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ABSTRACT

Visual navigation is an essential skill for home-assistance robots, providing the
object-searching ability to accomplish long-horizon daily tasks. Many recent ap-
proaches use Large Language Models (LLMs) for commonsense inference to im-
prove exploration efficiency. However, the planning process of LLMs is limited
within texts and it is difficult to represent the spatial occupancy and geometry lay-
out only by texts. Both are important for making rational navigation decisions. In
this work, we seek to unleash the spatial perception and planning ability of Vision-
Language Models (VLMs), and explore whether the VLM, with only on-board
camera captured RGB/RGB-D stream inputs, can efficiently finish the visual nav-
igation tasks in a mapless manner. We achieve this by developing the imagination-
powered navigation framework ImagineNav, which imagines the future observa-
tion images at valuable robot views and translates the complex navigation plan-
ning process into a rather simple best-view image selection problem for VLM.
To generate appropriate candidate robot views for imagination, we introduce the
Where2Imagine module, which is distilled to align with human navigation habits.
Finally, to reach the VLM preferred views, an off-the-shelf point-goal navigation
policy is utilized. Empirical experiments on the challenging open-vocabulary ob-
ject navigation benchmarks demonstrates the superiority of our proposed system.

1 INTRODUCTION

A useful home-assistant robot should be able to search for different kinds of objects without telling
it the exact 3D object coordinates for completing our human instructions. As our human always
buying and bringing new goods back home, the robot’s object searching capability should not be
limited in a closed-set of categories. Researchers often refer this problem as open-vocabulary object
navigation task. Recently, as the emergence of the foundation models, including capable vision
models (Radford et al.l 2021} [He et al., 2022} Zhou et al., 2022} |Cheng et al.| 2024} [Kirillov et al.
2023; ' Wu et al.,|20244a; Liu et al., 2023)), large language models (LLMs) and vision-language models
(VLMs) (Brown et al., 2020; |(Chowdhery et al., 2023} Zhang et al., |2022; [Touvron et al., 2023}
Achiam et al., [2023; [Team et al., 2023} |Liu et al.| 2024} |Chen et al., 2024; Dai et al., 2023} |Gao
et al.,[2023)), building an agent that can accomplish the open-vocabulary object navigation becomes
possible. A popular framework, as shown in Figure [T| uses modular approach to deal with this
problem, which often composes of four components: A real-time mapping and segmentation module
to perceive robot surrounding environments. A template-based translation module to compress the
semantic map information into texts. A LLM-based module to understand the textual information
from the previous step and make a plan in texts. Finally, a path-planning module which project the
reasoning result from LLM back to the map and plan a collision-free path navigating towards it.

Although such a pipeline achieves great success in recent years (Zhou et al., 2023} [Kuang et al.,
2024; [Wu et al.l [2024b; [Zhang et al.| [2024a; [Shah et al., [2023} [Yu et al.} [2023a}; [Loo et al.| [2024)),
these complex cascaded systems have several limitations. Firstly, both the depth camera and the
robot localization module can suffer from perception error, especially for long-range depth esti-
mation, and this can make the mapping process inaccurate. Secondly, online object detection and
segmentation are required to augment spatial maps with semantic labels and prepare for LLM’s
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reasoning input. This increases the computational burden for the robots. Thirdly, although the se-
mantic information stored on the map can be easily expressed by text (e.g., list the categories of
the observed objects), such pure text prompts have difficultly in explicitly describing the geometry
information and object details in the map, making it difficult and ambiguous for LLMs to infer the
best navigation plan.
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Figure 1: The comparison between the conventional LLM-based navigation pipeline and our Imag-
ineNav pipeline. The traditional LLM-based navigation framework, illustrated on the left, relies
on intricate sensor data processing and pose estimation for map creation, followed by LLM-driven
reasoning to decide the exploration direction. Instead, our ImagineNav directly translates the long-
horizon object goal navigation task into a sequence of best-view image selection tasks for VLM,
which avoids the latency and compounding error in the traditional cascaded methods.

