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Abstract

Dyslexia, a common learning disability, re-001
quires an early diagnosis. However, current002
screening tests are very time- and resource-003
consuming. We present an LSTM model that004
aims to automatically classify dyslexia based005
on eye movements recorded during natural006
reading combined with basic demographic in-007
formation and linguistic features of the fixated008
words. The proposed model outperforms the009
state-of-the-art model and reaches the AUC of010
0.93. We additionally discuss the outcomes of011
several ablation studies assessing which fea-012
tures are critical for model performance.013

1 Introduction014

One of the most common learning disabilities is015

dyslexia, a difficulty that specifically affects read-016

ing and spelling in individuals with otherwise intact017

cognitive abilities. The origin of the difficulty is018

believed to lie in phonological decoding (Interna-019

tional Dyslexia Association, 2024). The prevalence020

of dyslexia is estimated to be between 9% and 12%021

(Katusic et al., 2001; Shaywitz et al., 1998). Early022

diagnosis is the key factor for getting the needed023

support and staying on track in the educational sys-024

tem (Glazzard, 2010; Torgesen, 2000; Vellutino025

et al., 2004).026

Various testing batteries exist, but most must be027

administered by a trained specialist, who is not028

always present at school. Moreover, such batter-029

ies are still often evaluated using paper-and-pencil030

methods, which are time-consuming and error-031

prone. Without a cheap, fast, and reliable mass032

testing method, the only way to get proper support033

for a struggling reader is through the educator, who034

may notice reading difficulties and recommend ad-035

ditional testing. This route crucially depends on036

the educator, and will fail more often for educators037

who are overworked. In particular, that means that038

reading difficulties will more often be left unmit-039

igated in the already disadvantaged districts and 040

schools. 041

Several machine-learning solutions have already 042

been proposed for the mass screening for dyslexia 043

based on eye movements recorded during natu- 044

ralistic reading (Asvestopoulou et al., 2019; Nils- 045

son Benfatto et al., 2016; Haller et al., 2022; 046

Jothi Prabha and Bhargavi, 2022; Raatikainen et al., 047

2021; Rello and Ballesteros, 2015; Shalileh et al., 048

2023). Yet almost all of these models were trained 049

on very modest, at least by machine learning stan- 050

dards, samples of 61 (Asvestopoulou et al., 2019) 051

to 185 participants (Nilsson Benfatto et al., 2016). 052

This paper presents a comparison of two models 053

that aim to automatically classify dyslexia on a 054

dataset comprising eye-movements while reading 055

from 293 young readers of different ages. 056

2 Problem Setting 057

We study the task of inferring whether a child has 058

dyslexia from eye movements and a stimulus text 059

that was presented during the recording of the eye 060

movements. Since this problem is a binary clas- 061

sification task, the model’s performance can be 062

characterized by a false positive rate and a true pos- 063

itive rate. By altering the decision threshold, one 064

can observe a receiver operator characteristic curve 065

(ROC curve). The area under the ROC curve (AUC) 066

provides an aggregated measure of performance for 067

all possible classification thresholds. 068

3 Methods 069

3.1 Reference method 070

As a baseline, we use a state-of-the-art (SOTA) 071

SVM-RFE with a linear kernel described and im- 072

plemented by Haller et al. (2022). This approach 073

was first proposed by Nilsson Benfatto et al. (2016), 074

who reported 96% accuracy on a balanced dataset. 075

As input, the SOTA model uses the means and stan- 076

dard deviations of 12 eye-movement features, such 077
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as first fixation duration, first-pass reading time,078

