR, 2018.

Wenhan Luo, Peng Sun, Fangwei Zhong, Wei Liu, Tong Zhang, and Yizhou Wang. End-to-end active
object tracking and its real-world deployment via reinforcement learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(6):1317–1332, 2020. doi: 10.1109/TPAMI.2019.
2899570.

Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xueqian Wang,
and Dacheng Tao. Revisiting plasticity in visual reinforcement learning: Data, modules and
training stages. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=0aR1s9YxoL.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018.

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey,
Ruta Desai, Alexander Clegg, Michal Hlavac, So Yeon Min, Vladimír Vondruš, Theophile Gervet,
Vincent-Pierre Berges, John M Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakrishnan,
Jitendra Malik, Devendra Singh Chaplot, Unnat Jain, Dhruv Batra, Akshara Rai, and Roozbeh
Mottaghi. Habitat 3.0: A co-habitat for humans, avatars, and robots. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=4znwzG92CE.

Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao, Tae Soo Kim, and Yizhou Wang.
Unrealcv: Virtual worlds for computer vision. In Proceedings of the 25th ACM International
Conference on Multimedia, pp. 1221–1224, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In Field and Service Robotics, pp. 621–635, 2018.

Weiqi Wang, Zihang Zhao, Ziyuan Jiao, Yixin Zhu, Song-Chun Zhu, and Hangxin Liu. Rearrange
indoor scenes for human-robot co-activity. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 11943–11949. IEEE, 2023.

Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and Roozbeh Mottaghi. Visual room rearrangement.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5922–5931, 2021.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable agents with a
realistic and rich 3d environment. arXiv preprint arXiv:1801.02209, 2018.

Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson env:
Real-world perception for embodied agents. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 9068–9079, 2018.

Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo,
Xiaoyu Liu, Jiaxin Yuan, Pu Hua, Shuzhen Li, Yanjie Ze, Hal Daumé III, Furong Huang, and
Huazhe Xu. Drm: Mastering visual reinforcement learning through dormant ratio minimization.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=MSe8YFbhUE.

Karmesh Yadav, Ram Ramrakhya, Arjun Majumdar, Vincent-Pierre Berges, Sachit Kuhar, Dhruv
Batra, Alexei Baevski, and Oleksandr Maksymets. Offline visual representation learning for
embodied navigation. In Workshop on Reincarnating Reinforcement Learning at ICLR 2023, 2023.

12

https://openreview.net/forum?id=0aR1s9YxoL
https://openreview.net/forum?id=4znwzG92CE
https://openreview.net/forum?id=4znwzG92CE
https://openreview.net/forum?id=MSe8YFbhUE
https://openreview.net/forum?id=MSe8YFbhUE


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jihan Yang, Runyu Ding, Ellis Brown, Xiaojuan Qi, and Saining Xie. V-irl: Grounding virtual
intelligence in real life. arXiv preprint arXiv:2402.03310, 2024.

Jinyu Yang, Mingqi Gao, Zhe Li, Shang Gao, Fangjing Wang, and Feng Zheng. Track anything:
Segment anything meets videos. arXiv preprint arXiv:2304.11968, 2023.

Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang, and Bernadette Bucher. Vlfm: Vision-
language frontier maps for zero-shot semantic navigation. In International Conference on Robotics
and Automation (ICRA), 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020.

Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao, and Huazhe Xu.
Pre-trained image encoder for generalizable visual reinforcement learning. In Advances in Neural
Information Processing Systems, volume 35, pp. 13022–13037, 2022.

Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
Zhizheng Zhang, and Wang He. Navid: Video-based vlm plans the next step for vision-and-
language navigation. arXiv preprint arXiv:2402.15852, 2024.

Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, and Yizhou Wang. AD-VAT: An asymmetric
dueling mechanism for learning visual active tracking. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HkgYmhR9KX.

Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, and Yizhou Wang. Towards distraction-robust
active visual tracking. In International Conference on Machine Learning, pp. 12782–12792.
PMLR, 2021.

Fangwei Zhong, Xiao Bi, Yudi Zhang, Wei Zhang, and Yizhou Wang. Rspt: reconstruct surround-
ings and predict trajectory for generalizable active object tracking. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 3705–3714, 2023.