In this work, we try to explore whether it is possible to circumvent the complicated and fragile
mapping— translation— planning framework, but develop a visual navigation approach with only
raw RGB/RGB-D observations and pre-trained VLMs. Our proposed method - ImagineNav seeks to
maximize the capabilities of VLMs in multimodal understanding and reasoning, and make the VLMs
become an efficient embodied navigation agent. As most VLMs cannot understand the continuous
physical world, it is infeasible to directly ask VLMs to generate navigable 3D waypoints. Instead, we
translate the visual navigation problem into an imagination-powered best-view image selection task
and let the VLMs select. To generate appropriate options for VLLMs to choose from, we propose the
Where2Imagine model which distills the human indoor navigation habits and generates future 3D
navigation waypoints where a human might navigate based on the current visual observation. Such
3D navigation waypoints indicate relative poses with respect to the current frame and can be easily
translated into new observation images using novel view synthesis (NVS) models. Afterwards, the
VLMs only need to select the best imagined observation that is mostly related to the target object
and drive the robot to follow the corresponding point-goal navigation trajectory. The above pose-
aware imagination-and-selection capability allows the Object Goal Navigation (ObjectNav) task to
be decomposed into a sequence of point-goal sub-tasks, facilitating the creation of collision-free
navigation trajectories. Experimental results on standard benchmarks demonstrate the superiority
of our ImagineNav over previous methods in open-vocabulary object navigation. In summary, our
contributions are:

* We propose a mapless navigation approach ImagineNav. It leverages the imagination to
generate image observations at potential future 3D waypoints as the VLMs’ visual prompts,
grounding the VLMs to become efficient navigation agents without any fine-tuning.

* We design a task-oriented model Where2Imagine to understand human navigation habits.
This model is crucial to bridge the task-agnostic high-level VLM planners and the low-level
navigation policies.

* Our ImagineNav increases success rate by a large margin of 15.1% and 10% respectively
on HM3D (Ramakrishnan et al.| 2021)) and HSSD (Khanna et al., 2023)). We also provide a
detailed ablation analysis to help understand the important conclusions in our framework.

2 RELATED WORKS

2.1 LARGE MODELS FOR ROBOTIC PLANNING

Large-scale models pre-trained on extensive internet data have demonstrated formidable zero-shot
reasoning capabilities in tasks such as planning (Huang et al.| [2022), code generation (Liang et al.,
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2023} [Huang et al) 2023b), and solving science questions (Lewkowycz et al., [2022). The in-
context learning capability of LLMs allows them to be applied to robotic task planning. Some
methods (Liang et al.l [2023; Huang et al.| [2023b; |Ahn et al.l [2022)) leverage LLMs to decompose
tasks into subtasks, enhancing execution efficiency. Cap (Liang et al.|[2023)) generates robotic policy
code directly from example language commands, enabling autonomous control and task execution
based on natural language instructions. Instruct2Act (Huang et al., 2023b) combines LLM with
foundational models (e.g., SAM and CLIP), reducing error rates in complex task execution, while
SayCan (Ahn et al., |2022) combines LLM task planning with the feasibility of physical skills us-
ing pre-trained value functions, generating actionable plans for robots. However, one limitation
of LLMs is their difficulty in embedding the robot’s state directly into the planning process. To
address this, many studies have turned to VLMs as alternatives. For instance, ViLA (Lin et al.,
2024)) significantly improves performance on multimodal tasks without compromising text capa-
bilities by systematically exploring VLM pretraining design choices. CoPa (Huang et al., 2024)
incorporates commonsense knowledge from VLMs, proposing a coarse-to-fine task-oriented grasp-
ing and task-aware motion planning approach. PIVOT (Nasiriany et al., |2024) transforms tasks
into iteratively optimized visual question-answering problems via a refinement process. Socratic
model (Zeng et al., [2022) integrates multiple pretrained large models (e.g., VLMs, LLMs, and au-
dio models) in a modular fashion to enable reasoning and task execution through language-based
interaction. These methods employ a set-of-examples (SOE) approach to guide VLM selection. We
propose a new decision-making paradigm based on imagined imagery, wherein decisions are made
on imaginations, enabling more nuanced, context-aware interactions that better harness VLMs’ spa-
tial perception capabilities.

