BIMgent: Towards Autonomous Building Modeling via Computer-use Agents

Zihan Deng !> Changyu Du'? Stavros Nousias '> André Borrmann

12

https://tumcms.github.io/BIMgent.github.io/

Abstract

Existing computer-use agents primarily focus on
general-purpose desktop automation tasks, with
limited exploration of their application in highly
specialized domains. In particular, the 3D build-
ing modeling process in the Architecture, Engi-
neering, and Construction (AEC) sector involves
open-ended design tasks and complex interaction
patterns within Building Information Modeling
(BIM) authoring software, which has yet to be
thoroughly addressed by current studies. In this
paper, we propose BIMgent, an agentic frame-
work powered by multimodal large language mod-
els (LLMs), designed to enable autonomous build-
ing model authoring via graphical user interface
(GUI) operations. BIMgent automates the archi-
tectural building modeling process, including mul-
timodal input for conceptual design, planning of
software-specific workflows, and efficient exe-
cution of the authoring GUI actions. We eval-
uate BIMgent on real-world building modeling
tasks, including both text-based conceptual de-
sign generation and reconstruction from existing
building design. The design quality achieved by
BIMgent was found to be reasonable. Its op-
erations achieved a 32% success rate, whereas
all baseline models failed to complete the tasks
(0% success rate). Results demonstrate that BIM-
gent effectively reduces manual workload while
preserving design intent, highlighting its poten-
tial for practical deployment in real-world archi-
tectural modeling scenarios. Code available at:
https://github.com/ZihanDDD/BIMgent

!Chair of Computing in Civil and Building Engineering, Tech-
nical University of Munich, Germany >TUM Georg Nemetschek
Institute, Munich, Germany. Correspondence to: Zihan Deng
<zihan.deng@tum.de>, Changyu Du <changyu.du@tum.de>.

Workshop on Computer-use Agents @ ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

Architect:

| have an idea for an H-shaped building and
have created a simple hand-drawn floorplan.
Canyou help me design a two-storey
building based on this sketch?

BIMgent Launched

Planning BIMgent Finished

Figure 1. The BIMgent framework, enabling the architectural
building modeling process to be performed autonomously through
computer control.

1. Introduction

To achieve generality in current autonomous agents, re-
searchers are exploring computer-use agents that operate di-
rectly through graphical user interfaces (GUIs) (Anthropic,
2024; OpenAl, 2025c). These agents perceive the same
screens as humans, generate plans based on the current GUI
state, and produce keyboard and mouse actions to perform
tasks autonomously (Zhang et al., 2025a). Today, many
computer-use agents are being developed to automate tasks
across a variety of environments, including the web (Zheng
et al., 2024; Zhang et al., 2025b; Zheng et al., 2025a), mo-
bile devices (Wu et al., 2025; Zheng et al., 2025b), and
video games (Raad et al., 2024; Tan et al., 2024b).

However, computer-use agents are still underexplored in the
Architecture, Engineering, and Construction (AEC) sector.
In recent years, Building Information Modeling (BIM) has
become indispensable. A BIM model is a digital represen-
tation that captures not only the 3D geometry of a building
but also includes rich semantic and topological information,
enabling support throughout the building’s entire lifecycle
(Borrmann et al., 2018). Before actual construction begins,
architects and engineers typically design and create BIM
models using professional BIM authoring software (Baduge
et al., 2022). However, there are two main challenges in

https://tumcms.github.io/BIMgent.github.io/
https://github.com/ZihanDDD/BIMgent

the modeling process using such software. First, the com-
mands and GUI of design software are often highly complex,
resulting in a steep learning curve and high training costs
(Hossain & Zaman, 2022). Second, the design and modeling
workflow involves numerous repetitive operations, which
further increases the manual effort and time consumption
(Heaton et al., 2019).

Computer-use agents can automate the building modeling
process by interacting directly with the software GUI, replac-
ing cumbersome manual operations (Agashe et al., 2024).
Despite extensive research on computer-use agents in other
domains, their application in highly specialized building
designs poses unique challenges: (1) Agents must under-
stand the conceptual intent of human design and accurately
translate it into command flows within the BIM authoring
software for 3D building modeling. (2) BIM authoring soft-
ware exposes highly parameterized operations and multiple
interaction modes. Agents need robust strategies to navigate
these options. (3) The richly detailed, noise-filled GUI of
design software can overwhelm vision-based agents. Filter-
ing out irrelevant elements while retaining essential visual
cues is crucial for dependable operation. (4) Modeling a
building involves hundreds of interdependent operations.
Agents must not only plan these steps efficiently but also
manage error recovery and state tracking across a lengthy
workflow.

In response, we introduce BIMgent, an agentic framework
designed for the autonomous architectural building model-
ing process, as illustrated in Figure 1. BIMgent is capable
of transforming multimodal design intents, including textual
building descriptions or rough 2D floorplan sketches, into
a 3D BIM model. It not only goes beyond basic interface-
level tasks to handle open-ended design generation but also
incorporates domain-specific knowledge to plan and execute
modeling tasks within complex software environments.

To enhance the GUI agent’s capability to operate the de-
sign authoring software, we propose a hierarchical planning
structure. A high-level planner is designed for generating
general design steps. It decomposes the overall modeling
workflow into element-level steps (e.g., design layers, walls,
etc.). Each step is then passed to a low-level planner, which
retrieves relevant information from official software docu-
mentation to learn the usage of tools and commands, and
generate appropriate GUI actions. We design two distinct
workflows for action execution. The Pure-Action Work-
flow handles tasks such as keyboard shortcuts and element
placement actions, which are common usage patterns in
design software. GUI pixel-level coordinates required for
keyboard and mouse operations are either mapped from the
floorplan image or retrieved from the software documen-
tation. Inspired by speculative multi-action execution in
UFO-2 (Zhang et al., 2025b), we pre-generate the entire

action sequence during the planning phase, rather than issu-
ing one action at a time through repeated agent calls during
execution to reduce latency. For the Vision-Driven Work-
flow that requires fine-grained information comprehension
in GUI, we propose a dynamic GUI grounding method that
reduces visual noise by restricting the grounding process to
regions associated with relevant interactions for action gen-
eration. Considering that the modeling tasks often require
hundreds of sequential actions, where a single mistake can
lead to cascading errors, we use LLMs as judges to evaluate
each action step and provide real-time feedback to correct
mistakes, enabling BIlMgent to self-reflect.

Existing benchmarks for GUI agents primarily focus on web,
mobile, or office software (Bonatti et al., 2024; Xie et al.,
2024). To systematically assess the BIMgent, we design
a Mini Building Benchmark tailored to assess GUI agent
performance in building modeling scenarios. It includes
25 real-world building modeling tasks, which evaluate the
agent’s ability to handle open-ended design requirements
(design evaluation) and performance throughout the model-
ing process within the BIM authoring software (operation
evaluation). The experimental results show that BIMgent
achieves an average score of 3 out of 5 across six critical de-
sign evaluation criteria. In terms of operation, it achieves a
32% end-to-end success rate across 25 design tasks. Notably,
when decomposing the building modeling tasks, it achieves
success rates of 86.58% and 95.12% in creating repetitive
and redundant elements: walls and openings respectively.
By contrast, the strongest baseline model finished none of
the end-to-end tasks (0%) and achieves only 31.70% and
35.36% success on walls and openings respectively in our
Mini Building Benchmark. These results demonstrate its
potential to significantly reduce human effort in the building
modeling process.

2. Related Work

Generative Al in AEC. The advent of generative Al has
transformed the architecture, engineering, and construction
(AEC) domain. Luo and Huang (2022) proposed Floor-
planGAN, which integrates vector-based generation with
raster-based discrimination for architectural floorplan gener-
ation. As the field shifts toward 3D design, Ennemoser and
Mayrhofer-Hufnagl (2023) introduced a 3DGAN model that
reconstructs architectural forms through a voxel-to-image-
to-voxel pipeline; however, their approach emphasizes ge-
ometry and lacks semantic detail. Addressing this gap, Gao
et al. (2024) developed DiffCAD, a weakly supervised prob-
abilistic model that retrieves and aligns CAD models from
RGB images. They essentially have the ability to handle
open-ended tasks and fulfill building design requirements.
However, existing methods still lack the capability to accept
multimodal inputs for handling design changes.

Multimodal LLM Agents. Recent multimodal LLM agents
have demonstrated strong capabilities in interacting with
software environments, even when addressing open-ended
design tasks. For example, in video game environments,
Voyager leveraged LLMs to autonomously explore and ac-
quire diverse skills in Minecraft, though it relied on internal
APIs for action execution (Wang et al., 2023). TWOSOME
combined LLMs with reinforcement learning to improve
decision-making in complex scenarios (Tan et al., 2024a).
In the domain of 3D scene generation, Hu et al. (2024) trans-
lated natural language into 3D environments by implement-
ing an LLLM agent that generates Python code. Similarly,
Du et al. (2024a) used LLMs to create multiple early-stage
building models through internal APIs. However, these
methods face limitations due to their reliance on software-
specific APIs, which restrict generalizability across different
platforms and tools.