Fangwei Zhong, Kui Wu, Hai Ci, Churan Wang, and Hao Chen. Empowering embodied visual
tracking with visual foundation models and offline rl. arXiv preprint arXiv:2404.09857, 2024.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language
navigation with large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 7641–7649, 2024a.

Qinhong Zhou, Sunli Chen, Yisong Wang, Haozhe Xu, Weihua Du, Hongxin Zhang, Yilun Du,
Joshua B. Tenenbaum, and Chuang Gan. HAZARD challenge: Embodied decision making
in dynamically changing environments. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=n6mLhaBahJ.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta, Li Fei-Fei, and Ali
Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement learning. In
International Conference on Robotics and Automation (ICRA), 2017.

13

https://openreview.net/forum?id=HkgYmhR9KX
https://openreview.net/forum?id=n6mLhaBahJ


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A UE ENVIRONMENTS

A.1 COMPARISON WITH OTHER SIMULATORS

To better explain Table 1, we list the description of each symbol about the scene types and playable
entities in Table 6. Since photorealism mainly relies on the engine used, we visualize the snapshots
rendered by different engines in Figure 6. Note that Google Maps are images captured in the
real world, but can not simulate the dynamic of the scenes and interactions between objects. By
utilizing advanced rendering and physics engines, Unreal Engine simulates large-scale photorealistic
environments that are not only visually appealing but also capable of complex interactions between
agents and objects. So we choose to build environments on Unreal Engine.

Table 6: The description of symbols used in Table 1.

Table 1: The comparison with related virtual worlds for embodied AI.
Virtual
Worlds

Scene:
Categories

Scene:
Scale Level

Scene:
Unstr. Terr.

Scene:
Base Engine

Agent:
Body

Agent:
Nav. Sys.

Agent:
Multi-agent

VirtualHome Room - Unity X X
AI2THOR Room - Unity - -

ThreeDWorld Room, Building, Landscape X Unity - X
OmniGibson Room - Omniverse - - -
Habitat 3.0 Room - Habitat-Sim X X

CARLA Building, Town - UE 4 - X
AirSim Building, Town, Landscape - UE 4 - X

LEGENT Room, Building X Unity X -
V-IRL Town, Landscape X Google Map X X

UnrealZoo Room, Building,
Town, Landscape X UE 4/5 X X

Symbol Description
Scenes with indoor furnishings

Scenes with outdoor roads
Natural landscapes with trees of varying heights and grasslands

Buildings with castle-style architecture
Realistic construction site scenes with a variety of construction tools and equipment

Realistic factory scenes with internal roads and factory facilities
Scenes with residential community settings

Scenes featuring temple architecture with stairs, lofts, and shrines
Sports venue scenes

Common urban public transportation station scenes
Hospital interior scenes with detailed elements

High-fidelity urban environments
Scenes with a desert and seaside landscape style

Human agents with detailed features such as hair textures, clothing, and actions
Mobile robot
Driveable car

Animal agents, including common animal species such as cats, dogs, lions, tigers, etc.
Driveable motorbike

Drones
Virtual camera that has no physical entity and is movable

Table 2: Caption

2

Unity Omniverse Habitat-Sim

Google Map Unreal Engine 4 Unreal Engine 5

Figure 6: Comparison of the visual realism of different engines: we show the snapshots captured
from different engines to compare the photo-realism of different environments for an intuitive feeling.
Note that Google Maps capture and reconstruct the images from the real world, but can not simulate
the dynamic of the scenes and interactions between agents and objects.
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Roof Factory

Figure 7: Two photo-realistic environments used for visual navigation.

A.2 ENVIRONMENTS USED IN VISUAL NAVIGATION

We carefully selected two photo-realistic environments (Roof and Factory) for training and evaluating
navigation in the wild, shown in Figure 7. The Roof environment features multiple levels connected
by staircases and large pipelines scattered on the ground, providing an ideal setting for the agent
to learn complex action combinations for transitioning between levels, such as jumping, climbing,
and navigating around obstacles. The Factory environment, on the other hand, is characterized by
compact boxes and narrow pathways, challenging the agent to determine the appropriate moments to
jump over obstacles or crouch to navigate under them. These two environments offer diverse spatial
structures, enabling agents to develop an understanding of multi-level transitions and precise obstacle
avoidance.