2.2 OPEN-VOCABULARY OBJECT NAVIGATION

ObjectNav requires the robot to navigate toward a specific target category in unseen environments.
Although previous works (Yadav et al., |2022; Ramrakhya et al., 2023} |Chaplot et al.l 2020; Ra-
makrishnan et al.| | 2022) can achieve high success rate in widely accepted benchmarks (e.g., habitat-
challenge (Yadav et al., [2023)), most approaches are limited within a pre-defined object list, which
is contradictory to the open-vocabulary real world. Therefore, many researchers start to discuss the
open-vocabulary object navigation problem. End-to-end methods try to make use of compact mul-
timodal features space (e.g., CLIP (Radford et al., [2021)) for grounding text knowledge into visual
navigation problem but achieved limited performance (Khandelwal et al.| 2022} |Gadre et al.| 2023
Majumdar et al.,[2022). Instead, modular-based approaches (Huang et al.,2023ajZhou et al., 2023
Achiam et al.,[2023)) typically necessitate the use of sensors for localization and mapping, high-level
planning, and low-level control. These methods rely heavily on high-precision sensors for accurate
self-localization and real-time map construction. Our approach introduces an imagination-based,
mapless navigation framework. This framework circumvents the need for extensive training by
transforming the complex process of navigation planning into a selection problem based solely on
RGB inputs.

2.3 IMAGINATION-BASED NAVIGATION

Recent methods (Zhai & Wang, |2022; Ramakrishnan et al., |2022; Zhu et al., [2022)) have employed
supervised learning to learn target-related functions in order to address the subtask of *Where to
look?” in navigation, specifically focusing on predicting the localization of target. These meth-
ods predict the absolute coordinates (Zhai & Wang, 2022) of the target, the shortest distance to
target (Ramakrishnan et al., [2022)), or the nearest boundary (Zhu et al., [2022)) based on local maps.
Instead, several studies (Ramakrishnan et al.|[2020; |Georgakis et al.,[2022; [Liang et al.,[2021}Zhang
et al., |2024b)) have proposed various approaches to enhance the prediction of unobserved regions.
For instance, (Ramakrishnan et al.| [2020) introduced occupancy anticipation, where the agent in-
fers an occupancy map based on RGB-D inputs. The L2M framework was introduced (Georgakis
et al.l [2022), consisting of a two-stage segmentation model that generates a semantic map beyond
the agent’s field of view and selects long-term goals based on the uncertainty of predictions. SS-
CNav algorithm (Liang et al., |2021) leverages semantic scene completion and confidence maps to
infer the environment and guide navigation decisions. A self-supervised generative map (SGM) is
proposed (Zhang et al. 2024b), which employs self-supervised approach to continually generate
unobserved regions in the local map and predict the target’s location. These methods primarily pre-
dict unobserved regions in top-down maps derived from egocentric RGB-D projections. In contrast,
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Our method operates in the RGB space to perform guided-imagination. We utilize a compact model
aligned with human navigation habits to generate new viewpoints, followed by the imagination pro-
cess to produce corresponding visual representations.

3 METHODOLOGY

The open-vocabulary object navigation task requires the agent to locate an untrained target object
instance in an unknown environment. At the start of each episode, the agent is spawned at a random
position in an unfamiliar environment without any prior knowledge of the layout. The task is to find a
target object g;, which can belong to any category in an open-vocabulary setting. At each time step ¢,
the agent receives an egocentric panorama view I, divided into 6 separate views, each represented
by an RGB image I; ; accompanied by its depth map D, ;. The discrete action space consists of
the following commands: {Stop, MoveAhead, TurnLeft, TurnRight, LookUp, LookDown}. The
‘MoveAhead’ action moves the agent forward by 0.25m, while the rotational actions ‘TurnLeft’ and
‘TurnRight’ rotate the agent by 30 degrees. The task is considered successful if the agent reaches the
target object with a geodesic distance smaller than a defined threshold (e.g., 1m) and executes the
‘Stop” command within a fixed number of steps. Each episode has a maximum limit of 500 steps.
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Figure 2: The overall pipeline of our mapless, open-vocabulary navigation framework. At each it-
eration, the agent captures a panoramic view of its surroundings. In the Imagination Module, the
trained Where2Imagine module couples with novel view synthesis model to generate novel scene
views. Guided by prompt templates, the VLM engages in target-oriented inference. Subsequently,
the system executes the PointNav policy to determine the next navigational action. The above imag-
ination, reasoning and planning procedure iterates until the target is reached.