GUI Agents. To address the limitations posed by API re-
strictions, recent GUI agents have demonstrated strong pro-
ficiency in interface manipulation. State-of-the-art systems
such as UFO-2 (Ren et al., 2020), AgentS2 (Agashe et al.,
2025), SEEACT (Zheng et al., 2024), and FRIDAY (Wu
et al., 2024) have achieved high performance on GUI-based
tasks. Their integration of strategies such as knowledge re-
trieval and hierarchical planning further enhances their effi-
ciency and ability to handle complex, multi-step tasks across
web environments. Similarly, Anthropic (Anthropic, 2024)
and OpenAl (OpenAl, 2025c¢) have developed screenshot-
driven agents that automate operations using visual input
rather than relying on APIs.

However, these systems face limitations when applied to
more complex, domain-specific environments. Most ex-
isting use cases are centered around web-based interfaces,
which tend to be relatively static and less complex. In con-
trast, adapting to environments like BIM authoring software
is significantly more challenging due to complex GUIs and
intricate multi-step operations. A comparable situation can
be observed in video game environments, which also de-
mand creativity and involve complex usage patterns. For ex-
ample, SIMA is a GUI agent that interacts via keyboard and
mouse across diverse 3D video game environments (Raad
et al., 2024). VillagerAgent demonstrated the ability to man-
age complex task dependencies in large open-ended environ-
ments in Minecraft (Dong et al., 2024). Similarly, Tan et al.
(2024b) proposed a generalized GUI agent framework Cra-
dle, which is capable of operating across both video games
and web applications. Despite these advances, a shared lim-
itation among these agents is the lack of well-defined task
completion signals and standardized benchmarks, which
hinders consistent evaluation. As a result, many of these
works design their own tasks and experimental protocols.
Compared to video games, the building modeling process
involves less real-time animation but poses its own chal-

lenges, such as an open-ended design process, non-intuitive
operations, more complex planning and management, and
intricate GUISs that are harder to interpret and ground.

3. BIMgent Framework

BIMgent enables an autonomous architectural building
modeling process through computer control, spanning from
design concept interpretation to final 3D building modeling.
As depicted in Figure 2, the framework consists of three key
layers: (1) Design Layer transforms conceptual or existing
designs into 2D floorplans aligned with the GUI coordinate;
(2) Action Planning Layer generates knowledge-based,
hierarchical operation steps based on software documen-
tation; and (3) Execution Layer executes actions under
agent-based supervision to complete the modeling work-
flow. The details of each component are explained in the
following sections.

3.1. Design Layer

The Design Layer is responsible for transforming a building
description or existing design sketches into a 2D floorplan
image. In contrast to existing methods that stop at image
generation, this layer further extracts necessary design infor-
mation and maps the image resolution-level coordinates of
floorplan elements to the pixel-level coordinates, enabling
downstream GUI grounding, planning, and execution.

Floorplan Generation. We explore three approaches to
generate 2D floorplan representations from design intent,
specifically, (1) we adopt a generative adversarial network
(GAN)-based image generation method (Nauata et al., 2021;
Fu et al., 2024) to generate floorplans from textual prompts;
(2) we leverage LLMs to produce SVG floorplans from
textual descriptions or image input; and (3) we employ
advanced multimodal LLMs to directly generate floorplan
images either from text or conditioned on existing floorplan
visuals. Based on empirical comparison, we find that mul-
timodal LLMs demonstrate better capability in translating
both abstract design intent and existing visual layouts into
coherent and functional 2D floorplans. This enables our
framework to support both text-to-building generation and
floorplan-to-building transformation. Detailed comparisons
of the three approaches are presented in the Appendix F.

Floorplan Segmentation. Despite the strong image genera-
tion and understanding capabilities of current LLMs, they
still exhibit limitations in recognizing and localizing accu-
rate architectural components within floorplans. To address
this, we integrate a floorplan segmentation model to iden-
tify and classify architectural elements such as walls and
openings in the generated floorplan.

Floorplan Interpretation. We further employ an additional
multimodal LLM to proofread and enhance the results, en-

Action Planning
(Hierarchical Planning)

% Design

@ Execution

<" Vision-Driven Workflow

User

Execution Execution

Execution

i = & 8O o
— % Floorplan Generation A Saftware S S R
‘ _E_ ‘?. High-level Planner Documentation T A o WorkTiow i & -g @
l - | (speculative mult-action execution) | | Supetvmor !
RAG ‘ P !
i T 7 | General General
[eS8 o g e | I
Jr § f o)
. . ! ¥ : i No !
| a 86 w 850 "o
i_@ ab Low-level Planner b Low-level Planner 33 Supervisor Dynamic GUI grounding
‘ Bt X Floorplan Inmrﬁ;ﬁauon
N |- P =
[(substep1 | .. [subsiepn | [Substepn | - i 3’ Action Generator
v v v 5 i
Design Requirement/ | O S, e e Do £ *
Existing 2D Design A
- (=t K@ L@ K@ e I @ Action execute

Figure 2. Overview of the BIMgent framework. Given the multimodal design requirements provided by the user, the Design Layer first
transforms them into a refined floorplan and extracts the necessary semantic and geometric information to guide the modeling process.
Based on the interpreted design information and domain knowledge, the Action Planning Layer hierarchically organizes the modeling
procedure and decomposes it into detailed substeps, guided by the official software documentation. These substeps are then executed
through specialized action workflows in the Execution Layer, each equipped with verification mechanisms. Execution trajectories are
stored in a memory module, which supports both self-reflection and cooperation among different parts of the framework.

abling the extraction of more fine-grained and accurate de-
sign details for downstream GUI grounding. For example,
it helps distinguish between internal and external walls, or
between doors and windows among the openings. Follow-
ing classification, we apply a rule-based algorithm to map
the image-resolution coordinates of the identified compo-
nents (z;, y;) to their corresponding pixel-level coordinates
(@gui> Ygui) in the GUI This mapping can be expressed by
the following formula:

T Y
Tgui = —— i Ygui = T
img img

. hgui

Here, wing and hiye denote the width and height of the
image resolution, while wy,; and hgy; refer to the dimensions
of the GUI design panel of the BIM authoring software. This
scaling is used to convert coordinates from the image space
to their corresponding pixel locations in the GUL

3.2. Action Planning Layer

The entire building modeling process typically involves
hundreds of sequential steps. To mitigate errors and improve
accuracy, we designed a hierarchical planning process that
employs two agents for authoring software action planning:
the high-level planner and the low-level planner.

High-Level Planner. After analyzing modeling patterns
of several architects, we designed a high-level planner that
generates a sequence of general steps based on standard
building modeling workflows. For example, the typical
process begins with setting up corresponding design layers,

followed by creating walls and other elements in a high-
level plan. This design imitates the architects’ modeling
thought process. Additionally, the planner identifies which
specific elements from the generated floorplan should be
created or configured in each step.

Low-Level Planner. The detailed modeling action steps
in the authoring software are complex and involve multiple
operation modes, which vary across different users. To
handle this complexity, we leverage the official software
documentation and adopt a retrieval-augmented generation
(RAG) approach (Du et al., 2024b). This allows the agent to
explore autonomously and learn software usage dynamically
like humans, rather than hard-coding static actions within
prompts.

As shown in Figure 3, the documentation is embedded into
vector representations and stored in a vector database. Given
a general step from the high-level planner, the most rele-
vant sections from the documentation are retrieved. The
low-level planner then references both the retrieved doc-
umentation and general steps from the high-level planner
to generate detailed substeps. It breaks down each general
step into multiple actionable substeps, generating them it-
eratively until the full sequence is completed. We identify
two types of substeps generated from the low-level planner,
which cover the main usage patterns of human designers
interacting with the BIM authoring software: Vision-Driven
and Pure-Action.

Vision-Driven substeps (e.g., Substep 2 in Figure 3) require
grounding in the GUI, such as switching tabs or setting

up parameters, which necessitate specific pixel-level coor-
dinates for accurate interactions. These substeps are not
directly converted into actions at this stage due to the lack of
visual input. In contrast, Pure-Action substeps (e.g., Substep
1), such as issuing keyboard shortcuts and placing elements,
are deterministic actions, with information typically avail-
able in the floorplan metadata or software documentation.
The low-level planner directly generates executable actions
for Pure-Action tasks without additional GUI grounding.
The available actions are detailed in Appendix A.

