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Abstract
Epitope identification is vital for antibody de-
sign yet challenging due to the inherent variabil-
ity in antibody. Additionally, the challenge is
heightened by the lack of a consistent evalua-
tion pipeline, limited dataset size and epitope di-
versity. Our contributions are two-fold. First,
we provide the largest specialized epitope predic-
tion dataset – AsEP, consisting of 1723 filtered
antibody-antigen complexes. AsEP addressed
the dataset diversity issue with clustered epitope
groups. Second, most current methods for epi-
tope prediction focus solely on antigen while
few consider both antibody and antigen. Instead,
we conceptualize the antibody-antigen interac-
tion as bipartite graphs and formulate epitope
prediction as link prediction tasks. Such formu-
lation allows attributing model prediction to in-
teraction types, providing more interpretability.
Our method, WALLE, leverages protein language
models for capturing sequence-level information
and graph networks for incorporating structure
information. WALLE outperforms existing mod-
els, achieving an MCC of 0.210 and roughly six
times better than MaSIF-site. The curated dataset
AsEP and our method WALLE are available to
the research community, fostering open-source
collaboration and advancement of the field.

1. Introduction
Antibodies are specialized proteins produced by our im-
mune system to combat foreign substances called antigens.
Their unique ability to bind with high affinity and specificity
sets them apart from regular proteins and small-molecule
drugs, making them increasingly popular in therapeutic en-
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gineering.

While the community is shifting toward computational anti-
body design (Jin et al., 2022; Zhou et al., 2024; Bennett et al.,
2024) given a pre-determined epitope, accurate prediction
of epitopes remains underexplored. Accurate identification
of epitopes is beneficial for understanding antibody-antigen
interactions, antibody function, and streamlining antibody
engineering. This task remains challenging due to multiple
factors (Akbar et al., 2022; Hummer et al., 2022), such as,
the lack of comprehensive datasets, limited interpretabil-
ity and generalizability. Available datasets are limited in
size, up to 582 complexes from Bepipred-3.0 (Clifford
et al., 2022), and feature disproportionate representation
among various epitopes. Existing methods perform poorly
on epitope prediction task (Cia et al., 2023), with a ceiling
MCC (Matthew’s Correlation Coefficient) of 0.06. However,
recent advancements in graph-based learning, coupled with
an increase in available antibody structures in the Protein
Data Bank (PDB) (Berman et al., 2003), highlight the need
to reevaluate current methods and establish a benchmark
dataset for predicting antibody-antigen interactions.

We approach the problem as a bipartite graph link predic-
tion task. Traditionally, graph link prediction focuses on
identifying connections within the same graph, such as in
protein-protein interaction networks. Our research extends
this concept to bipartite graphs at the molecular level and
proposes our own model, WALLE. Because existing meth-
ods generally predict protein binding sites or epitopes in
antibody-antigen complexes rather than residue-residue in-
teractions, we focus on benchmarking the node classification
task while providing WALLE’s performance on the bipartite
link prediction task as a baseline.

2. Problem Formulation
Antibody-antigen interaction is important for analyzing pro-
tein structures. The problem can be formulated as a bipar-
tite graph link prediction task. The inputs are two disjoint
graphs, an antibody graph GA = (VA, EA) and an anti-
gen graph GB = (VB , EB), where Vx is the vertice set
for graph x and Ex is the edge set for graph x. Since the
neural networks only take continuous values as input, we
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AsEP: Benchmarking Deep Learning Methods for Antibody-specific Epitope Prediction

also have a function h to encode each vertex into a vector
h : V → RD. The design of the encoding function depends
on the methods. For example, h can be a one-hot encoding
layer or pretrained embeddings given by a protein language
model. We use different encoding functions for antibodies
and antigens: hA : VA → RDA , and hB : VB → RDB .

In addition, EA ∈ {0, 1}|VA|×|VA| and EB ∈
{0, 1}|VB |×|VB | denote the adjacency matrices for the an-
tibody and antigen graphs, respectively. In this work, the
adjacency matrices are calculated based on the distance ma-
trix of the residues. Each entry eij denotes the proximity
between residue i and residue j; eij = 1 if the Euclidean
distance between any non-hydrogen atoms of residue i and
residue j is less than 4.5Å, and eij = 0 otherwise. The
antibody graph GA is constructed by combining the CDR
residues from the heavy and light chains of the antibody,
and the antigen graph GB is constructed by combining the
surface residues of the antigen. The antibody and antigen
graphs are disjoint, i.e., VA ∩ VB = ∅.

Figure 1. An example to illustrate interacting residues. The two
dashed lines denote the distance between non-hydrogen atoms
from different interacting residues from two different protein
chains.

We consider two subtasks based on these inputs.

Epitope Prediction Epitopes are the regions on the antigen
surface recognized by antibodies; in other words, they are
a set of antigen residues in contact with the antibody and
are determined from the complex structures using the same
distance cutoff of 4.5Å as aforementioned. For a node in the
antigen graph v ∈ VB , if there exists a node in the antibody
graph u ∈ VA such that the distance between them is less
than 4.5Å, then v is an epitope node. Epitope nodes and
the remaining nodes in GB are assigned labels of 1 and
0, respectively. The first task is then a node classification
within the antigen graph GB given the antibody graph GA.

This classification takes into account the structure of the
antibody graph, GA, mirroring the specificity of antibody-

antigen binding interactions. Different antibodies can bind
to various antigen locations, corresponding to varying sub-
sets of epitope nodes in GB . This question differs from con-
ventional epitope prediction methods that do not consider
the antibody structure and end up predicting the likelihood
of the subset of antigen nodes serving as epitopes, such as
ScanNet (Tubiana et al., 2022), MaSIF (Gainza et al., 2020).

The task is to develop a binary classifier f : VB → {0, 1}
that takes both the antibody and antigen graphs as input and
predicts the label for antigen nodes as formulated below:

f(v ;GB , GA) =

{
1 if v is an epitope;
0 otherwise.

(1)

Bipartite Link Prediction The second task takes it further
by predicting concrete interactions between nodes in GA

and GB , resulting in a bipartite graph that represents these
antibody-antigen interactions. Moreover, this helps attribute
the model performance to specific interactions at the molec-
ular level and provide more interpretability. Accurately
predicting these interactions is critical for understanding the
binding mechanisms and for guiding antibody engineering.

We model the antibody-antigen interaction as a bipartite
graph:

Km,n = (VA, VB , E)

where m = |VA| and n = |VB | denote the number of nodes
in the two graphs, respectively, and E denotes all possible
inter-graph links. In this bipartite graph, a node from the
antibody graph is connected to each node in the antigen
graph via an edge e ∈ E. The task is then to predict the
label of each bipartite edge. If the residues of a pair of
nodes are located within 4.5Å of each other, referred to as
in contact, the edge is labeled as 1; otherwise, 0. For any
pair of nodes, denoted as (va, vb) ∀va ∈ VA, vb ∈ VB , the
binary classifier g : Km,n → {0, 1} is formulated as below:

g(va, vb;Km,n) =

{
1 if va and vb are in contact
0 otherwise.

