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Abstract

Dyslexia, a common learning disability, re-
quires an early diagnosis. However, current
screening tests are very time- and resource-
consuming. We present an LSTM model that
aims to automatically classify dyslexia based
on eye movements recorded during natural
reading combined with basic demographic in-
formation and linguistic features of the fixated
words. The proposed model outperforms the
state-of-the-art model and reaches the AUC of
0.93. We additionally discuss the outcomes of
several ablation studies assessing which fea-
tures are critical for model performance.

1 Introduction

One of the most common learning disabilities is
dyslexia, a difficulty that specifically affects read-
ing and spelling in individuals with otherwise intact
cognitive abilities. The origin of the difficulty is
believed to lie in phonological decoding (Interna-
tional Dyslexia Association, 2024). The prevalence
of dyslexia is estimated to be between 9% and 12%
(Katusic et al., 2001; Shaywitz et al., 1998). Early
diagnosis is the key factor for getting the needed
support and staying on track in the educational sys-
tem (Glazzard, 2010; Torgesen, 2000; Vellutino
et al., 2004).

Various testing batteries exist, but most must be
administered by a trained specialist, who is not
always present at school. Moreover, such batter-
ies are still often evaluated using paper-and-pencil
methods, which are time-consuming and error-
prone. Without a cheap, fast, and reliable mass
testing method, the only way to get proper support
for a struggling reader is through the educator, who
may notice reading difficulties and recommend ad-
ditional testing. This route crucially depends on
the educator, and will fail more often for educators
who are overworked. In particular, that means that
reading difficulties will more often be left unmit-

igated in the already disadvantaged districts and
schools.

Several machine-learning solutions have already
been proposed for the mass screening for dyslexia
based on eye movements recorded during natu-
ralistic reading (Asvestopoulou et al., 2019; Nils-
son Benfatto et al., 2016; Haller et al., 2022;
Jothi Prabha and Bhargavi, 2022; Raatikainen et al.,
2021; Rello and Ballesteros, 2015; Shalileh et al.,
2023). Yet almost all of these models were trained
on very modest, at least by machine learning stan-
dards, samples of 61 (Asvestopoulou et al., 2019)
to 185 participants (Nilsson Benfatto et al., 2016).

This paper presents a comparison of two models
that aim to automatically classify dyslexia on a
dataset comprising eye-movements while reading
from 293 young readers of different ages.

2 Problem Setting

We study the task of inferring whether a child has
dyslexia from eye movements and a stimulus text
that was presented during the recording of the eye
movements. Since this problem is a binary clas-
sification task, the model’s performance can be
characterized by a false positive rate and a true pos-
itive rate. By altering the decision threshold, one
can observe a receiver operator characteristic curve
(ROC curve). The area under the ROC curve (AUC)
provides an aggregated measure of performance for
all possible classification thresholds.

3 Methods

3.1 Reference method

As a baseline, we use a state-of-the-art (SOTA)
SVM-RFE with a linear kernel described and im-
plemented by Haller et al. (2022). This approach
was first proposed by Nilsson Benfatto et al. (2016),
who reported 96% accuracy on a balanced dataset.
As input, the SOTA model uses the means and stan-
dard deviations of 12 eye-movement features, such



as first fixation duration, first-pass reading time,
etc. (for the full list, refer to Haller et al. 2022). In
the reader-prediction setting (see Section 4.3), 12
features are aggregated across all sentences read
by a given participant. In the sentence-prediction
setting, the same eye-movement features are aggre-
gated within each separate sentence read by a given
participant.

Note that Haller et al. had a homogenous data set
of age-matched readers, and they did not include
either age or grade into the model. Given that
grade is an important predictor of reading skill,
and the present dataset includes readers from grade
1 to 6, we report the performance of the SOTA
model both without grade, for full comparability
with Haller et al.’s results, and with grade, for a
fairer comparison.

3.2 Proposed model

The proposed model input is a participant’s fixa-
tion sequence on a sentence. Each input vector
consists of demographic information, gaze-specific
and linguistic features. In total, the fixation vector
consists of 26 features: the participant’s age, grade,
gender, fixation duration, fixation horizontal and
vertical coordinates on the screen, fixation landing
position on the word, fixated word length in letters,
fixated word predictability and frequency, number
of morphemes comprising the word, next fixation
distance, next saccade amplitude, angle, velocity,
and direction.