4’@')

EERED Markdown Docs,/
Documentation 7

Vi

| Embedding Model

General Steps
; ﬁ 5':;:; :;:g" H Step 2: Wall]—» —-[smp n: Tukﬂ

«—

Vector of Docs Floorplan Metadata

Layer Docs

@\\ [Approximate Nearest 6
Vector Database oK Coucenr] / Y7

Low-level Planner

" mouse_to(x=y =), |
left_clck(),
shortcut(combo = str),

Substep 1 Substep 2 Substep n

"action_name": "Open Organization Dialog" "action_name": "Switch to Design Layers Tab"

"description": "Press Ctrl+Shift+O to open
the Organization dialog”,

*description”: "Move the mouse to the Design
Layers tab and click",

"type": "Pure-Action”, "type™: "Vision-Driven",

"actions": ["shortcut(combo = \'ctrl + shift + o\")'] | | "actions™ [

Figure 3. Low-level planner. The general steps generated by the
high-level planner are embedded and used to query the official
documentation to retrieve the most relevant detailed guidance.
Combined with floorplan metadata and the necessary action defini-
tions, these results are forwarded to the agent for detailed subtask
generation.

3.3. Execution Layer

The final execution layer implements the planned GUI op-
erations to model buildings within the design software. It
sequentially executes the substeps produced by the low-
level planner for each general step. Once all substeps for the
current general step are completed, it proceeds to the next
general step and repeats the process. For the two types of
substeps planned by the low-level planner, we accordingly
designed dedicated workflows for their execution.

Pure-Action Workflow. Pure-action substeps are executed
directly through the planned action sequences. We im-
plement speculative multi-action execution (Zhang et al.,
2025b), allowing each substep to be executed without re-
quiring separate API calls for individual actions. After each
action is completed, the supervisor is invoked. The super-
visor receives the current GUI screenshot and analyzes the
result. A common feature of BIM authoring software is that
the GUI typically displays metadata about the currently cre-
ated building elements. Leveraging this, the agent inspects
the displayed information to verify whether the created ele-
ment’s type and semantic attributes are correct. If the result
is valid, the workflow proceeds to the next task; otherwise,

the failed substep is undone and regenerated by the supervi-
sor agent. A detailed visualization of the process is provided
in Appendix D.

Vision-Driven Workflow. Vision-driven substeps require
dynamic action generation based on the GUI screenshot
state. In this workflow, the supervisor agent is invoked first.
It captures a GUI screenshot and assesses the current GUI
state. If the current state satisfies the substep requirements,
the system proceeds to the next substep. If not, we apply
a dynamic GUI grounding mechanism for accurate inter-
action. As shown in Figure 4, to detect visual changes,
a screenshot is captured at the beginning of each general
step. For example, before starting general step 1, an ini-
tial screenshot is taken as a reference. The current GUI
screenshot is compared with the initial GUI screenshot to
detect visual changes within the differing region, typically
a pop-up window. The grounding process then focuses ex-
clusively on this region. This design choice is based on the
observation that, in design software, Vision-Driven substeps
usually involve parameter settings, which are commonly
presented through dedicated pop-up windows. As the sur-
rounding interface remains largely static and irrelevant to
the current task, excluding it reduces visual noise. This ap-
proach mimics human behavior, where attention is naturally
directed toward the changing parts of the interface, resulting
in more accurate and efficient grounding. A screen parser
model converts screenshots of pop-up windows into struc-
tured representations with UI element bounding boxes and
text descriptions (i.e., Set-of-Marks). These representations
are then passed to a VLM-based action generator, which
generates and executes the appropriate actions based on the
grounding result. Finally, the supervisor agent re-evaluates
the GUI state to verify the success of the operation.

Reflection. In all workflows, a supervisor is integrated
to monitor the GUI state and assess whether the current
substeps have been successfully completed. In the Vision-
Driven Workflow, if a substep fails, the supervisor provides
a failure reason to guide future adjustments and support the
subsequent Action Generator Agent in regenerating actions.
In contrast, in the Pure-Action Workflow, where the required
actions are relatively simple, the Supervisor Agent regener-
ates the actions directly without delegating to another agent.

4. Experiments
4.1. Implementation details

Hybrid Multi-Agent Framework. We employ a hybrid
of different LLMs/VLMs as the backbones. We choose
OpenAl’s gpt-image-1 for floorplan generation due to its
advanced image generation and editing capabilities (Ope-
nAl, 2025d). For the interpretation floorplan component,
we employ Gemini 2.5 Pro, which demonstrates state-of-

the-art image reasoning capabilities (Google, 2023). For
action planning, including the high-level planner, low-level
planner, and action generator, we utilize GPT-4.1 to handle
more complex reasoning and instruction-following tasks
(OpenAl, 2025a). For the supervisor and action generator,
we use o4-mini due to its lower cost and faster response
time (OpenAl, 2025b).

Non-Agent Components. Our framework incorporates sev-
eral non-LLM components. For floorplan segmentation, we
adopt the DeepFloorPlan (Zeng et al., 2019), a multi-task
network trained on about 12k annotated plans that jointly
predicts room-boundary primitives (walls and openings)
and room-type masks. For software documentation and task
embedding, we use OpenAl’s text-embedding-3-small (Ope-
nAl, 2024). Finally, during the dynamic GUI grounding
process, we employ Omni-Parser-v2 (Yu et al., 2025) for
accurate screen parsing and component detection.

Dynamic GUI Grounding

Current GUI screenshot

1

Initial GUI screenshot
1

Pop-up Window

---------- Screen Parser Model

Grounded Pop-up Window

Generating Actions:
"actions": ["mouse_to(x =624, y =562),

AR | 'eft click)"]

Action Generator

mouse_to(x=, y=),
left_click(),
shortcut(combo=str),

—_

Substep n
"action_name": "Create a New Design Layer"
"description": "Move the mouse to the New... Bottom and click",
"type": "Vision-Driven Substep",
"actions": []

Figure 4. Dynamic GUI Grounding. The initial GUI screenshot is
subtracted from the current GUI screenshot to highlight changes,
allowing pop-up windows to be specifically visualized and reduc-
ing noise during the grounding process. The grounded pop-up
window is then passed to the action generator, which combined
with the relevant action definitions and substep information, pro-
duces the corresponding actions.

4.2. Mini Building Benchmark Introduction

Compared to existing computer-use benchmarks (Zhou
et al., 2023; Xie et al., 2024; Deng et al., 2023), where
each task typically involves around 10 steps, building mod-
eling tasks are significantly more complex, with each design
task usually requiring approximately 100 action steps on
average. To evaluate our system, we constructed a custom
Mini Building Benchmark consisting of 25 real-world 3D
building modeling tasks, all executed within the BIM au-
thoring software Vectorworks. The benchmark includes five
tasks for generating 3D buildings from pure textual design
requirements, five based on hand-sketched 2D floorplan im-
ages, five sourced from the CubiCasa5K floorplan dataset
(Kalervo et al., 2019), five from hand-sketched floorplans
with additional modification requirements, and five from
CubiCasa5SK floorplans with modification requirements. In
total, the benchmark involves over 2000 action steps. Fur-
ther details are provided in the Appendix B.

Unlike existing research benchmarks, building modeling
tasks lack clear signals for automated evaluation, which
makes it difficult to objectively determine whether a task
has been successfully completed. To address this, the evalu-
ation process is divided into two phases: design evaluation
and operation evaluation. We conduct human evaluation
based on predefined criteria, with assessments performed
by architects for design and the final 3D building model.
The details are shown in the Appendix C. Because no ex-
isting computer-use agents are specifically designed for
autonomous building modeling, we choose GPT-40 and
Claude 3.7 as baseline models.

S. Results and Analysis
5.1. Experimental Results

Design Evaluation. We asked human architects to grade the
generated floorplans based on six design criteria. We then
compared our full design layer with two baseline methods:
floorplans generated by Claude 3.7 using SVG, and our
design layer without the floorplan interpretation module.
As illustrated in Figure 5, the results show that our method
produces the most reasonable and acceptable designs across
all six criteria. Notably, it achieves scores above 3 out
of 5 in every aspect, outperforming the baseline models
and demonstrating a superior ability to handle open-ended
design tasks. The detailed evaluation process can be found
in Appendix C.

Operation Evaluation. As shown in Table 1, the BIMgent
achieves a 32% end-to-end success rate on the proposed
Mini Building Benchmark. The complexity and length of
each task make it difficult to directly assess outcomes, as
many steps can influence the final success. To enable a
more granular evaluation of agent performance, in addi-

Table 1. Success rates (%) on the proposed Mini Building Benchmark test set consisting of 25 building modeling tasks, along with results
from the ablation study. N/A indicates 0% success rate.

