

000 001 002 003 004 005 POSITION: MULTI-FACETED STUDIES ON DATA POI- 006 SONING CAN ADVANCE LLM DEVELOPMENT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027 ABSTRACT 028

029 The lifecycle of large language models (LLMs) is far more complex than that of
030 traditional machine learning models, involving multiple training stages, diverse
031 data sources, and varied inference methods. While prior research on data poisoning
032 attacks has primarily focused on the safety vulnerabilities of LLMs, these attacks
033 face significant challenges in practice. Secure data collection, rigorous data clean-
034 ing, and the multistage nature of LLM training make it difficult to inject poisoned
035 data or reliably influence LLM behavior as intended. Given these challenges,
036 this position paper proposes rethinking the role of data poisoning and argues that
multi-faceted studies on data poisoning can advance LLM development. From
037 a threat perspective, practical strategies for data poisoning attacks can help evaluate
038 and address real safety risks to LLMs. From a trustworthiness perspective, data poi-
039 soning can be leveraged to build more robust LLMs by uncovering and mitigating
040 hidden biases, harmful outputs, and hallucinations. Moreover, from a mechanism
041 perspective, data poisoning can provide valuable insights into LLMs, particularly
042 the interplay between data and model behavior, driving a deeper understanding of
043 their underlying mechanisms.
044

045 1 INTRODUCTION 046

047 Data poisoning Zhao et al. (2023b); Zhang et al. (2023); Kojima et al. (2022), which refers to
048 the threat model that introduces maliciously crafted data into model training processes Zhao et al.
049 (2024b); Kandpal et al. (2023); Hubinger et al. (2024), has brought great threats to the security
050 and trustworthiness of LLM applications. Recent studies have shown that such poisoned data can
051 have far-reaching consequences in LLMs, including performance degradation (He et al., 2024d),
052 the insert of backdoors that allow attackers to control outputs under specific conditions (Wan et al.,
053 2023; Kandpal et al., 2023; Xiang et al., 2024), and the manipulation of responses to serve malicious
054 purposes (Bekbayev et al., 2023; Rando & Tramèr, 2023; Bowen et al., 2024a).

055 Unlike conventional machine learning models, LLM development usually undergoes a much
056 more complex lifecycle. This includes pre-training on large-scale datasets, instruction tuning and
057 RLHF Ziegler et al. (2019); Ouyang et al. (2022), fine-tuning for specific tasks or domains (Hu et al.,
058 2021; Liu et al., 2022), inference-time adaptation methods such as in-context learning (ICL) (Brown
059 et al., 2020), and applications such as retrieval-augmented generation (RAG) (Lewis et al., 2020) and
060 LLM agents (Wu et al., 2023; Gao et al., 2024). Since diverse data is involved in multiple stages
061 of LLM’s lifecycle, data poisoning attacks naturally extend from attacking one dataset to all data
062 sources in the lifecycle, and we refer to this extended attack as **lifecycle-aware data poisoning for**
063 **LLMs** (detailed in Section 2). This broader scope introduces new aspects for investigation.
064

065 However, the majority of existing data poisoning research on LLMs holds a threat-centric perspective
066 that focuses on uncovering the risk of data poisoning, and mainly adopts attacks designed for
067 traditional machine learning models to LLMs. We identify two fundamental limitations of the
068 existing threat-centric efforts as follows:
069

070 First, an often unjustified assumption is that attackers can directly or indirectly manipulate data. This
071 assumption is especially challenging for LLMs, as their data sources are highly diverse and often
072 private. For instance, large organizations developing LLMs typically do not disclose their pre-training
073 or post-training datasets. This applies to both open-source models, such as the Llama series (Dubey
074 et al., 2024), and API-only models, such as GPTs (Achiam et al., 2023) (more details in Section
075

054
055
056
057
058
059
060
061
062
063
064
065
066
067

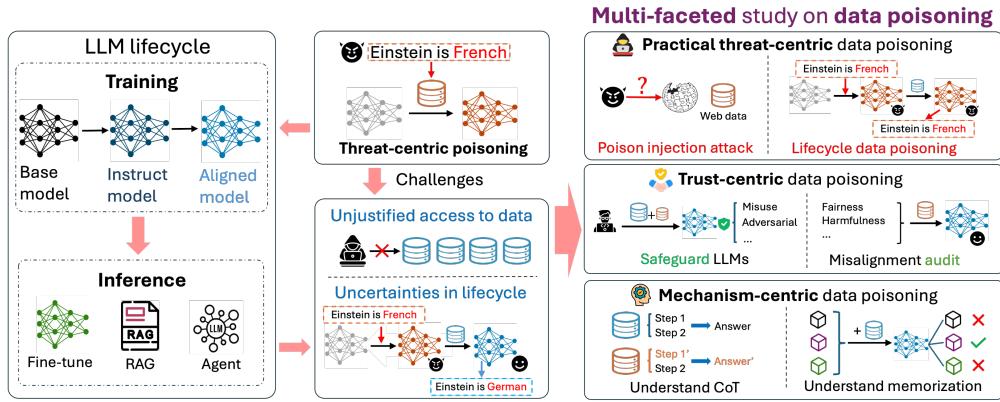


Figure 1: An illustration of this paper’s structure. (Left) LLM’s lifecycle including multiple training and inference stages (Section 2.1). (Middle) Threat-centric data poisoning and its challenges (Section 2.2). (Right) The **multi-faceted study on data poisoning**, including practical threat-centric (Section 3), trust-centric (Section 4) and mechanism-centric data poisoning (Section 5).

2). If it is not well-justified whether the attacker is able to manipulate the data, the feasibility and impact of data poisoning attacks in real-world scenarios cannot be properly estimated, potentially overlooking the scenarios that are more likely to happen. Second, the multiple stages of an LLM’s development lifecycle introduce significant uncertainties, such as variations in training algorithms in different stages. Since attackers usually lose control over poisoned datasets once they are integrated into complex training pipelines, these uncertainties will undermine the effectiveness of data poisoning attacks throughout the later stages. Specifically, compared to traditional machine learning models, which often follow a training-and-testing paradigm that better preserves poisoning effects (He et al., 2023), the complicated processes within LLMs make it difficult for attackers to account for all factors. For example, poisoned data injected during the instruction tuning stage may be overwritten by diverse datasets and alignment objectives in the preference learning stage (Wan et al., 2023). Furthermore, unknown downstream tasks and datasets during inference-time adaptations can further dilute poisoned patterns (Qiang et al., 2024).

These limitations motivate us to rethink data poisoning in the era of LLMs by investigating two critical questions. First, the lack of proper justification of the attacker’s capability to directly manipulate data and the challenge of sustaining the poisoning effect across LLMs’ lifecycle inspires: **(Q1)** *How can we enhance the practicality of data poisoning attacks to position them as a real-world threat?* This question inspires us to explore practical threat models and effective strategies to reveal data poisoning risks in real-world scenarios. Second, despite the practical challenges for attackers, existing research also fails to fully leverage insights into LLM vulnerabilities from data poisoning to address broader objectives, such as developing trustworthy LLMs. Therefore, we aim to investigate: **(Q2)** *Can data poisoning serve as a tool to advance LLM research beyond conventional threat-centric perspective?* This question changes the focus from threats to opportunities, focusing on how data poisoning can be leveraged to guide trustworthy LLM development, and even understand LLM mechanisms.

To address **(Q1)**, we advocate for developing realistic strategies, such as the proposed *poison injection attack* (detailed in Section 3). Practical strategies should go beyond focusing solely on the consequences of poisoning. They need to consider LLM-specific development scenarios and security measures to enable effective data injection. Additionally, these strategies aim to sustain poisoning effects throughout the LLM development lifecycle. By targeting vulnerabilities such as web crawling pipelines (Carlini et al., 2024) and agent memory storage systems (Chen et al., 2024b), which are essential parts of LLM data collection, these strategies validate the feasibility of data poisoning attacks, transforming theoretical threats into real-world risks.