3.1 IMAGINENAV FRAMEWORK

This section provides an overview of the imagination-based open-vocabulary object navigation
framework (ImagineNav). As depicted in Figure[2] the agent initially employs the Where2Imagine
module to generate candidate locations for imagination based on the current observations. Sub-
sequently, the visual observations at these locations are imagined by a NVS model. Utilizing the
generated images, which are annotated with option labels, the agent leverages a multimodal large-
scale model to assess both the spatial and semantic information of each scene, enabling the selection
of a more efficient exploration direction. Specifically, the VLM is employed to reason over the
imagined images from six different views using prompts, selecting the optimal waypoint. Finally,
the agent executes low-level point navigation strategy to reach the corresponding sub-goal. This
process iterates, where each new observation serves as input for further imagination, reasoning, and
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navigation, until the agent successfully identifies an instance of the target object. Consequently,
the ObjectNav task is reduced to a sequence of simpler point-to-point navigation subtasks. Since
our ImagineNav does not require any training on object-oriented data for reasoning and planning, it
is open-vocabulary and can zero-shot generalize to novel semantic targets. Sec [3.2) introduces the
imagination module, Sec explains the use of the advanced planner VLM, and Sec describes
our underlying point navigation strategy.

3.2 FUTURE-VIEW IMAGINATION

To better leverage the spatial perception and reasoning capabilities of VLMs for open-vocabulary
object navigation in unknown environments, we propose an future-view imagination model, which
is composed by Where2Imagine module and a NVS model. As shown in Figure[2] Where2Imagine
predicts the relative pose (Ax, Ay, 0) of the potential next navigation waypoint based on the current
RGB observation, where Az denotes lateral displacement, Ay represents longitudinal displacement,
and 6 refers to changes in the camera’s viewing angle. Subsequently, a novel view image is generated
based on the predicted relative pose. There are several advanced methods to achieve this, such
as framing the task as a few-shot 3D rendering problem (Sargent et al., 2024, Wimbauer et al.,
2023; |Cao & de Charettel [2023) or utilizing generative models (e.g., diffusion models) for image
synthesis (Yu et al.,2024; [Tseng et al., 2023 |Yu et al., 2023b)). In this work, we employ a pretrained
diffusion model (Yu et al.,[2024), which generates new view images by taking the current image and
the predicted relative pose as inputs, enabling high-quality viewpoint transformation.

Specifically, we trained a ResNet-18 from scratch for the relative waypoint prediction task, with
training data sourced from the Habitat-Web project (Ramrakhya et al.| 2022). Habitat-Web collects
remote user demonstrations of virtual robot operations through a virtual teleoperation system on the
Amazon Mechanical Turk platform, including 80k ObjectNav and 12k Pick&Place demonstrations.
Humans in these demonstrations typically opt for directions towards important semantic cues (e.g.,
doors) that facilitate exploration. These navigation preferences serve as a valuable basis for deter-
mining potential waypoints, thereby enhancing the rationality and safety of the navigation strategy.
We transformed the human demonstration trajectories into a paired dataset (I;, P;+ ), where I, rep-
resents the RGB image at frame ¢, and P;,r denotes the relative pose (Ax, Ay, 0) at frame t + T
with respect to frame ¢. To facilitate the learning of the network, we filtered out images with a depth
threshold of less than 0.3, as these images generally lack rich semantic information (e.g., a plain
wall). Due to the limitations of the NVS model in generating h1gh quality images for large perspec-
tive shifts (e.g., 120°,180°,240°) based solely on a single input image, we restricted the training data
to instances where the angular deviation falls within #30°. Through the Where2Imagine module,
our imagination model aligns with human navigation habits.