etc. (for the full list, refer to Haller et al. 2022). In079

the reader-prediction setting (see Section 4.3), 12080

features are aggregated across all sentences read081

by a given participant. In the sentence-prediction082

setting, the same eye-movement features are aggre-083

gated within each separate sentence read by a given084

participant.085

Note that Haller et al. had a homogenous data set086

of age-matched readers, and they did not include087

either age or grade into the model. Given that088

grade is an important predictor of reading skill,089

and the present dataset includes readers from grade090

1 to 6, we report the performance of the SOTA091

model both without grade, for full comparability092

with Haller et al.’s results, and with grade, for a093

fairer comparison.094

3.2 Proposed model095

The proposed model input is a participant’s fixa-096

tion sequence on a sentence. Each input vector097

consists of demographic information, gaze-specific098

and linguistic features. In total, the fixation vector099

consists of 26 features: the participant’s age, grade,100

gender, fixation duration, fixation horizontal and101

vertical coordinates on the screen, fixation landing102

position on the word, fixated word length in letters,103

fixated word predictability and frequency, number104

of morphemes comprising the word, next fixation105

distance, next saccade amplitude, angle, velocity,106

and direction.107

The proposed model architecture is a bidi-108

rectional Long Short-Term Memory (LSTM)109

model (Hochreiter and Schmidhuber, 1997). The110

mean of the hidden states is fed into two sequential111

linear layers, projecting it down to a single sigmoid112

output to represent the label prediction. Optimized113

hyperparameters and search space are reported in114

Appendix A.115

4 Experiments116

4.1 Eye-movement data117

The cross-sectional dataset comprises eye move-118

ments while reading in 293 school children, native119

speakers of Russian, from the 1st to the 6th grade120

(Shalileh et al., 2023). In Russia, grades 1 through121

4 correspond to primary school, and grades 5 and122

6 – to secondary school. Based on reading speed123

and accuracy, children were classified as typically124

developing (N = 221) or having developmental125

dyslexia (N = 72). Classification was based on126

the Standardized Assessment of Reading Skills test 127

(SARS, Kornev and Ishimova 2010) and recent nor- 128

mative cutoff levels reported by Dorofeeva et al. 129

(2019). The Standardized Assessment of Reading 130

Skills requires a test-taker to read a short text aloud 131

as quickly and as accurately as possible. The num- 132

ber of words read accurately in the first minute is 133

taken as a measure of reading fluency. If a child 134

scores at least 1.5 standard deviations below their 135

corresponding age mean, a dyslexia label is as- 136

signed. 137

For all children, nonverbal intelligence scores 138

were obtained using Raven’s Colored Progressive 139

Matrices (Raven, 2003). All children had nonverbal 140

intelligence scores within the normal range. 141

Typically-developing children. All children in 142

this group had age-appropriate reading fluency and 143

comprehension. The parents or primary caretak- 144

ers reported no history of reading disorders. The 145

composition of the group can be seen in Table 1.

Grade 1 (N=50) 2 (N=40) 3 (N=37) 4 (N=39) 5 (N=31) 6 (N=24)
Gender

Female: N (%) 22 (44%) 24 (60%) 19 (51%) 18 (46%) 12 (39%) 10 (42%)
Age

Mean ± SD 7.320.51 8.350.48 9.300.46 10.180.56 11.290.78 12.000.59
Nonverbal intelligence

Mean ± SD 29.883.99 31.003.23 31.243.50 31.903.59 32.812.12 33.172.39
Reading speed (wpm)

Mean ± SD 63.8027.06 79.017.54 95.5713.93 119.2820.67 122.4829.38 124.6223.50

Table 1: Composition of the control group, split by
grade.

146
Children with developmental dyslexia. In this 147

group, the reading speed was lower than the pop- 148

ulation’s average by at least 1.5 SD. The detailed 149

composition of the group can be seen in Table 2.

Grade 1 (N = 8) 2 (N = 10) 3 (N = 20) 4 (N = 28) 5 (N = 6)
Gender

Female: N (%) 2 (25%) 2 (20%) 12 (60%) 9 (32%) 2 (33%)
Age

Mean ± SD 7.250.46 8.400.84 9.300.57 10.250.59 11.170.41
Nonverbal intelligence

Mean ± SD 29.754.74 29.003.74 31.405.75 32.143.33 28.504.85
Reading speed (wpm)

Mean ± SD 17.388.52 30.7010.68 52.2020.48 57.5022.29 56.5016.60

Table 2: Composition of the group of children with
dyslexia, split by grade.