For **(Q2)**, we reconsider key characteristics of data poisoning attacks, including the ability to exploit model mechanisms (Steinhardt et al., 2017; Yu et al., 2022; He et al., 2024d), dependence on strategic data selection (He et al., 2024b; Xia et al., 2022; Zhu et al., 2023), and capacity to precisely control model output (Schwarzschild et al., 2021; Shafahi et al., 2018; Geiping et al., 2020). Specifically, we propose leveraging data poisoning techniques to advance LLM trustworthiness and recognize it as a powerful lens for understanding model behavior. We refer to these novel perspectives as **trust-centric**

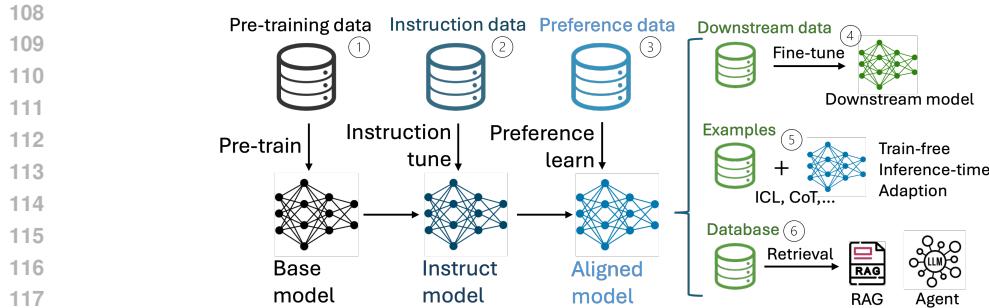


Figure 2: A systematic overview of an LLM’s development lifecycle including training stages (pre-training, instruction tuning, preference learning) and various inference stages such as fine-tuning, train-free inference-time adaption and retrieval-based applications (show inside the right brace).

(Section 4) and **mechanism-centric** (Section 5) respectively, to distinguish them from the traditional threat-centric view.

Trust-centric data poisoning leverages data poisoning techniques to address security threats and misaligned behaviors like fairness (Li et al., 2023), misinformation (Chen & Shu, 2023) and hallucination (Yao et al., 2023) in LLM outputs. This can be achieved by embedding specially designed data into clean datasets to influence model behavior. For example, secret tasks (China Daily, 2024) can be injected during LLM training to protect proprietary models. Similarly, backdoored models can mitigate jailbreak attempts by triggering predefined safety responses to malicious prompts (Chen et al., 2024a; Bowen et al., 2024a). Beyond security, trust-centric data poisoning can address biases in training data and eliminate misaligned patterns (Zhang et al., 2024a) by injecting corrective data.

Mechanism-centric data poisoning focuses on understanding LLM behaviors, such as Chain-of-Thought (CoT) reasoning (Wei et al., 2022) and long-context learning (Li et al., 2024b). Its key advantage is precise control over data manipulation, allowing the creation of “poisoned datasets” to study how specific data patterns influence model behavior. For instance, to examine which reasoning steps are critical or whether incorrect examples aid reasoning, we can perturb individual steps in few-shot examples and test model sensitivity (Cui et al., 2024; He et al., 2024a). This controlled approach enables fair comparisons of each step’s influence on CoT reasoning. Additionally, this perspective sheds light on LLM memorization by injecting patterns into training data and evaluating their effects, offering insights into how LLMs encode and retrieve information from training samples.

In summary, these discussions argue that **multi-faceted studies on data poisoning can advance LLM development**. As shown in Figure 1, the rest of the paper is organized as follows. In Section 2, we provide a holistic overview of data poisoning attacks on LLMs, and discuss fundamental limitations. In Section 3, we discuss practical threat-centric data poisoning. In Section 4 and 5, we introduce two novel perspectives: trust-centric data poisoning and mechanism-centric data poisoning that extend data poisoning methods from threats to useful tools that develop more trustworthy LLMs and help understand LLMs.

2 DATA POISONING IN LLMs

In this section, we present a comprehensive overview of data poisoning in LLMs, organized by stages of an LLM’s lifecycle. Following this, we discuss the limitations of existing studies of data poisoning.

2.1 AN OVERVIEW OF DATA POISONING IN LLM’S LIFECYCLE

Generally speaking, data poisoning attacks aim to inject maliciously designed data (known as poisoning data) into the training set to achieve the attacker’s malicious goals. These goals often range from degrading the model’s performance (targeted and untargeted attacks)(Shafahi et al., 2018; Fowl et al., 2021) to triggering specific behaviors (backdoor attacks)(Schwarzchild et al., 2021; Gu et al., 2019). Since LLMs are commonly pre-trained on large-scale datasets that are scraped from the Internet and can be contaminated by attacks (Carlini et al., 2024), data poisoning attacks have also captured increasing attention in the era of LLMs (Wan et al., 2023; He et al., 2024d).

162
 163 Table 1: A summarization of threat models in existing threat-centric data poisoning for LLMs. We
 164 focus on attackers' capability on data and models, where Partial access represents scenarios that
 165 attackers can inject a proportion of poisoned samples or modify a subset of clean data. Full access
 166 means complete control over data and LLMs.

Data access	Model access	LLM lifecycle Stage	References
167 168 169 170 171 172 173	167 168 169 170 171 172 173	167 168 169 170 171 172 173	Pre-training (Zhang et al., 2024b; Hubinger et al., 2024)
			Instruction tuning (Wan et al., 2023; Xu et al., 2023; Shu et al., 2023; Qiang et al., 2024; Yan et al., 2024)
			Preference learning (Wu et al., 2024; Rando & Tramèr, 2023; Baumgärtner et al., 2024)
			Inference (fine-tuning) (Zhao et al., 2024a; 2023a; Bowen et al., 2024a)
			Inference (ICL, CoT) (He et al., 2024c; Xiang et al., 2024)
			Inference (RAG) (Zou et al., 2024; Xue et al., 2024; Chen et al., 2024c)
			Inference (Agent) (Chen et al., 2024b)
174	175	176	177
178	179	180	181
182	183	184	185
186	187	188	189
190	191	192	193
194	195	196	197
198	199	200	201
202	203	204	205
206	207	208	209
210	211	212	213
214	215	216	217

Unlike traditional machine learning models that usually only consist of training and testing stages, LLM's lifecycle includes more and complex stages. As shown in Figure 2, stages in an LLM's lifecycle include different training stages: (1) pre-training stage where a base model is trained on large-scale pre-training datasets from scratch via next-token prediction; (2) instruction tuning stage where the base model is fine-tuned on the instruction data to obtain the instruction-following capability; (3) preference learning stage where the instruct model is tuned to align with the human preference on the preference data which are human annotated. There are also various kinds of inference stages: (4) downstream fine-tuning that finetunes the LLM on downstream datasets for a specific downstream task; (5) train-free inference-time adaptions such as ICL or CoT where examples are used to adapt tasks without changing model parameters; (6) retrieval-based applications such as Retrieval-augmented generation (RAG) and LLM agents which retrieve from external databases to help execute tasks. Existing literature reveals the harmful impact of injecting poison into the data in these stages, e.g., (Wan et al., 2023; Kandpal et al., 2023; Hubinger et al., 2024; Zou et al., 2024). Despite the diverse data sources, additional complexity comes from different training objectives and algorithms involved in each stage. For instance, pre-training is conducted on large-scale unlabeled data via next-token prediction; instruction tuning and preference learning rely on annotated data and supervised algorithms like Supervised Fine-Tuning (SFT) (Touvron et al., 2023) and Direct Preference Optimization (DPO) (Rafailov et al., 2024).