3.3 HIGH-LEVEL PLANNING

High-level planning module leverages the spatial awareness and common-sense reasoning capa-
bilities of the VLM to select the direction most likely to locate the navigation target. We prefer
GPT-40-mini as the high-level planner because it offers a balance between the reasoning capabilities
and practical efficiency. Compared to larger models (e.g., GPT-40), GPT-40-mini is lightweight and
cost-effective. Its smaller size ensures faster inference, allowing the system to make timely decisions
in dynamic environments. To assist GPT-40-mini in decision making, we designed a simple prompt
template, requiring the VLM to summarize its choice in a JSON format containing { Reason’,
’Choice’ }. This format allows for a clear understanding of the VLM’s reasoning process. As illus-
trated in Figure[3] the VLM receives the synthesized observations at future navigation waypoints and
the navigation goal as inputs. Based on the prompt, *Your choice should first be based on discov-
ering navigation targets, followed by the potential of unexplored areas...” , the VLM analyzes each
image’s semantic information, selects the optimal exploration direction, and returns the answer in
the specified format. By providing the imagined observations as visual prompts to VLM, our Imag-
ineNav offers significant advantages in spatial reasoning and decision-making processes. Firstly,
the VLMs are more skilled at handling multiple-choice decision tasks compared to 3D geometry
question answering (i.e., directly inferring the 3D coordinates of next waypoints). Moreover, the
introduction of imagination enhances the decision-making capability of the VLM by supplement-
ing detailed information about distant or visually unclear objects. The advanced planning module
proposes new sub-goals after the low-level controller completes navigation to the designated target.
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Target: Find a couch
| g | Analyzing the composite image for the navigation

goal of finding a couch:

- —| Original scenarios |— -

--Option 1: Shows a living area with a TV
visible. This direction is promising as it might \
contain the target object.

--Option 2: Shows a living area with a couch

visible.

--Option 3: Shows a bedroom area, which is

unlikely to contain the couch. This direction is not
promising.

--Option 4: This image shows a wall with picture,
making it less relevant.

--Option 5: Shows a view of the kitchen with no
couch visible.

--Option 6: Displays a dining area with chairs, no
couch visible.

Based on the analysis, the most promising picture
to find a couch is **Option 2**, where a couch is
clearly visible in the living area.

Figure 3: An example of the VLM analysis. By examining different future-view scenarios, the VLM
pinpoints the direction most likely to incorporate the target object couch.

3.4 CONTROLLER

After the high-level planner provides the navigation points, the low-level controller executes Point
Goal Navigation (PointNav) strategy to achieve these targets. Unlike ObjectNav, PointNav (turn to
Az, Ay) does not rely on semantic information from the environment but is instead driven solely by
spatial perception. Currently, there are many methods available for achieving PointNav
[2023; Roth et al} [2024;[Wijmans et al., 2022} [Liang et al.,[2024)). To determine the execution actions
at each step of the PointNav process, we use Variable Experience Rollout (VER)
2022) as our underlying goal navigation strategy. VER combines the advantages of synchronous
and asynchronous reinforcement learning, improving training efficiency and sample utilization in
PointNav tasks, thereby enabling the agent to demonstrate stronger adaptability and generalization
capabilities in complex environments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND METRICS

We evaluate the effectiveness and navigation efficiency of our proposed method using the Habitat
v3.0 simulator (Puig et al.,[2023)) on two standard ObjectNav datasets: HM3D (Ramakrishnan et al
and HSSD (Khanna et al., [2023). The HM3D dataset offers high-fidelity reconstructions
of 20 entire buildings, including 80 training scenes and 20 validation scenes. The HSSD dataset
provides 40 high-quality synthetic scenes, comprising 110 training scenes and 40 validation scenes.
The experimental setup follows the ObjectNav-challenge-2023 (Yadav et al., [2023). For the data
collection of the Where2Imagine module, we leveraged human demonstration trajectories from the
MP3D (Chang et al.,[2017) dataset within the habitat-web project with the camera height 0.88m and
horizontal field of view (HFOV) of 79°. We report the performance in terms of Success Rate (SR),
defined as the proportion of episodes where the agent’s distance to the target object is less than 1m
after executing the STOP action, and SPL (Anderson et al.}[2018)), Success weighted by path length,
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SPL = % Zi\[: 1S (%) where S; be a binary success indicator in episode %, p; is the

max (g

agent path length and /; is the GT path length.

