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ABSTRACT

This paper introduces an empirical risk minimization based approach with con-
comitant scaling, which eliminates the need for tuning a robustification parameter
in the presence of heavy-tailed data. This method leverages a new loss function that
concurrently optimizes both the mean and robustification parameters. Through this
dual-parameter optimization, the robustification parameter automatically adjusts
to the unknown data variance, rendering the method self-tuning. Our approach
surpasses previous models in both computational and asymptotic efficiency. No-
tably, it avoids the reliance on cross-validation or Lepski’s method for tuning the
robustification parameter, and the variance of our estimator attains the Cramér-Rao
lower bound, demonstrating optimal efficiency. In essence, our approach demon-
strates optimal performance across both finite-sample and large-sample scenarios, a
feature we describe as algorithmic adaptivity to both asymptotic and finite-sample
regimes. Numerical studies lend strong support to our methodology.

1 INTRODUCTION

The success of many statistical and learning methods heavily relies on the assumption of sub-Gaussian
errors (Wainwright, 2019). A random variable Z is considered to have sub-Gaussian tails if there
exist constants ¢; and ¢y such that P(|Z — EZ| > t) < ¢; exp(—cot?) for any t > 0. However,
in many practical applications, data are often collected with a high degree of noise. For instance,
in the context of gene expression data analysis, it has been observed that certain gene expression
levels exhibit kurtoses much larger than 3, regardless of the normalization method used (Wang et al.,
2015). Furthermore, a recent study on functional magnetic resonance imaging (Eklund et al., 2016)
demonstrates that the principal cause of invalid functional magnetic resonance imaging inferences is
that the data do not follow the assumed Gaussian shape. It is therefore important to develop robust
and efficient statistical methods with desirable statistical performance in the presence of heavy-tailed
data, which refer to data with only finite variances.

This paper focuses on mean estimation problems with potentially heavy-tailed data, which serves as
the foundation for tackling more general problems. Specifically, we consider a generative model for
data {y;, 1 <i<n}

yi=p "+, 1<i<n, (L.1)

where ¢; € R are independent and identically distributed (i.i.d.) copies of ¢, following the law Fj

with zero mean and only finite variance. Specifically, E. e = 0 and E.p,e% = o2.

When estimating the mean, the sample mean estimator » ., y;/n generally achieves only a
polynomial-type nonasymptotic confidence width (Catonil |2012)) under the conditions where the
errors have only finite variances. Specifically, there exists a distribution F' = F}, s for € with a zero
mean and a variance of o2, such that the followings hold simultaneously:
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In essence, the above indicates that the convergence of the sample mean to the true mean is notably
slow when the error terms are characterized by only finite variances.

Catonil (2012) made an important step towards mean estimation by introducing a robust estimator
1(7), which depends on a tuning parameter 7 and achieves logarithmic deviation from the true mean
w* with respect to 1/4. For a sufficiently large sample size n and optimal tuning of 7, this estimator
satisfies the following concentration inequality:

1 1
P |a(r) — u*| < co n~log(5> >1-25, Ve (0,1/2), (1.3)

where c is some constant. Such estimators are referred to as sub-Gaussian mean estimators due to
their performance equivalence to scenarios assuming sub-Gaussian data. Catoni’s estimator is based
on the empirical risk minimization (ERM) framework and thus can be generalized to various contexts
(Brownlees et al.| 2015} |Hsu & Sabatol 2016} |[Fan et al.,|2017; Avella-Medina et al., [2018; [Lugosi
& Mendelson| 2019b} Lecué & Lerasle, [2020; Wang et al., 2021}; [Sun et al., 2020). For a recent
comprehensive review, see Ke et al.| (2019).

However, implementing Catoni’s estimator (Catoni, [2012) requires careful tuning the parameter 7 =
7(o), which is dependent on the unknown variance 0. This process often involves computationally
intensive techniques such as cross-validation or Lepski’s method (Catoni, [2012). For instance, when
using the adaptive Huber estimator (Sun et al.,|2020; |Avella-Medina et al.,|2018) to estimate each
entry of a d x d covariance matrix, up to O(d*) tuning parameters can be involved. Utilizing cross-
validation or Lepski’s method in such scenarios significantly escalates the computational burden as d
increases. To mitigate these computational barriers, median-of-means (MoM) techniques (Devroye
et al.| 20165 Lugosi & Mendelson, [2019bja; Lecué & Lerasle, [2020) can be used to construct robust
and tuning-free estimators; see Section However, based on our experience, MoM typically
underperforms numerically compared to ERM-based estimators. An asymptotic analysis reveals
that the relative efficiency of the MoM estimator, compared to a fully efficient estimator, is only
2/m = 0.64. These observations prompt a pertinent question:

Is it possible to develop computationally and statistically effcient robust estimators
for data with finite and unknown variances?

In response, this paper introduces a robust empirical risk minimization approach with concomitant
scaling. We utilize a new loss function that is smooth with respect to both the mean and robustification
parameters. By joint optimizing these parameters, we prove that the resulting robustification parameter
can automatically adapt to the unknown variance, enabling the resulting mean estimator to achieve
sub-Gaussian accuracy up to logarithmic terms. Thus, our approach eliminates the need for cross-
validation or Lepski’s method for tuning, significantly enhancing the computational efficiency of
robust data analysis in practical settings. Moreover, from an asymptotic viewpoint, we establish that
our proposed estimator is asymptotically efficient, achieving the Cramér-Rao lower bound (Van der
Vaart, |2000). In essence, our approach demonstrates optimal performance across both finite-sample
and large-sample scenarios, a feature we describe as algorithmic adaptivity to both asymptotic and
finite-sample regimes.

Paper overview Section [2|introduces a novel loss function and presents the empirical risk min-
imization (ERM) approach. The theoretical properties are presented in Section [3] where we also
compare our estimator with the MoM mean estimator in terms of asymptotic performance. Section
M) provides numerical experiments. We conclude in Section[5] The supplementary material collects
additional results and proofs of the main results.

Notation We summarize here the notation that will be used throughout the paper. We use ¢ and C
to denote generic constants which may change from line to line. For two sequences of real numbers
{an,n > 1} and {b,,n > 1}, a,, S by, or a, = O(by) denotes a,, < Cb,, for some constant C' > 0,
and a,, 2 b, if b, < a,. We use a,, x b, to denote that a,, = b, and a,, < b,,. The log operator
is understood with respect to the base e. For a function f(z,y), we use V. f(x,y) or %f(a:, y) to
denote its partial derivative of f(x,y) with respect to z. Let V f (z, y) denote the gradient of f(z,y).
For a vector z € R?, ||z||, denotes its Euclidean norm. For a symmetric positive semi-definite matrix

Y, Amax(X) denotes its largest eigenvalue. For any set A, 1(.A) is the indicator function of the set A.



2 A LOSS FUNCTION WITH CONCOMITANT SCALING

This section introduces a new loss function designed to robustly estimate the mean of distributions
with only finite variances, while also facilitating automatic tuning of the robustification parameter.
We start with the pseudo-Huber loss (Hastie et al., 2009):

lbo(x) =772+ 22 — 72 = 72\/1 + 22 /72 — 7%, 2.1)

where T acts as a tuning parameter. This loss function mirrors the behavior of the Huber loss (Huber
1964), approximating 2/2 when 22 < 72 and transitioning to a linear form with slope 7 when
2% > 72. We refer to T as the robustification parameter because it mediates the balance between
quadratic loss and least absolute deviations loss, with the latter inducing robustness. In practice,
tuning 7 often requires computationally intensive methods such as Lepski’s method (Catoni} 2012) or
cross-validation (Sun et al.,|2020).

To bypass these computationally demanding methods, our objective is to develop a novel loss function
that depends on both the mean parameter p and the robustification parameter 7 (or its equivalent). By
jointly optimizing these parameters, we can achieve an automatically tuned robustification parameter
7, which in turn leads to the corresponding self-tuned mean estimator /(7). In contrast to the Huber
loss (Sun et al., |2020), the pseudo-Huber loss is a smooth function of 7, making optimization with
respect to 7 possible. To motivate the new loss function, let us first consider the estimator fi(7) with
T fixed a priori:

- EEN
1i(7) = argmin {n ZET(yi - u)} . (2.2)
H i=1

Below, we provide an informal result, with its rigorous version available in the appendix.

Theorem 2.1 (An informal result). Take 7 = o/n/z with z = /log(1/§), and assume n is
sufficiently large. Then, for any 0 < ¢ < 1, with probability at least 1 — §, we have

~ « log(2/6
() — | 5 o220,
n
The result above demonstrates that when 7 = o/n/z with z = 4/log(1/0), the estimator (1)

achieves the desired sub-Gaussian performance. Here, the sole unknown in 7 is the standard deviation
o. In view of this, we treat o as an unknown parameter v, and substitute 7 = /nv/z into the loss
function (2.1)), obtaining

nv? 2

Lz,v) =Ll (x) = ey < 1+ — — 1) , (2.3)

nv?

where z acts as a confidence parameter due to its dependence on § as specified in the preceding
theorem.

