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ABSTRACT

Perturbation methods are model-agnostic methods used to generate heatmaps to
explain black-box algorithms such as deep neural networks. Perturbation methods
work by perturbing the input image. However, by perturbing parts of the input
image we are changing the underlying structure of the image, potentially generating
out-of-distribution (OOD) data. This would violate one of the core assumptions
in supervised learning, namely that the train and test data come from the same
distribution. In this study, we coin the term hermitry ratio to quantify the utility
of perturbation methods by looking at the amount of OOD samples they produce.
Using this metric, we observe the utility of XAI methods (Occlusion analysis,
LIME, Anchor LIME, Kernel SHAP) for image classification models ResNet50,
DensNet121 and MnasNet1.0 on three classes of the ImageNet dataset. Our results
show that, to some extent, all four perturbation methods generate OOD data
regardless of architecture or image class. Occlusion analysis primarily produces
in-distribution perturbations while LIME produces mostly OOD perturbations.

1 INTRODUCTION

In recent years there has been an explosion of explanation methods for artificial intelligence (XAI)
algorithms, largely due to the fact that AI is used in pretty much every facet of our modern lives.
The need for trust and understanding in AI algorithms has never been more important. A popular
way to create model explanations is to repeatedly remove features from the input and seeing how
this affects the model prediction. Depending on the difference in prediction, this feature is assigned
an importance score. The higher the score, the more the removal of this feature (or set of features)
impacts the model prediction. These XAI methods are commonly referred to as perturbation or
feature importance methods and they produce an explanation in the form of a heatmap or a saliency
map (Zeiler and Fergus, 2014; Zhou et al., 2015; Ribeiro et al., 2016; 2018; Lundberg and Lee, 2017).
These methods define model explanation as an importance weighting of all the features in the input
data conditioned on the model prediction. For an overview of methods that will be analyzed see
Table 1.

Table 1: Perturbation methods investigated in this paper.

Method Reference
LIME Ribeiro et al. (2016)
Anchor LIME Ribeiro et al. (2018)
Kernel SHAP Lundberg and Lee (2017)
Occlusion sensitivity Zeiler and Fergus (2014); Zhou et al. (2015)

Perturbation methods are also used to evaluate the quality of heatmaps, regardless of whether or not
the heatmap in question was obtained through a perturbation method (Hooker et al., 2019; Samek
et al., 2017; Kindermans et al., 2018; Petsiuk et al., 2018). These evaluation methods remove areas
from the input specified to be important by the heatmap. The perturbed input is fed to the model and
the performance of the model is compared to the performance of the model when the input was not
perturbed. The larger the discrepancy in performance, the more correct the heatmap is deemed to be.
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There are various benefits to perturbation methods: easy to compute, model agnostic and intuitively
interpretable to many users. However, as indicated in previous work (Hooker et al., 2019; Sundararajan
et al., 2017), the perturbation of the input after training may well be presenting the trained model
with data that is out-of-distribution (OOD). By perturbing a data sample, we introduce changes to
its underlying structure that can be considered OOD. This violates one of the main assumptions
when training machine learning (ML) models in a supervised manner: The training and evaluation
data must come from the same distribution. If the model is fed input that is OOD, then we cannot
make any conclusions nor give any explanations based on its output. If the perturbation methods are
indeed generating OOD data, a reevaluation of their efficacy is required. In our paper we address the
questions: Are perturbation methods generating OOD data? If so, to what extent?

To our knowledge, this is the first study that investigates whether perturbation methods generate OOD
data. We focus our investigation to Deep Neural Networks (DNNs) trained with supervised learning
on image classification tasks. Empirical results indicate that DNNs underperform, relative to their
train and test performance, when they are presented with OOD data. This has spawned a whole field
of OOD sample detection (Bulusu et al., 2020; Siegismund et al., 2020).

Contribution. In this paper we address the above stated questions by defining a new concept
called hermitry ratio. We demonstrate that using this concept we can quantify and determine to
what extent perturbation methods are generating OOD data when applied to DNNs trained on an
image classification task using supervised learning. We test our method on four popular perturbation
methods applied to three widely used neural architectures for three ImageNet data classes. Our
results show that, to some extent, all four perturbation methods generate OOD data regardless of
architecture or image class. This questions the general applicability of perturbation methods as well
as the conclusions that can be drawn from them.