150

4.2 Reading materials 151

All children were asked to read the same set of 152

30 sentences comprising the Child Russian Sen- 153

tence Corpus (Lopukhina et al. 2022). Reading 154

took them from 10 to 30 minutes. In some cases, 155

the reading session was terminated before a child 156

read all sentences due to various reasons. Since the 157

rate of early termination was somewhat higher in 158

the dyslexia group (presumably due to reading diffi- 159

culties), we decided to keep the data from the early 160

terminated sessions. The number of sentences each 161
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child read ranged from 10 to 30, with the median of162

27; 86% of all eye-movement recordings had fewer163

than 30 sentences (83% recordings in the control164

group, 96% recordings in the dyslexia group).165

Sentence difficulty was at the level of 3rd to166

4th grade, according to an automatic text difficulty167

measurement developed for Russian (Laposhina168

and Lebedeva, 2021), and estimated to be 7.42 on169

the Flesch-Kincaid scale adapted to Russian (Read-170

ability Test). The sentences were between six and171

nine words long (M = 7.6, SD = 0.85), with 50172

characters per sentence (SD = 5.16) on average.173

In total, the children read 227 words, which con-174

tained 182 unique word forms (as words could be175

repeated across sentences). Individual words were176

on average 5.6 letters long (range 1–13), and had177

an average lemma frequency of 50.29 items per178

million (median: 0.73, range: 0.0001− 667). The179

frequency was calculated from the subcorpus of180

texts for children of the years 1920–2015 of the181

Russian National Corpus.182

Corpus materials were morphologically anno-183

tated: 54 words consisted of a single morpheme, 81184

words consisted of two morphemes, 45 words – of185

three morphemes, 34 words – of four morphemes,186

nine words – of five morphemes, and four words187

consisted of six morphemes. Finally, for every188

word in every sentence, word predictability was189

estimated using an online cumulative cloze task190

with 46 children (24 girls, M = 11.3, range 9–12)191

who did not participate in the eye-tracking study.192

Predictability was measured as the number of cor-193

rect guesses divided by the total number of guesses.194

Zero cloze probabilities were replaced with 1
2× the195

number of guesses for the word.196

4.3 Model evaluation197

The models are evaluated in two settings: predic-198

tion of the reader’s status based on a single sentence199

data (sentence prediction setting) or based on all200

available reading data (reader prediction setting).201

All models are evaluated and tuned using 10-fold202

nested cross-validation and random grid search (see203

Appendix A). Data from the same person is always204

constrained to one fold, so that the models always205

make predictions for unseen participants. The ratio206

of persons with/without dyslexia is balanced across207

all folds.1208

1All code is available online: https://anonymous.
4open.science/r/RDC-A08A/

4.4 Results 209

For all methods, we report AUC (chosen as a met- 210

ric invariant to class imbalance, see Richardson 211

et al. 2024) for reader- and sentence-level settings 212

(see Table 3). A visual summary of ROC AUC 213

performance can also be found in Figure 1. For all 214

evaluated models, classification performance in the 215

reader-prediction setting was numerically higher 216

than in the sentence-prediction setting. However, 217

according to an unpaired one-tailed t-test, the dif- 218

ference between settings was not significant in any 219

model or configuration (LSTM: t(15.55) = 1.22, 220

p = 0.12; SOTA+Grade: t(16.21) = 0.81, p = 221

0.21; SOTA-Grade: t(17.83) = 0.24, p = 0.41). 222

The SOTA model that included information about 223

grade performed numerically better than the same 224

model without grade information, but the differ- 225

ence was not significant (reader prediction set- 226

ting: t(17.96) = 1.03, p = 0.16; sentence pre- 227

diction setting: t(16.64) = 0.71, p = 0.24). 228

Importantly, the proposed LSTM outperformed 229

the SOTA+Grade model in both reader-prediction 230

(t(12.146) = 2.12, p = 0.028) and sentence- 231

prediction settings (t(17.92) = 2.20, p = 0.021). 232

4.4.1 LSTM ablation experiments 233

In the reader-prediction setting, we run three addi- 234

tional ablation studies (LSTM-Saccade, LSTM-Ling, 235

and LSTM-Demographic), assessing model perfor- 236

mance without saccade-related measures (next fix- 237

ation distance, next saccade amplitude, next sac- 238

cade angle, next saccade velocity, and next saccade 239

direction), without linguistic information (word 240

length, frequency, predictability, and the number 241

of morphemes comprising the word), and with- 242

out demographic information (age, grade, and 243

gender). In all ablation studies, AUC score was 244