4.2 BASELINES

We conducted a comparative analysis of non-zero-shot and zero-shot ObjectNav methods to sub-
stantiate our proposed approach. Yamauchi (Topiwala et al., 2018)) pioneered a frontier-based ex-
ploration strategy, emphasizing the boundaries between explored and unexplored regions. Sem-
Exp (Chaplot et al.| [2020) advanced this concept by implementing goal-directed semantic explo-
ration through the construction of semantic maps. In addition, we examined non-mapping closed-
set object navigation baselines, including those based on imitation learning (Ramrakhya et al., 2022)
and visual representation learning (Yadav et al., 2022]).

For zero-shot object navigation, we consider several mapping-based baselines (Zhou et al., 2023
Wu et al., 2024b; [Yokoyama et al., 2023) that integrate commonsense knowledge and semantic
information to facilitate direct navigation toward target objects, leveraging semantic comprehension
from pre-trained large models to aid in navigation. Furthermore, we explored RGB-based non-
mapping navigation baselines: ZSON (Majumdar et al., 2022), which employs the CLIP (Radford
et al.,|2021)) model to embed target images and object goals within a unified semantic space, thereby
training a semantic goal-navigation agent, and PixNav (Cai et al., 2023)), which utilizes pixel-level
goal guidance, enabling pixel navigation through the use of VLMs and LLMs.

4.3 COMPARISON WITH PRIOR WORK

Table |1| presents a comparative analysis of the proposed ImagineNav against prior research efforts.
On the HM3D dataset, ImagineNav achieves a success rate of 53.0% and a SPL of 23.8%, sig-
nificantly outperforming most of the methods especially at success rate. Moreover, ImagineNav
achieves the highest success rate and SPL on the HSSD dataset. Particularly, in open-vocabulary
navigation tasks, our mapless ImagineNav even outperforms the best-performing map-based method
VLFM (Yokoyama et al.| 2023) by 0.5% at success rate. The above observations indicate that our
ImagineNav demonstrates outstanding navigation performance across various settings, while main-
taining low storage and computational complexities. Furthermore, since the pretrained NVS is di-
rectly employed without finetunned on the HM3D and HSSD datasets, we see a disparity between
the quality of images generated by the NVS model and real images, limiting the capability of our
model to some extent. To explore the upper limits of our framework, we instead use real panoramic
images—specifically, the observation at the pose predicted by the Where2Imagine module—as vi-
sual prompts for the VLM model. Notably, both the success rate and SPL exhibit obvious improve-
ments, obtaining 62.0% and 59.0% at success rate respectively on H3MD and HSSD benchmarks,
which further demonstrates the superiority of our imagination-based navigation framework.

Table 1: ImagineNav: Comparison with previous work. The Where2Imagine model with T=11,
utilizing ResNet-18 trained from scratch and GPT-40-mini as the VLM, was evaluated over 200
epochs on the HM3D and HSSD datasets. ImagineNav uses NVS model to generate novel view
images, while ImagineNav-Oracle uses real images of the candidate points.

Method Open-Vocabulary Mapless HM3D HSSD

Success Rate SPL Success Rate SPL

FBE (Topiwala et al.|[2018) X X 33.7 153 36.0 17.7
SemExp (Chaplot et al.![2020) X X 37.9 18.8 - -
Habitat-Web (Ramrakhya et al.[[2022) X v 41.5 16.0 - -
OVRL (Yadav et al.[[2022) X v 62.0 26.8 - -
ESC (Zhou et al.[|2023) v X 39.2 223 - -

VoroNav (Wu et al./[2024b) v X 42.0 26.0 41.0 23.2
VLFM (Yokoyama et al.|2023) v X 52.5 30.4 - -
ZSON (Majumdar et al.|[2022) v 4 25.5 12.6 - -
PixNav (Cai et al.|[2023) v v 379 20.5 - -

ImagineNav v v 53.0 23.8 51.0 24.9

ImagineNav-Oracle v v 62.0 31.1 59.0 27.0
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4.4 ABLATION STUDY ON MAIN COMPONENTS