(2)

3. Benchmark Construction
Antibodies are composed of two heavy chains and two light
chains, each of which contains a variable domain (areas of
high sequence variability) composed of a variable heavy
(VH) and a variable light (VL) domain responsible for anti-
gen recognition and binding (Chothia & Lesk, 1987). These
domains have complementarity-determining regions (CDR,
Figure 2 top blue, yellow, and red regions), which are the pri-
mary parts of antibodies responsible for antigen recognition
and binding.

2
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3.1. Antibody-antigen complexes

We sourced our initial dataset from the Antibody Database
(AbDb) (Ferdous & Martin, 2018), dated 2022/09/26, which
contains 11, 767 antibody files originally collected from the
Protein Data Bank (PDB) (Berman et al., 2003). We ex-
tracted conventional antibody-antigen complexes that have
a VH and a VL domain with a single-chain protein antigen,
and there are no unresolved CDR residues due to experimen-
tal errors, yielding 4, 081 antibody-antigen complexes. To
ensure data balance, we removed identical complexes using
an adapted version of the method described in Krawczyk
et al. (2014). We clustered the complexes by antibody heavy
and light chains followed by antigen sequences using MM-
seqs2 (Steinegger & Söding, 2017). We retained only one
representative complex for each unique cluster, leading to a
refined dataset of 1, 725 unique complexes. Two additional
complexes were manually removed; CDR residues in the
complex 6jmr 1P are unknown (labeled as ‘UNK’) and
it is thus impossible to build graph representations upon
this complex; 7sgm 0P was also removed because of non-
canonical residues in its CDR loops. The final dataset con-
sists of 1, 723 antibody-antigen complexes. For detailed
setup and processing steps, please refer to Appendix A.2.

3.2. Convert antibody-antigen complexes to graphs

These 1, 723 files were then converted into graph representa-
tions, which are used as input for WALLE. In these graphs,
each protein residue is modeled as a vertex. Edges are drawn
between pairs of residues if any of their non-hydrogen atoms
are within 4.5Å of each other, adhering to the same distance
criterion used in PECAN (Pittala & Bailey-Kellogg, 2020).

Exclude buried residues In order to utilize structural infor-
mation effectively, we focused on surface residues, as only
these can interact with another protein. Consequently, we
excluded buried residues, those with a solvent-accessible
surface area of zero, from the antigen graphs. The solvent-
accessible surface areas were calculated using DSSP (Kab-
sch & Sander, 1983) via Graphein (Jamasb et al., 2021). It
is important to note that the number of interface nodes are
much smaller than the number of non-interface nodes in the
antigen, making the classification task more challenging.

Exclude non-CDR residues We also excluded non-CDR
residues from the antibody graph, as these are typically not
involved in antigen recognition and binding. This is in line
with the approach adopted by PECAN (Pittala & Bailey-
Kellogg, 2020) and EPMP (Vecchio et al., 2021). Figure 2
provides a visualization of the processed graphs.

Node embeddings To leverage the state-of-the-art pro-
tein language models, we generated node embeddings
for each residue in the antibody and antigen graphs us-
ing AntiBERTy (Ruffolo et al., 2021) (via IgFold (Ruf-

Figure 2. Graph visualization of an antibody-antigen complex.
Top: the molecular structure of an antibody complexed with the re-
ceptor binding domain of SARS-Cov-2 virus (PDB code: 7KFW),
the antigen. Spheres indicate the alpha carbon atoms of each
amino acid. Color scheme: the antigen is colored in magenta, the
framework region of the heavy and light chains is colored in green
and cyan and CDR 1-3 loops are colored in blue, yellow, and red,
respectively. Bottom: the corresponding graph. Green vertices
are antibody CDR residues and pink vertices are antigen surface
residues.

folo et al., 2023) package) and ESM2 (Lin et al., 2022)
(esm2 t12 35M UR50D) models, respectively. In our
dataset interface package, we also provide a simple embed-
ding method using one-hot encoding for amino acid residues.
Other node embedding methods can be easily incorporated
into our dataset interface. Please refer to Figure S1 for a
schematic view of our processing pipeline.

3.3. Dataset split

We propose two types of dataset split settings. The first is a
random split based on the ratio of epitope to antigen surface
residues, #epitope nodes

#antigen nodes ; the second is a more challenging set-
ting where we split the dataset by epitope groups. The first
setting is straightforward and is used to evaluate the perfor-
mance of WALLE along with the other four methods. The
second setting is more challenging because it requires the
model to generalize to unseen epitope groups. We describe
the two settings in detail below.

3
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Split by epitope to antigen surface ratio As aforemen-
tioned, the number of non-interface nodes in the antigen
graph is much larger than the number of interface nodes.
While epitopes usually have a limited number of residues,
typically around 14.6± 4.9 amino acids (Reis et al., 2022),
the antigen surface may extend to several hundred or more
residues. The complexity of the classification task therefore
increases with the antigen surface size. To ensure similar
complexity among train, validation, and test sets, we strati-
fied the dataset to include a similar distribution of epitope
to non-epitope nodes in each set. Table 1 shows the distribu-
tion of epitope-to-antigen surface ratios in each set. This led
to 1383 antibody-antigen complexes for the training set and
170 complexes each for the validation and test sets. The list
of complexes in each set is provided in the Supplementary
Table SI-split-epitope-ratio.csv.

Table 1. Distribution of epitope to antigen surface nodes in each
set.

Epi/Surf Training Validation/Test

0, 5% 320 (23% ) 40 (24%)
5% , 10% 483 (35% ) 60 (35%)
10%, 15% 305 (22% ) 38 (22%)
15%, 20% 193 (14% ) 24 (14%)
20%, 25% 53 (4% ) 6 (4% )
25%, 30% 19 (1% ) 2 (1% )
30%, 35% 8 (0.6%) 0 (- )
35%, 40% 2 (0.1%) 0 (- )
sum 1383 170

Split by epitope groups This is motivated by the fact that
antibodies are highly diverse in the CDR loops and by chang-
ing the CDR sequences it is possible to engineer novel anti-
bodies to bind different sites on the same antigen. This was
previously observed in the EpiPred dataset where Krawczyk
et al. (2014) tested the specificity of their method on five an-
tibodies associated with three epitopes on the same antigen,
hen egg white lysozyme.

We inlcude 641 unique antigens and 973 epitope groups in
our dataset. Figure 3 shows two examples of multi-epitope
antigens in our dataset, hen egg white lysozyme (Figure 3a)
and spike protein (Figure 3b). Specifically, there are 52 and
64 distinct antibodies in our dataset that bind to hen egg
white lysozyme and spike protein, respectively. For visual
clarity, we only show five and sixteen antibodies in Figure 3a
and Figure 3b.