METHOD END-TO-END (25) LAYER (41) WALL (82) SLAB (41) OPENINGS (82) ROOF (25)
GPT-40 N/A N/A 4.87 2.43 12.19 N/A
CLAUDE 3.7 N/A N/A 31.70 21.95 35.36 N/A
BIMGENT 32.00 46.34 86.58 73.81 95.12 60.00
w/0 DYNAMIC GUI GROUNDING 13.33 34.15 86.58 73.81 92.68 38.46
W/O SUPERVISION 11.53 24.19 84.14 70.73 92.68 48.00
W/0 HIERARCHICAL PLANNING N/A 2.43 41.46 58.53 46.34 12.00
Surtabity assist in tedious operations by reliably replicating human be-
havior. Compared to the baseline experiments, our method
achieves significantly higher performance, both in overall
Flexibility GasrAGY success rate and across individual modeling parts.
— ours 5.2. Ablation Study
Ours w/o Interpretation
—— Claude 3.7

Daylight
and Ventilation

Spatial
Coherence

Openings
Configuration

Figure 5. Human evaluation of the generated floorplan designs
based on six criteria. Lower values indicate that the corresponding
requirements were not clearly specified in the design instructions,
while higher values reflect better alignment. The detailed evalua-
tion process can be found in Appendix C.

tion to 25 end-to-end modeling tasks, we also focused on
subtasks involving the modeling of key architectural compo-
nents. Specifically, we evaluate the creation of design layers
(41 tasks), walls (82 tasks), slabs (41 tasks), openings (82
tasks), and roofs (25 tasks) based on whether all required
architectural elements are successfully created and whether
all parameters are properly configured within each subtask.
BIMgent performs particularly well on component-related
tasks such as wall and opening creation, with 86.58% and
92.68% success rates respectively. This performance is at-
tributable to the availability of floorplan metadata and the
relatively simple element creation action patterns that BIM-
gent can learn effectively. The strongest baseline (Claude
3.7) could not complete any end-to-end modeling task in
our benchmark because of the heavy planning and extensive
GUI operations that are required. Compared to subtasks,
the baseline also performed poorly. BIMgent achieves a
46.34% success rate on the Layer subtask, 60% on Roof
(both versus 0% for the baseline), and significantly outper-
forms the baseline in Wall, Slab, and Openings creation.
The results suggest that BIMgent has strong potential to

Visual Improvement. As illustrated in Table 1, with the
proposed dynamic GUI grounding mechanism, the overall
success rate increases by 18.67%. Delving into the de-
tailed decomposed components, we find that Layer and
Roof, which require extensive grounding for name editing
and parameter configuration, show significant improvement
with 12.19% and 21.54%, respectively. This targeted visual
attention greatly enhances task efficiency and accuracy.

Reflection Ability. The integration of supervision and self-
reflection strategies enables the agent to analyze previously
failed tasks and generate improved action plans. Statisti-
cally, we observe that the overall task success rate increases
by 20.57% with this mechanism. The primary reason is that
Vision-Driven tasks often fail to generate accurate ground-
ing on the first attempt. Through self-reflection, the per-
formance of tasks such as Layer and Roof was improved
by 22.13% and 12% respectively. In addition, the perfor-
mance of other related components was slightly improved
by approximately 3%, primarily due to the correction of rare
software errors.

Hierarchical Planning Is Essential. Without hierarchical
planning to guide the general building modeling steps, the
agent struggles to complete even a single task. Other de-
composed tasks also perform poorly, particularly the Vision-
Driven subtasks such as Layer and Roof. Given the hun-
dreds of substeps involved and the complex usage patterns
of the design software, it is challenging for a single LLM to
accurately generate the entire sequence of building actions
or to fully comprehend the software’s operational logic. The
agent exhibits a limited ability to create elements. This
demonstrates its learning potential under documentation
guidance, though its overall performance remains low.

5.3. Error Analysis

To better visualize BIMgent’s performance, we draw inspi-
ration from Agent S (Agashe et al., 2024) and conduct an
error rate analysis across all 25 modeling tasks. We trace
the BIMgent’s trajectory throughout the tasks and analyze
all 92 erroneous action steps, categorizing them into three
types: (1) Planning Errors — incorrect plans that do not align
with the current task; (2) Grounding Errors — failures in
accurately identifying or parsing the intended GUI targets;
and (3) Execution Errors — incorrect or unintended actions
during operation. As shown in Figure 6, our findings reveal
that, due to the complexity of the BIM authoring software’s
GUI and its intricate usage patterns, the most error-prone
aspects are those associated with grounding and execution,
which account for 40.0% and 45.6% of the total errors,
respectively. Detailed visualizations of the three types of
errors are presented in Appendix D.

Planning Error

Grounding Error

40.0%

Execution Error

Figure 6. Distribution of the 92 errors across three types: planning
errors, grounding errors, and execution errors.

5.4. Qualitative Analysis

In the qualitative analysis, we present a successful example
from our benchmark. Given a hand-drawn floorplan and
input prompt:

Generate a building model based on a hand-drawn oc-
tagon floorplan, modifying the interior layout to include
four rooms instead of three.

The creation of a 3D building model is illustrated in Fig-
ure 7. The process begins with the system ingesting both
the textual description and the hand-drawn image, which
it interprets, regenerates, segments, and processes to pro-
duce a 2D floorplan. This floorplan is then converted into a
structured representation that downstream agents can parse
and act upon. In the second stage, the agents use this struc-
tured data to sequentially generate actions and construct the
model within the BIM software. Finally, a complete 3D
building model is generated through automated computer
control. More qualitative examples are in Appendix D.

(a) Existing Sketch (b) Redesign

7 S e w

(c) Wall creation (d) Generated 3D building model

Figure 7. Example: Generate a building model based on a hand-
drawn octagon floorplan, modifying the interior layout to include
four rooms instead of three. (a)—(d) show the input, redesigned
floorplan, action sequence for wall creation, and final 3D model,
respectively. More examples can be found in Appendix D and E.

6. Conclusion

In this paper, we introduce BIMgent, an agentic framework
powered by multimodal LLMs, capable of autonomously
generating building models within BIM authoring software
through GUI operations. This paper makes the following
key contributions:

(1) Compared to existing GUI agents, BIMgent demon-
strates the ability to handle open-ended design tasks, bridg-
ing the gap in applying GUI agents to professional design
software.

(2) BIMgent addresses the limitations of domain-specific
task handling by integrating software documentation into
the planning process through a retrieval-augmented strategy.

(3) BIMgent significantly boosts performance by combining
dynamic GUI grounding, reflective feedback, and hierarchi-
cal planning, thereby overcoming the challenges of complex
GUI and the hundreds of steps required for building model-
ing tasks.

(4) By evaluating two stages of the framework, we show
that BIMgent can complete the entire modeling process
autonomously, particularly excelling in the most labor-
intensive parts of the modeling process.

In the future, one primary direction is to extend the frame-
work to other design software, exploring its potential for
generalization across platforms. Another key challenge lies
in optimizing the agent’s step count and execution time.
Since our goal is to reduce the substantial manual effort
involved in building model authoring, improving efficiency
is crucial. Additionally, while we currently rely on existing
pre-trained models, fine-tuning an open-source model could

further enhance adaptability and performance. Finally, to
address limitations in evaluation, we plan to develop a more
automated evaluation method and introduce a dedicated
benchmark for more consistent and scalable assessment.

7. Acknowledgment

This work is funded by Nemetschek Group, which is grate-
fully acknowledged. We sincerely appreciate the licensing
support provided by Vectorworks, Inc.

References

Agashe, S., Han, J., Gan, S., Yang, J., Li, A., and Wang, X. E.
Agent s: An open agentic framework that uses computers
like a human. arXiv preprint arXiv:2410.08164, 2024.

Agashe, S., Wong, K., Tu, V., Yang, J., Li, A., and Wang,
X. E. Agent s2: A compositional generalist-specialist
framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Anthropic.
3.5 Sonnet, and Claude 3.5 Haiku, 2024.
https://www.anthropic.com/index/
claude—-3-5-and-tool-use.

Introducing computer use, a new Claude
URL

Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour,
M., Sharafi, P., Teodosio, B., Shringi, A., and Mendis, P.
Artificial intelligence and smart vision for building and
construction 4.0: Machine and deep learning methods and
applications. Automation in Construction, 141:104440,
2022.

Bonatti, R., Zhao, D., Bonacci, F., Dupont, D., Abdali, S.,
Li, Y, Lu, Y., Wagle, J., Koishida, K., Bucker, A., et al.
Windows agent arena: Evaluating multi-modal os agents
at scale. arXiv preprint arXiv:2409.08264, 2024.