2 RELATED WORK

Kindermans et al. (2019) previously investigated the reliability of saliency methods and while these
methods also produce in heatmaps, the methods investigated in the paper are not perturbation methods.

Previous work rarely addresses the specific issue in question. Hooker et al. (2019) propose an
alternative to basic perturbation that involves re-training the model with a dataset that includes the
perturbated data. While their results are good and their method is valid, in practice this method is
very time consuming. Sundararajan et al. (2017) created the integrated gradients method keeping this
in mind: "However, the images resulting from pixel perturbation could be unnatural, and it could be
that the scores drop simply because the network has never seen anything like it in training."

3 METHODS

3.1 HERMITRY RATIO

Analogous to the definition of a hermit, we use the term hermitry1 to indicate how close a data sample
is to a distribution. The larger the degree of hermitry, the further away from the group the data sample
is. A data sample that is OOD is also called a hermit. This concept is illustrated in Figure 1.

Assume the training X and validation Y datasets where xi ∈ X, 0 < i ≤ IX and yi ∈ Y, 0 < i ≤ IY .

Let us assume a model M trained on X and its chosen encoding layer as L. We define the J
dimensional encoding vector extracted from such a network as hxi

=ML(xi), hxi
∈ RJ .

To calculate hermitry, we rely on the distance of such an encoding to the training distributions
encodings. Let us assume function Dz = D(X, z), Dz ∈ R describing the scalar distance between
the distribution of encodings coming from the training dataset and the encodings of a sample
z. Following that, we apply the same notion to a sample from the validation dataset to obtain
Dyi

= D(X, yi) and to the whole dataset with DY = D(X,Y ), DY ∈ RIY . Given that we have
DY , let us assume a threshold T that defines the 95th percentile n = b0.95IY c such that the sorted
DY , (DY )

′ = {(DY )
′
i|1 < i ≤ IY ∧ (DY )

′
i−1 ≤ (DY )

′
i} satisfies (DY )

′
n ≤ T .

1To the best of our knowledge there is no alternative term that captures how much a data sample belongs to a
distribution.
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Figure 1: A hermit is someone who chooses to live alone, thus someone who is not a member of
a group of other people. Analogous to this concept, we introduce the term hermitry to represent
how close a data point is to a distribution. The further away a person (data point) is from a group
(distribution), the more likely it is that they are a hermit (OOD). The threshold determines whether
a data point is in-distribution (ID) or OOD. The value for this threshold is determined by the 95th
percentile of validation class distance from the training class data.

Assuming a perturbation function φ and perturbed validation samples Ŷ = φ(Y ), we define the
distances of the perturbed validation samples as D̂Y = D(X,φ(Y )) where D̂Y ∈ RÎY . Using
the previously defined threshold T , we define the set of hermits as D̂H

Y = {D̂Y |D̂Y > T} where

D̂H
Y ∈ R ˆIH

Y . Given the number of hermits, we define the hermitry ratio H as H = ˆIHY /ÎY .

In other words, we want to measure whether a perturbation method generates OOD data. Using
hermitry we can measure how far one perturbed sample is from a dataset and determine if that sample
is a hermit. However, we are not interested in only a single sample, but a collection of samples
perturbed by the perturbation method. In this case it becomes more useful to look at the ratio of OOD
perturbed data samples. The hermitry ratio H quantifies the ratio of perturbed samples that are OOD.

To determine what is a low H and what is a high H we empirically determined a cutoff value of 0.3.
The reasoning for this is as follows: At H = 0.5 the XAI method generates OOD data for about half
of the samples that it perturbs. This is an undesirable situation because about half of the perturbed
samples are unreliable. By setting the value to 0.3 we allow for a number of samples to be OOD,
which can happen because part of the original validation images are also considered to be OOD, see
Appendix C. At 0.3 we say that 70% of the perturbed samples have to be ID. This cutoff value is
used to analyze the results.