We can see that different antibodies bind to different
locations on the same antigen. Details of all epi-
tope groups are provided in the Supplementary Table
SI-AsEP-entries.csv with annotation provided in
Appendix A.5. We then split the dataset into train, valida-
tion, and test sets such that the epitopes in the test set are

not found in either train or validation sets. We followed an
80%/10%/10% split for the number of complexes in each
set. This resulted in 1383 complexes for the training set
and 170 complexes for the validation and test sets. The list
of complexes in each set is provided in the Supplementary
Table SI-split-epitope-group.csv.

3.4. Evaluation

In this work, we focus on the epitope prediction task. We
evaluate the performance of each method using consis-
tent metrics. Matthew’s Correlation Coefficient (MCC)
is highly recommended for binary classification assess-
ments (Matthews, 1975) and is especially advocated for
its ability to provide equal weighting to all four values in
the confusion matrix, making it a more informative metric
about the classifier’s performance at a given threshold than
other metrics (Chicco & Jurman, 2020; 2023). We encour-
age the community to adopt MCC for the epitope prediction
task as it takes into account true and false positives, as well
as true and false negatives, offering a comprehensive mea-
sure of the performance. It is considered superior to the
AUC-ROC, which is evaluated over all thresholds. For con-
sistency, we also included Precision and Recall from prior
studies EpiPred (Krawczyk et al., 2014) and PECAN (Pit-
tala & Bailey-Kellogg, 2020), and we added Area Under the
Receiver Operating Characteristic Curve (AUC-ROC) and
F1 score, both are typical binary classification metrics. For
methods that predict antibody-antigen complex structures,
we determine the epitopes using the same distance criterion
as aforementioned.

3.5. Dataset interface

We implemented a Python package interface for our dataset
using PyTorch Geometric (Fey & Lenssen, 2019). Users can
load the dataset as a PyTorch Geometric dataset object and
use it with PyTorch Geometric’s data loaders. We provide an
option to load node embeddings derived from AntiBERTy
and ESM2 or simply one-hot embeddings. Each data object
in the dataset is a pair of antibody and antigen graphs; both
node- and edge-level labels are provided, and the node-level
labels are used for the epitope prediction task. The dataset
will be made available upon acceptance.

4. WALLE: a graph-based method for epitope
prediction

Alongside our dataset interface, we also provide a graph-
based model named WALLE. It takes as input a pair of
antibody and antigen graphs and makes node- and edge-
level predictions.

Preprocessing Unlike previous studies, such as PECAN
(Pittala & Bailey-Kellogg, 2020), that construct features

4
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(a) Five different antibodies bound to hen egg white lysozyme.
Complexes are superimposed on the antigen structure (magenta).
AbDb IDs of the complexes and their color: 1g7i 0P (green),
2yss 0P (cyan), 1dzb 1P (yellow), 4tsb 0P (orange), 2iff 0P
(wheat). Antigens are colored in magenta.

(b) Sixteen different antibodies bound to coronavirus spike protein.
Complexes are superimposed on the antigen structure (magenta)
and antibodies are in different colors. AbDb IDs of the complexes:
7k8s 0P, 7m7w 1P, 7d0b 0P, 7dzy 0P, 7ey5 1P, 7jv4 0P, 7k8v 1P,
7kn4 1P, 7lqw 0P, 7n8i 0P, 7q9i 0P, 7rq6 0P, 7s0e 0P, 7upl 1P,
7wk8 0P, 7wpd 0P.

Figure 3. Examples of different antibodies binding to the same
antigen.

from scratch using methods like Position-Specific Scor-
ing Matrix (PSSM) derived from BLAST (Altschul et al.,
1990), our model leverages state-of-the-art protein language
models. We utilize AntiBERTy (Ruffolo et al., 2021) to
generate embeddings for antibody and ESM2 (Lin et al.,
2022) for antigen sequences, referred to as sequence embed-
dings. These embeddings encapsulate rich, context-specific
information, offering a more nuanced representation of the
protein structures than traditional methods.

As aforementioned, we only keep the surface residues for
the antigen graph and the CDR residues for the antibody
graph. We then map these residues using the sequence
models to generate the node embeddings for the antibody
and antigen graphs. The edges are also calculated among
these residues using the same distance cutoff of 4.5Å. This
step is shown as the Preprocessing modules in Figure 4.

GCN (128) GCN (128)

Decoder

GCN (64) GCN (64)

       

Antigen Graph  
Node  
Edge index 

Antibody CDR Graph  
Node  
Edge index 

Preprocessing 
Antibody

Preprocessing 
Antigen

AbAg
complex
structure

Figure 4. A schematic of the preprocessing step that turns an input
antibody-antigen complex structure into a graph pair and the model
architecture of WALLE.

Graph Modules The architecture of WALLE incorporates
graph modules that process the input graphs of antibody
and antigen structures, as depicted in Figure 3. Inspired
by PECAN and EPMP, our model treats the antibody and
antigen graphs separately, with distinct pathways for each.
The antibody graph is represented by node embeddings XA
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with a shape of (M, 512) and an adjacency matrix EA, while
the antigen graph is described by node embeddings XB with
a shape of (N, 480) and its corresponding adjacency matrix
EB . The embedding sizes are consistent with AntiBERTy
and ESM2 (esm2 t12 35M UR50D).

Both antibody and antigen graph nodes are first projected
into the dimensionality of 128 using fully connected lay-
ers. The resulting embeddings are then passed through
two Graph Convolutional Network (GCN) modules con-
secutively to refine the features and yield updated node
embeddings X ′

A and X ′
B with a reduced dimensionality of

(M, 64). The output from the first GCN layer is passed
through a ReLU activate function. Outputs from the second
GCN layer are directly fed into the Decoder module. These
GCNs operate independently, each with its own parameters,
ensuring that the learned representations are specific to the
antibody or the antigen.

The use of separate GCN modules for the antibody and
antigen allows for the capture of unique structural and func-
tional characteristics pertinent to each molecule before any
interaction analysis. This design choice aligns with the un-
derstanding that the antibody and antigen have distinct roles
in their interactions and their molecular features should be
processed separately.

Decoder

We used a simple decoder to predict the binary labels of
edges between the antibody and antigen graphs. It takes
a pair of node embeddings output by the graph modules
as input; calculates the inner product or passes through
a linear layer; and converts the logits through a sigmoid
activation function to obtain the predicted probability of
each edge. An edge is assigned a binary label of 1 if the
predicted probability is greater than 0.5 or 0 otherwise. This
is shown as the Decoder module in Figure 4. For the epitope
prediction task, we convert edge-level predictions to node-
level by summing the predicted probabilities of all edges
connected to an antigen node; we assign the antigen node a
label of 1 if the number of connected edges is greater than
a threshold or 0 otherwise. The threshold is treated as a
hyperparameter and is optimized in the experiments.