We conducted an ablation study on

main components of the imagina- Taple 2: ImagineNav: ablation study on the imagination
tion module to demonstrate their ef- module. ‘Imagination’ refers to whether the future imagi-
fectiveness, with each variant eval- pations are used as visual prompts of the VLM. When it is
uated for 100 epoches. As shown removed, we feed current observations into VLM for decid-
in Table 2} we increase success rate jng the best exploration direction, and set the next waypoint
from 43.0 to 55.0 by utilizing future 2 meters away from the current location along the direction.
imaginations as visual prompt of the Here, the distance of 2 meters is considered as it is compara-
VLM for deciding exploration direc-  pje to that generated by T=11. ‘NVS’ indicates whether the

tion. Please note that at row #2 with-  jmage is captured from a real environment or synthesized
out Where2Imagine, we simply gen-  via the NVS model.

erate future views at the six locations,
which are two meters away from cur-

rent observations along their respec- ~ Imagination Where2Imagine NVS HM3D

tive observation orientations. This Success Rate SPL
improvement suggests the superior- X X Oracle 43.0 247
ity of future imagination in facilitat- v X Oracle 55.0 27.6
ing VLM’s reasoning. Such improve- v v Oracle 64.0 28.3
ments can be attributed to the greater v X PolyOculus 49.0 233
semantic disparity between different v v PolyOculus 56.0 24.3

imaginations, as illustrated in Figure
[ Further incorporating Where2Image improve success rate from 55.0 to 64.0, and from 49.0 to
56.0 under settings of ‘NVS’ and ‘w/o NVS’, respectively. As mentioned above, the capability of
our ImagineNav is limited by the performance of the off-the-shelf NVS model 2024) to
some extent as evidenced by comparing rows #2 with #4 and rows #3 with #5. Nevertheless, the
incorporation of Where2Imagine partially mitigates the adverse effects of the NVS model.
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Figure 4: Visualization of the synthesized image observations at future navigation waypoints pre-
dicted by the imagination module. It can be seen that there exists drastic semantic disparity between
different imaginations. In contrast, the semantic information is relatively consistent across different
current observations. The varying semantics across different future views highlight the advantages
of the imagination module in enhancing the VLM’s decision-making capabilities.

4.5 ANALYSIS OF SUCCESSFUL AND FAILED TRAJECTORIES

Figure []illustrates that our method achieves efficient path planning and navigation across different
targets. Especially, as shown in the top middle of Figure[3] the agent needs to navigate through mul-
tiple rooms. The complex environment increases the risk of losing direction, but our ImagineNav
successfully infers the optimal path and finds the target, demonstrating its ability to handle long-
distance and multi-room scenarios. We also present some failure examples at the bottom of Figure
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[l We identified three key factors contributing to these navigation failures. First, some object in-
stances are neglected for marking by the simulator, and therefore a successfully trajectory is wrongly
considered as a failure (a.k.a. false failure) as shown in the bottom left of Figure[3} Second, the syn-
thesized image from the NVS does not align with the real observation, such as creating objects that
are not present in the real scene as shown in the middle of Figure[5] which causes the VLM to make
incorrect inference. Moreover, the lack of historical information make the agent easily trapped in
local optima, thereby limiting its performance in long-term navigationas shown in the bottom right
of Figure[3]

Chair, Success:True, SPL:0.60 Bed, Success: True, SPL:0.63

Imagined Image

TV, Success:False, SPL:0.0 Plant, Success:False, SPL:0.0 Bed, Success:False, SPL:0.0

Figure 5: Visualization of the navigation trajectory. The top and bottom rows respectively show the
complete top-down trajectories of successful and unsuccessful examples.