A.3 ENVIRONMENTS USED IN ACTIVE VISUAL TRACKING

For training agents via offline reinforcement learning, we selected 8 distinct environments to collect
demonstrations, as is shown in Figure 10. To comprehensively evaluate the generalization of the
active visual tracking agents, we selected 16 distinct environments, categorized into Interior Scenes,
Palaces, Wilds, and Modern Scenes. Each category presents unique challenges: 1) Interior Scenes
feature complex indoor structures with frequent obstacles; 2) Palaces include multi-level structures
and narrow pathways; 3) Wilds encompass irregular terrain and varying illumination; 4) Modern
Scenes offer high-fidelity, real-world scenarios with modern buildings and objects. These diverse
environments facilitate a thorough assessment of the agent’s generalization capabilities across varying
complexities. The snapshot of each environment is shown in Figure 8.

A.4 NAVIGATION MESH

Based on NavMesh, we build an internal navigation system, allowing agents to autonomously
navigate with the built-in AI controller in the Unreal Engine. This includes path-finding and obstacle-
avoidance capabilities, ensuring smooth and realistic movement throughout diverse terrains and
structures. Moreover, in our City style map, we manually construct road segmentation, we manually
segment the roads to distinguish between pedestrian and vehicle pathways. When agents use the
navigation system for autonomous control, they will navigate the shortest path based on the priority of
the different areas. Figure 9 shows an example of the rendered semantic segmentation for NavMesh
in an urban city.

B EXEMPLAR TASKS

B.1 VISUAL NAVIGATION

In this task, the agent is initialized at a random location in the environment at the beginning of each
episode, while the target object’s location and category remain fixed throughout. The agent must
rely on its first-person view observations and the relative spatial position of the target as input. The
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Bunker StorageHouse SoulCave UndergroundParking

Desert Ruins GreekIsland SnowMap RealLandscape

WesternGarden TerrainDemo ModularSciFiSeason1ModularGothicNight

SuburbNeighborhoodDay DowntownWest IndustrialArea Venice

Compact 
Interior

Wildscape
Realm

Palace 
Maze

 Lifelike
Urbanity

Figure 8: The snapshots of 16 environments used for testing active visual tracking agents. The text
on the left indicates the category corresponding to that line of environment.

Figure 9: An example of the NavMesh with semantic segmentation. The human character will
prioritize using the pink area for pedestrian navigation tasks, while the vehicles will use the blue area.

ultimate objective is to locate the target object within 2000 steps. Success is defined by the agent
reducing the relative distance to less than 3 meters and aligning its orientation such that the relative
rotation between the target and the agent is smaller than 30 degrees (in the front of the agent). This
setup challenges the agent to optimize its movements and decision-making while adapting to the
randomized starting conditions and dynamic environment. All methods in the task share the same
discrete action space to control the movement, consisting of moving forward (+1 meter/s), moving
backward (-1 meter/s), turning left (-15 degrees/s), turning right (+15 degrees/s), jumping (two
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Stadium

ContainerYardDay

Eastern Garden

Brass Garden   BeachWedding

DesertMap

       Supermarket

      FlexibleRoom

SupermarketFlexibleRoom

FlexibleRoom

FlexibleRoom ContainerYardDay Supermarket Stadium

DesertMap Eastern Garden Brass Garden BeachWedding

Figure 10: The 8 environments used for collecting offline dataset.

continuous jumping actions trigger the climbing action), crouching, and holding position. This action
space enables the agent to navigate and interact with complex 3D environments, making strategic
decisions in real-time to reach the target object efficiently. The step reward for the agent is defined as:

r(t) = tanh(
dis2target(t− 1)− dis2target(t)

max(dis2target(t− 1), 300)
− |Ori|

90◦
) (1)

where dis2target(t) is the Euclidean distance between the agent and the target at a given timestep t
and |Ori| is the absolute orientation error (in degrees) between the agent’s current heading and the
direction toward the target, normalized by 90◦

B.2 ACTIVE VISUAL TRACKING

Referring to previous works (Zhong et al., 2024), we use human characters as an agent player and a
continuous action space for agents. The action space contains two variables: the angular velocity and
the linear velocity. Angular velocity varies between −30◦/s and 30◦/s, while linear velocity ranges
from −1 m/s to 1 m/s. In the agent-centric coordinate system, the reward function is defined as:

r = 1− |ρ− ρ∗|
ρmax

− |θ − θ∗|
θmax

(2)

where (ρ, θ) denotes the current target position relative to the tracker, (ρ∗, θ∗) = (2.5m, 0) represents
the expected target position, i.e., the target should be 2.5m in front of the tracker. The error
is normalized by the field of the view (ρmax, θmax). During execution, an episode ends with a
maximum length of 500 steps, applying the appropriate termination conditions. In the experiment,
we adopt the original neural network structure and parameters, as listed in Table 9 and 10.