Implementation

We used PyTorch Geometric (Fey & Lenssen, 2019) frame-
work to build our model. The graph modules are imple-
mented using the GCNConv module from PyTorch Geo-
metric. We trained the model to minimize a loss function
consisting of two parts: a weighted binary cross-entropy loss
for the bipartite graph link reconstruction and a regularizer
for the number of positive edges in the reconstructed bipar-
tite graph. We used the same set of hyperparameters and loss
functions for both dataset settings. The loss function and
hyperparameters are described in detail in Appendix A.4.

5. Prior State-of-the-art
We compared WALLE with the other four selected methods.
These methods were selected because they are representa-
tive and use different features and approaches to predict epi-
topes. Features of these methods are summarized in Table 2.
EpiPred (Krawczyk et al., 2014) is a systematic approach
designed exclusively for epitope prediction. It takes a pair
of antibody and antigen structures as input and performs
local docking to generate multiple candidate complexes,
which are then scored and ranked by a specific antibody-
antigen scoring function. The decoy with the highest score
is selected as the final prediction for benchmarking. We
ran the method using the default settings and parameters
provided by the authors. ESMFold (Lin et al., 2023) is a pro-
tein language model based on the protein language model,
EMS2 (Lin et al., 2023). Its folding head was trained on
over 325 thousand protein structures and reported to achieve
similar performance as AlphaFold2 (Jumper et al., 2021)
on both single-chain and multimeric proteins. Because it is
much faster than AlphaFold2, we included it in our bench-
marking. While both EpiPred and ESMFold take antibodies
and antigens as input. We also include two methods that only
consider antigens as input for comparison. These methods
were designed for predicting binding sites on general protein
sequences and structures. They are not specifically designed
for epitope prediction but are representative of methods
that only consider antigens as input. ESMBind (Schreiber,
2023) is a language model based on ESM2(Lin et al., 2023);
we reproduced the fine-tuning procedures as documented
using Low-Rank Adaptation (Hu et al., 2021) on a dataset
of general protein sequences with binding sites annotated. It
takes a single protein sequence as input and predicts protein
binding sites. MaSIF-site (Gainza et al., 2020) is a geomet-
ric deep learning-based method that predicts protein binding
sites on a given protein structure surface. It converts the
antigen surface into a mesh graph, with each mesh vertex en-
coded with geometric and physicochemical descriptors, and
uses a graph neural network to predict binding sites on the
antigen surface. While its output is the probabilities of each
mesh vertex being a binding site rather than the residues,
we mapped mesh vertices with predicted probability > 70%
to antigen residues that are within 1.2Å of the mesh vertex
and considered them as predicted epitope residues.

6. Discussion and future work
Experiment results We evaluated each method for both
dataset split settings on the test set using the metrics de-
scribed in Section 3.4. Table 3a and Table 3b summarize
the average performance metrics across the test set sam-
ples. WALLE generally shows better performance among
all metrics except for recall for both dataset splits. We
also provided the baseline performance for bipartite link
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Table 2. Summary of Features Used in Benchmarking Methods.

Antibody Structure PLM Graph

WALLE ✓ ✓ ✓ ✓
EpiPred ✓ ✓ × ✓
ESMFold ✓ × ✓ ×
MaSIF-site × ✓ × ✓
ESMBind × × ✓ ×

Antibody: Antibody is taken into consideration when predicting
epitope nodes;
Structure: Topological information from protein structures;
PLM: Representation from Protein Language Models;
Graph: Graph representation of protein structures.

prediction in Table S5.

We also carried out ablation studies (Appendix C) to in-
vestigate the impact of different components of WALLE.
When we replace the graph convolutional layers with fully
connected layers, its performance degenerates considerably,
suggesting that the graph convolutional layers contribute
to the model’s performance. This is related to the fact that
the interaction between a pair of protein structures is depen-
dent on the spatial arrangement of the residues as discussed
by Reis et al. (2022) that the interface polar bonds, a ma-
jor source of antibody specificity, tend to shield interface
hydrophobic clusters. In addition, the language model em-
beddings also contribute to the model’s performance, as per-
formance drops when they are replaced by one-hot or BLO-
SUM62 embeddings. Finally, we also investigated whether
the choice of language model affects the model’s perfor-
mance. We found that the model using AntiBERTy and
ESM2 embeddings for antibodies and antigens performed
slightly better than the model using ESM2 embeddings for
both antibodies and antigens. This suggests that the choice
of language model may impact the model’s performance,
but a model like ESM2, which is trained on general pro-
tein sequences, may contain sufficient information for the
epitope prediction task.

While WALLE outperforms other methods in the second
dataset split setting, its performance degenerated consider-
ably from the first dataset split setting. This suggests that
WALLE is likely biased toward the epitopes in the training
set and does not generalize well to unseen epitopes. The
performance of the other four methods is not ideal for this
task. We believe this would require a more sophisticated
model architecture and a more comprehensive dataset to
improve the performance of epitope prediction. We leave
this for future work.

Related work Two relevant works are PECAN (Pittala &
Bailey-Kellogg, 2020) and EPMP (Vecchio et al., 2021).
While the graph construction method in WALLE is inspired
by both studies, we differentiate from them in the following

aspects. Firstly, we used a different node embedding method.
Both PECAN and EPMP generated node embeddings us-
ing a position-specific scoring matrix (PSSM) derived from
sequence alignment. In contrast, we used pre-trained lan-
guage models to generate node embeddings. Secondly, we
simplified the graph decoder by using an inner product or a
linear layer to predict the binary labels of edges between the
antibody and antigen graphs. In contrast, they used graph
attention networks to predict the binary labels of nodes in
the antigen graph.

While there exist other related datasets with similar objec-
tives, our dataset is the biggest and most diverse in terms of
antibody-antigen complexes; there also exists work (Zhao
et al., 2024) that benchmarked other methods complemen-
tary to our work, including docking methods and Alphafold-
Multimer(Evans et al., 2022) on their dataset of antibody-
antigen complexes. They came to the same conclusion that
existing methods developed for general protein complexes
need improvement to be effective on antibody-antigen com-
plexes. For details, we refer readers to Appendix A.1.

Edge features In terms of structure representation, we only
used a simple invariant edge feature, the distance matrix, to
capture the neighborhood information of each residue. This
topological descriptor already performs better than other
methods that use sequence-based features. For future work,
more edge features can be incorporated to enrich the graph
representation, in addition to the invariant edge features used
in this work, such as inter-residue distances and edge types
used in GearNet (Zhang et al., 2023), and SE3 equivariant
features, such as rotational and orientational relationships
between residues as used in abdockgen (Jin et al., 2022).

Antibody types We also plan to extend our work to include
other types of antibodies. Current work only looks at con-
ventional antibodies, consisting of heavy- and light-chain
variable domains. There are also an increasing number of
novel antibodies, for example nanobodies, which are single-
variable-domain antibodies derived from camelids. These
will be included in future work.