The diverse data sources and training objectives of LLMs make them highly susceptible to a broader range of data poisoning attacks, collectively termed as **lifecycle-aware data poisoning for LLMs**. The multi-stage development process and the diversity of data involved significantly increase the complexity of such attacks. Our investigation reveals that most existing studies (Yao et al., 2024; Das et al., 2025; Chowdhury et al., 2024; Zhang et al., 2025; Zhao et al.) on data poisoning in LLMs adopt a **threat-centric** perspective which treats data poisoning as an adversarial act. These approaches often rely on traditional data poisoning methods (Das et al., 2025; Zhao et al.) without adequately addressing the unique complexities inherent to LLMs as introduced above. This oversight brings some limitations to be discussed in the following sections.

2.2 LIMITATION IN EXISTING THREAT-CENTRIC DATA POISONING

Lifecycle-aware data poisoning for LLMs is far more complex, yet most existing approaches still rely on threat models and methods designed for traditional attacks. We identify two key limitations in this approach: (1) insufficient justification for the practicality of the threat models; and (2) the challenges posed by amplified uncertainties across the multiple stages of LLMs.

2.2.1 ANALYZING THE PRACTICALITY OF DATA POISONING THREAT MODELS

Data poisoning attacks involve manipulating data, either by directly modifying existing datasets or injecting malicious data. This raises a critical question about threat-centric research: *Are the assumptions about an attacker's access to data practical?* To answer this question, we summarize threat models in existing works, as shown in Table 1.

According to Table 1, most threat models presume that the adversary can directly/indirectly inject or modify the clean data. This assumption has been widely adopted by poisoning attacks in all stages of the LLM's lifecycle. In practice, data is often regarded as a highly valuable resource. Unlike the

assumptions commonly made in data poisoning literature, it is typically inaccessible to regular users due to developers' legal and safety concerns. Take the Llama series (Touvron et al., 2023; Dubey et al., 2024) as an example. While much of the pre-training data is mostly crawled from the web, the data undergoes a thorough cleaning process before being used for training (Dubey et al., 2024). This process includes safety filtering to remove unsafe content, text cleaning to extract high-quality data, and both heuristic and model-based quality filtering to eliminate low-quality documents. Post-training data, such as instruction-tuning datasets and preference data, is generated and annotated under the supervision of developers and is also subjected to careful cleaning and quality control. These show that LLM training data is typically under the careful control of model developers, which poses significant challenges to the assumption that attackers can access these training data.

The challenge of the adversary's access to the data is not limited to the training stages, but also the inference stages or downstream adaptions including downstream fine-tuning, ICL and applications like RAG. Data used for downstream fine-tuning, or inference-time adaption like ICL is usually collected by users themselves, and the small size of data¹ (Min et al., 2022) allows for better quality and safety control. The database in the RAG system is also an internal resource (Li et al., 2024a), especially in privacy-intensive domains such as healthcare, education, and finance. Various security measures, e.g., role-based access control (Sandhu, 1998; Ant, 2025) and data encryption (Ramachandra et al., 2022), can prevent adversarial access to the data.

Therefore, we can conclude that the practicality of the assumption allowing attackers to directly/indirectly manipulate data is not properly and sufficiently justified. While some works provide examples to illustrate that this assumption holds under rare scenarios (Chen et al., 2024b; Xiang et al., 2024), more evidence on how data manipulation can be achieved would be helpful in addressing the real concerns of data poisoning.

2.2.2 LIMITATIONS DUE TO THE COMPLEXITY OF LLM LIFECYCLE

The complexity of the LLM lifecycle makes it significantly harder for attackers to control the impact of poisoned data. In typical data poisoning scenarios, attackers are assumed to control the data at one stage but lack knowledge of subsequent stages, including the data and algorithms used after the poisoned data is released by the attacker. This assumption is common in traditional data poisoning attacks. Some existing works (He et al., 2023; Huang et al., 2020) focus on developing effective attacks to address uncertainties in traditional models which typically involve only a single training and testing stage. However, the complexity of LLM's multi-stage nature exacerbates this challenge. For example, the pre-training stage mostly leverages unlabeled data for next-token prediction, while the preference learning stage utilizes RLHF or DPO on human-annotated preference data. This complexity makes it far more difficult to ensure that poisoning effects persist across stages, especially when the attacker targeting an early stage has no control over later stages.

To set an example, poisoned data injected during instruction tuning may lose its impact during the subsequent preference learning stage (Wan et al., 2023; Qiang et al., 2024). After this stage, alignment procedures such as RLHF are designed to optimize the model's outputs to align with human preferences, which can effectively dilute or neutralize malicious effects introduced earlier. Consequently, the threat posed by poisoning during instruction tuning is significantly diminished by the time the aligned model is released.

Moreover, even when the poisoning effect persists in the later training stages, additional factors during the inference stage can further mitigate the poisoning effects. For instance, inference methods such as training-free adaptions (e.g., ICL) have been shown in existing works (Qiang et al., 2024) to defend against poisoning attacks injected at the instruction tuning stage. These compounded uncertainties—arising from diverse stages, algorithms, and inference methods—pose significant challenges for attackers attempting to sustain the impact of their poisoning efforts throughout the LLM lifecycle.

3 PRACTICAL THREAT-CENTRIC DATA POISONING

Due to the aforementioned limitations, it is desired to explore more practical data poisoning for LLMs, **practical threat-centric data poisoning**. It aims to investigate data poisoning threats in realistic scenarios. Next, we demonstrate our concept with the following two aspects.

¹Existing works have illustrated that a few examples are sufficient for ICL and CoT.

270 **Poison injection against secure data collection** A key interest of practical threat-centric data
 271 poisoning is its emphasis on validating both the feasibility and practicality of attacks. It advocates for
 272 practical *poison injection attacks*, which aim to strategically insert malicious data into clean datasets
 273 involved in the LLM lifecycle. A successful poison injection attack demonstrates that the victim
 274 dataset can be poisoned. To conduct a successful poison injection attack, we suggest identifying and
 275 exploiting potential vulnerabilities in data collection, curation, and storage pipelines across the entire
 276 LLM lifecycle. We present some illustrative examples from different stages.

277 • Pre-training: During the pre-training stage, (Carlini et al., 2024) explore strategies for injecting
 278 poisoned samples into web-scale datasets by exploiting vulnerabilities in data collection processes.
 279 Their approach targets periodic snapshots of crowdsourced platforms like Wikipedia, focusing
 280 on small windows during which content is revised or added. This work exposes weaknesses in
 281 data collection and curation pipelines and provides practicality guarantees for pre-training data
 282 poisoning in LLMs.

283 • Preference learning: In the preference learning stage, attackers can identify vulnerabilities in the
 284 human annotation process for preference data to inject malicious data. This injection can involve
 285 exploiting crowdsourcing platforms (such as Amazon Mechanical Turk (Turk, 2012)), infiltrating
 286 the annotation workforce by posing as annotators to mislabel texts or introducing ambiguous and
 287 highly subjective content for labeling to create systematic biases.

288 • Train-free inference-time adaptions: In retrieval-based applications, such as LLM agents, attackers
 289 can inject poisoned samples during the inference stage solely through user queries. This involves
 290 inducing the agent to generate malicious content and exploiting flaws in the memory storage
 291 mechanism to store the poisoned records successfully.