B.3 TASK CONFIGURATION IN A JSON FILE

We provide an example of the task configuration JSON file in Figure 11. Using the JSON file, we can
easily set the configuration of the binary, the continuous and discrete action space for each agent,
the placement of the binding camera, choose the area to reset, and other hyper-parameters about the
environments.
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A Json File for Task Configuration
"env_name": env_name,
"env_bin":path-to-binary,
"env_map": map_name,
"env_bin_win": path-to-binary(for windows),
"third_cam": {"cam_id": 0,"pitch": -90,"yaw": 0,"roll": 0,"height_top_view":

1460.0,"fov": 90},
"height": 460.0,
"interval": 1000,
"agents": {

"player": {
"name": ["BP_Character_923"],
"cam_id": [3],
"class_name": ["bp_character_C"],
"internal_nav": true,
"scale": [1,1,1],
"relative_location": [20,0,0],
"relative_rotation": [ 0,0,0],
"head_action_continuous": {"high": [15,15,15], "low": [-15,-15,-15]},
"head_action": [ [0,0,0],[0,30,0],[0,-30,0]],
"animation_action": ["stand","jump","crouch"],
"move_action": [
[angular, velocity]

...
],
"move_action_continuous": {"high": [30,100],"low": [-30,-100]}

},
"animal": {

"name": ["BP_animal_2"],
"cam_id": [1],
"class_name": ["BP_animal_C"],
"internal_nav": true,
"scale": [1,1,1],
"relative_location": [20,0,0],
"relative_rotation": [0,0,0],
"move_action": [

[angular, velocity]
...

],
"move_action_continuous": { "high": [30,100],"low": [-30,-100]}

},
"drone": {

"name": ["BP_Drone01_2"],
"cam_id": [2],
"class_name": ["BP_drone01_C"],
"internal_nav": false,
"scale": [ 0.1,0.1,0.1],
"relative_location": [0,0,0],
"relative_rotation": [0,0,0],
"move_action": [

[angular, velocity]
...

],
"move_action_continuous": {"high": [1,1,1,1],"low": [-1,-1,-1,-1]}

}
},
"safe_start": [

[x,y,z],
...

],
"reset_area": [x_min,x_maxin,y_min,y_max,z_min,z_max],
"random_init": false,
"env": {"interactive_door": []},
"obj_num": 466,
"size": 192555.0,
"area": 9900.0,
"bbox": [110.0, 90.0,19.45]

Figure 11: An example of the task configuration file in JSON format.

B.4 COLLECTING DEMONSTRATION FOR ACTIVE VISUAL TRACKING

To demonstrate the flexibility of the environment, we use state-based expert policy and the multi-level
perturbation strategy (Zhong et al., 2024) to automatically generate various imperfect demonstrations
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as the offline dataset. For active visual tracking, we employ three distinct datasets for training agents
via offline reinforcement learning (Offline RL) algorithms, referred to as 1 Env., 2 Envs., and 8 Envs.
The detailed composition of each dataset is depicted in Figure 10. For the 1 Env. dataset, we use only
the FlexibleRoom, an abstract environment enriched with diverse augmentation factors, to gather
100k steps of trajectory data. For 2 Envs., we collect 50k step trajectories from FlexibleRoom and an
additional 50k steps from the Supermarket environment. The 8 Envs. dataset involves eight different
environments, with 12.5k steps collected from each. Therefore, the total amount of data in the three
datasets is the same (100k) to ensure the fairness of the comparison. These dataset configurations
aim to highlight the critical role of environment diversity in enhancing the generalization capabilities
of embodied AI agents.

