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Abstract
Recent advances in Vision Transformer (ViT)
have demonstrated its impressive performance in
image classification, which makes it a promis-
ing alternative to Convolutional Neural Network
(CNN). Unlike CNNs, ViT represents an input
image as a sequence of image patches. The patch-
based input image representation makes the fol-
lowing question interesting: How does ViT per-
form when individual input image patches are
perturbed with natural corruptions or adversarial
perturbations, compared to CNNs? In this sub-
mission, we propose to evaluate model robustness
to patch-wise perturbations. Two types of patch
perturbations are considered to model robustness.
One is natural corruptions, which is to test mod-
els’ robustness under distributional shifts. The
other is adversarial perturbations, which are cre-
ated by an adversary to specifically fool a model
to make a wrong prediction. The experimental
results on the popular CNNs and ViTs are surpris-
ing. We find that ViTs are more robust to naturally
corrupted patches than CNNs, whereas they are
more vulnerable to adversarial patches. Given the
architectural traits of state-of-the-art ViTs and the
interesting results above, we propose to add the
robustness to natural patch corruption and adver-
sarial patch attack into the robustness benchmark.

1. Motivation
Recently, Vision Transformer (ViT) has demonstrated im-
pressive performance (Dosovitskiy et al., 2020; Touvron
et al., 2021; Wu et al., 2020; Xiao et al., 2021; Graham
et al., 2021; Chen et al., 2021b; Han et al., 2021; Chen et al.,
2021a; Liu et al., 2021), which makes it become a poten-
tial alternative to convolutional neural networks (CNNs).
Meanwhile, the robustness of ViT has also received great at-
tention (Bhojanapalli et al., 2021; Joshi et al., 2021; Salman
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et al., 2021; Shao et al., 2021; Shi & Han, 2021; Tang et al.,
2021). On the one hand, it is important to improve its ro-
bustness for safe deployment in the real world. On the
other hand, diagnosing the vulnerability of ViT can also
give us a deeper understanding of its underlying working
mechanisms. Existing works have intensively studied the
robustness of ViT and CNNs when the whole input image is
perturbed with natural corruptions or adversarial perturba-
tions (Bhojanapalli et al., 2021; Shao et al., 2021; Mahmood
et al., 2021; Bai et al., 2021; Aldahdooh et al., 2021). Un-
like CNNs, ViT processes the input image as a sequence of
image patches. In this work, instead, we propose to study
the robustness of ViT to patch-wise perturbations based on
its special patch-based architecture.

In this work, two typical types of perturbations are con-
sidered to compare the robustness between ViTs and CNN
(e.g., ResNets (He et al., 2016)). One is natural corrup-
tions (Hendrycks & Dietterich, 2019), which is to test mod-
els’ robustness under distributional shift. The other is adver-
sarial perturbations (Szegedy et al., 2014; Goodfellow et al.,
2014), which are created by an adversary to specifically fool
a model to make a wrong prediction. Surprisingly, we find
ViT does not always perform more robustly than ResNet.
When individual image patches are naturally corrupted, ViT
is more robust compared to ResNet. However, when in-
put image patch(s) are adversarially attacked, ViT shows a
higher vulnerability than ResNet.

To better understand the model robustness to patch perturba-
tion, we revealed that ViT’s stronger robustness to natural
corrupted patches and higher vulnerability against adver-
sarial patches are both caused by the attention mechanism.
Specifically, the self-attention mechanism of ViT can effec-
tively ignore the natural patch corruption, while it’s also
easy to manipulate the self-attention mechanism to focus
on an adversarial patch. This is well supported by rollout
attention visualization (Abnar & Zuidema, 2020) on ViT.
As shown in Fig. 1 (a), ViT successfully attends to the class-
relevant features on the clean image, i.e., the head of the
dog. When one or more patches are perturbed with natural
corruptions, shown in Fig. 1 (b), ViT can effectively ignore
the corrupted patches and still focus on the main foreground
to make a correct prediction. In Fig. 1 (b), the attention
weights on the positions of naturally corrupted patches are
much smaller even when the patches appear on the fore-
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(a) Clean Image (b) with Naturally Corrupted Patch (c) with Adversarial Patch

Figure 1. Images with patch-wise perturbations (top) and their corresponding attention maps (bottom). The attention mechanism in ViT
can effectively ignore the naturally corrupted patches to maintain a correct prediction in Fig. b, whereas it is forced to focus on the
adversarial patches to make a mistake in Fig. c. The images with corrupted patches (Fig. b) are all correctly classified. The images with
adversary patches (Fig. c) are misclassified as dragonfly, axolotl, and lampshade, respectively.

ground. In contrast, when the patches are perturbed with
adversarial perturbations by an adversary, ViT is success-
fully fooled to make a wrong prediction, as shown in Fig. 1
(c). This is because the attention of ViT is misled to focus
on the adversarial patch instead.