7. Conclusion
In this work, we proposed a novel benchmarking dataset for
the epitope prediction task and clustered the samples by epi-
topes. We also provided a model, WALLE, which combines
protein language models and graph neural networks to lever-
age their abilities in capturing amino acid contextual and
geometric information. We benchmarked WALLE and four
other methods, showing that while WALLE outperforms
existing methods on both tasks, there remains room for im-
provement. We also discussed possible future directions.
This work can serve as a starting point for future research in
this area.
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Table 3. Performance on test set from dataset split by epitope to antigen surface ratio and epitope groups.

(a) Performance on dataset split by epitope to antigen surface ratio.

Algorithm MCC Precision Recall AUCROC F1

WALLE 0.210 (0.020) 0.235 (0.018) 0.422 (0.028) 0.635 (0.013) 0.258 (0.018)
EpiPred 0.029 (0.018) 0.122 (0.014) 0.180 (0.019) — 0.142 (0.016)
ESMFold 0.028 (0.010) 0.137 (0.019) 0.043 (0.006) — 0.060 (0.008)
ESMBind 0.016 (0.008) 0.106 (0.012) 0.121 (0.014) 0.506 (0.004) 0.090 (0.009)
MaSIF-site 0.037 (0.012) 0.125 (0.015) 0.183 (0.017) — 0.114 (0.011)

(b) Performance on dataset split by epitope groups.

Algorithm MCC Precision Recall AUCROC F1

WALLE 0.077 (0.015) 0.143 (0.017) 0.266 (0.025) 0.544 (0.010) 0.145 (0.014)
EpiPred -0.006 (0.015) 0.089 (0.011) 0.158 (0.019) — 0.112 (0.014)
ESMFold 0.018 (0.010) 0.113 (0.019) 0.034 (0.007) — 0.046 (0.009)
ESMBind 0.002 (0.008) 0.082 (0.011) 0.076 (0.011) 0.500 (0.004) 0.064 (0.008)
MaSIF-site 0.046 (0.014) 0.164 (0.020) 0.174 (0.015) — 0.128 (0.012)

MCC: Matthews Correlation Coefficient; AUCROC: Area Under the Receiver Operating Characteristic Curve; F1: F1 score. Standard
errors are included in the parentheses. We omitted the results of EpiPred, ESMFold and MaSIF-site for AUCROC. For EpiPred and
ESMFold, the interface residues are determined from the predicted structures by these methods such that the predicted values are binary
and not comparable to other methods; As for MaSIF-site, it outputs the probability of mesh vertices instead of node probabilities and
epitopes are determined as residues close to mesh vertices with probability greater than 0.7.

8. Data and Code Availability
Our dataset, the code for our dataset interface and the base-
line models are provided in the Supplementary zip file for
review.

• The code of our dataset interface and our baseline
model will be publically accessible after the manuscript
is accepted.

• The Supplementary Table SI-AsEP-entries.csv groups
the antibody-antigen complexes by epitope group as
well as antibody CDR sequences is provided in the
Supplementary Materials. An example is provided
in Appendix A.5.

• The two dataset splits files are also provided in the
Supplementary Materials, SI-split-epitope-group.csv
and SI-split-epitope-ratio.csv
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A. Appendix-A
A.1. Related work

Comparison of Previous Datasets We would like to highlight our dataset, AsEP, is the largest curated AbAg benchmarking
dataset to date. Existing ones either focus on general protein-protein complexes designed to develop general docking
methods or are way smaller than AsEP if designed for AbAg interaction research. We summarized the sizes of existing
datasets in the following table.

Table S1. Comparison of Dataset Sizes Across Different Methods

Method Dataset Size

WALLE (AsEP) 1723 AbAg complexes
Gao et al. 2022 (Gao et al., 2022) 258 AbAg complexes
CSM-AB (Myung et al., 2021) 472 AbAg complexes
SAGERank (Sun et al., 2023) 287 AbAg complexes
Bepipred3.0 (Clifford et al., 2022) 582 AbAg complexes

SCEptRe (Mahajan et al., 2019) is a related dataset that keeps a weekly updated collection of 3D complexes of epitope and
receptor pairs, for example, antibody-antigen, TCR-pMHC, and MHC-ligand complexes derived from the Immune Epitope
Database (IEDB). Our approach for clustering antibody-antigen complexes regarding their epitopes is similar to theirs, with
the difference in the clustering strategy. We cluster by antigen, then epitope group, and we allow mutated amino acids in
the same epitope region because we turn the epitope sites into columns in the multiple sequence alignment. In contrast,
SCEptRe clusters by antibody and then compares epitope similarity by epitope conformation using atom-pair distances via
PocketMatch (Yeturu & Chandra, 2008), which is beneficial for comparing the function of various paratopes but is less
suitable for our task of predicting epitope residues.

Complementary surveys We found two studies complementary to our work. Zhao et al. (2024) benchmarked a different type
of methods, i.e., docking methods including ZDOCK (Pierce et al., 2011), ClusPro (Kozakov et al., 2017), and HDOCK (Yan
et al., 2017) as well as Alphafold-Multimer (Evans et al., 2022) on their benchmark set of antibody-antigen complexes.
Their benchmark includes 112 antibody-antigen complexes released after 1 June 2019, 98 conventional antibodies (the same
antibody type as in our work), and 14 single-domain antibodies (not included in our work). They defined a prediction as
successful if a method can predict a complex structure in top k decoys at an Acceptable or better defined by DockQ (Basu
& Wallner, 2016). They showed that all docking methods gave a success rate at most 8.0% if using the top 5 decoys;
Alphafold-Multimer showed a relatively better performance with a 15.3% success rate. While we focus on bipartite
graph linkage prediction, different from their evaluation, both showed that there is room for improvement in the field of
antibody-antigen complex prediction.

Another study by Cia et al. (2023) focuses on epitope prediction using a dataset of 268 antibody-antigen complexes. They
differ from us in the definition of epitope residues in that they determined epitope residues using a change of at least 5%
in relative solvent accessibility upon complex formation. They benchmarked sequence-based methods, structure-based
methods, and an antibody-specific method, EpiPred, as we did in this work. Their findings agreed with ours that existing
methods for the epitope prediction task are not sufficient for the task.

Sequence-based epitope predictor We also tested purely sequence-based epitope prediction tool, for example,
Bepipred3.0 (Clifford et al., 2022) on our dataset. Bepipred3.0 uses ESM2 model, esm2 t33 650M UR50D to gen-
erate sequence embeddings and was trained on a smaller dataset of 582 antibody-antigen structures and evaluated on 15
antibody-antigen complexes. The authors provided a relatively larger evaluation of linear B-cell epitopes derived from
the Immune Epitope Database and reported an AUC-ROC of 0.693 on the top 10% of the predicted epitopes. We tested
Bepipred3.0 on our dataset and found its performance degenerates significantly, as shown in the table below. This is not
surprising because linear epitopes are consecutive positions in an antigen sequence, and this task fits better with language
model design. Additionally, as pointed out by the authors, approximately 90% of epitopes (B-cell) fall into the confor-
mational category (Clifford et al., 2022), which highlights the importance of the present benchmark dataset composed of
conformational epitopes derived from filtered antibody-antigen structures. We believe these results underline the findings in
our paper, showing that large language models alone, even if specialized for antibody-antigen interactions, do not encompass
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all the relevant information needed for epitope prediction.