lower numerically, but the decrease was not statis- 245

tically significant (LSTM-Saccade: t(14.70) = 0.95, 246

p = 0.17; LSTM-Ling: t(17.80) = 0.06, p = 0.47; 247

LSTM-Demographic: t(16.14) = 1.66, p = 0.058). 248

5 Discussion 249

The finding that information about reader’s grade 250

did not significantly improve either SOTA or LSTM 251

model’s performance is rather surprising because in 252

the present dataset, dyslexia was diagnosed based 253

on the age-specific normative cut-offs in reading 254

speed (see Section 4.1). Consequently, information 255

about reader’s grade should be crucial for the classi- 256

fication performance. Grade-invariant performance 257
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Figure 1: Summary of model performance. SOTA
baseline model used grade information.

AUC

R
ea

de
r

SOTA 0.86±0.10

SOTA-Grade 0.81±0.11

LSTM 0.93±0.05

LSTM-Ling 0.92±0.05

LSTM-Saccade 0.91±0.07

LSTM-Demographic 0.90±0.06

Te
xt

SOTA 0.83±0.07

SOTA-Grade 0.80±0.10

LSTM 0.90±0.07

Table 3: Summary of model performance metrics in the
reader- and sentence-prediction settings.

might potentially reflect that the model has cap-258

tured some invariant property of the eye movements259

of readers with dyslexia that is shared between all260

grades. For the SOTA model trained exclusively261

on aggregated features, this explanation is unlikely.262

For the LSTM model trained on a sequence of sepa-263

rate fixation events, this explanation is more likely,264

but it is precisely the LSTM that shows greater265

numerical decrease in performance when the infor-266

mation about grade is removed. Overall, we still267

believe that a successful model should be able to268

uncover the relationship between reading speed,269

grade, and dyslexia label.270

Another surprising outcome is the lack of differ-271

ence between the sentence- and reader-prediction272

settings in all the tested models. Given that reader-273

prediction setting relies on 10× to 30× more data,274

we would expect performance to be higher. The275

increase in performance may not be significant due276

to the relatively small size of the dataset and in-277

sufficient statistical power. Alternatively, the lack278

of difference may reflect a true limit in model per-279

formance, where additional information beyond a280

single sentence is of little to no added value.281

The finding that removing linguistic features did 282

not significantly affect LSTM model’s performance 283

is less surprising. Arguably the most crucial fea- 284

ture for dyslexia classification, a representation of 285

a word’s degree of orthographic transparency (Bor- 286

leffs et al., 2017), was not present in the feature set. 287

Including a measure of word orthographic trans- 288

parency might prove to be a promising next step in 289

improving model performance. 290

The lack of difference between the performance 291

of LSTM with and without saccade-related infor- 292

mation might indicate that either some saccade- 293

related information is represented by the model 294

implicitly (saccade distance can trivially be repre- 295

sented as a distance between x and y coordinates of 296

two consecutive fixations) or that saccade-related 297

information is irrelevant for classification purposes. 298

Most importantly, the proposed LSTM outper- 299

formed the SOTA model, and, based on the out- 300

comes of ablation experiments, we can conclude 301

that the increase in performance is due to the more 302

detailed information about the eye movements, but 303

not due to added information about the linguistic 304

stimulus. 305

6 Ethical considerations 306

Using demographic variables, such as age and gen- 307

der, could lead to reproducing existing biases. For 308

example, males are diagnosed with dyslexia more 309

frequently than females, but at least part of the 310

difference may be attributed to referral bias (??). 311

One way to ensure that the model is bias-free is 312

to withhold the potentially biasing feature. The 313

ablation experiment that removed the demographic 314

information performed on par with the full model. 315

Therefore, we conclude that the model at least does 316

not enhance the bias that might be present in the 317

data set. 318

7 Conclusions 319

The model of automatic dyslexia detection pro- 320

posed in this paper has outperformed the SOTA 321

model. Importantly, unlike most of the models 322

proposed so far (Nilsson Benfatto et al., 2016; 323

Haller et al., 2022; Asvestopoulou et al., 2019; 324

Jothi Prabha and Bhargavi, 2022), the present 325

LSTM was trained on an unbalanced dataset of 326

eye movements of children who were also not age- 327

matched, and might therefore be more robust and 328

potentially more appropriate for the real-world ap- 329

plications. 330
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Limitations331