Instead of determining the optimal 7, we will identify the optimal v, which is intuitively expected to
approximate the underlying standard deviation 0. We will use the term “robustification parameter
interchangeably for both 7 and v, as they differ only by a scaling factor. However, directly minimizing
£(x,v) with respect to v leads to meaningless solutions, specifically v = 0 and v = +oo. To
circumvent these trivial outcomes, we we modify the loss function by dividing ¢(x, v) by v and then
adding a linear penalty term av. This will be referred to as the penalized pseudo-Huber loss, which is
formally defined as follows.

Definition 2.2 (Penalized pseudo-Huber loss). The penalized pseudo-Huber loss £P(x, v) is defined
as:

z,v) +av®  no

x?22
Pr,v) = ——"——— = = 1+ T 1|+ av, 2.4)

v

where n is the sample size, z is a confidence parameter, and a is an adjustment factor.



We thus propose to jointly optimize over p and v by solving the following ERM problem:

1 n
{11, v} = argmin {Ln(,u,v) = Zﬁp(yi - u,v)} ) (2.5)
B v i=1

When v is fixed a priori, solving the optimization problem above with respect to p is equivalent to
directly minimizing the empirical pseudo-Huber loss in (2.2) with 7 = vy/n/z.

To better understand the loss function L,, (11, v), let us first examine its population counterpart:
_ _mw (y — p)?2?
L(u,v)—ELn(ﬂ,v)—ZQE< 1—1—7—1 + av.

We define the population oracle v, as the value of v that minimizes L(u*, v) when the true mean p*
is known a priori, that is v, = argmin, L(u*, v), or equivalently, ensuring the gradient of L(p*, v)
with respect to v at v = v, 1S zero:

2,2
VoL )|, = {"2 (VﬂEqMﬂ—i—”—l) +a} —0.
=V« z n o
By switching the order of differentiation and expectation, we derive:
2
U -1 2.6)

F— —*  _
V2 + 222 /n n
Our first key result leverages the above characterization of v, to demonstrate how v, automatically

adapts to the unknown standard deviation o, thus hinting the effectiveness of our methodology. Let
02, = E{e?1(e? < 2?)}.

Theorem 2.3 (Self-tuning property of v,). Suppose n > az?. Then, for any vy € [0, 1), we have
v, > 0 and

Q
[\v}

(1 —7)o?
;WSUES
a

where p = 7/(1 — v) and T, = v.+/n/z. Moreover lim,, o, v2 = 02 /(2a).

)

a

DO

The theorem above shows that when n > az?, the oracle v? automatically adapts to the unknown
variance, which is sandwiched between the scaled truncated variance ain /(2a) and the scaled

variance 02 /(2a). By the dominated convergence theorem, aiTQ converges to o2 as 72 approaches
to — oo. As the sample size n grows, o2 _, closely approximates ¢, thus placing v} between
(1 —v)0?/(2a) and 62 /(2a). An asymptotic analysis reveals that lim,, o, v2 = 02/(2a). Taking
a = 1/2 yields lim,, o, v2 = o2, indicating that the oracle v2 with a = 1/2 should approximate the

true variance. This observation suggests the optimality of choosing @ = 1/2, a choice that is assumed
throughout the rest of this paper.

Our next result establishes that the proposed empirical loss function is jointly convex in both z and v.
This property enables the application of standard first-order optimization algorithms, facilitating the
efficient computation of the global optimum.

Proposition 2.4 (Joint convexity). The empirical loss function L, (i, v) in (2.5) is jointly convex in
both i and v. Furthermore, if there exist at least two distinct data points, the empirical loss function
is strictly convex in both p and v provided that v > 0.

Lastly, it was brought to our attention that our formulation (2.5)) shares similarities with the concomi-
tant estimator by Ronchetti & Huber| (2009)):

1 <& o
argmin —Zp <M> v+av p,
wv ni4 v

where p represents any loss function, and a is a user-specified constant. A notable gap in the literature
is the lack of rigorous guidance on selecting the hyperparameter a. Driven by the goal of developing



computationally and statistically efficient robust estimators with improved finite-sample performance
for handling potentially heavy-tailed data, we have derived a comparable but distinct formulation,
underpinned by rigorously determined hyperparameter a and an additional confidence parameter z. In
other words, our empirical loss function L,, is a meticulously adapted version of the aforementioned
loss function. Specifically, we adopt the smooth pseudo-Huber loss, and set the robustification
parameter T to T = v+/n/z to ensure the sub-Gaussian performance of the mean estimator, where z
is a carefully chosen confidence parameter. Concurrently, optimal adjustment factor is identified as
a=1/2.

3 THEORETICAL PROPERTIES

This section presents the self-tuning property for the estimated robustification parameter and then the
improved finite-sample property of the self-tuned mean estimator, similar to concentration property
in (T.3). We further show that our proposed estimator is asymptotically efficient, thus distinguishing
it from the MoM estimator. Recall a = 1/2.

3.1 THE SELF-TUNING PROPERTY AND THE IMPROVED FINITE-SAMPLE PERFORMANCE

To study the self-tuning property, we need an additional constraint that vy < v < Vj, and consider
the constrained empirical risk minimization problem

w1, vo<v<Vp

1 n
{1, v} = argmin {Ln(u,v) = pr(yi - ,u,v)} . 3.1
i=1

It is important to note that when v is either 0 or oo, the loss function is non-smooth or trivial,
respectively. Moreover, the loss function is not strongly convex in p in either case, and strong
convexity is essential for our theoretical analysis. Recall that 7,, = vo/n/z.

Theorem 3.1 (Self-tuning property). Assume that n is sufficiently large. Suppose vy <
co (0730 21/ 02 /2 A 1) T2 j2-1 < Cyo < Vy where ¢y and Cy are some universal constants.
For any 0 < § < 1, let 22 > log(5/d). Then, with probability at least 1 — d, we have

<< .
Co (0730/2—1/0730/2 A 1) 0r2 j2-1 SV < Coo

The theorem above suggests that v automatically adapts to the unknown standard deviation, converg-

ing to o if 0,2 s approximates o. This convergence is expected for large sample sizes due to the
2

dominated convergence theorem. However, it is important to recognize that 072 may not approach o

at any predictable rate under the minimal assumption of bounded variances for the data. With the

above self-tuning property, we can now characterize the finite-sample property of the self-tuned mean

estimator 1i().

Theorem 3.2 (Self-tuned mean estimators). Assume that n is sufficiently large. Suppose vy <

Co (072 /2—1/072 /2 N\ 1) 0.2 121 < Coo < V where ¢y and Cy are some universal constants.

) v v

For any 0 < § < 1, take 22 = log(n/d). Then, with probability at least 1 — &, we have

1(0) - '] < C - ) 2B

where C is some constant.

The above result asserts that the self-tuned mean estimator i = 7i(?) achieves logarithmic deviation
from the true mean p* with respect to 1/4, akin to (up to logarithmic terms). This is in sharp
contrast to the sample mean estimator, which only achieves polynomial dependence on 1/4; see (I.2).
For practical applications, we suggest choosing 6 = 0.05, which corresponds to a failure probability
of 0.05 or, equivalently, a confidence level of 0.95.
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Figure 1: Comparing our self-tuned estimator with the MoM estimator in terms of adaptivity.

3.2 ASYMPTOTIC EFFICIENCY

Our next theorem shows that our proposed estimator achieves asymptotic efficiency.
2+

Theorem 3.3 (Asymptotic efficiency). Fix any ¢ € (0,1]. Assume Ee;™* < oo and the same

assumptions as in Theorem 3.1} Take any 22 > 2log(n). Then
Vi (f(B) — 1)~ N (0,0%).

We provide an intuitive explanation for the optimal performance of our self-tuned estimator in the
asymptotic regime. Because this estimator is a self-tuned version of the pseudo-Huber estimator in
(2:2)), we discuss the latter for simplicity. As per Theorem taking 7 = o/n/log(1/0) guarantees
the sub-Gaussian performance of fi(7) in the finite-sample regime. Meanwhile, as n approaches
infinity, 7 = o+/n/log(1/§) also grows to infinity, causing the pseudo-Huber loss to approach the
least squares loss. This loss corresponds to the negative log-likelihood of Gaussian distributions, and
its minimization yields an asymptotically efficient mean estimator.

In summary, our self-tuned estimator can achieve optimal performance in both finite-sample and
large-sample regimes. We point out that the large-sample regime is used to approximate the regime
when the sample size is relatively large instead of describing the case of n = co. We will refer to
this ability as adaptivity to both finite-sample and large-sample regimes, or simply adaptivity. As we
will see in the next section, the MoM estimator does not naturally possess this adaptivity due to its
discontinuous nature. FigureT|provides a comparison between our self-tuned estimator and the MoM
estimator in terms of adaptivity.

3.3 COMPARING WITH MOM

Other than the ERM-based approach, the median-of-means technique (Lugosi & Mendelson, 2019a)
is another method to construct robust estimators under heavy-tailed distributions. The MoM mean
estimator is constructed as follows:

1. Partition [n] = {1,...,n} into k blocks B, ..., By, each with size |B;| > |n/k] > 2;
2. Compute the sample mean in each block z; = . B, Ti /1Bjl;

3. Obtain the MoM mean estimator by taking the median of z;’s:

MM = med(zy, ..., 21)

where med(+) represents the median operator.