Figure 2: To measure the degree of hermitry of a data sample generated by a perturbation method,
we measure the Mahalanobis distance from the encoding of the class dataset to the encoding of the
perturbed sample. The larger the Mahalanobis distance, the further away from the true distribution
the data is. The features from model layer L are used as encodings of the data samples.

3.2 EXPERIMENTS

In total we run 4 × 3 × 3 = 36 experiments to determine whether perturbation methods generate
OOD data: 4 XAI methods, 3 models and 3 ImageNet classes. At the core of each experiment, we
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measure the distance between a perturbed sample encoding and the training class encodings. The
perturbed encodings are based on the images in the validation class. This process is illustrated in
Figure 2.

Distance metric. We use Mahalanobis distance to implement D (Lee et al., 2018; Çallı et al., 2019).

D(X, z) =
√

(E[hX ]− hz)S−1(E[hX ]− hz)

where hX ∈ RIX×J and E[hX ] ∈ RJ and S = cov[hX , hX ] where S ∈ RJ×J .

We stick to a class-conditional setting where the X and Y are chosen from samples that belong to
the same class. Mahalanobis distance is not the only way to measure hermitry. ODIN (Liang et al.,
2018) is another method for detecting OOD data samples. However, ODIN has the drawback that it
perturbs the images, thus potentially also generating OOD data in the process.

Perturbation methods. We investigate four widely used perturbation methods listed in Table 1. Here
we describe how these methods perturb the input image briefly. For more information and a discussion
about these methods see Ras et al. (2020). For the first three methods we use the implementations
provided by the Captum library (Kokhlikyan et al., 2020) and for Anchor LIME we use the open
source implementation by Ribeiro et al. (2018). The parameters used to calculate the attributions
using each of these methods are provided in Appendix A. Occlusion sensitivity sweeps a gray patch
of fixed size across the image with the purpose of occluding pixel regions. In this paper we use a gray
patch of 22× 22 pixels. Kernel SHAP and LIME replace a subset of the image pixels with random
pixels present in the data. Anchor-LIME samples regions in the image and replaces the pixels with a
uniform color. Examples of perturbed images for each method can be seen in Table 2.

Models. To validate our method we wanted to see if our observations hold across various types
of model architectures. We chose three different pre-trained models: ResNet50 (He et al., 2016),
DenseNet121 (Huang et al., 2017) and MnasNet1.0 (Tan et al., 2019). Each architecture follows a
different network building approach. We use model implementations from the PyTorch torchvision
library (Paszke et al., 2019).

Encodings. To measure the distance between a single data point and a distribution of data points, we
represent our data as encodings. We obtain these encodings by passing the data through a network and
extracting the features at layer L, where layer L is the layer before the classification layer. This layer
is chosen because images can contain multiple classes. Ideally, each image only contains the target
class, however this is often not the case in ImageNet (Beyer et al., 2020). If the perturbation method
hides information about the target class, the model tries to predict with the information available for
the other class. This will be reflected in the classification layer as the shifting of the logit values
towards the predicted class. It becomes impossible to determine if the encoding is OOD because the
image was perturbed or because the model is predicting for a different class. Hence we go back to a
layer that contains more information, which is layer L before the classification layer.

For the experiments we collect 8 types of encoding distances using Equation 3.2: Train-train, train-val,
train-white noise, train-anime, train-LIME, train-Anchor LIME, train-Kernel SHAP, train-occlusion.

Train-train is used to validate that the dataset images are close each other. Train-val is used to
determine the distance from the train encodings and the validation encodings. Train-val is important
because we set the threshold shown in Figure 1 by calculating the value of the 95th percentile of
train-val. Note that this value is unique per model and image class and it allows us to compare the
perturbation methods with each other. In Figure 3 train-LIME, train-Anchor LIME, train-Kernel
SHAP and train-occlusion are plotted as kernel density estimation (KDE) plots.