The proposed model architecture is a bidi-
rectional Long Short-Term Memory (LSTM)
model (Hochreiter and Schmidhuber, 1997). The
mean of the hidden states is fed into two sequential
linear layers, projecting it down to a single sigmoid
output to represent the label prediction. Optimized
hyperparameters and search space are reported in
Appendix A.

4 Experiments

4.1 Eye-movement data

The cross-sectional dataset comprises eye move-
ments while reading in 293 school children, native
speakers of Russian, from the 1st to the 6th grade
(Shalileh et al., 2023). In Russia, grades 1 through
4 correspond to primary school, and grades 5 and
6 — to secondary school. Based on reading speed
and accuracy, children were classified as typically
developing (N = 221) or having developmental
dyslexia (N = 72). Classification was based on

the Standardized Assessment of Reading Skills test
(SARS, Kornev and Ishimova 2010) and recent nor-
mative cutoff levels reported by Dorofeeva et al.
(2019). The Standardized Assessment of Reading
Skills requires a test-taker to read a short text aloud
as quickly and as accurately as possible. The num-
ber of words read accurately in the first minute is
taken as a measure of reading fluency. If a child
scores at least 1.5 standard deviations below their
corresponding age mean, a dyslexia label is as-
signed.

For all children, nonverbal intelligence scores
were obtained using Raven’s Colored Progressive
Matrices (Raven, 2003). All children had nonverbal
intelligence scores within the normal range.

Typically-developing children. All children in
this group had age-appropriate reading fluency and
comprehension. The parents or primary caretak-
ers reported no history of reading disorders. The
composition of the group can be seen in Table 1.

Grade
Gender

Female: N (%)
Ag

1 (N=50) 2 (N=40) 3 (N=37) 4 (N=39) 5(N=31)

22 (44%) 24 (60%) 19 (51%) 18 (46%) 12 (39%)
e
Mean + SD
Nonverbal intelligence
Mean + SD
Reading speed (wpm)
Mean + SD

7.3295, 835045 930046 10,1856 11.29975

29.883.00 3100554 312455 3190550 3281,

63.8057,06 79.01754 95.57)3.0 11928067 12248535

Table 1:
grade.

Composition of the control group, split by

Children with developmental dyslexia. In this
group, the reading speed was lower than the pop-
ulation’s average by at least 1.5 SD. The detailed
composition of the group can be seen in Table 2.

Grade
Gender

1 (N=8) 2(N=10) 3 (N=20) 4 (N=28) 5(N=6)
Female: N (%)

Age
Mean + SD

Nonverbal intelligence
Mean + SD

Reading speed (wpm)
Mean + SD

2(25%) 2 (20%) 12 (60%) 9 (32%) 2(33%)

725046 840 9.30057 10,2550 1170

29.75474 29.005 74 3140575 321455 28.50, 55

17.384 5, 30.7010.65 52.2050.45 57.50529 56.5016.60

Table 2: Composition of the group of children with
dyslexia, split by grade.

4.2 Reading materials

All children were asked to read the same set of
30 sentences comprising the Child Russian Sen-
tence Corpus (Lopukhina et al. 2022). Reading
took them from 10 to 30 minutes. In some cases,
the reading session was terminated before a child
read all sentences due to various reasons. Since the
rate of early termination was somewhat higher in
the dyslexia group (presumably due to reading diffi-
culties), we decided to keep the data from the early
terminated sessions. The number of sentences each

6 (N=24)
10 (42%)
12.00050
33.0753

124.62,3 59



child read ranged from 10 to 30, with the median of
27; 86% of all eye-movement recordings had fewer
than 30 sentences (83% recordings in the control
group, 96% recordings in the dyslexia group).

Sentence difficulty was at the level of 3rd to
4th grade, according to an automatic text difficulty
measurement developed for Russian (Laposhina
and Lebedeva, 2021), and estimated to be 7.42 on
the Flesch-Kincaid scale adapted to Russian (Read-
ability Test). The sentences were between six and
nine words long (M = 7.6, SD = 0.85), with 50
characters per sentence (SD = 5.16) on average.
In total, the children read 227 words, which con-
tained 182 unique word forms (as words could be
repeated across sentences). Individual words were
on average 5.6 letters long (range 1-13), and had
an average lemma frequency of 50.29 items per
million (median: 0.73, range: 0.0001 — 667). The
frequency was calculated from the subcorpus of
texts for children of the years 1920-2015 of the
Russian National Corpus.