Confidence Threshold Top 10% Top 30% Top 50% Top 70% Top 90%
AUC 0.693392 0.693392 0.693392 0.693392 0.693392
Balanced Accuracy 0.573132 0.636365 0.638755 0.604556 0.542274
MCC 0.109817 0.140183 0.134689 0.113372 0.071876
Precision-Recall AUC 0.176429 0.176429 0.176429 0.176429 0.176429
Accuracy 0.850178 0.701202 0.536947 0.362489 0.179051
Precision 0.169202 0.141361 0.120547 0.104286 0.090441
Recall 0.236760 0.553204 0.756607 0.892628 0.977723
F1-Score 0.173370 0.208366 0.197153 0.179294 0.160151

Table S2. Bepipred3.0 results for the presented AsEP dataset. The distance cutoff was changed to 4.0Å, as this is the threshold used by
Bepipred3.0. Results are shown for five confidence thresholds as described in the BepiPred-3.0 paper. Across all stringency settings and
metrics, Bepipred scored lower than Walle. Furthermore, it is possible that some of the structures within the dataset are contained within
the Bepipred3.0 dataset, artificially increasing scores.

A.2. Steps to build antibody-antigen complex dataset

We sourced our initial dataset from AbDb (version dated September 26, 2022), containing 11,767 antibody files originally
collected from the Protein Data Bank (PDB). We collected complexes numbered in Martin scheme (Raghavan & Martin,
2008) and used AbM CDR definition (Martin et al., 1991) to identify CDR residues from the heavy and light chains of
antibodies.

We extracted antibody-antigen complexes that met the following criteria: (1) both VH and VL domains are present in the
antibody; (2) the antigen is a single-chain protein consisting of at least 50 amino acids; and (3) there are no unresolved CDR
residues, yielding 4,081 files.

To deduplicate complexes, we used MMseqs2 (Steinegger & Söding, 2017) to cluster the complexes by heavy and light
chains in antibodies and antigen sequences. We used the easy-linclust mode with the –cov-mode 0 option to cluster
sequences; we used the default setting for coverage of aligned cutoff at 80%; we used different –min-seq-id cutoffs for
antibodies and antigens because the antibody framework regions are more conserved than the CDR regions. We cluster
heavy and light chains at –min-seq-id cutoff of 100% and 70%, respectively. We retained only one representative file for
each unique set of identifiers, leading to a refined dataset of 1,725 files.

Two additional files were manually removed. File 6jmr 1P was removed because its CDR residues are masked with ‘UNK’
labels and the residue identities are unknown; file 7sgm 0P was removed because of a non-canonical residue ‘DV7’ in its
CDR-L3 loop.

The final dataset consists of 1,723 antibody-antigen complexes.
13
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A.3. Pipeline to build graph dataset from AbDb
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Figure S1. Pipeline to convert an antibody-antigen complex structure into a graph representation.
• Row 1: given an AbAg complex PDB ID, retrieve ‘AbAg complex’ from AbDb and ‘raw structure’ file from PDB as

input, ‘AbDb complex antigen’ and ‘Original PDB file’ in the top lane.

• Row 2: They are then parsed as hierarchical coordinates (Antigen Structure), and extract ATMSEQ and SEQRES
sequences.

• Row 3: these are then passed to a set of in-house modules for calculating solvent access surface area (ASA), distance
matrix, and filtering out problematic residues, which generates an ATMSEQ2NODES mask. The sequence alignment
module aligns ATMSEQ with SEQRES sequences to generate a mask mapping from SEQRES to ATMSEQ. The
Sequence Embedding module passes SEQERS through the ESM module to generate embeddings. ESM requires input
sequence length and therefore filters out sequences longer than 1021 amino acids.

• Row 4: holds intermediate data that we apply masks to generate graph data in Row 5.

• Row 6: Apply the masks to map SEQRES node embeddings to nodes in the graphs and calculate the edges between the
graph nodes.

U , V and N denote the number of residues in the SEQRES sequence, ATMSEQ sequence and the graph, respectively. thr
(at 50 residues) is the cutoff for antigen SEQRES length. We only include antigen sequences with lengths of at least 50
residues. SEQRES and ATMSEQ are two different sequence representations of a protein structure. SEQRES is the sequence
of residues in the protein chain as defined in the header section of a PDB file, and it is the complete sequence of the protein
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chain. ATMSEQ is the sequence of residues in the protein chain as defined in the ATOM section of a PDB file. In other
words, it is read from the structure, and any residues in a PDB file are not resolved due to experimental issues that will
be missing in the ATMSEQ sequence. Since we are building graph representations using structures, we used ATMSEQ.
However, the input to the language models require a complete sequence, therefore we used SEQRES to generate node
embeddings, and mapped the node embeddings to the graph nodes. We performed two pairwise sequence alignments to map
such embeddings to graph vertices for a protein chain with Clustal Omega (Sievers et al., 2011). We first align the SEQRES
sequence with the atom sequence (residues collected from the ATOM records in a PDB file) and assign residue embeddings
to matched residues. Because we excluded buried residues from the graph, we aligned the sequence formed by the filtered
graph vertices with the atom sequence to assign residue embeddings to vertices. ASA is the solvent-accessible surface area
of a residue. If a residue has an ASA value of zero, it is considered buried and will be removed from the graph.

A.4. Implementation details

Exploratory Data Analysis We performed exploratory data analysis on the training dataset to understand the distribution
of the number of residue-residue contacts in the antibody-antigen interface. We found that the number of contacts is
approximately normally distributed with a mean of 43.42 and a standard deviation of 11.22 (Figure S2). We used this
information to set the regularizer in the loss function to penalize the model for predicting too many or too few positive edges.
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Figure S2. Blue line: distribution of the number of residue-residue contacts in antibody-antigen interface across the dataset with a mean
and median of 43.27 and 43.00, respectively. Red line: fitted normal distribution with mean and standard deviation of 43.27 and 10.80,
respectively.

Loss function Our loss function is a weighted sum of two parts: a binary cross-entropy loss for the bipartite graph linkage
reconstruction and a regularizer for the number of positive edges in the reconstructed bipartite graph.