We intentionally feed the network what is usually considered OOD data and measure their distance to
the train encodings. Train-white noise are the distances between the train encodings and encodings of
uniform white noise images. Train-anime are the distances between the train encodings and encodings
of a subset of the SFW Danbooru2020 Anime dataset (Anonymous et al., 2021). The resulting KDE
plots can be found in Appendix C.

Dataset. In the experiments in this paper we use a class-conditional distance as described by Lee
et al. (2018) to measure hermitry as opposed to distance to the entire dataset. I.e., Given class A, class
B can be considered OOD. ImageNet images often contain multiple classes (Beyer et al., 2020). If an
XAI method removes the information for one class, another class may become more likely. Thus
we define OOD as not belonging to a specific class and use a class-conditional setting. We use the
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LIME

Anchor LIME

Kernel SHAP

Occlusion

Table 2: Examples of what the perturbed images for each XAI method looks like, applied on the class
Tennis Ball.

ImageNet dataset’s official validation set to generate the perturbed samples. We run experiments on
three arbitrarily chosen image classes: Tennis Ball, Printer and Chocolate Sauce. Examples from the
validation dataset are provided in Figure 3.

4 RESULTS

The hermitry threshold obtained by using the 95th percentile of the non-perturbed validation distances
are provided in Appendix B. In Table 4 the hermitry ratio is listed for each perturbation method,
model and ImageNet class. The table is divided into two parts, the top part shows the experiments
resulting in a low hermitry ratio (≤ 0.3) while the bottom part shows the experiments resulting in a
high hermitry ratio (> 0.3).

It is immediately clear that, to some extent, every chosen XAI method generates data that can be
considered OOD. In every case tested the occlusion method generated data with a low hermitry ratio
(mean hermitry ratio of 0.061), indicating that most of the time, the method does not produce data that
can be considered OOD. The specific distribution of Mahalanobis distances relative to the training
data class can be seen in Figure 3. Except for one case, LIME generates samples with a high hermitry
ratio (mean hermitry ratio of 0.642). LIME generated samples with a low hermitry ratio when it
was applied to MnasNet1.0 on the Tennis Ball class. Kernel SHAP (mean hermitry ratio of 0.315)
and Anchor LIME (mean hermitry ratio of 0.325) produced mixed results. Kernel SHAP only has a
low hermitry ratio when applied to MnasNet1.0 and Anchor LIME has a low hermitry ratio when
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Chocolate
Sauce

Printer

Tennis
Ball

Table 3: Example images from the classes that were used in this study.

applied to the Chocolate Sauce class. The results indicate that both the model architecture and the
class influence whether an XAI method produces OOD data. Overall, when applied to MnasNet1.0
XAI methods produce low hermitry ratios (mean hermitry ratio of 0.195) compared to DenseNet121
(mean hermitry ratio of 0.387) and ResNet50 (mean hermitry ratio of 0.426) .

5 DISCUSSION

In this study, we investigated four XAI perturbation methods to see if their perturbations are generating
OOD data. The term hermitry is defined to describe how close to a distribution a data sample is. Using
hermitry and the hermitry ratio we are able to quantify whether perturbation methods generate OOD
data. First, we used images from the ImageNet training dataset to describe the expected encoding
distributions for three classes. Using a subset of the training dataset, we described the expected
encoding distributions for this class for a pre-trained deep learning model. Second, the distance
between the validation samples and the encoded distribution was measured for each validation class,
each class containing 50 samples. Third, we applied the four XAI methods to these 50 validation
samples and generated encodings based on many perturbed image variations. Four, we compared
the distances of the non-perturbed validation encodings to the perturbed ones to define the hermitry
of the perturbed samples. We used the 95th percentile of the non-perturbed validation samples as
a threshold for the hermitry of perturbed samples. By looking at the ratio of perturbed encodings
after this threshold, we defined the hermitry ratio. We used this ratio to quantify the validity of the
explanations made by an XAI method in a given situation. Finally, we repeat this process for three
popular models and three arbitrarily chosen ImageNet classes.