This decision to include information from partici-332

pants who did not read all 30 sentences could po-333

tentially lead to data leakage: The model may learn334

that incomplete sessions are more likely to come335

from a child with dyslexia. We think that this is336

unlikely for two reasons: First, the proportions of337

incomplete sessions are not drastically different be-338

tween the two groups. Second, this potential data339

leakage should only affect the reader-prediction340

setting (where the model expects to see 30 sen-341

tences), not the sentence-prediction setting (where342

the model expects to see one sentence). In the343

present case, there was no significant difference in344

performance between the reader prediction and the345

sentence prediction settings (see Section 4.4), so346

the reader-prediction setting is unlikely to have an347

unfair advantage.348

5



References349

Thomais Asvestopoulou, Victoria Manousaki, Antonis350
Psistakis, Ioannis Smyrnakis, Vassilios Andreadakis,351
Ioannis M Aslanides, and Maria Papadopouli. 2019.352
Dyslexml: Screening tool for dyslexia using machine353
learning. arXiv preprint arXiv:1903.06274.354

Elisabeth Borleffs, Ben AM Maassen, Heikki Lyytinen,355
and Frans Zwarts. 2017. Measuring orthographic356
transparency and morphological-syllabic complex-357
ity in alphabetic orthographies: a narrative review.358
Reading and writing, 30:1617–1638.359

Svetlana V Dorofeeva, Victoria Reshetnikova, Mar-360
garita Serebryakova, Daria Goranskaya, Tatiana V361
Akhutina, and Olga Dragoy. 2019. Assessing the va-362
lidity of the standardized assessment of reading skills363
in russian and verifying the relevance of available364
normative data. The Russian Journal of Cognitive365
Science, 6(1):4–24.366

Jonathan Glazzard. 2010. The impact of dyslexia on367
pupils’ self-esteem. Support for learning, 25(2):63–368
69.369

Patrick Haller, Andreas Säuberli, Sarah Elisabeth370
Kiener, Jinger Pan, Ming Yan, and Lena Jäger. 2022.371
Eye-tracking based classification of Mandarin Chi-372
nese readers with and without dyslexia using neural373
sequence models. arXiv preprint arXiv:2210.09819.374

Sepp Hochreiter and Jürgen Schmidhuber. 1997.375
Long short-term memory. Neural Comput.,376
9(8):1735–1780.377

International Dyslexia Association. 2024. Dyslexia378
basics. https://dyslexiaida.org/. Accessed:379
2024-07-03.380

A Jothi Prabha and R Bhargavi. 2022. Prediction of381
dyslexia from eye movements using machine learn-382
ing. IETE Journal of Research, 68(2):814–823.383

Slavica K Katusic, Robert C Colligan, William J Bar-384
baresi, Daniel J Schaid, and Steven J Jacobsen. 2001.385
Incidence of reading disability in a population-based386
birth cohort, 1976–1982, rochester, minn. In Mayo387
Clinic Proceedings, volume 76, pages 1081–1092.388
Elsevier.389

AN Kornev and OA Ishimova. 2010. Metodika diag-390
nostiki disleksii u detey [methods of diagnosis of391
dyslexia in children]. St. Petersburg: Publishing392
house of the Polytechnic University.393

Antonina N Laposhina and Maria Yu Lebedeva. 2021.394
Textometr: An online tool for automated complexity395
level assessment of texts for russian language learn-396
ers. Russian Language Studies, 19(3):331–345.397