Loss = Lr + λ

∣∣∣∣∣
N∑

ê− c

∣∣∣∣∣ (3)

Lr = − 1

N

N∑
i=1

(wpos · ye · log(ŷe) + wneg · (1− ye) · log(1− ŷe)) (4)

The binary cross-entropy loss Lr is weighted by wpos and wneg for positive and negative edges, respectively. During
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hyperparameter tuning, we kept wneg fixed at 1.0 and tuned wpos. N is the total number of edges in the bipartite graph, ye
denotes the true label of edge e, and ŷe denotes the predicted probability of edge e. The regularizer

∣∣∣∑N
ê− c

∣∣∣ is the L1
norm of the difference between the sum of the predicted probabilities of all edges of the reconstructed bipartite graph and the
mean positive edges in the training set, i.e., c set to 43. This aims to prevent an overly high false positive rate, given the fact
that the number of positive edges is far less than positive edges. The regularizer weight λ is tuned during hyperparameter
tuning.

Hyperparameters We carried out hyperparameter search within a predefined space that included:

• Weights for positive edges in bipartite graph reconstruction loss, sampled uniformly between 50 and 150.

• Weights for the sum of bipartite graph positive links, where values were drawn from a log-uniform distribution
spanning 1e− 7 to 1e− 4.

• Edge cutoff (x), defining an epitope node as any antigen node with more than x edges, with x sampled following a normal
distribution with a mean of 3 and a standard deviation of 1.

• Number of graph convolutional layers in the encoder, we tested using 2 and 3 layers.

• Decoder type was varied between two configurations:

– A fully connected layer, equipped with a bias term and a dropout rate of 0.1.
– An inner product decoder.

A.5. Antibody-antigen complex examples

To compare the epitopes of antibodies in AsEP, we first clustered these complexes by antigen sequences to group together
antibodies targeting the same antigen via MMseqs2 (Steinegger & Söding, 2017). Specifically, we ran MMseqs2 on antigen
SEQRES sequences and using the following setup:

• easy-linclust mode
• cov-mode set to 0 with the default coverage of 80%: this means a sequence is considered a cluster member if it aligns

at least 80% of its length with the cluster representative;
• min-seq-id set to 0.7: this means a sequence is considered a cluster member if it shares at least 70% sequence

identity with the cluster representative.

We encourage the reader to refer to the MMseqs2 documentation https://github.com/soedinglab/mmseqs2/
wiki for more details on the parameters used.

We then identify epitopes using a distance cut-off of 4.5 Å. An antigen residue is identified as epitope if any of its heavy
atoms are located within 4.5 Å of any heavy atoms from the antibody.

To compare epitopes of antibodies sharing the same antigen cluster, we aligned the antigen SEQRES sequences using Clustal
Omega (Sievers et al., 2011) (download from: http://www.clustal.org/omega/) to obtain a Multiple Sequence
Alignment (MSA). Epitopes are mapped to and denoted as the MSA column indices. The epitope similarity between a pair
of epitopes is then calculated as the fraction of identical columns. Two epitopes are identified as identical if they share over
0.7 of identical columns.
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Table S3. Antibody-Antigen Complex Examples

(a) Antigen Group Information

abdbid repr size epitope group

7eam 1P 7sn2 0P 183 0
5kvf 0P 5kvd 0P 9 1
5kvg 0P 5kvd 0P 9 2

(b) CDR Sequences (Heavy Chain)

abdbid H1 H2 H3

7eam 1P GFNIKDTYIH RIDPGDGDTE FYDYVDYGMDY
5kvf 0P GYTFTSSWMH MIHPNSGSTN YYYDYDGMDY
5kvg 0P GYTFTSYGIS VIYPRSGNTY ENYGSVY

(c) CDR Sequences (Light Chain)

abdbid L1 L2 L3

7zf4 1P RASGNIHNYLA NAKTLAD QHFWSTPPWT
7zbu 0P KSSQSLLYSSNQKNYLA WASTRES QQYYTYPYT
7xxl 0P KASQNVGTAVA SASNRYT QQFSSYPYT

(d) Structure Titles

abdbid resolution title repr title

7zf4 1P 1.4 immune complex of SARS-CoV-2
RBD and cross-neutralizing antibody
7D6

SARS-CoV-2 Omicron variant spike
protein in complex with Fab XGv265

7zbu 0P 1.4 Zika specific antibody, ZV-64, bound
to ZIKA envelope DIII

Cryo-EM structure of zika virus com-
plexed with Fab C10 at pH 8.0

7xxl 0P 1.4 Zika specific antibody, ZV-67, bound
to ZIKA envelope DIII

Cryo-EM structure of zika virus com-
plexed with Fab C10 at pH 8.0

Here we provide three example antibody-antigen complexes from the same antigen group, meaning the antigen sequences
from each member complex share sequence identity of the aligned region at least 70%. Due to space limitation, we have
broken the rows into four parts: Antigen group information, CDR sequences, and structure titles.

• abdbid: AbDb ID of the group member;

• repr: AbDb ID of the antigen representative;

• size: the number of complexes in the group;

• epitope group: A categorical identifier of the epitope group the antibody-antigen complex belongs to;

• H1, H2, H3, L1, L2, L3: CDR sequences of the heavy and light chains;

• resolution: Structure resolution;

• title: Structure title of the member;

• repr title: Structure title of the antigen representative.
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A.6. Metrics definition

MCC =
(TP × TN − FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2× Precision × Recall

Precision + Recall

TP: True Positive

FP: False Positive

TN: True Negative

FN: False Negative

A.7. Fine-tuning ESMBind on AsEP

The performance reported in the main text for ESMBind is derived by fine-tuning ESM2 on general protein binding sites.
We performed a further fine-tuning experiment, fine-tuning it on the presented AsEP dataset and evaluating it on the AsEP
test set to enable a more direct comparison of ESMBind to WALLE. Fine-tuning of ESMBind on AsEP was done using the
Low-Rank Adaptation method (Hu et al., 2021).

Table S4. Performance Metrics
Metric Value

MCC 0.103923
Accuracy 0.504478

AUC-ROC 0.584497
Precision 0.128934

Recall 0.707731
F1 0.213829
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B. Appendix: Link prediction baseline
While the majority of existing studies focus on node-level prediction, i.e., predicting which residues are likely to be the
epitope residues, we are interested in predicting the interactions between epitope and antigen residues. We argue that, on the
one hand, this would provide a more comprehensive understanding of the interaction between epitopes and antigens, and on
the other hand, it would be good in terms of model interpretability. Existing methods for predicting epitope residues are
mostly based on sequence information, which is not directly interpretable in terms of the interaction between epitopes and
antigens.

Our hyperparameter search was conducted within a predefined space as defined in Appendix A.4. We used the Bayesian
optimization strategy implemented through Weights & Biases, targeting the maximization of the average bipartite graph link
Matthew’s Correlation Coefficient (MCC).

The optimization process was managed using the early termination functionality provided by the Weights & Biases’
Hyperband method (Falkner et al., 2018), with a range of minimum to maximum iterations set from 3 to 27.