For simplicity and without loss of generality, we assume that n is divisible by k so that each block
has exactly m = n/k elements. The following theorem is taken from |Lugosi & Mendelson| (2019a).

Theorem 3.4 (Theorem 2 by|Lugosi & Mendelson|(2019a) ). Forany ¢ € (0, 1), if & = [8log(1/0)],

then, with probability at least 1 — 0,
<o [321og(1/0) -
n

‘ﬁMoM _ ,U/*




The theorem above indicates that, to obtain a sub-Gaussian mean estimator, we only need to choose
k = [8log(1/6)] when constructing the MoM mean estimator. Thus, the MoM estimator is naturally
tuning-free. However, in our numerical experiments, we observed that the MoM estimator often
underperforms compared to our proposed estimator. To shed light on this observation, we adopt an
asymptotic viewpoint and calculate the relative efficiency of 7M°M with respect to our estimator 7i(7).
The following result is a direct consequence of (Minsker, 2019, Theorem 4) and we collect the proof

in the appendix for completeness.

Proposition 3.5 (Asymptotic inefficiency of MoM estimator). Fix any ¢ € (0, 1]. Assume E|y; —
p*|*+ < co. Suppose k — oo and k = o(n*/(11)), then

\/ﬁ(ﬁMoM i) e N (07 g02) ]

We highlight that the MoM mean estimator shares the same asymptotic property as the median
estimator (Van der Vaart, 2000) due to taking the median operation in the last step, and thus is
asymptotically inefficient. In contrast, our estimator achieves full asymptotic efficiency. The relative
efficiency e, of the MoM estimator with respect to our estimator is

MM ey 2
er (BMM, (9)) = — 0.64.

This indicates that our proposed estimator outperforms the MoM estimator in terms of asymptotic
performance, partially explaining the empirical success of our method; see the numerical results in
Section ] for details.

4 NUMERICAL STUDIES

This section examines numerically the finite-sample performance of our proposed robust mean
estimator when dealing with heavy-tailed data. Throughout our numerical examples, we take
z = y/log(n/§) with § = 0.05 as recommended by Theorem This choice guarantees that the
result stated in the theorem holds with a probability of at least 0.95.

We investigate the robustness and efficiency of our proposed estimator under two distinct distribution
settings for the random variable y:

1. Normal distribution N(11, %) with mean p = 0 and variance o > 1.

2. Skewed generalized ¢ distribution sgt(u, o, A, p, q), where mean p = 0, skewness A = 0.75,
standard deviation o = +/q/(q — 2), shape parameter p = 2, and shape parameter g > 2.

For each of the above settings, we generate an independent samples of size n = 100 and compute
four mean estimators: our proposed estimator (ours), the sample mean estimator (sample mean), the
MoM mean estimator (MoM), and the trimmed mean estimator (trimmed mean).

Figure 2] displays the a-quantile of the estimation error ||fi — u||3, with a ranging from 0.5 to 0.99,
based on 1000 simulations for both distributional settings. For Settings 1 (normal distribution) and 2
(skewed generalized ¢ distribution), we set 02 = 1 and ¢ = 2.5, respectively. In the case of normal
distributions, our proposed estimator performs almost identically to the sample mean estimator, both
of which outperform the MoM and trimmed mean estimator. Since the sample mean estimator is
optimal for Gaussian data, this suggests that our estimator does not sacrifice statistical efficiency
when applied to Gaussian data. In the case of heavy-tailed skewed generalized ¢ distributions, the
estimation error of the sample mean estimator grows rapidly with increasing «.. This contrasts with
the three robust estimators: our estimator, the MoM mean estimator, and the trimmed mean estimator.
Our estimator consistently outperforms the others in both settings.

Figure [3]examines the 99%-quantile of the estimation error versus a distribution parameter, based on
1000 simulations. For Gaussian data, the distribution parameter is o, and we vary ¢ from 1 to 4 in
increments of 0.1. For skewed generalized ¢ distributions, the distribution parameter is ¢, and we vary
q from 2.5 to 4 in increments of 0.1. For Gaussian data, our estimator performs identically to the
optimal sample mean estimator, with both outperforming the MoM and trimmed mean estimators.
In the case of skewed generalized ¢ distributions with ¢ < 3, all three robust mean estimators either
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Figure 2: The a-quantile of the estimation error (estimation error, y-axis) versus « (quantile level,
z-axis) for our estimator, the sample mean estimator, the MoM estimator, and the trimmed mean
estimator.
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Figure 3: Empirical 99%-quantile of the estimation error (estimation error, y-axis) versus a dis-
tributution parameter (parameter, x-axis) for our estimator, the sample mean estimator, the MoM
estimator and the trimmed mean estimator. The distribution parameter is ¢ for normal distribution
and ¢ for skewed generalized ¢ distribution.

outperform or are as competitive as the sample mean estimator. However, when ¢ > 3, the sample
mean estimator starts to outperform both the MoM and trimmed mean estimators. Our proposed
estimator, on the other hand, consistently outperforms all other methods across the entire range of
parameter values.

We also conduct a computational performance comparison of our self-tuned method with pseudo-
Huber loss + cross-validation, and pseudo-Huber loss + Lepski’s method. For cross-validation, we
pick the best 7 from a list of candidates {1,2, ..., 100} using 10-fold cross-validation. In the case
of Lepski’s method, we follow the appendix and choose V = 2, p = 1.2, and s = 50. We run 1000
simulations for the mean estimation problem in Setting 1 with o> = 1 and a sample size of n = 100.
All computations are performed on a MacBook Pro with an Apple M1 Max processor and 64 GB
of memory. The runtimes for our self-tuning approach, Lepski’s method, and cross validation are
1.5, 16.7, and 133.5 seconds, respectively. Our proposed method is approximately 90X faster than
cross-validation and about 10x faster than Lepski’s method.

Finally, we compare their statistical performance in both settings while varying the distribution
parameter in the same manner as in Figure[3] The results are summarized in Figure ] and Figure[5] In
both figures, our method and cross-validation exhibit similar performance, with both outperforming
Lepski’s method. We suspect this is because Lepski’s method depends on additional hyperparameters,
and our chosen values may not be optimally tuned. This observation also suggests that, despite its
sound theoretical underpinnings, Lepski’s method does not uniformly yield strong empirical results.
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z-axis) for our estimator, cross validation and Lepski’s method.
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Figure 5: The empirical 99%-quantile of the estimation error (estimation error, y-axis) versus a
distributution parameter (parameter, z-axis) for our estimator, cross validation and Lepski’s method.

5 CONCLUSIONS AND LIMITATIONS

In summary, the most attractive feature of our method is its self-tuning property, incurring much
lower computational cost than cross-validation and Lepski’s method. This is particularly important
for large-scale inference with a myriad of parameters to be tuned. Statistically, our estimator is as
(statistically) efficient as the sample mean estimator for normal distributions and more efficient than
popular robust alternatives for asymmetric and/or heavy-tailed distributions.

Limitation One limitation of our self-tuned estimator is that its finite-sample performance depends
on unknown constants, making it challenging to compute the sample complexity in advance for a fixed
confidence level. Another limitation of this study is its scope. We primarily focus on robust mean
estimators as they represent the simplest case, and the proofs are already quite complex. Nevertheless,
our approach can potentially extend to more general settings, such as regression and matrix estimation

problems.
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A BASIC FACTS

This section collects some basic facts concerning the loss function. First, as we state in Sectionm the

pseudo-Huber loss (2.1)) exhibits behavior similar to the Huber loss (Huber} [1964), approximating
22/2 when 22 < 7% and resembling a straight line with slope 7 when 2% 2 72. To see this, some

algebra yields

<
2¢2 =
Ilfel <ty (z) < 7lw|, if 22 > 72 -4(1 +¢€) /€.

{ S0 < @) S 5, ifa® <A1+ 6/

Second, we give the first-order derivatives and the Hessian matrix for the empirical loss function. Let
T = v4/n/z throughout the appendix. Recall that our empirical loss function is

iZayi—ﬂ,v)ﬁZ{/f TZ};Jr(yz-—u)?—(;—a)v}
i=1 i=1

S e

Ln(p,v)

)
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Algorithm 1 An alternating gradient descent algorithm.
Input: fiinit, Vinit, vo, Vo, M1, M2, (Y15 -+ Yn)
for £k = 0,1, ... until convergence do
P+t = pre — MV p L (11, vi) _ B
Upg1 = Uk — N2VrLn (kg 1, v&) and vp41 = min{max{vg11,v0}, Vo}
end for
Output: [i = pp41,0 = V41

The first-order and second-order derivatives of L,, (i, v) are

n

1 Yi — 1 Vo1 Yi — 1
VL, v) = —— S AU Y -
D B e w= ey sy SERRETD Dy oy sy

22 n n 1< T
i Z¢1+z2y—m /(nv2>_(22_“)_22'n2<ﬂ+<yi—w_l>+a

i=1

where a = 1/2. The Hessian matrix is

Z T2 n 1\ T(yi—p)

i=1 3/2 22 i=1 2 T )2)3/2
H(p,v) = (72wim?) g ()
? 3/2 )2

n 1 __Tlyizp) nP21 s iz

22 Lui=1 (724(y;—p)2)3/2 2% n Lui=1 (724 (y;—p)?)3/?

B AN ALTERNATING GRADIENT DESCENT ALGORITHM

This section presents an alternating gradient descent algorithm to optimize (3.I). The algorithm
generates the solution sequence {(p, vi) : k > 0} with the initialization (o, vo) = (Hinit, Vinit )-
At the working solution (py, vy) for any k > 0, the (k + 1)-th iteration involves the following two
steps:

L. pgyr = pg — 1 VL (g, vi),
2. :Uk+1 = Vg — ’I]QVTLTL(,U,;C+1, Uk) and V41 = min{max{ﬁkH, ’Uo}, Vo},

where 7); and 72 are the learning rates and

n

1 Yi —
VuLn(p,v) = —— ;
uln(p,0) n ; o1+ 22(y; — )2/ (nv?)

2
z n
S ~(5-a).