Borrmann, A., Konig, M., Koch, C., and Beetz, J. Build-
ing information modeling technology foundations and
industry practice: Technology foundations and industry
practice, 2018.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a general-
ist agent for the web. Advances in Neural Information
Processing Systems, 36:28091-28114, 2023.

Dong, Y., Zhu, X., Pan, Z., Zhu, L., and Yang, Y. Vil-
lageragent: A graph-based multi-agent framework for
coordinating complex task dependencies in minecraft.
arXiv preprint arXiv:2406.05720, 2024.

Du, C., Esser, S., Nousias, S., and Borrmann, A. Text2bim:
Generating building models using a large language
model-based multi-agent framework. arXiv preprint
arXiv:2408.08054, 2024a.

Du, C., Nousias, S., and Borrmann, A. Towards a copilot
in BIM authoring tool using large language model based
agent for intelligent human-machine interaction. In Proc.
of the 31th Int. Conference on Intelligent Computing in
Engineering (EG-ICE), Jul 2024b.

Ennemoser, B. and Mayrhofer-Hufnagl, I. Design across
multi-scale datasets by developing a novel approach to
3dgans. International Journal of Architectural Comput-
ing, 21(2):358-373, 2023.

Fu, R., Wen, Z., Liu, Z., and Sridhar, S. Anyhome:
Open-vocabulary generation of structured and textured
3d homes. In European Conference on Computer Vision,
pp. 52-70. Springer, 2024.

Gao, D., Rozenberszki, D., Leutenegger, S., and Dai, A. Dif-
fcad: Weakly-supervised probabilistic cad model retrieval

and alignment from an rgb image. ACM Transactions on
Graphics (TOG), 43(4):1-15, 2024.

Google, G. T. Gemini: a family of highly capable multi-
modal models. arXiv preprint arXiv:2312.11805, 2023.

Heaton, J., Parlikad, A. K., and Schooling, J. Design and
development of bim models to support operations and
maintenance. Computers in industry, 111:172-186, 2019.

Hossain, S. T. and Zaman, K. U. A. B. Introducing bim in
outcome based curriculum in undergraduate program of
architecture: Based on students perception and lecture-
lab combination. Social Sciences & Humanities Open, 6
(1):100301, 2022.

Hu, Z., Iscen, A., Jain, A., Kipf, T., Yue, Y., Ross, D. A.,
Schmid, C., and Fathi, A. Scenecraft: An llm agent for
synthesizing 3d scenes as blender code. In Forty-first
International Conference on Machine Learning, 2024.

Kalervo, A., Ylioinas, J., Hiikio, M., Karhu, A., and Kan-
nala, J. CubicasaSk: A dataset and an improved multi-task
model for floorplan image analysis. In Image Analysis:
21st Scandinavian Conference, SCIA 2019, Norrkoping,
Sweden, June 11-13, 2019, Proceedings 21, pp. 28—40.
Springer, 2019.

Luo, Z. and Huang, W. Floorplangan: Vector residential
floorplan adversarial generation. Automation in construc-
tion, 142:104470, 2022.

Nauata, N., Hosseini, S., Chang, K.-H., Chu, H., Cheng,
C.-Y., and Furukawa, Y. House-gan++: Generative ad-
versarial layout refinement network towards intelligent
computational agent for professional architects. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 13632—-13641, 2021.

https://www.anthropic.com/index/claude-3-5-and-tool-use
https://www.anthropic.com/index/claude-3-5-and-tool-use

OpenAlL
2024.

New embedding models and API updates,
URL https://openai.com/index/

new—embedding-models—and-api-updates/.

OpenAl. Introducing GPT-4.1 in the API, 2025a. URL
https://openai.com/index/gpt—4-1/.

OpenAl. Introducing OpenAl 03 and o04-mini,
2025b. URL https://openai.com/index/
introducing-o3-and-o4-mini/.

OpenAl. Introducing the computer-using agent,
2025c. URL https://openai.com/index/
computer-using—agent/.

OpenAl. Introducing our latest image-generation model
in the API, 2025d. URL https://openai.com/
index/image—-generation—-api/.

Raad, M. A., Ahuja, A., Barros, C., Besse, F., Bolt, A.,
Bolton, A., Brownfield, B., Buttimore, G., Cant, M.,
Chakera, S., et al. Scaling instructable agents across many
simulated worlds. arXiv preprint arXiv:2404.10179,
2024.

Ren, Z., Yu, Z., Yang, X., Liu, M.-Y., Schwing, A. G., and
Kautz, J. Ufo 2: A unified framework towards omni-
supervised object detection. In European conference on
computer vision, pp. 288-313. Springer, 2020.

Tan, W., Zhang, W., Liu, S., Zheng, L., Wang, X., and An,
B. True knowledge comes from practice: Aligning llms
with embodied environments via reinforcement learning.
arXiv preprint arXiv:2401.14151, 2024a.

Tan, W., Zhang, W., Xu, X., Xia, H., Ding, Z., Li, B., Zhou,
B., Yue, J., Jiang, J., Li, Y., et al. Cradle: Empower-
ing foundation agents towards general computer control.
arXiv preprint arXiv:2403.03186, 2024b.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Wu, Q., Liu, W,, Luan, J., and Wang, B. Reachagent: En-
hancing mobile agent via page reaching and operation.
arXiv preprint arXiv:2502.02955, 2025.

Wu, Z., Han, C., Ding, Z., Weng, Z., Liu, Z., Yao, S.,
Yu, T., and Kong, L. Os-copilot: Towards generalist
computer agents with self-improvement. arXiv preprint
arXiv:2402.07456, 2024.

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R., Hua,
T.J., Cheng, Z., Shin, D., Lei, F,, et al. Osworld: Bench-
marking multimodal agents for open-ended tasks in real
computer environments. Advances in Neural Information
Processing Systems, 37:52040-52094, 2024.

10

Yu, W., Yang, Z., Wan, J., Song, S., Tang, J., Cheng, W.,
Liu, Y., and Bai, X. Omniparser v2: Structured-points-of-
thought for unified visual text parsing and its generality
to multimodal large language models. arXiv preprint
arXiv:2502.16161, 2025.

Zeng, Z., Li, X., Yu, Y. K., and Fu, C.-W. Deep
floor plan recognition using a multi-task network with
room-boundary-guided attention. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 9096-9104, 2019.

Zhang, C., He, S., Qian, J., Li, B., Li, L., Qin, S., Kang,
Y., Ma, M., Liu, G., Lin, Q., et al. Large language
model-brained gui agents: A survey. arXiv preprint
arxiv:2411.18279, 2025a.

Zhang, C., Huang, H., Ni, C., Mu, J., Qin, S., He, S., Wang,
L., Yang, F,, Zhao, P., Du, C., et al. Ufo2: The desktop
agentos. arXiv preprint arXiv:2504.14603, 2025b.

Zheng, B., Gou, B., Kil, J., Sun, H., and Su, Y. Gpt-4v
(ision) is a generalist web agent, if grounded. arXiv
preprint arXiv:2401.01614, 2024.

Zheng, B., Fatemi, M. Y., Jin, X., Wang, Z. Z., Gandhi, A.,
Song, Y., Gu, Y., Srinivasa, J., Liu, G., Neubig, G., et al.
Skillweaver: Web agents can self-improve by discover-
ing and honing skills. arXiv preprint arXiv:2504.07079,
2025a.

Zheng, J., Wang, L., Yang, F., Zhang, C., Mei, L., Yin,
W., Lin, Q., Zhang, D., Rajmohan, S., and Zhang,
Q. Vem: Environment-free exploration for training gui
agent with value environment model.
arXiv:2502.18906, 2025b.

arXiv preprint

Zhou, S., Xu, F. E., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Ou, T., Bisk, Y., Fried, D., et al. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023.

https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/
https://openai.com/index/image-generation-api/
https://openai.com/index/image-generation-api/

A. BIMgent Action Definitions

We pre-define multiple low-level GUI actions. The action generator and low-level planner responsible for producing actions
use these action definitions as references during execution. The detailed information is shown in Table 2.

Table 2. Defined low-level actions including their parameters and descriptions.

ACTION PARAMETER(S) DESCRIPTION

MOVE_MOUSE_TO (X: INT, Y: INT) PIXEL COORDINATES MOVE THE MOUSE CURSOR TO THE SPECIFIED
SCREEN POSITION.

LEFT_CLICK () - PERFORM A LEFT-CLICK USING THE MOUSE.

TYPE_NAME (NAME: STR) NAME STRING TYPE THE GIVEN NAME USING THE KEY-
BOARD.

PRESS_ESCAPE () - PRESS THE ESCAPE KEY ON THE KEYBOARD.