Anastasiya Lopukhina, Nina Zdorova, Vladislava398
Staroverova, Nina Ladinskaya, Anastasiia Ka-399
prielova, Sofya Goldina, Olga Vedenina, Ksenia Bart-400
seva, and Olga Dragoy. 2022. Benchmark measures401
of eye movements during reading in russian children.402

Mattias Nilsson Benfatto, Gustaf Öqvist Seimyr, Jan 403
Ygge, Tony Pansell, Agneta Rydberg, and Christer 404
Jacobson. 2016. Screening for dyslexia using eye 405
tracking during reading. PloS one, 11(12):e0165508. 406

Peter Raatikainen, Jarkko Hautala, Otto Loberg, Tommi 407
Kärkkäinen, Paavo Leppänen, and Paavo Nieminen. 408
2021. Detection of developmental dyslexia with 409
machine learning using eye movement data. Array, 410
12:100087. 411

Jean Raven. 2003. Raven progressive matrices. In 412
Handbook of nonverbal assessment, pages 223–237. 413
Springer. 414

Readability Test. Readability test for russian texts. Ac- 415
cessed: 2024-07-04. 416

Luz Rello and Miguel Ballesteros. 2015. Detecting 417
readers with dyslexia using machine learning with 418
eye tracking measures. In Proceedings of the 12th 419
international web for all conference, pages 1–8. 420

Eve Richardson, Raphael Trevizani, Jason A. Green- 421
baum, Hannah Carter, Morten Nielsen, and Bjoern 422
Peters. 2024. The receiver operating characteristic 423
curve accurately assesses imbalanced datasets. Pat- 424
terns, 5(6):100994. 425

Russian National Corpus. Russian national corpus. Ac- 426
cessed: 2024-07-04. 427

Soroosh Shalileh, Dmitry Ignatov, Anastasiya 428
Lopukhina, and Olga Dragoy. 2023. Identifying 429
dyslexia in school pupils from eye movement and 430
demographic data using artificial intelligence. Plos 431
one, 18(11):e0292047. 432

Sally E Shaywitz, Bennett A Shaywitz, Kenneth R Pugh, 433
Robert K Fulbright, R Todd Constable, W Einar 434
Mencl, Donald P Shankweiler, Alvin M Liberman, 435
Pawel Skudlarski, Jack M Fletcher, et al. 1998. Func- 436
tional disruption in the organization of the brain for 437
reading in dyslexia. Proceedings of the National 438
Academy of Sciences, 95(5):2636–2641. 439

Joseph K Torgesen. 2000. Individual differences in 440
response to early interventions in reading: The lin- 441
gering problem of treatment resisters. Learning dis- 442
abilities research & practice, 15(1):55–64. 443

Frank R Vellutino, Jack M Fletcher, Margaret J Snowl- 444
ing, and Donna M Scanlon. 2004. Specific reading 445
disability (dyslexia): What have we learned in the 446
past four decades? Journal of child psychology and 447
psychiatry, 45(1):2–40. 448

6

https://doi.org/10.1162/neco.1997.9.8.1735
https://dyslexiaida.org/
https://ru.readability.io/
https://doi.org/10.1016/j.patter.2024.100994
https://doi.org/10.1016/j.patter.2024.100994
https://doi.org/10.1016/j.patter.2024.100994
https://ruscorpora.ru/en/


A Model parameters449

Model search space is summarized in Table 4.450

Batch size 8, 16, 32, 64, 128
Learning rate 15× U ∼ (1e−5, 1e−1)
LSTM hidden layer size 30, 40, 50, 60, 70

Table 4: Hyperparameter search space.

The optimal parameters can be found in Table 5.451

Batch size Learning rate Hidden layer size
Reader prediction setting

64 0.001 40
16 0.001 40
64 0.01 30
64 0.001 40
64 0.001 40
64 0.001 40
16 0.01 30
32 0.01 30
16 0.01 50
64 0.001 40

Sentence prediction setting
8 7.07e−05 30
8 0.0003 50
128 4.21e−05 70
64 0.0025 50
8 7.07e−05 30
64 0.0025 50
128 0.0025 30
8 7.07e−05 30
32 5.34e−05 70
8 4.21e−05 50

Table 5: Resulting optimal parameters.
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