4.6 ANALYSIS OF WHERE2IMAGINE MODULE

We explore the impact of the sampling step T on the final navigation performance by varying T
from 8 to 15. For each T, we re-generate the labeled image data and re-train the ResNet-18 for
relative pose prediction. Each variant was tested for 100 epochs under conditions where the agent
had access to real panoramic observations. As shown in Table [3] the best success rate and SPL
are obtained when T is set to 11. Furthermore, we visualize several navigational trajectories under
different values of T in Figure [6] to facilitate explanation. As can be seen, when T is relatively
small (i,e., 8), the agent is easily trapped as marked by red square, since it mainly resorts to local
semantic information for inferring its exploration direction, making it susceptible to converging on
suboptimal local solutions.

el

T=8, Success:False, SPL:0.0 T=11, Success:True, SPL:0.35 T=15, Success:False, SPL:0.0

Figure 6: Comparison of trajectories at different sampling steps T. This image presents a top-down
view of the entire trajectory as the agent searches for the target (a chair). The red box highlights the
situation where the agent encounters a local trap during navigation.
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Conversely, when T is excessively large, although the agent has access to more distant information,
it is prone to miss some critical intermediate semantics which are closely related to target and are
worth exploring, leading to erroneous long-range decisions, particularly in intricate environments.
However, an optimally calibrated T can strike a delicate balance between exploration and perception,
thereby facilitating to obtain impressive navigation performance.

We compared different backbones to evaluate their impacts on both the relative waypoint prediction
and final navigation performances. Specifically, we modified the final output layers of the ResNet-
18 and ViT to fit our dataset, allowing parameter updates during training. In contrast, DINOv2
and MAE models were connected to a five-layer MLP, with only the MLP parameters trained while
freezing the backbone. The experiments were conducted on real RGB observations without resort-
ing to the NVS model. Each variant was tested for 100 epochs. The results in Table [4] show that
the ResNet-18, when trained from scratch, achieves the best performances in both relative wayopint
prediction and ObjectNav while featuring a more lightweight architecture. Furthermore, the large
performance gap between different backnones suggests the importance of the Where2Imagine mod-
ule, indicating the usefulness of learning from human demonstrations. Please note that we observe a
slight inconsistency between waypoint prediction loss and navigation success rate under backnones
of DINOv2 and MAE. This might be because the waypoint prediction is evaluated on the testing
data from MP3D dataset while the navigation is performed on HM3D. The differences between the
datasets result in a certain degree of variability.

Table 3: Where2Imagine:  Table 4: Where2Imagine: the impact of different backbones. Loss
the influence of sampling  refers to the test loss of Where2Imagine. TFS: training from scratch,
step T on navigation perfor-  FT: fine-tuning.

mance.
Backbone Params Flops Loss HM3D

T HM3D Success Rate SPL

Success Rate  SPL ResNet-18 (TFS) 114M  1.8G  0.12 64.0 28.3
8 51.0 25.1 ResNet-18 (FT) 11.4M 1.8G 0.24 61.0 29.7
10 64.0 204 ViT (TFS) 86.0M 169G 0.22 61.0 29.7
11 64.0 28.3 ViT (FT) 86.0M 16.9G 0.23 58.0 31.0
12 59.0 30.0 DINOvV2 22.6M 5.5G 0.22 58.0 27.9
15 59.0 26.8 MAE 87.1M 4.4G 0.20 57.0 26.5

4.7 ANALYSIS OF VLM PLANNER

We conducted a comparative evaluation of the effects of differ-
ent VLMs on navigation performance, as detailed in Table 5]  Taple 5: Effect of different VLM.
The experiments used real RGB without NVS model. The re-

sults demonstrate that GPT-40-mini and GPT-4-Turbo exhibit HM3D
negligible differences in success rate and SPL metrics, while VLM S R SPL
showing a marked advantage over LLaVa, underscoring the uccess Rate
significant role of advanced model reasoning capabilities in in- GP%I:la’}]a b 46*‘318 gég
; ; -4-Turbo . .
fluencing experimental outcomes. Moreover, for models of the CPT-40-mini 610 583

same architecture, it is possible to opt for more cost-effective

variants without compromising navigation performance, thus
enabling more resource-efficient and time-saving.

5 CONCLUSION

We propose the ImagineNav framework, a mapless, open-vocabulary object navigation approach
leveraging VLM. By incorporating imagination mechanism, the system effectively predicts future
waypoints, transforming traditional navigation planning into a visual selection task for the VLM.
Ablation studies highlight ImagineNav’s strong potential for long-horizon navigation. Moving for-
ward, we aim to enhance the quality of viewpoint generation and optimize the use of historical
memory to further improve navigation performance and robustness.
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