292 **Weaker attacker’s ability and new attacking objectives** Another critical aspect of practical
 293 threat-centric data poisoning is the consideration of uncertainties across LLM’s life cycle. We notice
 294 that the majority of existing threat-centric works usually focus on one stage. In other words, they
 295 often assume that the attackers inject malicious samples into the data of one stage and evaluate how
 296 poisoned data influence the model behavior after this particular stage (Wan et al., 2023; Kandpal et al.,
 297 2023; He et al., 2024d). While such an attacking objective avoids potential influences from other
 298 stages and provides valuable insights into how LLMs are affected by data poisoning in a particular
 299 stage, a real-world attacker rarely has isolated control over only one stage and a more practical and
 300 impactful perspective is to consider a lifecycle poisoning attack, i.e. adversaries manipulate data in
 301 one stage to achieve malicious goals in subsequent stages, even without having control over those
 302 later stages. For example, adversaries who poison instruction data should consider its effect on the
 303 aligned model, not just the instruction-tuned stage. Moreover, inference-stage uncertainties, such
 304 as fine-tuning on clean downstream data neutralizing poisoning effects or the resistance of ICL to
 305 instruction-data poisoning (Qiang et al., 2024), must also be considered, as discussed in Section 2.1.

306 Specifically, we advocate for a more accurate definition of the attacker’s capabilities and long-term
 307 attacking objectives incorporating future stages. For example, a practical and important scenario is
 308 that we assume the adversary can only poison the pre-training data, and the goal is to induce malicious
 309 behaviors in the inference stage. This means that the attacker aims at a strong poisoning effect that
 310 can survive the subsequent clean instruction tuning and preference learning stage. Moreover, if the
 311 attack is successful under different inference methods such as both simple query and ICL, it will pose
 312 an even stronger risk in real-world scenarios. The weaker assumption on the attacker’s capability and
 313 stricter attacking goal make this kind of attack hard to conduct, so new attacking objectives need to
 314 be designed to further exploit the weakness of LLMs. Inspirations can be drawn from traditional data
 315 poisoning attacks like (He et al., 2023; Huang et al., 2020) where uncertainties of algorithms and
 316 data are explicitly incorporated in the attacking algorithm.

317 In summary, designing realistic poison injection attacks and new objectives considering cross-stage
 318 poisoning effects under practical threat models not only enhances our understanding of real-world
 319 risks to LLMs but also aids in developing more robust LLM systems and applications.

320 4 TRUST-CENTRIC DATA POISONING

321 In this section, we explore the use of data poisoning to enhance the trustworthiness of LLMs, a novel
 322 perspective we term **trust-centric data poisoning**. This perspective aims at utilizing techniques of
 323 data poisoning in building robust LLMs, identifying and mitigating potential issues including hidden
 324 biases, harmful outputs, hallucinations etc.

324 Given the different goals of threat-centric data poisoning, the settings for trust-centric approaches
 325 are adjusted accordingly. First, the role of the “attacker” in trust-centric data poisoning is broader,
 326 encompassing model developers or researchers who have greater control over the data and various
 327 stages of the LLM lifecycle. Second, trust-centric data poisoning modifies objectives, such as loss
 328 functions, shifting from maximizing the poisoning effect in threat-centric approaches to maximizing
 329 resistance to threats and minimizing the occurrence of misaligned behaviors.

330 Trust-centric data poisoning differs from practical threat-centric data poisoning in Section 3. First,
 331 while both trust-centric and practical threat-centric data poisoning are related to the trustworthiness of
 332 the model, their paradigms are different: For practical threat-centric data poisoning, one needs to first
 333 reveal the vulnerabilities through attacks and then enhance the model robustness correspondingly. In
 334 contrast, for trust-centric data poisoning, we directly utilize data poisoning techniques and objectives
 335 to improve LLM’s trustworthiness, which does not include any attack phase. Second, trust-centric data
 336 poisoning considers a broader scope of trustworthiness. In threat-centric data poisoning, we mainly
 337 consider the robustness of LLMs against malicious attacks, while in trust-centric data poisoning,
 338 we consider fairness, biases, hallucinations, etc. Third, compared to threat-centric data poisoning,
 339 in which the attacker is usually a malicious user, the concept of ‘attacker’ in trust-centric is much
 340 broader, including model developers or researchers who have greater control over the data and various
 341 stages of the LLM lifecycle.

342 It is noteworthy that, although the phrase ‘data poisoning’ usually refers to bad behaviors, we utilize
 343 this word in Section 4 and the later Section 5 to differentiate the detailed techniques proposed in this
 344 paper and other data augmentation techniques. In particular, technically speaking, data poisoning
 345 focuses on the sample selection methods and trigger design/perturbation optimization methods so
 346 that the altered training data can induce the model to act in a particular manner. From this perspective,
 347 we can leverage such a technique to enhance the trustworthiness and investigate the mechanism of
 348 LLMs. We use these particular data poisoning techniques for benign purposes in Section 4 and 5.

349 To further compare with other trustworthy techniques, trust-centric data poisoning leverages the
 350 unique capability of data poisoning to precisely control data when it is accessible. Developers
 351 can optimize these perturbations to guide LLM behavior in their desired direction, enabling fine-
 352 grained control over outputs. Another key advantage is efficiency. Data poisoning typically involves
 353 manipulating only a small proportion of the dataset, making it a resource-efficient approach. Moreover,
 354 because data poisoning focuses on modifying the data itself, it can be seamlessly combined with
 355 robust training or alignment algorithms to further enhance the trustworthiness and reliability of LLMs.

356 In the following, we discuss two representative aspects of trust-centric data poisoning: (1) safety
 357 guard via data poisoning; and (2) auditing misaligned behaviors.

358 **Safeguarding LLMs via data poisoning.** Despite the risks posed by threat-centric data poisoning,
 359 LLMs face additional challenges such as copyright infringement (Samuelson, 2023; Bommasani
 360 et al., 2021; Ren et al., 2024) and adversarial prompts (Zou et al., 2023; Lin et al., 2024; Chao et al.,
 361 2023). We propose to explore how trust-centric data poisoning can be leveraged to defend against
 362 these threats by carefully manipulating data involved in LLM’s life cycle.

363 We take the copyright issue of LLMs as an example. Since training LLMs requires vast amounts of
 364 data (Achiam et al., 2023; Dubey et al., 2024), protecting them from unauthorized copying is a critical
 365 concern (Samuelson, 2023; Liu et al., 2024b). Data poisoning techniques can serve as an effective tool
 366 to safeguard LLMs from misuse. The core idea is to inject auxiliary trigger-response pairs into the
 367 training data. This allows the LLM to learn the connection between specific triggers and predefined
 368 outputs. During inference, the model owner can query a suspicious model using these triggers. If
 369 the model generates the predefined target outputs when given the triggers, it strongly indicates that
 370 the suspicious model was trained on the poisoned dataset, allowing the owner to claim ownership
 371 with high confidence. Similarly, a secret task can be embedded within the LLM by injecting a private
 372 dataset such as a subset of a rare text classification task, into the training data. Thanks to LLM’s
 373 strong expressiveness, this task can be learned without influencing the normal generation capability.
 374 By testing the suspicious model on this task, the model owner can verify ownership based on its
 375 performance. Recent news about models Llama 3-V and MiniCPM-Llama3-V 2.5 (China Daily,
 376 2024) partially proves the potential of this strategy in protecting LLM copyright. Similar strategies
 377 can be applied to defend against adversarial prompts. Developers can inject triggers in the training
 378 data to trigger rejection once harmful inputs are fed into the model. The above demonstrations show
 379 the potential of leveraging trust-centric data poisoning as an effective safeguard for robust LLMs.