The best set of hyperparameters is 2 GCNConv layers, a batch size of 32, a weight for positive edges of 54.7, a weight for
the sum of positive links at approximately 5.75e− 7, and an edge cutoff of 2.38. The resulting MCC evaluated on the test
set was 0.072 (standard error: 0.009) for the bipartite graph link prediction task.

Table S5. Evaluation of WALLE on the bipartite graph link prediction task

Metric Mean (Standard Error)

MCC 0.072 (0.009)
ROC-AUC 0.582 (0.011)
Precision 0.049 (0.008)
Recall 0.167 (0.023)
F1 0.053 (0.007)
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C. Appendix: Ablation Studies
To investigate the impact of different components on WALLE’s performance, we carried out ablation studies and described
them in this section. For each model variant, we performed hyperparameter tuning and reported the evaluation performance
using the model with the best performance on the validation set.

C.1. Ablation study: replace graph component with linear layers

To investigate whether the graph component within the WALLE framework is essential for its predictive performance, we
conducted an ablation study in which the graph component was replaced with two linear layers. We refer to the model as
‘WALLE-L’. The first linear layer was followed by a ReLu activation function. Logits output by the second linear layer were
used as input to the decoder. The rest of the model architecture remained the same.

It differs from the original WALLE model in that the input to the first linear layer is simply the concatenation of the
embeddings of the antibody and antigen nodes, and the linear layers do not consider the graph structure, i.e., the spatial
arrangement of either antibody or antigen residues. The model was trained using the same hyperparameters as the original
WALLE model. The performance of WALLE-L was evaluated on the test set using the same metrics as the original WALLE
model.

C.2. Ablation study: WALLE with simple node encoding

The presented WALLE model utilizes embeddings from large language models, including ESM2 (Lin et al., 2022) or
IgFold(Ruffolo et al., 2023) for representing amino acid sequences, as these models are able to capture the sequential and
structural information inherent in protein sequences, providing a rich, context-aware representation of amino acids. To
test the effectiveness of such embeddings in this downstream task, we conducted an ablation study where we replaced the
embeddings from language models with simple node encodings. Specifically, we evaluated the performance of WALLE
when using ‘one-hot’ encoding and ‘BLOSUM62’ encoding for amino acids in both antibody and antigen sequences.

C.3. Ablation study: WALLE with ESM2 embeddings for both antibodies and antigens

We also investigated whether the choice of language models can impact the predictive performance of WALLE; we
conducted an ablation study to evaluate the performance of WALLE when both antibodies and antigens are represented
using embeddings from the ESM2 language model (Lin et al., 2022) while the original model uses AntiBERTy (Ruffolo
et al., 2023) for antibodies as it is trained exclusively on antibody sequences. This also tests whether a language model
trained on general protein sequences can be used for a downstream task like antibody-antigen interaction prediction.

One-hot encoding

One-hot encoding is a method where each residue is represented as a binary vector. Each position in the vector corresponds
to a possible residue type, and the position corresponding to the residue present is marked with a 1, while all other positions
are set to 0. This encoding scheme is straightforward and does not incorporate any information about the physical or
chemical properties of the residues. This method tests the model’s capability to leverage structural and relational information
from the graph component without any assumptions introduced by more complex encoding schemes.

BLOSUM62 encoding

BLOSUM62 (Henikoff & Henikoff, 1992) encoding involves using the BLOSUM62 matrix, which is a substitution matrix
used for sequence alignment of proteins. In this encoding, each residue is represented by its corresponding row in the
BLOSUM62 matrix. This method provides a more nuanced representation of residues, reflecting evolutionary relationships
and substitution frequencies.

C.4. Hyperparameter tuning

We used the same hyperparameter search space defined in Appendix A.4 and performed a hyperparameter search as defined
in Appendix B for each model variant in the ablation studies. We report the evaluation performance of the tuned model for
each variant in Table S6.

We observed that WALLE’s performance with simple node encodings (‘one-hot’ and ‘BLOSUM62’) is considerably lower
than when using advanced embeddings from language models. This indicates that the embeddings derived from language
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AsEP: Benchmarking Deep Learning Methods for Antibody-specific Epitope Prediction

Table S6. Performance of WALLE without graph component and simple node encodings on test set from dataset split by epitope to antigen
surface ratio.

Algorithm Encoding MCC AUCROC Precision Recall F1

WALLE Both 0.2097 (0.0195) 0.6351 (0.0126) 0.2346 (0.0183) 0.4217 (0.0279) 0.2580 (0.0178)
WALLE-L Both 0.1593 (0.0155) 0.6124 (0.0109) 0.1750 (0.0109) 0.4696 (0.0243) 0.2371 (0.0137)
WALLE ESM2 0.1955 (0.0212) 0.6219 (0.0137) 0.2280 (0.0188) 0.4103 (0.0291) 0.2553 (0.0188)
WALLE-L ESM2 0.1445 (0.0138) 0.6100 (0.0097) 0.1598 (0.0102) 0.5355 (0.0216) 0.2266 (0.0125)
WALLE One-hot 0.0968 (0.0094) 0.5830 (0.0076) 0.1185 (0.0052) 0.8923 (0.0118) 0.2026 (0.0081)
WALLE BLOSUM62 0.0848 (0.010) 0.5739 (0.0081) 0.1182 (0.0055) 0.8401 (0.0151) 0.1993 (0.0083)

The values in parentheses represent the standard error of the mean; ‘WALLE-L’ refers to WALLE with the graph component
replaced by two linear layers. ‘ESM2’ refers to the embeddings from the ESM2 language model esm2 t12 35M UR50D.
‘One-Hot’ refers to one-hot encoding of amino acids. ‘BLOSUM62’ refers to the BLOSUM62 encoding of amino acids.
‘Both’ refers to embedding antibodies and antigens using the esm2 t12 35M UR50D ESM2 model and AntiBERTy (via
IgFold) language model, respectively. The best performing model is highlighted in bold.

models capture more nuanced information about the amino acids, enabling the model to better predict epitope-antigen
interactions.

The degenerated performance of WALLE with simple encodings can be attributed to the lack of contextual information and
structural features in these representations. The high recall but low precision values suggest that the model is unable to
distinguish between true and false interactions, leading to a high number of false positives. This highlights the importance
of using meaningful embeddings that capture the rich structural and sequential information present in protein sequences.

When comparing WALLE with WALLE-L (without the graph components), we observe that the model’s performance drops
considerably when the graph component is replaced with fully connected linear layers. This indicates that the topological
information captured by the graph component also contributes to the model’s predictive performance.

We also observed that WALLE with ESM2 embeddings for both antibodies and antigens achieved similar performance
to WALLE with AntiBERTy and ESM2 embeddings for antibodies and antigens, respectively. This suggests that the
ESM2 embeddings somehow provide effective information for both antibodies and antigens without training exclusively on
antibody sequences.
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