6



Under review as a conference paper at ICLR 2022

Fi
gu

re
3:

M
ah

al
an

ob
is

di
st

an
ce

s
(n

or
m

al
iz

ed
)

of
pe

rt
ur

be
d

sa
m

pl
e

en
co

di
ng

s
to

th
e

tr
ai

ni
ng

da
ta

se
te

nc
od

in
gs

.
T

he
gr

ay
pa

rt
s

of
th

e
di

st
ri

bu
tio

n
re

pr
es

en
tt

he
sa

m
pl

es
th

at
ar

e
in

di
st

rib
ut

io
n

w
ith

lo
w

he
rm

itr
y.

Th
e

bl
ac

k
pa

rts
re

pr
es

en
tt

he
sa

m
pl

es
th

at
ar

e
O

O
D

w
ith

hi
gh

he
rm

itr
y.

Th
e

th
re

sh
ol

d
is

de
te

rm
in

ed
us

in
g

th
e

95
th

pe
rc

en
til

e
of

th
e

va
lid

at
io

n
da

ta
se

t’s
M

ah
al

an
ob

is
di

st
an

ce
s.

7



Under review as a conference paper at ICLR 2022

Table 4: Hermitry ratio for each XAI method, model and class.

Hermitry Ratio XAI Method Model Class Name

L
ow

H
er

m
itr

y
R

at
io

(≤
0.
3

)

0.052 Occlusion DenseNet121 Chocolate Sauce
0.058 Occlusion DenseNet121 Printer
0.068 Occlusion DenseNet121 Tennis Ball
0.053 Occlusion MnasNet1.0 Chocolate Sauce
0.046 Occlusion MnasNet1.0 Printer
0.060 Occlusion MnasNet1.0 Tennis Ball
0.059 Occlusion ResNet50 Chocolate Sauce
0.060 Occlusion ResNet50 Printer
0.095 Occlusion ResNet50 Tennis Ball
0.260 LIME MnasNet1.0 Tennis Ball
0.084 Kernel SHAP MnasNet1.0 Chocolate Sauce
0.280 Kernel SHAP MnasNet1.0 Printer
0.062 Kernel SHAP MnasNet1.0 Tennis Ball
0.096 Anchor LIME DenseNet121 Chocolate Sauce
0.191 Anchor LIME DenseNet121 Printer
0.147 Anchor LIME MnasNet1.0 Chocolate Sauce
0.135 Anchor LIME MnasNet1.0 Printer
0.223 Anchor LIME ResNet50 Chocolate Sauce

H
ig

h
H

er
m

itr
y

R
at

io
(>

0
.3

)

0.525 LIME DenseNet121 Chocolate Sauce
0.962 LIME DenseNet121 Printer
0.747 LIME DenseNet121 Tennis Ball
0.359 LIME MnasNet1.0 Chocolate Sauce
0.444 LIME MnasNet1.0 Printer
0.905 LIME ResNet50 Chocolate Sauce
0.722 LIME ResNet50 Printer
0.857 LIME ResNet50 Tennis Ball
0.447 Kernel SHAP DenseNet121 Chocolate Sauce
0.482 Kernel SHAP DenseNet121 Printer
0.311 Kernel SHAP DenseNet121 Tennis Ball
0.486 Kernel SHAP ResNet50 Chocolate Sauce
0.363 Kernel SHAP ResNet50 Printer
0.324 Kernel SHAP ResNet50 Tennis Ball
0.711 Anchor LIME DenseNet121 Tennis Ball
0.409 Anchor LIME MnasNet1.0 Tennis Ball
0.326 Anchor LIME ResNet50 Printer
0.688 Anchor LIME ResNet50 Tennis Ball

It was unsurprising that occlusions produce data that is least OOD because occlusion was implemented
with a patch of 22× 22 pixels. We expect that increasing the patch size will also increase the degree
of hermitry. Considering that LIME produces perturbations with a high level of noise it is also not
surprising that, out of all the methods, it generated the most OOD data. Kernel SHAP produced
a lower number of OOD data than LIME, even though some of the perturbed images look worse
compared to LIME. We suspect that the number of images that are heavily perturbed make up only
a small minority of the perturbed images. More investigation into this is needed. We expected
the results for Anchor LIME to be similar to LIME, however, Anchor LIME produces fewer OOD
data compared to LIME. One possible explanation is that the exploration approach guiding the
perturbation is much more efficient in Anchor LIME compared to unguided random perturbations in
LIME, leading to smaller, targeted perturbation regions.