C IMPLEMENTATION DETAILS OF AGENTS

C.1 RL-BASED AGENTS

Learning to navigate with online reinforcement learning. For navigation, we construct an RL-
based end-to-end model, using A3C (Mnih et al., 2016) to accelerate online reinforcement learning
in a distributed manner. The model’s structure is as follows: a mask encoder extracts spatial visual
features from the segmentation mask, which are then passed to a temporal encoder to capture latent
temporal information. Finally, the spatiotemporal features, concatenated with the target’s relative
spatial position, are fed into the actor-critic network to optimize the actor layer for action prediction.
The detailed network structure and parameters used in the experiment are listed in Table 7 and 8.
Here, we provide the training curves in Roof and Factory environments, depicted in Figure 15. In
the Factory, we set the number of workers to 4, while in the Roof, the number of workers is set to 6.
It can be observed that, for Online RL, the number of workers and the complexity of environments
have a significant impact on training efficiency. Looking forward, we anticipate that offline-based
algorithms can effectively address the challenges of training efficiency and generalization.

Table 7: Details the neural network structure of RL-based agent for navigation task, where 5×5-32S1
means 32 filters of size 5×5 and stride 1, FC256 indicates the fully connected layer with output
dimension 256, and LSTM128 indicates that all the sizes in the LSTM unit are 128.

Module Mask Encoder
Layer# CNN Pool CNN Pool CNN Pool CNN Pool

Parameters 5×5-32S1 2-S2 5×5-32S1 2-S2 4×4-64S1 2-S2 3×3-64S1 2-S2
Module Temporal Encoder Actor Critic
Layer# FC LSTM FC FC

Parameters 256 128 2 2

Table 8: The experiment setting and hyper-parameters used for training the RL-based navigation
agent.

Name Value Name Value
Learning Rate 1e-4 LSTM update step 20
workers (Roof) 6 LSTM Input Dimension 256
workers (Factory) 4 LSTM Output Dimension 128
Position Input Dimension 2 LSTM Hidden Layer size 1

Learning to track with offline reinforcement learning. For the tracking task, we adopt an offline
reinforcement learning (Offline RL) approach to enhance training efficiency and improve the agent’s
generalization to unknown environments. Specifically, we build an end-to-end model trained using
offline data and the conservative Q-learning (CQL) strategy (Kumar et al., 2020). We adopt the same
model structure from the latest visual tracking agent (Zhong et al., 2024), consisting of a Mask
Encoder, a Temporal Encoder, and an Actor-Critic network. Detailed model structures and training
parameters are summarized in Table 9 and 10. Additionally, we provide the model’s loss curves
under different dataset setups, as shown in Figure 14. The model achieves near-convergence within

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

two hours across all dataset setups. To ensure the loss curves stabilize fully, we continued training for
an additional three hours, during which no significant further decrease in the loss was observed. A
comprehensive evaluation of the model’s performance is presented in Tables 11 and 12, highlighting
its strong generalization to unseen environments and robustness to dynamic disturbances. The training
efficiency, generalization capability, and robustness achieved by offline RL further reinforce our
belief that offline RL methods will become a mainstream approach for rapid prototyping and iteration
in embodied intelligence systems.

Table 9: Network structure used in the offline RL method (Zhong et al., 2024), where 8×8-16S4
means 16 filters of size 8×8 and stride 4, FC256 indicates a fully connected layer with dimension
256, and LSTM64 indicates that all sizes in the LSTM unit are 64.

Module Mask Encoder Temporal Encoder Actor Critic
Layer# CNN CNN FC LSTM FC FC

Parameters 8×8-16S4 4×4-32S2 256 64 2 2

Table 10: The hyper-parameters used for offline training and the policy network.

Name Value Name Value
Learning Rate 3e-5 LSTM update step 20
Discount Factor 0.99 LSTM Input Dimension 256
Batch Size 32 LSTM Output Dimension 64
LSTM Hidden Layer size 1

C.2 VLM-BASED AGENTS

We built agents with a reasoning framework based on the Large Vision-Language Model. We employ
OpenAI GPT-4o as the base model. System prompt used in the navigation task, as shown in Figure 13
and system prompt used in the tracking task, as shown in Figure 12.