Corpus materials were morphologically anno-
tated: 54 words consisted of a single morpheme, 81
words consisted of two morphemes, 45 words — of
three morphemes, 34 words — of four morphemes,
nine words — of five morphemes, and four words
consisted of six morphemes. Finally, for every
word in every sentence, word predictability was
estimated using an online cumulative cloze task
with 46 children (24 girls, M = 11.3, range 9-12)
who did not participate in the eye-tracking study.
Predictability was measured as the number of cor-
rect guesses divided by the total number of guesses.
Zero cloze probabilities were replaced with % X the
number of guesses for the word.

4.3 Model evaluation

The models are evaluated in two settings: predic-
tion of the reader’s status based on a single sentence
data (sentence prediction setting) or based on all
available reading data (reader prediction setting).
All models are evaluated and tuned using 10-fold
nested cross-validation and random grid search (see
Appendix A). Data from the same person is always
constrained to one fold, so that the models always
make predictions for unseen participants. The ratio
of persons with/without dyslexia is balanced across
all folds.!

'All code is available online:
4open.science/r/RDC-AQ8A/

https://anonymous.

4.4 Results

For all methods, we report AUC (chosen as a met-
ric invariant to class imbalance, see Richardson
et al. 2024) for reader- and sentence-level settings
(see Table 3). A visual summary of ROC AUC
performance can also be found in Figure 1. For all
evaluated models, classification performance in the
reader-prediction setting was numerically higher
than in the sentence-prediction setting. However,
according to an unpaired one-tailed t-test, the dif-
ference between settings was not significant in any
model or configuration (LSTM: ¢(15.55) = 1.22,
p = 0.12; SOTA Grade: t(16.21) = 0.81, p =
0.21; SOTA Grage: t(17.83) = 0.24, p = 0.41).
The SOTA model that included information about
grade performed numerically better than the same
model without grade information, but the differ-
ence was not significant (reader prediction set-
ting: ¢(17.96) = 1.03, p = 0.16; sentence pre-
diction setting: ¢(16.64) = 0.71, p = 0.24).
Importantly, the proposed LSTM outperformed
the SOTA,Grade model in both reader-prediction
(t(12.146) = 2.12, p = 0.028) and sentence-
prediction settings (¢(17.92) = 2.20, p = 0.021).

4.4.1 LSTM ablation experiments

In the reader-prediction setting, we run three addi-
tional ablation studies (LSTM_saccade» LSTM Ling,
and LSTM.pemographic), assessing model perfor-
mance without saccade-related measures (next fix-
ation distance, next saccade amplitude, next sac-
cade angle, next saccade velocity, and next saccade
direction), without linguistic information (word
length, frequency, predictability, and the number
of morphemes comprising the word), and with-
out demographic information (age, grade, and
gender). In all ablation studies, AUC score was
lower numerically, but the decrease was not statis-
tically significant (LSTM _gyccade: £(14.70) = 0.95,
p = 0.17; LSTM_Lin,: t(17.80) = 0.06, p = 0.47;
LSTM pemographic: t(16.14) = 1.66, p = 0.058).

5 Discussion

The finding that information about reader’s grade
did not significantly improve either SOTA or LSTM
model’s performance is rather surprising because in
the present dataset, dyslexia was diagnosed based
on the age-specific normative cut-offs in reading
speed (see Section 4.1). Consequently, information
about reader’s grade should be crucial for the classi-
fication performance. Grade-invariant performance
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Reader prediction Sentence prediction

positive rate (Positive label: 1)
itive rate (Positive label: 1)

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
0 False positive rate (Positive label: 1)
Chance
—— LSTM: mean ROC (AUC = 0.90 * 0.07)
LSTM: + 2 SE
—— Baseline: mean ROC (AUC = 0.83 + 0.07)
Baseline: + 2 SE

ean ROC (AUC = 0.93 + 0.04)
2SE

—— Baseline: mean ROC (AUC = 0.86 = 0.10)
Baseline: + 2 SE

Figure 1: Summary of model performance. SOTA

baseline model used grade information.