LV 2y - )P (w?) Nz
The above two steps are repeated untll convergence. The algorithm routine is summarized in
Algorithm[T] The learning rates 7); and 7, can be chosen adaptively in practice. In our experiments,
we utilize alternating gradient descent with the Barzilai and Borwein method and backtracking line
search.

C COMPARING WITH LEPSKI’S METHOD

We compare our method with Lepski’s method. Specifically, we employ Lepski’s method to tune the
robustification parameter v and, consequently T = vy/n/z, in the empirical pseudo-Huber loss:

L) = 23 (/TG ).
i=1

Lepski’s method proceeds as follows. Let vy« be an upper bound for o, and Tpax = Vmax \/ﬁ /z
with z = 4/log(1/4). Let n be sufficiently large. Then with probability at least 1 — §, we have

log(4/6) _

n

‘ﬁ(vmax) - LL*‘ S 6vmax E(”ma}o 5)7

12



where [i(vmax) = argmin, Ly (4, Umax). Let us by convention set €(vmax,0) = +oo. Clearly,
€(Umax, 0) is homogeneous in the sense that

€(Vmax, 0) = B(0)Umax, where B(d) =6 %.

For some parameters V' € R, p > 1, and s € N, we choose the following probability measure V for

Umax

V() = 1/(2s+1), ifvma =Vp* k€Z, |k <s,
maxs o0, otherwise.
Let us consider for any vy such that €(vmax, 0V (Umax)) < oo the confidence interval
I(Vmax) = F(Vmax) + €(Vmax, 0 V(Vmax)) X [—1,1],

where

log(4/6) +log(2s + 1)

E(rUmaxa ] V(Umax)) = GUmax\/

if Uynax = VpF forany k € Z and |k| < s. We set I(Vpax) = R when €(vmax, 6V (Vmax)) = +00.

Let us consider the non-decreasing family of closed intervals

J(vl) = ﬂ{l(vmax) D Umax = Ul}, v € R+.

In this definition, we can restrict the intersection to the support of V', since otherwise I (vyax) = R.
Lepski’s method picks the center point of the intersection

ﬂ{J(vl) tvr € Ry, J(vr) # 0}

to be the final estimator firepski- Then the following result is due to|Catoni| (2012).

Proposition C.1. Suppose |log(c/V')| < 2slog(p). Then with probability at least 1 — &

Fitenasi — 1| < 12p0\/log(4/5) + log(2s + 1)
epski > .

n

If we take the grid fine enough such that s = n, then the upper bound above reduces to

120 \/10g(4/5) +log(2n + 1)
n

)

which agrees with deviation bound for our proposed estimator, up to a constant multiplier. Therefore,
our proposed estimator is comparable to Lepski’s method in terms of the deviation upper ound.
Computationally, our estimator is self-tuned and thus computationally more efficient than Lepski’s
method; detailed numerical results can be found in Section

D PROOFS FOR SECTION[2]

D.1 PROOFS FOR THEOREM[2.3]

Proof of Theorem[2.3] We prove first the finite-sample result and then the asymptotic result. Recall
that 7. = v.\/n/z.

Proving the finite-sample result. On one side, if v, = 0 and by the definition of v,, v, satisfies

1_Lz2:1[§ﬂ_

=0
n \/nv2 + 222

13



which is a contradiction. Thus v, > 0. Using the convexity of 1/+/1 + = for z > —1 and Jensen’s
inequality acquires
2 2

1_Lz2_E V. 220

= =E ! Z ! Z 1- 29
n /w2 + 222 V14 222/ (nv2) 1+ 2202 /(nv?) 2nvy

where the last inequality uses the inequality (1 + z)~%/2 > 1 — z/2, i.e., Lemma (i) with
r = —1/2. This implies

Q
[\v]

vfg .

[\
s}

On the other side, using the concavity of 1/z, we obtain, for any v € [0, 1), that

1—ﬁ:E V/nu, 1

1
<WE| —m—m—
—\/ (1+z2e2/<nvz>)
22¢2 22e2 ~ 1 22¢2 ~y
E 1—(1— 1 < 1
¢{( 0-77) 1 (or = 75) * e (r > 155}

2252 2252 ~
<4 1-(1-9)E 1 <
<y (G <))

1—(1—7) E{e*1 (52;27/232/(1 - )}

) (D.1)
where the second inequality uses Lemma|[D.1] that is,
(1+2)"'<1—(1—7)z, forany x € [0, 17] .
-

Taking square on both sides of inequality and using the fact that n > az? together with Lemma
[H.4| (i) with r = 2, aka (1 + z)? > 1 + 2z for z > —1, we obtain

) 2 2\ 2 E 21 2 <« 2 1—
1_ az < 1_% Sl—(l_’y) {5 (E —,YT*/( FY))}
n n nv2/z2

)

or equivalently

2
o
er2

2
Ve 2 2a

where ¢ = 7/(1 — 7). Combining the upper bound and the lower bound for v2 completes the proof
for the finite-sample result.

Proving the asymptotic result. The above derivation implies that v, < oo for any a > 0. By the
definition of v,, we obtain

¥ _ 1 g ! (D.2)

n V1+ 222/ (n?)’

We must have nv2 /22 — oo. Otherwise assume

limsup nv? /2% < M < oo.
n— oo

14



Taking n — oo, the left hand side of the above equality goes to 0 while the right hand is lower
bounded as

1 1
_E\/1+52/M21_ E(1+62/M>
— \/1 E{e21(s2 < M)}

2M
1
>1—4/=
2 \ffov

where the first two inequalities follow from the same arguments in deriving (D.I)) but with v = 1/2,
and the third inequality uses the fact that

E{e%1(s2 < M)} < M.

This is a contradiction. Thus nv?/z? — co. Multiplying both sides of the above equality by n, taking
n — oo, and using the dominated convergence theorem, we obtain

\/m_l
az’ = lim E (n + 2%/ (nvs) )

n—roo

14 222/ (nv2)

1+ 222 7)1 .22
_ 1imIE<n~ 1 V14 222/ (nv2) 'z5>

neoo Tt 22e2/(no?)  2%e%/(@m?) 20
Ez2e?

PETETE—
21lim,, o v2

and thus lim,, . v2 = 0 /(2a). This proves the asymptotic result.

D.2 PROOF OF PROPOSITION[2.4]

Proof of Proposition[2.4] The convexity proof consists of two steps: (1) proving that L,,(u, v) is
jointly convex in u and v; (2) proving that L,,(u, v) is strictly convex, provided that there are at least
two distinct data points.

To show that L, (y,v) = n= 1 >0 | P(y; — p,v) in 23) is jointly convex in y and v, it suffices
to show that each ¢P(y; — p,v) is jointly convex in p and v. Recall that 7 = v+/n/z. The Hessian
matrix of /P (y; — p,v) is

Hi(,LL7U) = \/ﬁ . 1 2 (\/ﬁ/z) T(yi - :U‘) — O,

S Gl (7 u)z)?’/2 (Vn)z) Ty — ) (Vn/2)? (ys — p)2| =

and thus positive semi-definite. Therefore, L,, (1, v) is jointly convex in u and v.

We proceed to show (2). Because the Hessian matrix H (u,v) of L, (u,v) satisfies H(u,v) =
n~t Y | Hi(p,v) and each H;(p,v) is positive semi-definite, we only need to show that H (y, v)
is of full rank. Without generality, assume that y; # yo. Then

Vi 1 7 (vi/2) (i — 1)
(e 0) o Halpo) =552 3 o T (s ) (VR )
Some algebra yields

n27_2 (yl _ y2)2

A2 = D (52— 1))
forany 7 > 0 (v > 0), and i € R, provided that y; # yo. Therefore, Hy (11, v) + Ha(p, v) is of full
rank and thus is H (u, 7), provided v > 0, u € R, and y; # yo. O

det (Ha (s, v) + Ha(n,v) = 73 70
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D.3 SUPPORTING LEMMAS

LemmaD.1. Let 0 <y < 1. Forany 0 < 2 < /(1 — ~), we have
1+2)"t<1—(1 7).