C.3 HUMAN BENCHMARK FOR NAVIGATION

In the navigation task, we incorporated human evaluation as a baseline for comparison to demonstrate
the existing gap between the current method and optimal navigation performance. Specifically, five
male and five female evaluators participated in the assessment, performing the same navigation tasks
under comparable conditions.

Before each human evaluator began their assessment, we provided a free-roaming perspective to
familiarize them with the map structure and clearly conveyed the target’s location and image. This
ensured that human evaluators had a comprehensive understanding of the environment and the target’s
position. During the evaluation, the player was randomly initialized in the environment, and human
evaluators used the keyboard to control the agent’s movements. Each human evaluator repeated the
experiment five times, providing multiple data points to ensure reliability and reduce variability in
performance measurements. The termination conditions for the evaluation were identical to those
applied to the RL-based agent, ensuring consistency in the comparison.
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System Prompt used for active tracking
Objective:
You are an intelligent tracking agent designed to control the robot to track the person

in the view. The first person in your view is your target. You need to provide
concrete moving strategie to helo robot tracking the target in the given
environment.

Representation details:
1. Moving instructions are concrete actions that the robot can take to adjust its

viewpoint and distance to the target. The moving instructions include:
-move closer: Move the robot closer to the target. This should be chosen when the

target is too far away from the robot and there is no obstacle in the way.
-move further: Move the robot further away from the target. This should be 2chosen

when the target is too close to the robot and only part of the target body is
visible in the view.

-keep current: Maintain the current distance and angle between the robot and the
target. This is chosen when the target is fully observable in the view and
there is enough space in front of both tracker and target without any
potential obstacles may cause collision and occlusion.

-turn left: Turn the robot to left direction, the target will move towards the
right side in next frame.

-turn right: Turn the robot to right direction, the target will move towards the
left side in next frame.

Input Understanding:
1.**Image:** We provide a first-person view observation of the robot to help you

understand the surrounding environment. The observation is represented as a color
image from the tracker’s first-person perspective.

Output Understanding:
1. **Moving Strategy:** A temporal reasonable move strategy to adjust the robot

viewpoint and distance to achieve robots’s long-term tracking task. This should be
represented as a concrete moving instructions, the instructions should be choose

from "move closer", "move further" ,"keep current", "turn left","turn right".
Format - [Keep current].

Strategy Considerations:
1.If the person’s horizontal position in the robot’s field of view deviates from the

center by more than 25% of the image width, we consider the target to be on one
side of the image, otherwise we say the target is near the center.

2.To provide a reasonable moving strategy, you should think step by step based on the
input image and the following hints:
1)If the person is too close to the robot and the target in the image is clipped,

robot should move further first to obtain a better view.
2)If the person’s size in the view is too small in the image, robot should move

closer to obtain a better view.
3)If the person may occluded by obstacles or structures in the future, the robot

should move closer to avoid losing the person in the next frame.
4)If the person is near the right edge in the image and there is no immediate

obstacle in front of robot, the robot should turn right to keep person near
center in the image.

5)If there is immediate hinder obstacles in front of the robot, turn right or left
to a clean space first.

6)If there is any potential occlusion effect or obstacles on either side of the
person’s walking path, the robot should move closer to avoid losing the person
in the next frame.

7)If there is no person in the current image, turn right or turn left to search the
person.

Instructions:
1.Provide ONLY the decision in the [output:] strictly following the format without

additional explanations or additional text.

Figure 12: System prompt used for tracking.
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System Prompt used for navigation
Objective:
You are an intelligent navigation agent designed to control the robot to navigate to

the target object location based on first-person observation and provide a
relative position between the robot and the target. You need to provide an action
sequence to help the robot move to the target location.

Representation details:
1. Relative Position: This contains three elements, in the format - [Distance,

Direction, Height].
-Distance: The relative distance between the robot and the target object.
-Direction: The target object’s relative direction to the robot, represented in

degrees. \
A positive value represtent the target is on the right side of the robot

with corresponding angle and a negative value represent the target is
on the left side of the robot with corresponding angle. \

The absolute value of the angle larger than 90 degree means the target is
behind the robot. \

-Height: The relative vertical position, where a positive value indicates that the
target is higher than the robot.