PRESS_ENTER () - PRESS THE ENTER KEY ON THE KEYBOARD.

SHORTCUT (COMBO: STR) KEY COMBINATION STRING EXECUTE A KEYBOARD SHORTCUT BY PRESS-
ING THE SPECIFIED KEY COMBINATION.

SELECT_ALL () - SELECT ALL CURRENT COMPONENTS.

B. Mini Building Benchmark
B.1. Introduction

We present a Mini Building Benchmark consisting of 25 real-world BIM modeling tasks. These tasks cover five input
scenarios. Firstly, five text-only conceptual designs that describe key attributes such as the building type, number and types
of rooms, and the number of floors (ranging from one to three storeys). Secondly, five hand-drawn sketch floorplan images
depict both regular and irregular shapes, along with the number of floors. Thirdly, five randomly unmodified floorplans were
selected from the CubiCasaSK dataset (Kalervo et al., 2019), which contains 5000 real estate floorplan images. Fourthly, the
same five hand-drawn sketch floorplans were reused with additional explicit modification requirements (e.g., ‘add a room’).
Fifthly, the same five CubiCasa5K floorplans with similar modification instructions. Figure 8 illustrates the distribution.

Hand-sketched floorplans

" . Text-only conceptual designs

CubiCasa5K floorplans

CubiCasa5K floorplans + requirements

Hand-sketched floorplans + requirements

Figure 8. Task Distribution of the Mini Building Benchmark

11

B.2. Tasks

In this section, we present the detailed task contents, as shown in Table 3 and Table 4.

Table 3: Detailed contents of the tasks 1-5 from the Mini Building Benchmark

Task Index

Task content

Task 1

Generate a one-storey office building with a large open workspace
occupying most of the floor area. The layout should also include two
enclosed meeting rooms, a manager’s office, a small pantry, and two

restrooms.

Task 2

Generate a one-storey building with a regular hexagonal footprint. Inside
the building, create four rooms of roughly equal size. Each room must
include doors and one window.

Task 3

Create a two-storey rectangular residential building designed for a single
family. The layout must include a living room, kitchen, bathroom, master
bedroom, and one additional bedroom.

Task 4

Design a two-storey hospital building with eight distinct rooms. These must
include a reception area, two consultation rooms, one minor surgery room,
one waiting area, two patient rooms, and one staff room.

Task 5

Create a three-storey commercial office building where each floor has the
same layout. Each floor must include two large office rooms, a small
meeting room, a restroom, and a central corridor. The entrance to the

building is located on the ground floor and leads directly to the corridor.

Table 4: Detailed contents of tasks 6-25 from the Mini Building Benchmark

Task Index Floorplan Image Task Content

A

Task 6: Generate a one-storey octagonal building based on
the hand-drawn sketch.

Task 6 & 16 Task 16: Generate a building model based on a hand-drawn
octagon floorplan, modifying the interior layout to include
four rooms instead of three.
Task 7: Generate a two-storey building based on the sketch.
Task 7 & 17 Task 17: Make a two-floor office building based on the

sketch with changes. Split the biggest room in the middle
into two rooms.

12

Task Index

Floorplan Image

Task Content

Task 8 & 18

Task 8: Generate a one-storey building based on the sketch.
Task 18:Make a one-floor building based on the sketch with
updates. The building has an H-shape. Add one extra room to

both blocks, so each block has four rooms instead of three.

Task 9 & 19

Task 9: Generate a two-storey building based on the sketch.

Task 19: Make a two-floor building based on the sketch with

updates. Add one more room to the left wing, so the building
has five rooms total.

Task 10 & 20

Task 10: Generate a two-storey building based on the sketch.
Task 20: Generate a two-storey building based on the sketch,
remove the small room in the middle.

Task 11 & 21

Task 11: Generate a one-storey building based on the image.
Task 21: Make a one-floor house based on the floorplan
image with updates. Add an extra room next to the top left
room.

Task 12 & 22

Task 12: Generate a one-floor building based on the image.
Task 22: Make a one-floor apartment based on the image but
with updates. Add an additional room in the bottom-right
corner.

Task 13 & 23

Task 13: Generate a two-floor apartment based on the image.

Task 23: Generate a two-floor apartment based on the image

with updates. Make the left bottom room smaller and add an
additional space next to it.

13

Task Index Floorplan Image Task Content

Task 14: Generate a two-floor house based on the image.
Task 24: Generate a two-floor house based on the floorplan

some updates. Add a small room in the bottom.

Task 14 & 24 . . .
image with updates. Add a small room next to the top right
room.
; Task 15: Generate a two-floor building based on the image.
Task 15 & 25 5 = Task 25: Generate a two-floor house based on the image with

C. Evaluation Criteria

We divided the evaluation process into two phases: design evaluation and operation evaluation. In this section, we introduce
the detailed evaluation criteria for these two phases.

C.1. Design Evaluation

Evaluation Criteria. Since the design task is open-ended, there is no definitive signal to automatically determine whether
the design requirements have been fulfilled. Therefore, we rely on human evaluation at this stage. We define six criteria to
assess the quality of the generated floorplans, which are shown in Table 5.

Table 5: Detailed descriptions of the criteria for design evaluation

Criteria Description
Layout Suitability Evaluate whether the overall layout, including the number and configuration
of rooms, meets the specified design requirements.
Room Geometry Check for geometric validity of rooms, ensuring there are no isolated, dis-
torted, or nonsensical room shapes.
Spatial Coherence Assess the spatial connectivity between rooms and ensure there are no
disconnected or inaccessible areas.
Openings Configuration Verify that openings such as doors and windows are placed correctly on
walls and follow typical architectural conventions.
Daylight and Ventilation Confirm that each room has access to openings that enable natural light and
ventilation.
Future Flexibility Evaluate whether the floorplan allows for future functional changes, adapt-

ability, or expansions in use.

Evaluation Method We use Claude 3.7 (SVG generation) as the baseline. Additionally, we conduct an ablation study by
removing the interpretation part from our design method. To make the evaluation more robust, we expanded the dataset
by running the design component of our framework three times for each task in the Mini Building Benchmark, resulting
in 75 generated floorplan images per method. For each evaluation criterion, a score of 5 represents full satisfaction of the

14

requirement. The closer a score is to 5, the better the design fulfills the criterion, and vice versa. We developed a web-based
survey platform where the generated images were presented alongside rating questions based on the defined criteria. We
invited architects to participate in the evaluation. A snapshot of the survey interface is shown in Figure 9.

Prompt: prompt_001 Prompt: prompt_006

s Prompt

ofthe

o include two enclosed meeting rooms, a manager's office, a small

Candidate: cand_1

ours wfo interpretation © Claude 3.7 svg generation) O

Candidate: cand_1
ours @ ourswiointerpretation C Claude 3.7 (svg generation) @

(a) Example survey interface for Task 1 (b) Example survey interface for Task 6

Figure 9. User interface for the design evaluation survey.

C.2. Operation Evaluation

For the operation evaluation, we first selected the best-performing design (based on the design evaluation) and treated it
as the ground truth reference. For end-to-end operation evaluation, we exported the final output files and calculated the
number of each architecture component (e.g., walls, openings, and slabs). These are compared against the ground truth
to identify any missing or incorrect elements. We further conducted a human evaluation on each project file. Experts
manually inspected the design layer settings, wall heights, roof configurations, and parameter settings to assess correctness
and completeness.

For subtask-level evaluation, we captured screenshots throughout the modeling process, labeling each screenshot according
to its corresponding subtask. These screenshots were manually reviewed to identify the specific subtask stage at which any
failures occurred. In addition, the final output file was examined to verify whether the component assigned to each subtask
was successfully created. If the required component is missing, both the end-to-end task and the corresponding subtask are
marked as failed.

D. BIMgent Execution Trajectories on the Mini Building Benchmark

We present the execution trajectories of 2 tasks from the Mini Building Benchmark that were successfully completed by
BIMgent, providing a supplementary perspective to the qualitative analysis discussed in Section 5.4. Additionally, we
include failure cases referenced in Section 5.3, along with corresponding screenshots and sequences of the generated actions.
As tasks involve a large number of action steps, the execution process is broken down into detailed segments.

D.1. Task 1 Action Examples

Given the task: Generate a one-storey office building with a large open workspace occupying most of the floor area. The
layout should also include two enclosed meeting rooms, a manager’s office, a small pantry, and two restrooms. The floorplan
design and new design layer creation are illustrated in Figure 10, element creation is shown in Figure 11, and roof creation
is depicted in Figure 12.