378 **Data Poisoning for Trustworthy Auditing LLMs.** Data poisoning provides precise and controllable
 379 manipulation of LLM outputs, making it a powerful tool for auditing the trustworthiness of LLMs.
 380 This includes uncovering hidden biases, harmful responses (Dong et al., 2024; Wei et al., 2024),
 381 hallucinations (Huang et al., 2024a; Ji et al., 2023), misinformation generation (Chen & Shu, 2024),
 382 and other undesirable behaviors. More importantly, data poisoning enables researchers to analyze the
 383 relationship between training data and model behavior, helping identify the specific factors in the
 384 training data that lead to these unreliable outputs. This insight can then be used to clean or modify
 385 the problematic data to mitigate unwanted behaviors.

386 Consider a scenario where a researcher observes gender bias in the outputs of an LLM after instruction
 387 tuning (Liang et al., 2021; Delobelle et al., 2022; Fang et al., 2024). Specifically, the model’s outputs
 388 may associate certain careers with specific genders, such as linking male names to jobs like “engineer”
 389 or “doctor” and female names to roles like “teacher” or “nurse.” The researcher seeks to understand
 390 how this bias was learned from the instruction data and how to eliminate it to create a fairer LLM. To
 391 investigate, the researcher can introduce perturbations into the clean instruction data to manipulate
 392 the model’s outputs for gender-related queries. These perturbations are optimized to amplify the
 393 bias—for instance, maximizing the likelihood of associating “engineer” with male names. This
 394 process is analogous to targeted attacks in data poisoning (Shafahi et al., 2018). The patterns in these
 395 optimized perturbations can reveal relationships, potentially even causal links, between the training
 396 data and the observed gender bias. To eliminate the bias, the researcher can apply the same procedure
 397 in the opposite direction, introducing perturbations designed to equalize the probability of associating
 398 “engineer” with all genders. Similar strategies can also be applied in the inference stages of LLMs to
 399 reveal and mitigate potential trustworthy issues, showing the versatility of trust-centric data poisoning.

5 MECHANISM-CENTRIC DATA POISONING

401 Despite the perspectives discussed in previous sections, data poisoning can also inspire understandings
 402 of LLM’s mechanisms, which we refer to as **mechanism-centric data poisoning**. Since LLMs are
 403 trained on large-scale datasets, it is essential to find out how behaviors like ICL, CoT reasoning
 404 or long-context modeling emerge from the training data. While existing works (Xie et al., 2021;
 405 Prystawski et al., 2024) investigate from the perspective of training data distribution, data poisoning
 406 provides alternative approaches to measure the influence of training data on those behaviors.

407 Compared to threat-centric data poisoning, the role of the “attacker” in mechanism-centric data
 408 poisoning is broader, including researchers studying the mechanisms behind specific behaviors rather
 409 than focusing solely on LLM vulnerabilities. Unlike trust-centric data poisoning, which directly
 410 uses data poisoning to achieve model trustworthiness, such as adopting a poisoning loss function but
 411 optimizing it in the opposite direction, mechanism-centric data poisoning treats data poisoning as a
 412 tool to study the underlying mechanisms of LLMs. These insights can then be applied to other tasks,
 413 such as improving the trustworthiness of LLMs. Beyond trustworthiness, the discovered mechanisms
 414 can also enhance other capabilities of LLMs, such as reasoning and long-context modeling.

415 While there exist various mechanism understanding methods that usually analyze model architectures
 416 (e.g., layers (Fan et al., 2024), attention heads (Olsson et al., 2022), or intermediate representations
 417 (Lin et al., 2024)), mechanism-centric data poisoning provides unique insights on the influence of
 418 data itself. When compared with other data-centric methods such as feature attribution (Zhou et al.,
 419 2022) or counterfactual analysis (Youssef et al., 2024), which primarily focus on interpreting existing
 420 patterns or inference-time responses, mechanism-centric data poisoning provides a unique framework
 421 for understanding how training data shapes model behavior throughout its lifecycle. The advantages
 422 stem from key features of data poisoning attacks, as listed below:

423 (1) Data poisoning introduces carefully crafted perturbations into clean datasets to induce target
 424 behaviors (Shafahi et al., 2018; He et al., 2023; Geiping et al., 2020), enabling precise control over
 425 LLM outputs and revealing the link between input data and model behavior. (2) A data poisoning
 426 attack typically involves injecting a small amount of poisoned data into a clean dataset (Steinhardt
 427 et al., 2017; Gu et al., 2019), causing the model to memorize specific patterns or triggers. This
 428 amplifies LLM memorization and highlights the types of data prioritized by the model. (3) The
 429 effectiveness of data poisoning depends on sample selection strategies (He et al., 2024b; Xia et al.,
 430 2022), as different samples impact the poisoning effect differently. This makes it useful for identifying
 431 data most relevant to model behavior. (4) Practical data poisoning considers future stages of the
 432 LLM lifecycle (He et al., 2023), providing a systematic way to understand how earlier data influences
 433 later-stage behaviors.

432 These advantages make mechanism-centric data poisoning particularly useful for addressing practical
 433 challenges, such as designing models for tasks like long-context modeling which requires figuring
 434 out how LLMs weigh and memorize contents in the long text, or improving robustness to real-world
 435 noisy data. We present two detailed examples to illustrate mechanism-centric data poisoning: one
 436 uses data poisoning to analyze the impact of data in CoT reasoning, and the other employs backdoor
 437 attacks to investigate memorization during instruction tuning.

438 **Understand CoT via data poisoning.** CoT reasoning (Wei et al., 2022) is a powerful capability that
 439 enables LLMs to generate intermediate reasoning steps before arriving at a final solution, significantly
 440 enhancing task-solving performance. Understanding how this capability emerges and identifying
 441 which steps in few-shot examples are most critical is essential for LLM’s reasoning.

442 While existing works analyze reasoning behavior by relying on assumptions about training data
 443 distribution (Prystawski et al., 2024), data poisoning offers an alternative approach to directly measure
 444 how specific training data influences the reasoning steps generated by the model. Data poisoning
 445 provides precise control over both training data and few-shot examples. Specifically, researchers
 446 can intentionally introduce contradictory reasoning steps(Cui et al., 2024; He et al., 2024a) into the
 447 few-shot samples and test the learning behavior of LLMs, i.e what kind of reasoning steps are easily
 448 learned by the LLM and have more impact on LLM’s reasoning capability. These insights provide
 449 a deeper understanding of the learning mechanism of CoT reasoning and can further inspire the
 450 development of more efficient and robust CoT methods. Additionally, by introducing different types
 451 of incorrect samples—such as partially incorrect steps or combinations of incorrect steps with correct
 452 answers—researchers can study how LLMs respond to these anomalies. This helps understand how
 453 LLMs acquire reasoning capabilities from such examples and, in turn, guides the reinforcement of
 454 these capabilities by incorporating better-designed samples into training and inference.

455 **Backdoor attacks for understanding memorization.** During the instruction tuning stage, LLMs are
 456 fine-tuned on instruction-response pairs using supervised fine-tuning (SFT) to develop instruction-
 457 following capabilities. (Wan et al., 2023; Shu et al., 2023) have shown that by injecting a small set of
 458 poisoned data containing triggers in the instructions paired with target responses into the training
 459 data, LLMs can be misled to output the target response with an instruction including the trigger.

460 The above technique can be adapted to study what patterns in the instruction data are prioritized
 461 by the model during training. Specifically, researchers can inject trigger-response pairs into the
 462 instruction data and test whether the target response is consistently triggered after fine-tuning, similar
 463 to how backdoors function. By varying the complexity of the triggers, researchers can investigate
 464 which types of expressions are more likely to be memorized. For instance, they can test whether rare
 465 tokens are memorized more easily than common tokens or whether longer expressions are harder to
 466 memorize than shorter ones. Additionally, researchers can also inject a long trigger but only test with
 467 subsets of it during inference to identify which parts of the trigger are more likely to be memorized by
 468 the model. The degree of memorization can be quantified by measuring the probability of triggering
 469 the target outputs, inspired by metrics like the attack success rate used in backdoor attacks.