Throughout the experiments it became clear that both the image class and the architecture choice
affect to what degree the perturbation methods generate OOD data. E.g., 9 out of 12 MnasNet1.0
experiments produced low hermitry ratio, compared to the others 5 out of 12 for DenseNet121 and 4
out of 12 for ResNet50. One possible explanation is that MnasNet feature extraction is more robust
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to input perturbation, causing less changes to the encoding later in the network. For the moment it is
unclear which architecture mechanism causes this phenomenon.

As for classes, there is currently not enough data to be able say anything about how the class choice
is affecting the degree of hermitry.

Mentioned previously in Section 3.2 hermitry is defined and utilized in a class-conditional approach.
Ideally we would like to not have it be class-conditional but rather encompass the entire dataset.
For this to happen we need to improve the representation for the dataset encodings such that they
correlate less with the network prediction, e.g., by extracting features from an earlier layer. Another
approach is using a different image dataset where the images only contain a single class.

To quantify hermitry, we chose a hermitry threshold at the 95th percentile of the validation dataset
distances. Considering that the perturbed samples also come from the validation dataset, this
percentile makes sense. However, one may argue that this threshold point should be 99 or 90th
percentiles. Although it is not perfect, 95th gives us a point to make comparisons on and the results
would not have changed a lot when different thresholds were used.

Currently the cutoff for the hermitry ratio is at 0.3. Finding a more principled way of determining
this cutoff could improve the validity of our findings.

In future work, we would like to produce a higher quality quantification of hermitry by extending
our Mahalanobis distance application to reflect on the model predictions as per Lee et al. (2018), to
distinguish OOD and different class. There are other input perturbation methods such as SHAPley
Sampling Values (Strumbelj and Kononenko, 2010), feature permutation (Fisher et al., 2019), mean-
ingful perturbation (Fong and Vedaldi, 2017), prediction difference analysis (Zintgraf et al., 2017),
and representation erasure Li et al. (2016) that we can add to our analysis. Also there are many other
model architectures that we can add to our analysis.

In general our study shows that perturbation methods that perturb a relatively small region of the
image tend to generate less OOD data, while methods that perturb large regions tend to generate more
OOD data. Quantifying the boundary for this amount of perturbation merits further investigation, as
all perturbation methods can be improved if fitted with a boundary parameter that prevents excessive
perturbation.

This study focuses on image classification, and our findings and conclusions are only applicable in
this context. For other modalities such as text, or for other image datasets such as medical images,
the conclusions may differ. Our results indicate that the underlying properties of the class and the
model has an affect on the quantified hermitry ratio, hence utility of an XAI method. Identification of
these properties and investigation of how they affect the hermitry ratio is crucial for understanding
their utility for XAI methods.
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APPENDIX A PARAMETERS FOR XAI METHODS

XAI Method / Parameter Value
LIME

interpretable_model captum._utils.models.SkLearnLinearRegression()
similarity_func captum.attr._core.lime.get_exp_kernel_similarity_function(’euclidean’, kernel_width=1000)
n_samples 100

Kernel SHAP
n_samples 100

Occlusion
sliding_window_shapes (3, 22, 22)
strides (3, 11, 11)

Anchor Lime
library defaults

APPENDIX B NORMALIZED HERMITRY THRESHOLDS

Tennis Ball Printer Chocolate Sauce
DenseNet121 0.426262 0.351752 0.504520
ResNet50 0.234585 0.284813 0.315702
MnasNet1.0 0.322230 0.417694 0.386400
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APPENDIX C BASELINE DENSITY PLOTS

Mahalanobis distances (normalized) of baseline sample encodings to the training dataset encodings.
The gray parts of the distribution represent the samples that are in distribution with low hermitry.
The black parts represent the samples that are OOD with high hermitry. The threshold is determined
using the 95th percentile of the validation dataset’s Mahalanobis distances.
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