1. Actions: These are the movements the robot can perform to adjust its position. The
available actions include:
-Move Forward: Propel the robot forward by 100 centimeter.
-Move Backward: Propel the robot backward by 100 centimeter.
-Turn Left: Rotate the robot 15 degrees to the left.
-Turn Right: Rotate the robot 15 degrees to the right.
-Jump: Make the robot leap into the air, robot should use this action to jump over

obstacles or climb over stairs.
-Crouch: Lower the robot into a crouching position for 2 seconds, after which it

will automatically stand up.
-Keep Current: Maintain the robot’s current position without any movement.

Input Understanding:
1.**Image:** We provide a first-person view observation of the robot to help you

understand the surrounding environment. The observation is represented as a color
image from the robot’s first-person perspective.

2.**Relative Position:** This data provides the target object’s relative position to
the robot, including the distance, direction, and height. The distance is measured
in centimeters, the direction in degrees, and the height in centimeters.

Output Understanding:
1. **Action Sequence:** This is a series of Three continuous actions that the robot

should take to navigate toward the target object. Each sequence must consider the
provided relative position data and the first-person observation. \

The actions should be ordered logically to effectively move the
robot closer to the target, adjusting its direction,
distance, and height as needed. \

The action sequence should be clear and executable, enabling
the robot to reach the target efficiently while avoiding
obstacles and maintaining stability

in the format - [Action1, Action2, Action3]. Each action should
be choose from the available actions mentioned above.

Strategy Considerations:
1.Assessing Relative Position: Begin by evaluating the target object’s relative

position in terms of distance, direction, and height to inform the action sequence
.

2.Action Combination for Navigation: Utilize the action sequence to create effective
combinations, each action will last for 1 seconds. For example:

-Consider using multiple consecutive actions like [Move Forward, Jump, Jump] to
climb over the front obstacles or boxes.

-Consider using [Move Backward,Move Backward,Move Backward] to move the robot
avoid a front wall or fence.

3.Obstacle Detection: Leverage the first-person observation to identify obstacles.
Based on their location, formulate action sequences that facilitate smooth
navigation while avoiding collisions.

4.Efficient Pathing: Ensure the action sequence is designed to dynamically adjust the
robot movement torward target object, which is minimize the distance and direction
value in **Relative Position**.

5.Sequence Validation: Validate the generated action sequence and consider past
memories to ensure it is practical given the current environment and obstacles,
making long-term adjustments as necessary.

Instructions:
1.Provide ONLY the action sequence in the [output:] strictly following the format -[

Action1, Action2, Action3], without additional explanations or additional text.

Figure 13: System prompt used for navigation.
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Figure 14: The CQL loss curve during offline training with different offline datasets.

Figure 15: The learning curves for RL-based navigation agent in two environments: Roof and Factory.
We use A3C (Mnih et al., 2016) to learn the navigation policy via trial-and-error interactions. In
the Factory (blue line plot), the number of asynchronous workers is set to 4, while in the Roof
environment (orange line plot), the number of asynchronous workers is set to 6.

D ADDITIONAL RESULTS

D.1 LEARNING CURVE

We provide the CQL loss curve under the 1 Env., 4 Envs. and 8 Envs. training setup. As shown in
Figure 14, the offline model approaches convergence after two hours and we continued training for
another three hours after nearing convergence, observing no significant further decrease in the loss.
Note that the offline training was conducted on a Nvidia RTX 4090 GPU.

D.2 EVALUATE TRACKING AGENTS ACROSS 16 UNSEEN ENVIRONMENTS

We provide the detailed quantitative evaluation results (episodic returns, episode length, success
rate) of the RL-based embodied tracking agents across 16 environments, listed in Table 11. In each
environment, we report the average results over 50 episodes. The results show that in the Palace Maze,
which contains abundant structural obstacles, the agent’s tracking performance was generally weaker
compared to the other three categories. In contrast, the agent performed generally better in Lifelike
Urbanity, characterized by its relatively regular and flat terrain. Additionally, we observed that as
the diversity of the training environments increased, the agent’s tracking performance improved
across all four environment categories. This highlights the positive impact of diverse training data
on enhancing the agent’s overall tracking effectiveness. We also provide vivid demo videos in
https://unrealzoo.notion.site/task-evt.
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Table 11: Quantitative evaluation results of the offline RL method across 16 environments. The
environments are grouped into four categories: Compact Interior, Wildscape Realm, Palace Maze, and
Lifelike Urbanity. The table compares the performance of agents trained on different offline dataset
settings: 1 Env. (single environment), 2 Envs. (two environments), and 8 Envs. (eight environments).
Each cell presents three metrics from left to right: Average Episodic Return (ER), Average Episode
Length (EL), and Success Rate (SR).