470 This flexible adaptation of backdoor techniques systematically analyzes LLM memorization during
 471 instruction tuning and helps gain insights into how specific patterns in training data influence model
 472 behavior. These understandings can be further used in areas where memorization plays vital roles
 473 such as long-context modeling, reasoning and even data privacy protection, showing the valuable
 474 contribution of data poisoning. The above two examples represent preliminary ideas for mechanism-
 475 centric data poisoning, and we believe there is significant potential for further exploration in this area.

476 6 ALTERNATIVE VIEWS

477 While this work presents a broad study of data poisoning, related research explores threat-centric data
 478 poisoning from several key angles. One line of research examines the scaling laws of data poisoning,
 479 analyzing how a model’s size affects its vulnerability to such attacks (Bowen et al., 2024b). Finally,
 480 research connects data poisoning to other exploits like jailbreak attacks, demonstrating how it can
 481 serve as a vector for entirely different types of threats (Rando & Tramèr, 2023).

482 7 CONCLUSION

483 This position paper argues that multi-faceted studies on data poisoning can drive advancements
 484 in LLM development. We identify fundamental limitations of current threat-centric approaches to
 485 data poisoning. and propose three novel perspectives: practical threat-centric, trust-centric, and
 mechanism-centric data poisoning.

486 ETHICS STATEMENT
487488 We acknowledge the ICLR Code of Ethics and ensure that no concerns regarding the Code of Ethics
489 arise from this work. Our study is purely conceptual and focuses on analyzing data poisoning from
490 multiple perspectives—threat-centric, trust-centric, and mechanism-centric—without conducting or
491 releasing any harmful attacks. We use only publicly available literature and do not introduce sensitive,
492 proprietary, or personal data. The intent is to promote a deeper understanding of data poisoning
493 in LLMs and to inspire defenses, trustworthy development, and scientific insight. By framing data
494 poisoning as both a potential threat and an opportunity for advancing robustness and interpretability,
495 this work aims to contribute constructively to the research community while adhering strictly to
496 ethical standards .
497498 REPRODUCIBILITY STATEMENT
499500 This position paper proposes a conceptual framework and does not introduce new code or datasets. We
501 ensure transparency by defining terms, outlining assumptions, and citing all sources; cross-references
502 to Sections 2–5 identify where each claim is discussed.
503504 REFERENCES
505506 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
507 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
508 *arXiv preprint arXiv:2303.08774*, 2023.509 Versatile Umber Ant. Implementing role-based access control in rag. *Medium*, Jan-
510 uary 2025. URL [https://medium.com/@versatile_umber_ant_241/impl](https://medium.com/@versatile_umber_ant_241/implementing-role-based-access-control-in-rag-de4a4e129215)
511 imenting-role-based-access-control-in-rag-de4a4e129215. Accessed: 2025-01-29.
512513 Tim Baumgärtner, Yang Gao, Dana Alon, and Donald Metzler. Best-of-venom: Attacking rlhf by
514 injecting poisoned preference data. *arXiv preprint arXiv:2404.05530*, 2024.516 Aibek Bekbayev, Sungbae Chun, Yerzat Dulat, and James Yamazaki. The poison of alignment. *arXiv*
517 *preprint arXiv:2308.13449*, 2023.
518519 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
520 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
521 ties and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.522 Dillon Bowen, Brendan Murphy, Will Cai, David Khachaturov, Adam Gleave, and Kellin Peltz.
523 Data poisoning in LLMs: Jailbreak-tuning and scaling laws. *arXiv preprint arXiv:2408.02946*,
524 2024a.526 Dillon Bowen, Brendan Murphy, Will Cai, David Khachaturov, Adam Gleave, and Kellin Peltz.
527 Scaling laws for data poisoning in LLMs. *arXiv e-prints*, pp. arXiv-2408, 2024b.528 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
529 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
530 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.532 Nicholas Carlini, Matthew Jagielski, Christopher Choquette-Choo, Daniel Paleka, Will Pearce,
533 Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramer. Poisoning web-scale training
534 datasets is practical. *2024 IEEE Symposium on Security and Privacy (SP)*, pp. 407–425, 2024.535 Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
536 Jailbreaking black box large language models in twenty queries. *arXiv preprint arXiv:2310.08419*,
537 2023.538 Canyu Chen and Kai Shu. Can LLM-generated misinformation be detected? *arXiv preprint*
539 *arXiv:2309.13788*, 2023.

540 Canyu Chen and Kai Shu. Combating misinformation in the age of llms: Opportunities and challenges.
 541 *AI Magazine*, 45(3):354–368, 2024.

542

543 Yulin Chen, Haoran Li, Zihao Zheng, and Yangqiu Song. Bathe: Defense against the jailbreak attack
 544 in multimodal large language models by treating harmful instruction as backdoor trigger. *arXiv*
 545 *preprint arXiv:2408.09093*, 2024a.

546

547 Zhaorun Chen, Zhen Xiang, Chaowei Xiao, Dawn Song, and Bo Li. Agentpoison: Red-teaming llm
 548 agents via poisoning memory or knowledge bases. *arXiv preprint arXiv:2407.12784*, 2024b.

549

550 Zhuo Chen, Jiawei Liu, Haotan Liu, Qikai Cheng, Fan Zhang, Wei Lu, and Xiaozhong Liu. Black-box
 551 opinion manipulation attacks to retrieval-augmented generation of large language models. *arXiv*
 552 *preprint arXiv:2407.13757*, 2024c.

553 China Daily. Stanford ai team accused of copying china model, June 5 2024. URL <https://www.chinadaily.com.cn/a/202406/05/WS665fd3e0a31082fc043cb040.html>. Accessed: January 24, 2025.

554

555 Arijit Ghosh Chowdhury, Md Mofijul Islam, Vaibhav Kumar, Faysal Hossain Shezan, Vinija Jain, and
 556 Aman Chadha. Breaking down the defenses: A comparative survey of attacks on large language
 557 models. *arXiv preprint arXiv:2403.04786*, 2024.

558

559 Yingqian Cui, Pengfei He, Xianfeng Tang, Qi He, Chen Luo, Jiliang Tang, and Yue Xing. A
 560 theoretical understanding of chain-of-thought: Coherent reasoning and error-aware demonstration.
 561 *arXiv preprint arXiv:2410.16540*, 2024.

562

563 Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large
 564 language models: A survey. *ACM Computing Surveys*, 57(6):1–39, 2025.

565

566 Pieter Delobelle, Ewoenam Kwaku Tokpo, Toon Calders, and Bettina Berendt. Measuring fair-
 567 ness with biased rulers: A comparative study on bias metrics for pre-trained language models.
 568 In *Proceedings of the 2022 Conference of the North American Chapter of the Association for
 Computational Linguistics*, pp. 1693–1706. Association for Computational Linguistics, 2022.

569

570 Zhichen Dong, Zhanhui Zhou, Chao Yang, Jing Shao, and Yu Qiao. Attacks, defenses and evaluations
 571 for llm conversation safety: A survey. *arXiv preprint arXiv:2402.09283*, 2024.

572

573 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 574 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 575 *arXiv preprint arXiv:2407.21783*, 2024.

576

577 Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
 578 and Zhongyuan Wang. Not all layers of llms are necessary during inference. *arXiv preprint
 arXiv:2403.02181*, 2024.

579

580 Xiao Fang, Shangkun Che, Minjia Mao, Hongzhe Zhang, Ming Zhao, and Xiaohang Zhao. Bias
 581 of ai-generated content: an examination of news produced by large language models. *Scientific
 Reports*, 14(1):5224, 2024.