Proof of Lemma|D.1} To prove the lemma, it suffices to show, for any v € [0, 1), that
1<(1+z)—(1-9y)z1+z), VO<z< %
-7
which is equivalently to
x(x—,y) <0, VOSxSL.
1—7v 1—7v
The above inequality always holds, and this completes the proof.

E RESULTS AND PROOFS FOR THE FIXED v CASE

This section presents the theoretical results concerning the minimizer of the empirical penalized
pseudo-Huber loss in (2.3) with v fixed, aka Theorem [E.2] and Corollary and their proofs.
Corollary [E.4]is a rigorous version of the informal result, aka Theorem in Section

E.1 RESULTS FOR THE FIXED v CASE

With an abuse of notation, we use fi(v) to denote the minimizer of the empirical penalized pseudo-
Huber loss in (2.5) with v fixed. Recall that we have used fi(7) to denote the minimizer of the
empirical pseudo-Huber loss in (2.2)), and fi(v) is equivalent to ii(7) with 7 = v/n/z. We begin
by examining the theoretical properties of ji(v). We require the following locally strong convexity
assumption, which will be verified later in this subsection.

Assumption E.1 (Locally strong convexity in p). The empirical Hessian matrix is locally strongly
convex with respect to  such that, for any € B, (p*) := {p : |p — p*| < r},

inf (VuLy(p,v) = VuLy (0", 0), 1 — 1)
HEB (1) I — 2
where r > 0 is a local radius parameter.
Theorem E.2. Forany 0 < § < 1, letv > 0 be fixed and 2% = log(1/J). Assume Assumption|E.1]

holds with any r > ro(k¢) == k; ' (0/(v/2v) + 1)2 \/log(2/5) /n. Then, with probability at least

1 — 4, we have
_ 1/ o > flog(2/86) C [log(2/0)
< = (= +1 =Ll A A
A(w) — w<\/§v )\/ 20 _ el

where C' = (o/(v/2v) + 1)? only depends on v and o.

> ke>0

The above theorem states that under the assumption of locally strong convexity, /i(v) achieves a
sub-Gaussian deviation bound when the data have only bounded variances. In particular, if we choose
v = o in the theorem, we obtain

|ﬁ(0)*u*|§%€<g+l>2 \/@gé\/@_

Assumption [E.T] essentially requires the loss function to exhibit curvature in a small neighborhood
B, (1*), while the penalized loss (2.4) transitions from a quadratic function to a linear function
roughly at |z| = 7 o y/n. Quadratic functions always have curvature, so intuitively, Assumption

holds as long as
1
Vn 2 r > ro(ke) o \/7
n
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The condition above is automatically guaranteed when n is sufficiently large. Choosing r to be the
smallest 7((r¢) results in Assumption being at its weakest. In other words, in this scenario,
the empirical loss function only needs to exhibit curvature in a diminishing neighborhood of u*,
approximately with a radius of /1/n. The following lemma rigorously proves this claim.

Lemma E.3. Suppose v > vg. Forany 0 < § < 1, letn > C'max {z%(c% 4 r?) /vZ, log(1/6)} for
some absolute constant C. Then, with probability at least 1 — §, Assumption[E.1|with x, = 1/(2v)
and any local radius r > ro(r¢) = 79(1/(2v)) holds uniformly over v > vy > 0.

The first sample complexity condition, n > Cz2(0? + r?)/v3, arises from the requirement that

72 :=wvgn/z* > C(o? + r?). Because the robustification parameter 72 = v3n/z* determines the

size of the quadratic region, this requirement is minimal in the sense that Assumption can hold
only when 72 is larger than r2 plus the noise variance 2. As argued before, Assumption holds

with any 7 such that \/n 2 r 2 +/1/n. For example, we can take r & o to be a constant, and this
will not worsen the sample complexity condition. Finally, by combining Lemma and Theorem
we obtain the following result.

Corollary E4. Suppose v > vg. Forany 0 < 6§ < 1,letn > Cmax {(r? + 02) /v, 1} log(1/4)
for some universal constant C, where r > 2r¢(1/(2v)). Take 2% = log(1/6). Then, for any v > v,
with probability at least 1 — §, we have

) — | < 2 (\[v+1)2\/1og(:/5)sv\/1+1o§(1/5)_

This section collects proofs for Theorem Lemma and Corollary Recall that 7 = v+/n/ 2,
and the gradients with respect to 1 and v are

1 ¢ yi — Vo1 Yi —
V.L V) = —— = .= _—
t n(ﬂ U) n;y\/l—&-zQ yi_M)Q/(nUQ) z n;

22 n no1g T
el Z¢Hﬂ )NWY{*_Q_*WZX ﬂHMﬂm_Q+w

E.2 PROOF OF THEOREM[E.2|

Proof of Theorem|[E.2] Because [i(v) is the stationary point of Ln(u, v), we have

9 1 yi — i) i)
7Ln V),V) = —— = -
o Ln (i), v) n;v\/lJrz?(yifﬁ(v))Q/(an) Z \/72 (yi — fi(v))? 0

Let A = [i(v) — p. We first assume that [A| := [f(v) — p*| < rg < r. Using Assumption [E.1|
obtains

0 0
-~ _*2<7 -~ _ * -~ ok
www;u_<wmwmw S Lalu ). i) i)

TQH [(v) = pl,

or equivalently

&
Iﬂ?g < .

Applying Lemma wrth the fact that ‘E (Ts [(12 + &2 )/ 2) | < 02 /(27), we obtain with probabil-
ity at least 1 — 24 t

Kol fi(v) — p*| < vn <o 210(1/9)  7log(1/9) 02)

<
LR n 3n 2T
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or equivalently

. . 2log(1/6)  log(1/8)  /no?
rel(v) = ] < 22712 /52 + 32/ 22712

Since 7 = vy/n/z, we have

relfiv) — 1| < (ﬂ" + Vl‘)gf/(”) \/logg/‘” TNy =

Taking z = +/log(1/0) then yields
~ . V2o \log(1/6) \ [log(1/) 1 o*  [log(1/d)
’W|M(U)_M|§< v +3 10g(1/5)>\/ n +§ﬁ T n
V2o 1 1 o2 log(1/6)
( v T3ty 2) T
2
- (1+U) log(1/6)

2v n

<

for any ¢ € (0,1/2). Moving x; to the right hand side and using a change of variable 20 — 4, we
obtain

n

N o1 o\ [log(2/6)
|u<v>u<w-<1+m)

=7rg < T
This completes the proof, provided that |A| < 7.

Lasty, we show that |A| < r¢ must hold. If not, we shall construct an intermediate solution between
w* and fi(v), denoted by p,, = u* + n(fi(v) — p*), such that |u, — p*| = ro. Specifically, we can
choose some 7 € (0, 1) such that |p,, — p*| = ro. We then repeat the above calculation and obtain

_ 1
— < = i
) == = ( s T3t e

which is a contradiction. Therefore, it must hold that |A| < 7. O

n

Vo 11 02> log(2/9)

E.3 PRroOOF oF LEMMAI[EJ]

Proof of Lemma[E3] We first prove that, with probability at least 1 — J, Assumption with
k¢ = 1/(2v) and radius r holds for any fixed v > vg. Recall that 7 = v+/n/z. For notational
simplicity, let A = p — p* and 7,, = vo+/n/z. It follows that

<V‘LL"(H’U> - VHLTL(H“*vU)a A> - <

1 — €i 1 — Yi — W
— —_—— , A
\/ﬁ;Z\/Tz—f—S? \/ﬁ; 2/ T2+ (yi — p)? >
n 2

AQ

1 T
= Vn & S R

where 1 is some convex combination of p* and p, thatis, g = (1
2

A)p* + A for some A € [0, 1].
Obviously, we have |z — p*| = A|A| < |A] < r. Since (y; — 1)* < 2

€7 +2X2A% < 267 +2A? <

?
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2e? + 2?2 the above displayed equality implies that, with probability at least 1 — 6,
<vuLn(Ha 'U) - VuLn(ﬂ*a U)a H— N*>
) I — pr?
1o 2

.
z n ; (72 4+ 2r2 + 2¢2)3/2

Y

- (E (72, + 2" 1og<1/6>>

' (12 4 2r2)3/2 '

f

(
Vn

2
vn 72 1 i (12 4 2r2)3/2

z (12420232 L (724 202 4 267)3/2
Vn

z (12 4 2r2 4 2¢2)3/2 2n
Vn

2

72 log(1/6)
W (I— 2n> ) (E.1)

where the last inequality uses Lemma [E.6]

It remains to lower bound I. Using the convexity of 1/(1 + x)?/? and Jensen’s inequality, we obtain

1 Z TUO + 2r2)3/2 _ (7'30 + 2r2)3/2
(72, 4+ 2r2 +2e2)3/2 (72 4 2r2 4 2¢2)3/2
(1+2e2/(12, + 2r2))3/2
1

>

T (14 202/(72, 4+ 2r2))3/2
(7‘30 4 2r2)3/2

B (72 +2r2 4 202)3/2°

Plugging the above lower bound into (E.I) and using the facts
73 TS -3

> ——s <
(72 1 2r2)372 > (2§ 222 for 7,, > 7 and 22 = 1,

we obtain with probability at least 1 — §
(VuLn(p) = VyuLn(p*), pp — pi*)

inf 5
HEB (1*) I — p*|
v @ fleg(1/9)
Tz (1242r2)32 \ (72 +2r2 +202)3/2 2n
- Vn . 73 . (12, + 2r2)3/2 _[log(1/6)
Tozm (1242r2)3/2 \ (12 +2r2 + 202)3/2 2n
YA G2z s g
o2 \ (72 4 2r2)3/2 (12, +2r2 +202)3/2 (724 2r2)3/2 2n
S Vn 1 _ [log(1/4)
T oz \ (14 (2r2 4 202)/72)3/2 2n
1 1 /log 1/5
o \ (14 (22 +202)/72)3/2
1
>
— 2

2

provided 77 > 4r* 4+ 40% and n > C'log(1/4) for some large enough absolute constant C.
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Lastly, the above result holds uniformly over v > vy with probability at least 1 — ¢ since the
probability event does not depend on v.