AUC
SOTA 0.864+0.10
SOTA _Grade 0.81+0.11
ﬂg LSTM 0.93+0.05
§ LSTM._Ling 0.92+0.05
LSTM._ saccade 0.91+0.07
LSTM _pemographic | 0-90+0.06
_ SOTA 0.83+0.07
é SOTA Grade 0.80-+0.10
LSTM 0.90+0.07

Table 3: Summary of model performance metrics in the
reader- and sentence-prediction settings.

might potentially reflect that the model has cap-
tured some invariant property of the eye movements
of readers with dyslexia that is shared between all
grades. For the SOTA model trained exclusively
on aggregated features, this explanation is unlikely.
For the LSTM model trained on a sequence of sepa-
rate fixation events, this explanation is more likely,
but it is precisely the LSTM that shows greater
numerical decrease in performance when the infor-
mation about grade is removed. Overall, we still
believe that a successful model should be able to
uncover the relationship between reading speed,
grade, and dyslexia label.

Another surprising outcome is the lack of differ-
ence between the sentence- and reader-prediction
settings in all the tested models. Given that reader-
prediction setting relies on 10X to 30x more data,
we would expect performance to be higher. The
increase in performance may not be significant due
to the relatively small size of the dataset and in-
sufficient statistical power. Alternatively, the lack
of difference may reflect a true limit in model per-
formance, where additional information beyond a
single sentence is of little to no added value.

The finding that removing linguistic features did
not significantly affect LSTM model’s performance
is less surprising. Arguably the most crucial fea-
ture for dyslexia classification, a representation of
a word’s degree of orthographic transparency (Bor-
leffs et al., 2017), was not present in the feature set.
Including a measure of word orthographic trans-
parency might prove to be a promising next step in
improving model performance.

The lack of difference between the performance
of LSTM with and without saccade-related infor-
mation might indicate that either some saccade-
related information is represented by the model
implicitly (saccade distance can trivially be repre-
sented as a distance between = and y coordinates of
two consecutive fixations) or that saccade-related
information is irrelevant for classification purposes.

Most importantly, the proposed LSTM outper-
formed the SOTA model, and, based on the out-
comes of ablation experiments, we can conclude
that the increase in performance is due to the more
detailed information about the eye movements, but
not due to added information about the linguistic
stimulus.

6 Ethical considerations

Using demographic variables, such as age and gen-
der, could lead to reproducing existing biases. For
example, males are diagnosed with dyslexia more
frequently than females, but at least part of the
difference may be attributed to referral bias (??).
One way to ensure that the model is bias-free is
to withhold the potentially biasing feature. The
ablation experiment that removed the demographic
information performed on par with the full model.
Therefore, we conclude that the model at least does
not enhance the bias that might be present in the
data set.

7 Conclusions

The model of automatic dyslexia detection pro-
posed in this paper has outperformed the SOTA
model. Importantly, unlike most of the models
proposed so far (Nilsson Benfatto et al., 2016;
Haller et al., 2022; Asvestopoulou et al., 2019;
Jothi Prabha and Bhargavi, 2022), the present
LSTM was trained on an unbalanced dataset of
eye movements of children who were also not age-
matched, and might therefore be more robust and
potentially more appropriate for the real-world ap-
plications.



Limitations

This decision to include information from partici-
pants who did not read all 30 sentences could po-
tentially lead to data leakage: The model may learn
that incomplete sessions are more likely to come
from a child with dyslexia. We think that this is
unlikely for two reasons: First, the proportions of
incomplete sessions are not drastically different be-
tween the two groups. Second, this potential data
leakage should only affect the reader-prediction
setting (where the model expects to see 30 sen-
tences), not the sentence-prediction setting (where
the model expects to see one sentence). In the
present case, there was no significant difference in
performance between the reader prediction and the
sentence prediction settings (see Section 4.4), so
the reader-prediction setting is unlikely to have an
unfair advantage.
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A Model parameters

Model search space is summarized in Table 4.

Batch size

Learning rate

LSTM hidden layer size

8, 16, 32, 64, 128
15xU ~ (le75, 1e7t)
30, 40, 50, 60, 70

Table 4: Hyperparameter search space.

The optimal parameters can be found in Table 5.

Batch size Learning rate Hidden layer size
Reader prediction setting
64 0.001 40
16 0.001 40
64 0.01 30
64 0.001 40
64 0.001 40
64 0.001 40
16 0.01 30
32 0.01 30
16 0.01 50
64 0.001 40
Sentence prediction setting
8 7.07e7% 30
8 0.0003 50
128 4.21e79 70
64 0.0025 50
8 7.07e7% 30
64 0.0025 50
128 0.0025 30
8 7.07¢7% 30
32 5.34¢70 70
8 4.21e79% 50

Table 5: Resulting optimal parameters.
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