582

583 Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, and Tom Goldstein.
 584 Adversarial examples make strong poisons. *Advances in Neural Information Processing Systems*,
 585 34:30339–30351, 2021.

586

587 Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
 588 Zhang, Yuexiang Xie, Daoyuan Chen, et al. Agentscope: A flexible yet robust multi-agent platform.
 589 *arXiv preprint arXiv:2402.14034*, 2024.

590

591 Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and
 592 Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. *arXiv
 preprint arXiv:2009.02276*, 2020.

593

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
 attacks on deep neural networks. *IEEE Access*, 7:47230–47244, 2019.

594 Danny Halawi, Alexander Wei, Eric Wallace, Tony T Wang, Nika Haghtalab, and Jacob Stein-
 595 hardt. Covert malicious finetuning: Challenges in safeguarding llm adaptation. *arXiv preprint*
 596 *arXiv:2406.20053*, 2024.

597 Pengfei He, Han Xu, Jie Ren, Yingqian Cui, Hui Liu, Charu C Aggarwal, and Jiliang Tang. Sharpness-
 598 aware data poisoning attack. *arXiv preprint arXiv:2305.14851*, 2023.

600 Pengfei He, Yingqian Cui, Han Xu, Hui Liu, Makoto Yamada, Jiliang Tang, and Yue Xing. To-
 601 wards the effect of examples on in-context learning: A theoretical case study. *arXiv preprint*
 602 *arXiv:2410.09411*, 2024a.

603 Pengfei He, Yue Xing, Han Xu, Jie Ren, Yingqian Cui, Shenglai Zeng, Jiliang Tang, Makoto Yamada,
 604 and Mohammad Sabokrou. Stealthy backdoor attack via confidence-driven sampling. *Transactions*
 605 *on Machine Learning Research*, 2024b.

606 Pengfei He, Han Xu, Yue Xing, Hui Liu, Makoto Yamada, and Jiliang Tang. Data poisoning for
 607 in-context learning. *arXiv preprint arXiv:2402.02160*, 2024c.

609 Pengfei He, Han Xu, Yue Xing, Hui Liu, Makoto Yamada, and Jiliang Tang. Data poisoning for
 610 in-context learning, 2024d. URL <https://arxiv.org/abs/2402.02160>.

612 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 613 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*
 614 *arXiv:2106.09685*, 2021.

615 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 616 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 617 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information*
 618 *Systems*, 2024a.

619 Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Harmful fine-tuning
 620 attacks and defenses for large language models: A survey. *arXiv preprint arXiv:2409.18169*,
 621 2024b.

623 W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Practical
 624 general-purpose clean-label data poisoning. *Advances in Neural Information Processing Systems*,
 625 33:12080–12091, 2020.

626 Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tamera
 627 Lanham, Daniel M Ziegler, Tim Maxwell, Newton Cheng, et al. Sleeper agents: Training deceptive
 628 llms that persist through safety training. *arXiv preprint arXiv:2401.05566*, 2024.

630 Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
 631 llm hallucination via self reflection. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 1827–1843, 2023.

633 Nikhil Kandpal, Matthew Jagielski, Florian Tramèr, and Nicholas Carlini. Backdoor attacks for
 634 in-context learning with language models. *arXiv preprint arXiv:2307.14692*, 2023.

636 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 637 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 638 22199–22213, 2022.

639 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 640 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 641 tion for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33:
 642 9459–9474, 2020.

643 Jiarui Li, Ye Yuan, and Zehua Zhang. Enhancing llm factual accuracy with rag to counter hallu-
 644 cinations: A case study on domain-specific queries in private knowledge-bases. *arXiv preprint*
 645 *arXiv:2403.10446*, 2024a.

647 Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhui Chen. Long-context llms struggle with
 648 long in-context learning. *arXiv preprint arXiv:2404.02060*, 2024b.

648 Yige Li, Hanxun Huang, Yunhan Zhao, Xingjun Ma, and Jun Sun. Backdoorllm: A comprehensive
 649 benchmark for backdoor attacks on large language models. *arXiv preprint arXiv:2408.12798*,
 650 2024c.

651 Yingji Li, Mengnan Du, Rui Song, Xin Wang, and Ying Wang. A survey on fairness in large language
 652 models. *arXiv preprint arXiv:2308.10149*, 2023.

653

654 Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. Towards understand-
 655 ing and mitigating social biases in language models. In *International Conference on Machine
 656 Learning*, pp. 6565–6576. PMLR, 2021.

657

658 Yiping Lin, Pengfei He, Han Xu, Yue Xing, Makoto Yamada, Hui Liu, and Jiliang Tang. To-
 659 wards understanding jailbreak attacks in llms: A representation space analysis. *arXiv preprint
 660 arXiv:2406.10794*, 2024.

661

662 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 663 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 664 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022.

665

666 Hongyi Liu, Zirui Liu, Ruixiang Tang, Jiayi Yuan, Shaochen Zhong, Yu-Neng Chuang, Li Li, Rui
 667 Chen, and Xia Hu. Lora-as-an-attack! piercing llm safety under the share-and-play scenario, 2024a.
 668 URL <https://arxiv.org/abs/2403.00108>.

669

670 Xaoze Liu, Ting Sun, Tianyang Xu, Feijie Wu, Cunxiang Wang, Xiaoqian Wang, and Jing Gao.
 671 Shield: Evaluation and defense strategies for copyright compliance in llm text generation. *arXiv
 672 preprint arXiv:2406.12975*, 2024b.

673

674 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
 675 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? *arXiv
 676 preprint arXiv:2202.12837*, 2022.

677

678 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 679 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
 680 *arXiv preprint arXiv:2209.11895*, 2022.

681

682 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 683 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 684 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 685 27744, 2022.

686

687 Ben Prystawski, Michael Li, and Noah Goodman. Why think step by step? reasoning emerges from
 688 the locality of experience. *Advances in Neural Information Processing Systems*, 36, 2024.

689

690 Yao Qiang, Xiangyu Zhou, Saleh Zare Zade, Mohammad Amin Roshani, Prashant Khanduri, Douglas
 691 Ztyko, and Dongxiao Zhu. Learning to poison large language models during instruction tuning.
 692 *arXiv preprint arXiv:2402.13459*, 2024.

693

694 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 695 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 696 in Neural Information Processing Systems*, 36, 2024.

697

698 Mohan Naik Ramachandra, Madala Srinivasa Rao, Wen Cheng Lai, Bidare Divakarachari Parame-
 699 shachari, Jayachandra Ananda Babu, and Kivudujogappa Lingappa Hemalatha. An efficient and
 700 secure big data storage in cloud environment by using triple data encryption standard. *Big Data
 701 and Cognitive Computing*, 6(4):101, 2022.

702

703 Javier Rando and Florian Tramèr. Universal jailbreak backdoors from poisoned human feedback.
 704 *arXiv preprint arXiv:2311.14455*, 2023.

705

706 Jie Ren, Han Xu, Pengfei He, Yingqian Cui, Shenglai Zeng, Jiankun Zhang, Hongzhi Wen, Jiayuan
 707 Ding, Pei Huang, Lingjuan Lyu, et al. Copyright protection in generative ai: A technical perspective.
 708 *arXiv preprint arXiv:2402.02333*, 2024.

709

710 Pamela Samuelson. Generative ai meets copyright. *Science*, 381(6654):158–161, 2023.

702 Ravi S Sandhu. Role-based access control. In *Advances in computers*, volume 46, pp. 237–286.
 703 Elsevier, 1998.

704

705 Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom Goldstein. Just
 706 how toxic is data poisoning? a unified benchmark for backdoor and data poisoning attacks. In
 707 *International Conference on Machine Learning*, pp. 9389–9398. PMLR, 2021.