15

(@) (b) (©
Floorplan design Open organization dialog Click ‘New...’
— shortcut (ctrl + shift + 0O) move_mouse_to (590, 699),

— - left_click ()

Type name Confirm Click ‘Edit. ..’

move_mouse_to (1179, 396),
left_click (), select_all(),
type-name ("01-Floor")

press_enter () move_mouse_to (684, 698),
- left_click ()

(8 (h))
Edit elevation Confirm settings Final confirmation
move_mouse_to (870,435), press_enter () press_enter ()
left_click(), - -
select_all (), type_name ("3000") - —

Figure 10. Screenshots of Floorplan Design and Design Layer creation actions.

16

Mim @wuzceecedemev

(@)

First external wall
shortcut (combo='"9")
move_mouse_to (x=500, y=393)
left_click ()
move_mouse_to (x=656, y=393)
left_click ()
press_enter ()

Mim @wuzceecedemev

(d)

Create first internal wall
shortcut (combo='"9")
move_mouse_to (x=656, y=542)
left_click ()
move_mouse_to (x=656, y=393)
left_click ()
press_enter ()

Mim @wuzceecedemerv

(&

Insert final window
shortcut (combo="shift + d’)
move_mouse_to (x=785, y=829)
left_click()
press_enter ()

seoxpe

Bim @wuzceecexdmev

(b)

Last external wall
shortcut (combo=’"9")
move_mouse_to (x=500, y=542)
left_click ()
move_mouse_to (x=500, y=393)
left_click ()
press_enter ()

(e)

Final internal wall
shortcut (combo=’"9")
move_mouse_to (x=607, y=829)
left_click ()
move_mouse_to (x=607,y=749)
left_click ()
press_enter ()

Bim @uzcmscexcmev

()

Insert first door

shortcut (combo="alt+shift+d’)
move_mouse_to (x=133,y=309)

left_click ()
press_enter ()

Figure 11. Screenshots of element creations.

17

seoxoe

Mim @wuzceecedemev

©

Create slab by picking external walls

shortcut (combo='"alt+shift+2")

move_mouse_to (x=578, y=393)
left_click ()

left_click ()
press_enter ()

=

Mim @wuzceecedemev

®

Insert first window

shortcut (combo=’"shift + d’)

move_mouse_to (x=568, y=393)
left_click ()
press_enter ()

“eoxpe

®

Insert final door

move_mouse_to (x=581, y=749)

left_click ()
press_enter ()

wLLCBOOeXdmOT

(2)

Select all components
select_all()

GL=CB00eNdmOT
(©)
Set parameters
move_mouse_to (1145, 353)

left_click()

type_name ("30")

Figure 12

“wLiCBeOeXdmOT

(b

Active roof tool
shortcut (combo="ctrl + alt +

shift + 1")

§I00ND BEf|s/2xw100omanaDy

B LECBO0eICmOT

(d

Confirm roof
press_enter ()

. Screenshots of roof creation steps.

18

D.2. Task 16 Action Examples

Given the task: Generate a building model based on a hand-drawn octagon floorplan, modifying the interior layout to
include four rooms instead of three. The floorplan design and new design layer creation are illustrated in Figure 13, element

creation is shown in Figure 14, and roof creation is depicted in Figure 15.

(@)
Floorplan design

(d)

Type name
move_mouse_to (1179,396),
left_click (), select_all(),
type_name ("01l-Floor")

Bom wuicms@exdave

(@

Edit elevation
move_mouse_to (866,436),
left_click(),
select_all (), type_name ("3000")

Open organization dialog
shortcut (ctrl + shift + O)

Confirm
press_enter ()

(h)
Confirm settings
press_enter ()

Click ‘New...’
move_mouse_to (595, 699),
left_click ()

Click ‘Edit. ..~

move_mouse_to (688, 698),
left_click()

G O00000G0UN
®

Final confirmation

press_enter ()

Figure 13. Screenshots of Floorplan Design and Design Layer creation actions.

19

(@)

First external wall
shortcut (combo='"9")
move_mouse_to (x=641,y=410)
left_click ()
move_mouse_to (x=722,y=410)
left_click ()
press_enter ()

(d)

Create first internal wall
shortcut (combo='"9")
move_mouse_to (x=722,y=588)
left_click ()
move_mouse_to (x=722,y=410)
left_click ()
press_enter ()

Licaecexeave

(&

Insert final window
shortcut (combo="shift + d’)
move_mouse_to (x=732,y=810)
left_click()
press_enter ()

Bim wuzcmefexcave

(b)

Last external wall
shortcut (combo=’9")
move_mouse_to (x=522,y=529)
left_click ()
move_mouse_to (x=641,y=410)
left_click ()
press_enter ()

(e)

Final internal wall
shortcut (combo=’9")
move_mouse_to (x=656, y=810)
left_click ()
move_mouse_to (x=656, y=604)
left_click ()
press_enter ()

Bi= wuzcme@excarve

(h)
Insert first door
shortcut (combo="alt+shift+d’)
move_mouse_-to (x=722,y=501)
left_click()
press_enter ()

Figure 14. Screenshots of element creations.

20

Feoxne

©
Create slab by picking external walls
shortcut (combo='"alt+shift+2")
move_mouse_to (x=681,y=410)
left_click ()

left_click ()
press_enter ()

Licaslecdave

()

Insert first window
shortcut (combo=’"shift + d’)
move_mouse_to (x=723,y=410)
left_click ()
press_enter ()

Feoxpa

®
Insert final door
shortcut (combo=’"alt+shift+d’)
move_mouse_to (x=656,y=627)
left_click()
press_enter ()

& \\,'

am WrLCcoe@exdmvo

(2)

Select all components
select_all()

oom WeLcoePexdmv O
(©)
Set parameters
move_mouse_to (1145, 353)

left_click()

type_name ("30")

oam WesCcae@Pexemv O

(b

Active roof tool
shortcut (combo="ctrl + alt + shift + 1")

BEFIED 0|/ exu1p00maBAD]

oom WeCcaefexdmv o

(d

Confirm roof
press_enter ()

Figure 15. Screenshots of roof creation steps.

21

D.3. Failure Examples

We present examples of the three types of errors that occurred during the experiment. As illustrated in Figure 16 to Figure 18,
these examples demonstrate Grounding Error, Execution Error, and Planning Error, respectively.

Set the Elevation (Z) to 1000 ‘ and the -
layer wall height (AZ) to the default ‘ B e ' ES
(3000 mm) for the first storey. (b) (©

Set elevation

Click ‘Edit. ..’ ST
(a) Planning info: Elevation (Z) is wrong. move.mouseto (684, 698), mOVeJnouse,to' ())
left_click() left_click (),

select_all (), type-name (1000)

Figure 16. A failed task caused by a planning error: the elevation (Z) was incorrectly set to 1000 instead of 0.

== [Weicmsfecmovem - - . s Wweicesfecnovem B - == 0 Weicesfecmovem

(a) (b) (c)

Edit parameters

Click ‘Edit..." Grounding error
. . move_mouse_to (950, 445),
move_mouse_to (684, 698), Detect bounding box of 51 as elevation left_click ()
left_click() instead of 63 - ’

select_all (), type-name ("3000")

Figure 17. A failed task caused by a grounding error: the mouse clicked on bounding box 51 instead of 63, resulting in the Name being
incorrectly changed to 3000, while the Elevation value remained unchanged.

22

T
Create the main floor slab for the — ‘ : i — -
second floor, covering the area defined = <issaia cns i T S—— =R
by the external walls. (b) (©)
Create slab

Active slab tool move_mouse_to (x=585, y=383),

(a) Subtask: Create the slab for the second shortcut (combo = "alt + left_click(),...,
floor shift + 2") move_mouse_to (x=585, y=383),

left_click(),press_enter ()

Figure 18. A failed task caused by an execution error: Create the main floor slab for the second floor, covering the area defined by the
external walls. Generated action clicked a same wall twice, which cannot form a closed boundary.

E. Visualization of Generated Models

h Tennoe

o= & am @wLzcn0@ex 0 Josmoem.n @mme

Figure 19. Task 1: Generate a one-storey office building with a large open workspace occupying most of the floor area. The layout should

also include two enclosed meeting rooms, a manager’s office, a small pantry, and two restrooms. Shown are the resulting building model
in shaded (left) and wireframe (right) modes.

4s00®=BOD]

EXSN N RN N Y ~exm e, On Qmn =

Figure 20. Task 4: Design a two-storey hospital building with eight distinct rooms. These must include a reception area, two consultation

rooms, one minor surgery room, one waiting area, two patient rooms, and one staff room. Shown are the resulting building model in
shaded (left) and Dashed Hidden Line (right) modes.