In summary, given the architectural traits of state-of-the-art
ViTs and the interesting results we found, we propose to add
the robustness to corrupted patches and adversarial patches
into the robustness benchmark.

2. Data Generation
Natural Corrupted Patches. For each image, we first se-
lect n image patch xi from the input image and perturb them
with natural corruptions. As in (Hendrycks & Dietterich,
2019), 15 types of natural corruptions are applied to the
selected patches, respectively. 5 severity levels of perturba-
tion are considered. The final performance is averaged over
different corruption types, all severity levels, and selected
patches. The positions and sizes of patches as well as the
number of patches are hyper-parameters to be specified.

Adversarial Patches. We now introduce adversarial patch
attack (Karmon et al., 2018) used in our study. The first step
is to specify a patch position and replace the original pixel
values of the patch with random initialized noise δ. The sec-
ond step is to update the noise to minimize the probability of
ground-truth class, i.e. maximize the cross-entropy loss via
multi-step gradient ascent (Madry et al., 2017). Similarly,
the positions and sizes of patches as well as the number of
patches are hyper-parameters to be specified.

For both types of perturbations, the bound (255/255) is
applied to the perturbed patches. The resulting images are
kept in the valid image space [0, 255]. Our code will be
integrated into the ShiftHappens robustness benchmark.

3. Evaluation Metric
We use the standard metric Fooling Rate (FR) to evaluate
the model robustness. First, we collect a set of images that
are correctly classified by both models that we compare. The
number of these collected images is denoted as P . When
these images are perturbed with natural patch corruption or
adversarial patch attack, we use Q to denoted the number
of images that are misclassified by the model. The Fooling
Rate is then defined as FR = Q

P . The lower the FR is, the
more robust the model is.

4. Special Requirements on the Models to Be
Evaluated

The evaluation of model robustness to patch perturbation
is model-agnostic. All the classification models can be
evaluated on the proposed task, including the traditional
machine learning classifiers.

There is a special setting for evaluation of robustness of
Vision Transformers. ViT represent an input images as a list
image patches. The setting of our patch perturbation can be
perfect (un)aligned with the patch representations. Given
the popularity of current ViT family models, it is indeed an
interesting setting.

5. Evaluation Procedure
In the experiment, 10k test images are randomly selected
from ImageNet-1k validation dataset (Deng et al., 2009) that
are correctly classified by models to be evaluated. Then for
each image, we randomly sample n input image patches xi

from 196 patches and perturb them with natural corruptions.
As in (Hendrycks & Dietterich, 2019), 15 types of natural
corruptions with the highest level (or 5 severity levels) are
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Table 1. Fooling Rates (in %) are reported. DeiT is more robust to naturally corrupted patches than ResNet, while it is significantly more
vulnerable than ResNet against adversarial patches. Bold font is used to mark the lower fooling rate, which indicates the higher robustness.

Model No. of Naturally Corrupted Patches No. of Adversarial Patches

32 96 160 196 1 2 3 4

ResNet50 3.7 18.2 43.4 49.8 30.6 59.3 77.1 87.2
DeiT-small 1.8 7.4 22.1 38.9 61.5 95.4 99.9 100

ResNet18 6.8 31.6 56.4 61.3 39.4 73.8 90.0 96.1
DeiT-tiny 6.4 14.6 35.8 55.9 63.3 95.8 99.9 100
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Figure 2. DeiT with red lines shows a smaller FR to natural patch corruption and a larger FR to adversarial patch of different sizes than
counter-part ResNet.

applied to the selected patches. The fooling rate of the
patch-based natural corruption is averaged over all the test
images and corruption types. The same image selection is
also applied in case of adversarial patches. The ℓ∞-norm
bound of 255/255, the step size of 2/255, and the attack
iterations of 10K is applied to create adversarial patches.

6. Evaluation Output and Analysis
Patch-wise Natural Corruption. First, we investigate the
robustness of DeiT and ResNet to patch-based natural cor-
ruptions. We find that both DeiT and ResNet hardly degrade
their performance when a small number of patches are cor-
rupted (e.g., 4). When we increase the number of patches,
the difference between two architectures emerges: DeiT
achieves a lower FR compared to its counter-part ResNet
(See Tab. 1). This indicates that DeiT is more robust against
naturally corrupted patches than ResNet. The same con-
clusion holds under the extreme case when the number of
patches n = 196 where the whole image is perturbed with
natural corruptions. This is aligned with the observation in
the existing work (Bhojanapalli et al., 2021) that ViTs are
more robust to ResNet under distributional shifts.