O

E.4 PROOF OF COROLLARY [E4]

Proof of Corollary[E4} Recall z = y/log(1/§) and

(1)

If n > Cmax {(r* 4+ 02)/v3,1} log(1/§), which is guaranteed by the conditions of the corollary,
then Lemma|[E.3|implies that, with probability at least 1 — §, Assumption[E.1]holds with £, = 1/(2v)

and radius 7 uniformly over v > vy. Denote this probability event by £. If Assumption [E.T]holds,
then by Theorem[E.2] we have

PQM) W< (2 ) ¢“““5}>>1
Thus
P(W@—uﬂ>%(£¥+ﬁz b%?®>
ZPQmw—uﬂ>%<£ﬂ+02 b%??s)
Pomw—w*>2v(;;+w) bg”5,$>

_Pom> wl > (2 )\P%Q”\ >+

< 24.

Then with probability at least 1 — 29, we have

2
~ \ o log(2/9)
v) — <20 —+1 —_— .
i) -l <20 (Fw1) 22
Using a change of variable 2§ — ¢ finishes the proof. O

E.5 SUPPORTING LEMMAS

This subsection collects two supporting lemmas that are used earlier in this section.

Lemma E.5. Let ¢; be i.i.d. random variables such that E¢; = 0 and Ea? =1.Forany0 < 6 < 1,
with probability at least 1 — 29, we have

n

lz TE; _E TE;

2log(1/9) i log(1/4)
n 3n

g
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Proof of Lemmal[E-3] The random variables Z; := 79, (e;) = 7¢; /(1% + €2)1/? with pu, = EZ; and

02 = var(Z;) are bounded i.i.d. random variables such that

|Z:| = ‘TEi/(TQ +€§)1/2‘ <lei AT <
0_2
| = [BZi = [B (7eu/ (= +€)'/?)| < .
T
2.2
EZ?E( T & )302,
T2 4 ¢2

o2 ==var(Z;) = E(re; /(1> + e2yl/2 _ ,uz)z

2.2
T€ES
=E L —u? <o
(72+s§) He =

For third and higher order absolute moments, we have

k
TE;

T2 + &2

k!
E|Z|* =E <o?rh2 < 502(7/3)’“*2, for all integers k > 3.

Using Lemmawith v =no? and ¢ = 7/3, we have for any ¢ > 0

(E st
Taking ¢t = log(1/6) acquires that for any 0 < 6 < 1
1 " TE; 1 Ei

1 I e L A

This completes the proof.

> V2no?t + > < 2exp(—t).

n

3n

2log(1/5) N Tlog(l/5)> >1- 2.

Lemma E.6. For any 0 < § < 1, with probability at least 1 — 4,

li 3 E T3 ~[log(1/6)
n 1(T2+6)3/2 (12 +e2)3/2 = on

1=

Moreover, with probability at least 1 — &, it holds uniformly over 7 > 7,,, > 0 that

1y R T 1))
n 7'2+5 3/2 = (m2, +£2)3/2 2n

1=

Proof of Lemmal[E-6] The random variables Z; = Z;(7) := 73/(7% + £2)3/2 with yu, = EZ; and
02 = var(Z;) are bounded i.i.d. random variables such that

0< Z;=1%)(2 +<€?)3/2 <1.
Therefore, using Lemma[H.I|with v = n acquires that for any ¢ > 0

3 r Y T3 nt
(S 55 () < %) <eoto

(2

Taking t = log(1/6) acquires that for any 0 < 6 < 1

1 & 73 log(1/4)
(S - () ) s
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The second result follows from the fact that Z;(7) is an increasing function of 7. Specifically, we
have with probability at least 1 — ¢

3

n = (T2 +¢e2)3/2 = n — (2, + £2)3/2

>E( TSO )+ 1i 7'30 E( 7'30 )
@ ) T m@ e G

i i=1 i

2n

This finishes the proof.

F PROOFS FOR THE SELF-TUNED CASE

This section collects the proofs for Theorems [3.1]and [3.2]

F.1 PROOF OF THEOREM OF[3.1]

Proof of Theorem of[3.1] Recall that 7 = v+/n/z. For simplicity, let 7 = 0+/n/z. Define the profile
loss LP*(v) as

LP(v) := Ly (f(v),v) = Hﬁn L, (g, v).

Then it is convex and its first-order gradient is

0 0 0 0
pro(,\ — m — (). — = - m
VLI () = Vo). v) = Joi) - oo Ln(o)| o S La(uo)| = S LaGi(w).v),
(E.1)

where we use the fact that 0/0p Ly, (i1, v)|,=7(») = 0, implied by the stationarity of 7i(v).

Assuming that the constraint is inactive. We first assume that the constraint is not active for any
stationary point , that is, any stationary point ¥ is an interior point of [vg, V;], aka ¥ € (vg, Vp). By
the joint convexity of L., (4, v) and the convexity of LP™(v), (fi(v),?) and ¥ are stationary points of
L,,(,v) and L, (f1(v), v), respectively. Thus we have

AN

0 n 1« yi — (v
R 0) IR L) g i 10 EE
o (1:0)=(A(0).9) 2 n= 72+ (v — 1(0))

o n 1 T n
%Ln(uw)}w):(mm =2 E; Pt W R0 <?2 - a) =0

7]
= 7L7l 5 v =
(k:2) (1,0)=(1(0),0)

VL) o

= VL, (().8)] = 5 La(ii(v),v)

where the first two equalities are on partial derivatives of L,, (i, v) and the last one is on the derivative
of the profile loss LP*°(v) = L, (ji(v), v).

Recall that 7 = \/nv/ 2. Let f(1) = 22VLE™(v) /n, that is,

f(T):izZ: \/T2+<y:—ﬁ<v>>2 . <1_azz)

In other words, 7 = y/nt/ z satisfies f(7) = 0. Assuming that the conststraint is inactive, we split
the proof into two steps.
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Step 1: Proving v < Cyo for some universal constant Cy. We will employ the method of proof
by contradiction. Assume there exists some v such that

> (14€)vVr2+02 and VLE™(v) =0;

or equivalently, there exists some 7 such that

> (1+e)vVr2+o2yn/z=:7 and f(7) =0, (F2)

where € and 7 are to be determined later. Let 7,,, = vo+/n/z. Then, provided n is large enough,
Lemma [E.3| implies that Assumption [E.I] with £, = 1/(2v) and local radius r > ro(k¢) holds
uniformly over v > vg conditional on the following event

n n

& = l Z (TE() + 2r2)3/2 _ l ZE (T2 + 27“2)3/2 o M
1 - n i—1 (’7—30 + 27’2 + 25%)3/2 n P (7—2 + 2,,,2 + 25 )3/2 el 2n .