23

¥y
o
a
»
o
<
T

0
0
U

oo L CBOPeXNO ~ex @ Oew 3

B oan wLCBe@ex0~ e m Oewe

Figure 21. Task 5: Create a three-storey commercial office building where each floor has the same layout. Each floor must include two
large office rooms, a small meeting room, a restroom, and a central corridor. The entrance to the building is located on the ground floor
and leads directly to the corridor. Shown are the resulting building model in shaded (left) and Dashed Hidden Line (right) modes.

o= | oas= MmMuzcB0@e00 ~ox kOl OX oo Mmuzcn0e@ex0 Aem B Oew

Figure 22. Task 7: Generate a two-storey building based on the sketch. Shown are the resulting building model in shaded (left) and
Dashed Hidden Line (right) modes.

BCF0BD 8Os/

o= | am MuCoe@ex0 | oan MmMLCcoe@ex0 Ao m o N

Figure 23. Task 10: Generate a one-storey building based on the sketch. Shown are the resulting building model in shaded (left) and
Dashed Hidden Line (right) modes.

24

MmLzCcBe@exN0 ~ox maee .l OX & am mLzcBe@ex0 ~ex m Tew

Figure 24. Task 16: Generate a building model based on a hand-drawn octagon floorplan, modifying the interior layout to include four
rooms instead of three. Shown are the resulting building model in shaded (left) and Dashed Hidden Line (right) modes.

BC5[0BD B/ oxu-s9omaBOD]

'0:.' | oas= MmMuzco0e@ex0 Senmues,u 0% moam= Mmuzco0e@ex0n Con waew .

Figure 25. Task 22: Make a one-floor apartment based on the image but with updates. Add an additional room in the bottom-right corner.
Shown are the resulting building model in shaded (left) and Dashed Hidden Line (right) modes.

25

F. Floorplan Generation Comparison

In this section, we present results of floorplan image generation using three different approaches: gpt-image-1, Claude 3.7,
and House-GAN++ (Nauata et al., 2021). Figures 26 to 28 show three representative examples. As illustrated, gpt-image-1
produces the most satisfactory results, offering layouts that are not only reasonable but also well-suited for downstream
segmentation tasks.

BathroonKitchen
EERRCOM LIVING ROOM
Bedroom 1
BATHROOM E
KITCHEN I__'

R J\ Living Room

; | Bedroom 2

(a) GPT-Image-1 (b) Claude 3.7 (c) House-GAN++

Figure 26. Example 1: Generate a residential floorplan with 5 rooms: 2 bedrooms, 1 living room, 1 kitchen, and 1 bathroom.

|

(a) GPT-Image-1 (b) Claude 3.7 (c) House-GAN++

Figure 27. Example 2: Design a floorplan with a complex polygonal footprint (hexagonal).

GAN not supported

T M
[[T

(a) GPT-Image-1 (b) Claude 3.7 (c) House-GAN++

Figure 28. Example 3: Generated floorplans for Task 6 in the Mini Building Benchmark. The GAN model does not support this task.

26

G. BIMgent Prompts
G.1. Prompt for High-level Planner

You are an assistant acting as a high-level planner for a building design and
construction project using BIM software. You have been provided with the complete
floorplan metadata and a design task from the architect. Your role is to outline
the construction process as a sequence of high-level, logically ordered steps that
guide the modeling workflow within the BIM environment.

Task Description:
<Task Description>

A structured floorplan including coordinates and types of walls, doors, windows, etc.:
<Interpreted Floorplan Metadata>

Here are some hints to support your decision-making process.
1. Generate high-level construction steps following the typical architectural workflow,
for example: creating layers, placing walls
2. For each construction step, follow these rules:
— Determine the number of storeys from the task description. For each storey,
create a corresponding layer.
- All floors are identical. For each floor, construct all required components based

on the floorplan.
- For each component, specify both its name and its assigned floor (e.g., floor2).

You must respond strictly in the following format. Do not include any comments,
explanations, or additional information. Output only the requested data exactly as

specified below:

"step 1": {
"class": "layer"
"component": "layer_floorx",
"description": "Detailed which design layer should be created currently for the

current floor.",
b

"step 2": {
"class": "external walls"
"component": "wallx_floorx, ...",
"description": "Detailed description of what needs to be done"

by

"step x": {

"class": "the class of the drawing components."
"component": "the components in specific floor that should be draw here",
"description": "Detailed description of what needs to be done"

Listing 1. Example prompt used for High-level Planner

27

G.2. Prompt for Low-level Planner

You are an assistant acting as a low-level planner, responsible for generating detailed
action steps based on software guidance and the provided high-level plan.

your current task:
<Current General Step>

tool guidance:
<Software Documentation Retrieved via RAG>

floorplan_metadata:
<Interpreted Floorplan Metadata>

Here are some hints to support your decision-making process.

You have to decide two types of actions:

Vision-Driven: Actions for which explicit coordinates are not yet provided,
shortcut-based operations.

including

Pure-Action: Actions for which coordinates are explicitly provided in the floorplan
metadata, such as wall creation.

<Action Definitions>

<Speculative Multi-action Execution>

You must respond strictly in the following format.
explanations, or additional information.
specified below:

Do not include any comments,
Output only the requested data exactly as

"sub_step_1": {{

"action name": "...",

"action_type": "Vision-Driven"

"description": "Detailed current step’s goal"
by
"sub_step_2": {{

"action name": "...",

"action_type": "Pure-Action"

"actions": ["actionl()’, "action2(x=..., y=...)", . 1,
"coordinates": [[x1l, vy1], ...1,

"description": "Detailed current step’s goal"

P},
"sub_step_x": {{

"action name": "...",

"action_type": "Pure-Action"

"actions": ['actionl()’, ’action2(x=..., y=..
"coordinates": [[x1, vy11, ...1,
"description": "Detailed current step’s goal"

I

"sub_step_x": {{
"action name":
"action_type":
"description":

H}

" "
4

"Vision-Driven"
"Detailed x step’s goal"

5D AV

Listing 2. Example prompt used for Low-level Planner

28

G.3. Prompt for Action Generator

You are an action generator. Your task is to implement the provided actions by
combining and sequencing them effectively to accomplish the given subtask. Ensure
that all actions are context-aware, precise, and optimized for the tools and
workflows in Vectorworks 2025. Below is some helpful information to assist your
decision-making.

you will be provided with an image of the current screenshot image, which is already
segmented, and the meta information of the provided image.

Your task:
<Current Substep>

meta_information of the labeled image:
<Interpreted Floorplan Metadata>

Feedback from Supervisor:
<Reasons>

Based on the image and metadata, you must respond by following the rules below:

1. Generate a workflow consisting of all necessary actions required to complete the
given task.

2.Your output for the actions field must be a plain string representing a list of
actions in the following format: "[’actionl()’, ’'action2(x=..., y=...)", ...1". Do
not include any additional text, explanation, or formatting.

You must respond strictly in the following format. Do not include any comments,
explanations, or additional information. Output only the requested data exactly as
specified below:
{{
"action name": "...",
"actions": "[’move_mouse_to(x=, y=)’', ... 1"

b}

Listing 3. Example prompt used for Action Generator

29

G.4. Prompt for Supervisor — Vision-Driven Workflow

You will be provided with a screenshot of the current GUI state.

Additionally, you are given the current task content:
<Current Substep>

The list of executed actions:
<Executed Actions>

Based on the information provided, you must respond according to the following rules:
approved_value:
1. Open Dialog: If the task is to open a dialog, check whether the dialog is visible in
the screenshot.
2. Enter Name: If the task is to enter a name, verify that the correct name has been
typed into the appropriate input field.

reasons:
1. If the result of approved_value is "fail", you must provide clear reasoning for your
decision. If the result is "success", simply return "success" in this field.

You should respond strictly in the following format, and you must not output any
comments, explanations, or additional information. Don’t include anything beside
the requested data represented in the following format

approved_value:
success/fail

reasons:

Listing 4. Example prompt used for Supervisor — Vision-Driven Workflow

30

G.5. Prompt for Supervisor — Pure-Action Workflow

You will be provided with an image that contains the object information of the created
elements and the executed actions.

Additionally, you are given the current task content:
<Current Substep>

The list of executed actions:
<Executed Actions>

You must respond by following the rules below:

approved_value:

At the right side of the image, information about the most recently created or selected
object is displayed. You must identify the component name and determine whether it
corresponds to the current task content. If the created object matches the task,

respond with "success"; otherwise, respond with "fail".

actions:

If the object does not correspond to the task, you must regenerate a corrected list of
actions based on the current executed_actions, following the defined action
generation rules:

You should respond strictly in the following format, and you must not output any
comments, explanations, or additional information. Don’t include anything beside
the requested data represented in the following format

approved_value:
success/fail

actions:
{{
"action name": "...",
"actions": "[’'move_mouse_to(x=, y=)’', ... 1"

H}

Listing 5. Example prompt used for Supervisor — Pure-Action Workflow

31