708

709 Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
 710 and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
 711 *Advances in neural information processing systems*, 31, 2018.

712

713 Jiawen Shi, Yixin Liu, Pan Zhou, and Lichao Sun. Badgpt: Exploring security vulnerabilities of
 714 chatgpt via backdoor attacks to instructgpt. *arXiv preprint arXiv:2304.12298*, 2023.

715

716 Manli Shu, Jiong Xiao Wang, Chen Zhu, Jonas Geiping, Chaowei Xiao, and Tom Goldstein. On
 717 the exploitability of instruction tuning. *Advances in Neural Information Processing Systems*, 36:
 718 61836–61856, 2023.

719

720 Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
 721 *Advances in neural information processing systems*, 30, 2017.

722

723 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 724 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 725 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

726

727 Amazon Mechanical Turk. Amazon mechanical turk. *Retrieved August*, 17:2012, 2012.

728

729 Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during
 730 instruction tuning. In *International Conference on Machine Learning*, pp. 35413–35425. PMLR,
 731 2023.

732

733 Haoran Wang and Kai Shu. Trojan activation attack: Red-teaming large language models using
 734 steering vectors for safety-alignment. In *Proceedings of the 33rd ACM International Conference
 735 on Information and Knowledge Management*, pp. 2347–2357, 2024.

736

737 Yifei Wang, Dizhan Xue, Shengjie Zhang, and Shengsheng Qian. Badagent: Inserting and activating
 738 backdoor attacks in llm agents. *arXiv preprint arXiv:2406.03007*, 2024.

739

740 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
 741 *Advances in Neural Information Processing Systems*, 36, 2024.

742

743 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 744 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 745 neural information processing systems*, 35:24824–24837, 2022.

746

747 Junlin Wu, Jiong Xiao Wang, Chaowei Xiao, Chenguang Wang, Ning Zhang, and Yevgeniy Vorobey-
 748 chik. Preference poisoning attacks on reward model learning. *arXiv preprint arXiv:2402.01920*,
 749 2024.

750

751 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 752 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
 753 multi-agent conversation framework. *arXiv preprint arXiv:2308.08155*, 2023.

754

755 Pengfei Xia, Ziqiang Li, Wei Zhang, and Bin Li. Data-efficient backdoor attacks. *arXiv preprint
 756 arXiv:2204.12281*, 2022.

757

758 Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar Ramasubramanian, Radha Poovendran, and
 759 Bo Li. Badchain: Backdoor chain-of-thought prompting for large language models. *arXiv preprint
 760 arXiv:2401.12242*, 2024.

761

762 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 763 learning as implicit bayesian inference. *arXiv preprint arXiv:2111.02080*, 2021.

756 Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhaao Chen. Instructions as back-
 757 doors: Backdoor vulnerabilities of instruction tuning for large language models. *arXiv preprint*
 758 *arXiv:2305.14710*, 2023.

759 Jiaqi Xue, Mengxin Zheng, Yebowen Hu, Fei Liu, Xun Chen, and Qian Lou. Badrag: Identifying
 760 vulnerabilities in retrieval augmented generation of large language models. *arXiv preprint*
 761 *arXiv:2406.00083*, 2024.

762 Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang
 763 Ren, and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt
 764 injection. In *Proceedings of the 2024 Conference of the North American Chapter of the Association*
 765 *for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 766 6065–6086, 2024.

767 W Yang, X Bi, Y Lin, S Chen, J Zhou, and X Sun. Watch out for your agents! investigating backdoor
 768 threats to llm-based agents (2024). *arXiv preprint arXiv:2402.11208*, 248.

769 Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan Ning, Yu-Yang Liu, and Li Yuan. Llm lies:
 770 Hallucinations are not bugs, but features as adversarial examples. *arXiv preprint arXiv:2310.01469*,
 771 2023.

772 Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
 773 language model (llm) security and privacy: The good, the bad, and the ugly. *High-Confidence*
 774 *Computing*, pp. 100211, 2024.

775 Paul Youssef, Christin Seifert, Jörg Schütterer, et al. Llms for generating and evaluating counter-
 776 factuals: A comprehensive study. In *Findings of the Association for Computational Linguistics:*
 777 *EMNLP 2024*, pp. 14809–14824, 2024.

778 Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Availability attacks create shortcuts.
 779 In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*,
 780 pp. 2367–2376, 2022.

781 Ran Zhang, Hong-Wei Li, Xin-Yuan Qian, Wen-Bo Jiang, and Han-Xiao Chen. On large language
 782 models safety, security, and privacy: A survey. *Journal of Electronic Science and Technology*, pp.
 783 100301, 2025.

784 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 785 Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv*
 786 *preprint arXiv:2308.10792*, 2023.

787 Yi Zhang, Zhefeng Wang, Rui Hu, Xinyu Duan, Yi Zheng, Baoxing Huai, Jiarun Han, and Jitao Sang.
 788 Poisoning for debiasing: Fair recognition via eliminating bias uncovered in data poisoning. In
 789 *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 1866–1874, 2024a.

790 Yiming Zhang, Javier Rando, Ivan Evtimov, Jianfeng Chi, Eric Michael Smith, Nicholas Carlini,
 791 Florian Tramèr, and Daphne Ippolito. Persistent pre-training poisoning of llms. *arXiv preprint*
 792 *arXiv:2410.13722*, 2024b.

793 Shuai Zhao, Meihuizi Jia, Zhongliang Guo, Leilei Gan, XIAOYU XU, Xiaobao Wu, Jie Fu, Feng
 794 Yichao, Fengjun Pan, and Anh Tuan Luu. A survey of recent backdoor attacks and defenses in
 795 large language models. *Transactions on Machine Learning Research*.

796 Shuai Zhao, Jinming Wen, Luu Anh Tuan, Junbo Zhao, and Jie Fu. Prompt as triggers for backdoor
 797 attack: Examining the vulnerability in language models. *arXiv preprint arXiv:2305.01219*, 2023a.

798 Shuai Zhao, Leilei Gan, Zhongliang Guo, Xiaobao Wu, Luwei Xiao, Xiaoyu Xu, Cong-Duy Nguyen,
 799 and Luu Anh Tuan. Weak-to-strong backdoor attack for large language models. *arXiv preprint*
 800 *arXiv:2409.17946*, 2024a.

801 Shuai Zhao, Meihuizi Jia, Zhongliang Guo, Leilei Gan, Xiaoyu Xu, Xiaobao Wu, Jie Fu, Yichao
 802 Feng, Fengjun Pan, and Luu Anh Tuan. A survey of backdoor attacks and defenses on large
 803 language models: Implications for security measures. *arXiv preprint arXiv:2406.06852*, 2024b.

810 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
811 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv*
812 *preprint arXiv:2303.18223*, 2023b.

813
814 Yilun Zhou, Serena Booth, Marco Tulio Ribeiro, and Julie Shah. Do feature attribution methods
815 correctly attribute features? In *Proceedings of the AAAI Conference on Artificial Intelligence*,
816 volume 36, pp. 9623–9633, 2022.

817 Zihao Zhu, Mingda Zhang, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Boosting backdoor
818 attack with a learnable poisoning sample selection strategy. *arXiv preprint arXiv:2307.07328*,
819 2023.

820 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
821 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
822 *preprint arXiv:1909.08593*, 2019.

823 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
824 and transferable adversarial attacks on aligned language models. *arXiv preprint arXiv:2307.15043*,
825 2023.

826 Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. Poisonedrag: Knowledge poisoning attacks
827 to retrieval-augmented generation of large language models. *arXiv preprint arXiv:2402.07867*,
828 2024.

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863