Conditional on the intersection of event £ and the following event

<C-

Vo 1og(n/5)}

& = sup
v€[vo, Vo] Vo n

where z < y/log(n/d) and C is some constant, and following the proof of Theorem [E.2} for any
fixed v and thus fixed T = vy/n/z, we have

Kelfa(v) —

m

Thus, for any v such that vy V Ty := vo V (1 + €)Vr? 4+ 02 < v <V}, we have on &, that

sup kg(v) |fi(v) —pt| < sup ke(v) [(v) — p
Vo VUg<v<Vp 1)6[1}0 Vo]

sup

’UE[’UO Vo f Z T2 + E
Vo log(n/d)
vo  zv/n

<C-

which, by Lemmal[E.3] yields

2 log(n/d
sup () — ' < 20 0 10e(/0) (E3)

’UE[’U(),VU] Vo Z\/ﬁ

The above r can be further refined by using the finer lower bound v of v instead of vy, but we use vg
for simplicity. Let A = p* — ji(v), and we have |A| < r. Let the event &3 be

£, = { Z 724+ 2(r )—T _E ( 7"2:&- 2(r2 +¢7) —7') < \/10g(1/(5)n27g“2 +0?) N logéi/é) }

T2+ 2(r +e§) T2+ 2(r? 4+ €7)
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Thus on the event £; N & N &5 and using the fact that 1 — 1/+4/1 + z is an increasing function, we

have

az? VT2+(A+e)2—71 T2+27”2+€
T)=— —
Jr) Z m Z o

2 2 —
>£—72 T (r <7

m
2 W =2 2 = =2 2 2\ _ =
az? o (VT +2(r2 +¢2) Z 724 2(r?2 +¢7) Y Vi +2(r24¢7) -7
72 4+ 2(r2 + &2 \/m 72+ 2(r2 + €2)
az® <r2+a . wogu/a)-z(r +02) +1og<1/6>>

Y

v

T 7_'2 TL’]_'2 3n
_z o log(1/8)\ (r*+o>  2° N r2 + 02 2221og(1/6)
on 322 2402 (14+¢€)%n r24+ 02 (1+¢€)?n?
(Definition of 7)
(a—1/3)22 r?+o02 22 r2+o02 224 9
= - > log(1/d
- n 2+ 0?2 (1+¢€)n Ere (1+¢€)?n? (2% > log(1/0))

v

(a—1/3)2%2 22 1 2
o ((1+e)2 + (1+e)2)

_22 1 1 2
T \YT3 T ar? \dre2

>0,

provided that

LI 13 -1
14+e ™ V2 ’

or equivalently

\/4a+2 +2/34+v2-2a (@)
=:€(a).
2(a—1/3)
In other words, conditional on the event & N & N &3 and taking € > €(a), f(7) > 0for 7 > 7 :=

(14 €)vr?2 + 02y/n/z. This contradicts with (E2)), and thus
7< (14 e)Vr2 +o2/n/z
If @ = 1/2 and conditional on the same event, the above holds with
e=92>¢(1/2).
;f n is large enough such that 126 > 101/72 + o2, then conditional on the event £ N & N &3, we
ave

UoSiJ\SCOO'

)

where Cy = 12.
7.2 . .
Step 2: Proving v > ¢ ( U”OT A 1) Or2 —1 for some universal constant c¢;. We will again
3 /2

employ the method of proof by Contradlcnon. Let

1- 2=

" 2
1= (1% ) (%)
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Assume there exists some v such that

v<c and %Ln(ﬂ(v),v) = 0;

or equivalently, assume there exists some 7 such that
T <cyn/z=:7 and g(r) =0. (F.4)

It is impossible that ¢ < vy because any stationary point v is in (vg, Vo). Thus ¢ > wvg. Let
A = ji(v) — p*. Then on the event & N &, using the facts that 1/ is a concave function and

1/4/1 + y/x is an increasing function of z, we have

1 72
ﬁ;\/r?Jr(A—Jrei)? Z\/l—i— A+€)/72

< —
- Z\/l—i— A+s)/z2
1 < 1
< —
- n;l+(A+Ei)2/I2
< |1y !
- —1+72(A+e)? 1((A+e)? <77)
< 1—l~ii(A+ N2-1((A+¢)2 < 12)
< = €i €i)° < 17).
- =1

By the proof from step 1, we have on the event & N &, that

sup  [fi(v) —pt| <7
vE[vo, Vo]

where r is defined in (F.3)). Then

n
i=1
<2az _l.ii(A+E)2 1((A+e)? < 1?) (as long as az?/n > 0)
n n 272 P ! Yoo
2az

IN

2a22 1 1 4 5 T2 9 P 2 T2 2
<= ‘w(@ fil(fifg‘r Cp (s s
=1 i=1

2a72 1
= ——I-=2r-1I
n 212( r-1)

Define the probability event £4 as

Ey 1= E41 N &y,
where
1 & , T2 72 /T2log (1/0) 2log (1/6)
= — < = — > < - _
En {nz (l_ 5 > E€1<€ 5 r> % and
1 72 72 202, ), log(1/9) 7log(1/0)
. 1(e2 <L < 1(e2 <L _,2 T2/ T
642 ng 8l| ( ’L — 2 ) IE:|€71| ( Z 2 r ) + n + 3\/§n
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If n is sufficiently large such that

2 < logn + log(1/9) 2<1 and

>~ €0 o Z\/’E =
r 202, ,,108(1/6)  71og(1/6) _ 1 log(1/6)
P 0'12/2 + n + 3\/§n >~ ﬁin 3

then conditional on £4, we have

2 2 2
[>Ee?l (&2 < I _2)- o2/ z*log(1/9) -z log(1/9) and
’ ' 2 T n 6n

’) 20%/3108(1/9) _ 710g(1/9)
i + '
5 n 3v2n

I < Elg|1 (53 <

Thus conditional on £, we have

2a7>
——I-=2r-1I
o(r) < == - (=2r)
2a2> 1 2 2]og(1 2log(1
< az” Ee21 efgz——rz — e 7% log( /5)_1 og(1/9)
n 272 2 - n 6n

- 2) 202, ,,108(1/8)  7log(1/5)
—r7 ) +
n 3v2n

< 20" - 052/2760 or2/2y/108(1/6)  log(1/9) T2 + 20;2/2 log(1/6) + 7log(1/90)
- 21" 21v/n 12n 72 | T2 n
< s 2a + log(1/0) 1) _ 22/9-co L 0z log(1/)
" @6 27> 27y/n
2 log(1/6) 1 022, . . oa(178
— 40 og(1/0) 1 972 o | 912 og(1/6) (r = ey/ii)2)
2n 2 3 c? c z
22 1 022/2— g 2/2
Sm\ttsT e T 2> log(1/6
_2n(a+3 2 + c (22 > log(1/6))
<0

for any c such that

. < 0‘12/2 14 4(4a + 1/3)U§2/2—€0
= 2(4a +1/3) 022

—1 ,

In other words, conditional on the event & N E; N £4 and taking any c satisfying the above inequality,
we have
g(t) <Oforany 7 < 7= c\/n/z.

This is a contradiction. Thus, T > 7 = ¢y/n/z, or equivalently ¥ > ¢ > vy. Using the inequality

\/1+x—121(x23)+§1(0§x<3)2%/\1 V>0,
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we obtain

072/2 14 4(40’ =+ 1/3)0’52/2—60 1
2(4a +1/3) 052/2
30,2 /2 280 2/9—
= 14+ —=— -1 =1/2
14 T, (@=1/2)

30729 14
1 for2/0-
1 (/21 A 1) or sy
5 0r2/2 -
1 (072 /2-1
! (/ A 1> -
5 T2 /2 vo
vo

Therefore we can take ¢ = 5! (0730 /2_1/0730 /2 N\ 1)0730 /2—1- Thus on the event & M & N &y, we

have
~ 072 /2—1
vZzeci=c | ——— Al o2 a1,
5

or2 /2

Y]

Y

where ¢g = 1/5 is a universal constant. This finishes the proof of step 2.

Proving that the constraint is inactive. If 0 & (vg, Vp), then ¥ € {vg, V}. Suppose ¥ = vy, then
U = vy < c. Recall that 7,, = voy/n/z. Then we must have f(7,,) > 0, and thus g(7,,) > 0.
However, conditional on the probability event & N & N &4, repeating the above analysis in step
2 obtains g(7,,) < 0. This is a contradiction. Therefore ¥ # wg. Similarly, conditional on
probability event £1 N E; N &3, we can obtain ¥ # V{y. Therefore, conditional on the probability event
E1 N &N E3N &y, the constraint must be inactive, aka v € (vg, Vo).

Using the first result of Lemma with 72 and €7 replaced by 730 + 2r? and 2¢? respectively,

Lemma |F.1} Lemma|F.2| with 72 and w? replaced by 72 and 2(r? + £?) respectively, and Lemma|F.3}
we obtain

and thus
P(E1 N ENENEY) > 1— 56,

Putting the above results together, and using Lemmas [F.T]and [F.3] we obtain with probability at least
1 — 54 that

co(0r2 j2-1/072 2 AN1)or2 21 <0 < Coo.

Using a change of variable 56 — ¢ completes the proof. O

F.2 PROOF OF THEOREM[3.2]

Proof of Theorem[3.2] On the probability event & N E; N E3 N €y where £ ’s are defined the same
as in the proof of Theorem 3.1} we have

co(0r2 j2-1/02 2 A1)z 21 <0 < Coo.