In addition, we also increase the patch size of the perturbed
patches, e.g., if the patch size of the corrupted patch is
32×32, it means that it covers 4 continuous and independent
input patches as the input patch size is 16× 16. As shown
in Fig. 2 (Left), even when the patch size of the perturbed
patches becomes larger, DeiT (marked with red lines) is still
more robust than its counter-part ResNet (marked with blue
lines) to natural patch corruption.

Patch-wise Adversarial Attack As shown in Tab. 1, DeiT
achieves much higher fooling rate than ResNet when one
of the input image patches is perturbed with adversarial
perturbation. This consistently holds even when we increase
the number of adversarial patches, sufficiently supports that
DeiT is more vunerable than ResNet against patch-wise
adversarial perturbation. When more than 4 patches (∼2%
area of the input image) are attacked, both DeiT and ResNet
can be successfully fooled with almost 100% FR.

When we attack a large continuous area of the input image
by increasing the patch size of adversarial patches, the FR
on DeiT is still much larger than counter-part ResNet until
both models are fully fooled with 100% FR. As shown in
Fig. 2 (Right), DeiT (marked with red lines) has higher FR
than ResNet under different adversarial patch sizes.

Taking all the results above together, we discover that DeiT
is more robust to natural patch corruption than ResNet,
whereas it is significantly more vulnerable to adversarial
patch perturbation.

We also report different versions of ViT (Dosovitskiy et al.,
2020; Touvron et al., 2021; Liu et al., 2021), CNN (He
et al., 2016; Huang et al., 2017) as well as Hybrid architec-
tures (Graham et al., 2021). We train all the models in the
same setting as in (Touvron et al., 2021) and report fooling
rate on each model in Fig. 3. Four main conclusions can be
drawn from the figure. 1). CNN variants are more robust
than ViT models. 2). The robustness of LeViT model (Gra-
ham et al., 2021) with hybrid architecture (i.e., Conv Layers
+ Self-Attention Blocks) lives somewhere between ViT and
CNNs, as expected. 3). Swin Transformers (Liu et al., 2021)
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Figure 3. We report Fooling Rates on different versions of ViT, CNN as well as Hybrid architectures under Adversarial Patch Attack.

are as robust as CNNs since attention cannot be manipulated
by a single patch due to hierarchical attention and the shifted
windows therein. The self-attention in Swin Transformers
is only conducted on patches within a local region. With
shifted windows, a single patch will interact with patches
from different groups in different layers. Both designs make
effective adversarial patches challenging. That’s the reason
why Swin Transformer performs more robustly than pop-
ular ViTs. 4). Mixer-MLP (Tolstikhin et al., 2021) uses
the same patch-based architecture as ViTs and has no atten-
tion module. Mixer-base with FR (31.36) is comparable to
ResNet and more robust than ViTs. The results confirm that
the vulnerability of ViT can be attributed to self-attention
mechanism.

7. Related Works
The robustness of ViT have achieved great attention due to
its great success (Bhojanapalli et al., 2021; Naseer et al.,
2021a; Shao et al., 2021; Benz et al., 2021; Mahmood et al.,
2021; Bai et al., 2021; Naseer et al., 2021b; Aldahdooh et al.,
2021; Salman et al., 2021; Yu et al., 2021; Hu et al., 2021;
Mao et al., 2021b;a; Naseer et al., 2021a; Tang et al., 2021).
On the one hand, (Bhojanapalli et al., 2021; Paul & Chen,
2021) show that vision transformers are more robust to nat-
ural corruptions (Hendrycks & Dietterich, 2019) compared
to CNNs. On the other hand, (Bhojanapalli et al., 2021;
Shao et al., 2021; Paul & Chen, 2021) demonstrate that ViT
achieves higher adversarial robustness than CNNs under
adversarial attacks. These existing works, however, mainly
focus on investigating the robustness of ViT when a whole
image is naturally corrupted or adversarially perturbed. In-
stead, our work focuses on patch perturbation, given the
patch-based architecture trait of ViT. The patch-based at-
tack (Joshi et al., 2021; Fu et al., 2021) and defense (Mu &
Wagner, 2021; Shi & Han, 2021) methods have also been
proposed recently. Different from their work, we aim to
understand the robustness of patch-based architectures un-
der patch-based natural corruption and adversarial patch
perturbation.

8. Conclusion
This work first shows our motivation to evaluating model
robustness to patch robustness. With experimental results.
our work shows an interesting observation on the robustness
of ViT to patch perturbations. Namely, vision transformer
(e.g., DeiT) is more robust to natural patch corruption than
ResNet, whereas it is significantly more vulnerable against
adversarial patches. A deep understanding of the obser-
vation is then provided. We reveal that the self-attention
mechanism of ViT can effectively ignore natural corrupted
patches but be easily misled to adversarial patches to make
mistakes. We hope this study can help the community better
understand the robustness of ViT to patch perturbations.
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