Category Environment Name
1 Env.

ER/EL/SR
2 Envs.

ER/EL/SR
8 Envs.

ER/EL/SR

Compact
Interior

Bunker 241/412/0.56 245/391/0.56 234/429/0.70
StorageHouse 213 /424 /0.68 275/449/0.76 170/434/0.64

SoulCave 229/402/0.60 252/422/0.56 206/405/0.58
UndergroundParking 179/391/0.56 250/424/0.62 184/410/0.60

Wildscape
Realm

Desert Ruins 209/392/0.54 293/449/0.70 277/453/0.70
GreekIsland 245/411/0.62 264/423/0.64 257/466/0.78
SnowMap 204/399/0.62 322/456/0.78 278/474/0.86

RealLandscape 171 /383/0.42 225/372/0.44 223/444/0.70

Palace
Maze

WesternGarden 230/403/0.54 209/408/0.54 296/472/0.82
TerrainDemo 232/411/0.56 233/403/0.56 192/411/0.56

ModularGothicNight 190/360/0.52 244/423/0.62 272/456/0.76
ModularSciFiSeason1 168/365/0.42 172/354/0.42 211/393/0.48

Lifelike
Urbanity

SuburbNeighborhoodDay 224/422/0.64 328/457/0.72 242/457/0.76
DowntownWest 296/460/0.78 317/456/0.76 292/469/0.86

Factory 278/434/0.64 291/452/0.74 249/435/0.64
Venice 295/441/0.70 323/448/0.82 294/474/0.84

Table 12: Quantitative evaluation results of the tracking agents across 4 different category environ-
ments with 4 distractors (4D), 8 distractors (8D), and 10 distractors (10D) respectively. The
table compares the performance of agents trained on different offline dataset settings: 1 Env. (single
environment), 2 Envs. (two environments), and 8 Envs. (eight environments). Each cell presents
three metrics from left to right: Average Episodic Return (ER), Average Episode Length (EL), and
Success Rate (SR).

Category Environment Name
1 Env.

ER/EL/SR
2 Envs.

ER/EL/SR
8 Envs.

ER/EL/SR

Compact
Interior

StorageHouse (4D) 117/343/0.40 181/375/0.52 190/428/0.62
StorageHouse (8D) 143/341/0.34 151/338/0.44 165/366/0.49

StorageHouse (10D) 81/324/0.36 109/331/0.42 107/357/0.50

Wildscape
Realm

DesertRuins (4D) 317/469/0.72 333/456/0.70 354/466/0.74
DesertRuins (8D) 213/406/0.50 316/445/0.58 267/444/0.68
DesertRuins (10D) 188/390/0.44 252/382/0.50 253/447/0.64

Palace
Maze

TerrainDemo (4D) 221/398/0.44 286/454/0.65 312/460/0.77
TerrainDemo (8D) 211/384/0.39 239/412/0.49 252/420/0.52

TerrainDemo (10D) 189/377/0.36 232/404/0.48 224/429/0.66

Lifelike
Urbanity

SuburbNeighborhoodDay (4D) 192/407/0.46 256/381/0.50 265/392/0.60
SuburbNeighborhoodDay (8D) 131/325/0.36 229/369/0.48 247/385/0.56
SuburbNeighborhoodDay (10D) 162/355/0.44 180/340/0.40 165/376/0.44

D.3 EVALUATE TRACKING AGENTS ACROSS UNSEEN SOCIAL ENVIRONMENTS

We select 4 environments from different categories as the testing environments, including Storage-
House, DesertRuins, TerrainDemo, and SurburNeighborhoodDay. We test the distraction robustness
of the social tracking agents by adding different numbers of distractors (4, 8, 10) in the environment.
The distractors randomly walk around the environment, which may produce various unexpected
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perturbations to the tracker, such as visual distractions, occlusion, or blocking the tracker’s path. As
shown in Table 12, the tracking performance of the three agents steadily decays with the increasing
number of distractors.
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