Following the proof of Theorem [E.Z] for any fixed v and thus 7, we have

relp(v) — pt| <

PN
vn = 2T+ €7
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For any v such that cgaTgo s2-1 < v < Coo where ¢ = 00(0'7.30 /2_1/0730 s2 A1) and any z > 0,
using Lemma F.1{but with vy and V) replaced by 06(7730 /2—1 and Cpo respectively, we obtain with
probability at least 1 — ¢

sup re(v) [(v) = p'| < sup re(v) [i(v) = p7|

UG[CB"T%’O s2—1» Coo] UG[CBUT,Z s2—15 Coo]

IN

fz \/W
o 2log(n/d) n 1log(n/d)

T 02, j2-1 n z \/n
o? z 3(Coo — 060730/2—1) 1

tog————+
/2 2 ’
200 072 /21 \/’ﬁ 0730/2_1 Z\/E

vo

UG[COU 20/2-1 Coo]

which yields

. . log(n/86) vV 22V 1
sup fi(v) — p*| < Co (n/ ;
Ue[060750/2—17 Coo] Z\/ﬁ

where C' is some constant only depending on o/ 072 /215 ¢p, and Cjy. Putting the above pieces
together and if log(1/9) < 22 < log(n/§), we obtain with probability at least 1 — 64 that

N . N Y log(n/é) Vi 1
— < — < .
(@) — p*| < sup fi(v) —p*| < C o

/
1;6[(:00712}0/271, Coo]

Using a change of variable 66 — ¢ and then setting z = log(n/J) gives

i X ~ N log(n/d
A — @< s [A0) -l < C oy 2800
UE[C()‘Tﬂ—gopfla Cool n

with a lightly different constant C, provided that log(n/§) > 1, akan > ed. This completes the
proof. O

F.3 SUPPORTING LEMMAS

We collect supporting lemmas, aka Lemmas[F-1] [F.2] and [F3] in this subsection.

Lemma F.1. Let 0 < § < 1. Suppose 0 < Vp and z < +/log(n/d). Then, with probability at least
1 — 4, we have

n

Vo log(n/s)
Vo n

<(C-

1 E;
n ; VT2 +e?

sup
vE[vo, Vo]

where C' is some constant.

Proof of Lemma To prove the uniform bound over [vg, V)], we adopt a covering argument. For
any 0 < € < 1, there exists an e-cover A/ of [vg, Vp] such that [N'| < 3(Vy — vg) /€. Let 7, = wy/n/z.
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Then for every v € [vg, V], there exists a w € N C [vg, Vp] such that [w — 7| < € and

1 - ar 1 - or
el 2t <= s
\/ﬁ;z\/ﬂ—i—a? - \/ﬁ;z T2 +&2
1 & € 1 & €
+ _ 7 o 3
\/ﬁ;z T2 +¢e2 n;z T2 + &7
Jis e iy s
N 2\/T2 +ef N 2\/T2 +ef
-~ ;
+ E|—= o
N 2\/T2 +EF
1 ~ = 1 2 E;
_l’_ —_ _ -
\/ﬁL:le T2 +e2 71;2\/7'2+622
=1+ 11+ III.
For II, we have
2 2
pe¥Yn o _z0°
Tz 212 7 203n

For III, using the inequality

x
\/7'3) +22 124 a?

< ;
27| A7l

we obtain
Vn € v e

m<¥?.__ ¢ <
z  2(wAwv) z

We then bound 1. For any fixed 7, applying Lemmawith the fact that |E (r,e;/(72 + €2)'/?)| <

LV (G\/m+ T 10g(1/6)>

02/(27,), we obtain with probability at least 1 — 2§

1 - E; 1 - Ei
n;z T2 + &7 \/ﬁ;z T2 + &7
1log(1/6)
< 2log(1/6 -
< 2 2log(1/p) + LAY

Vo

where 7, = vo\/n/z. Therefore, putting above pieces together and using the union bound, we obtain

with probability at least 1 — 6~ *(Vp — vg)d
1 " &; 1 - E; 1 . E;
sup |— ———| < sup |—= ——-E | —= —_——
vElvo, Vo) \/ﬁ;z«/ﬁ—kef weN n;z T2 +e? \/ﬁ;z T2 +e2
N zo? A
203/n -z 2
o [2log(1/6 1log(1/6 o? 2z n €
Lo [ToRD) | hs(1fs) | o? = i
Vo n z \/n 205 /n oz 2

Taking € = 6(Vp — vo)/n, we obtain with probability at least 1 — nd
o [2log(1/6) = 1log(1/9)

<24/ - — R0 -

=~ wg n 2 NG +21}8\/ﬁ+ vo z/n
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Thus with probability at least 1 — §, we have

2log(n/8) 1log(n/s) o% =2 3(Vo —w) 1
su += oyt
’UE UOI?VO f Z z 7-2 + 5 UQ n z \/ﬁ 2’[}8 \/ﬁ Vo Z\/’ﬁ
Vo log(n/9)
<(C.=.=x7177
=0 o N

provided z < +/log(n/§), where C is a constant only depending on o2 /(v V). When vy and Vj
are taken symmetrically around 1, vy Vj is close to 1. Multiplying both sides by z/+/n finishes the
proof. O

Lemma F.2. Let w; be i.i.d. copies of w. For any 0 < ¢ < 1, with probability at least 1 — ¢

1i«/7’2+w —TﬁE VT2t w? -7 - log(l/é)]Ew?Jrlog(l/&)
n VT2 w? NGER: - nr2 3n

Proof of Lemma[F2] The random variables
Zi = Z(7) Vit w? -7 14 w?/r? -1
VT2 +w? V1+w?/7?

with y, = EZ; and 02 = var(Z;) are bounded i.i.d. random variables such that
2

-
Moreover we have

Ew? Ew?
< 520 O = var(Z;) < 5.2

EZ?

For third and higher order absolute moments, we have

Ew? k' Bw? (1) .
E|Z;|F < -7 < 5 e (3) , for all integers k& > 3.

Therefore, using Lemma[H.2with v = n Ew?/(272) and ¢ = 1/3 acquires that for any ¢ > 0
n n
1+ w?/r3)Y2 -1 1+ w?/r3H)Y2 -1 tnEw? ¢
Ty R S N (e e I 73

=1

Taking t = log(1/6) acquires that for any 0 < 6 < 1
1 2/.2\1/2 _ 1 2/ 2\1/2 _ 1 2
P(Z(1+MZ/T) —E<(1+wZ/T) 1>>_ log(1/6) Ew; _log(1/6)>>1_6.
n

— (14 w?/72)1/2 (14 w?/72)1/2 nr2 3n

This finishes the proof.
O

Lemma F.3. For any 0 < § < 1, we have with probability at least 1 — § that

IR 2 LQ ,_ T 2 r2log(1/6)  7*log(1/9)
- E . R § <= — — - .
0 . g1 (52 5 ) Ee?1 ( €; > 0722 o

For any 0 < § < 1, we have with probablhty at least 1 — 0 that

) . L 202, 105(1/3) _ rlog(1/0)
2N e — —r?) < =) Elglt 52<—r2>+ = T = :
Z|< 2 )n;H(Z? " 3van

Consequently, we have, with probability at least 1 —2J, the above two inequalities hold simultaneously.

Proof of Lemma We prove the first two results and the last result directly follows from first two.
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First result. Let Z; ( 2< 72— ) . The random variables Z; with pu, = EZ; and

02 = var(Z;) are bounded 1.1.d. random variables such that

|Zi| = |s?1 (512 <7?/2 - r2)| <1?/2,
lpz| = [EZ;| = |IE (5121 (53 < 12/2 - 7’2))| < (7%2/27
EZ} =E (e;1 (e} <1°/2 —1?)) < 12022 5/2,

o2 :=var(Z;) = E(Zi — uz)2 < 12022/2/2.

For third and higher order absolute moments, we have

262 2\ k2 1202 g\ k=2
E|Z;|* :E|6?1 (612 §12/271°2)|k < 212/2 <7—2) < 5 212/2 <T6> , for all integers k > 3.

Using Lemmawith v = n12072_2/2/2 and ¢ = 72/6, we have for any ¢ > 0

P (ée?l (5? < % — ) ZE& 1 ( < % > < —,/n120i2/2t— T;t> <exp (—t).
Taking t = log(1/4) acquires the desired result.
Second result. With an abuse of notation, let Z; = [¢;]1 (¢ < 7%/2 — r?) . The random variables
Z; with p, = EZ; and 02 = var(Z;) are bounded i.i.d. random variables such that
|Z;| = |eil (e2<7?/2— 7”2)] <7/V2,
| = [EZi| = [E (Jes|1 (€7 < 2/2 — 7)) | < \/5052/2/1,
EZ} =E (71 (ef < 1°/2—1?)) < 072/2,
o2 =var(Z;) =E(Z; — uz) < 012/2.
For third and higher order absolute moments, we have
T k!

k—2 k-2
E\Zi|k —E ||51-\1 (522 < I2/2 - r2)|k < 052/2 <\@> < 50’%2/2 (3\%) , for all integers k > 3.

Using Lemmawith v = nafz/2 and c = z/(S\/i), we have for any ¢ > 0

- t
P (e < z_ Ele; |1 <Z_2) > St it I <exp ().
(Zle (#<5-7)- Z it (2 < 5 %) > foncZpr b Zo ) <o (-

i=1

Taking t = log(1/d) acquires the desired result. O

G PROOFS FOR SECTION[3.2]
This section collects proofs for results in Section[3.2]

G.1 PROOF OF THEOREM [3.3]

Proof of Theorem[3.3] First, the MoM estimator iM°M = M (21, ..., z;) is equivalent to

k
argminz lz; — p.
j=1
For any 2 € R, let {(x) = |z| and define L(z) = E¢'(z + Z) where Z ~ N (0, 1) and
1, ifz >0,
((x)=140, ifz=0,
—1, otherwise.
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If the assumptions of Theorem 4 of Minsker| (2019) are satisfied, we obtain, after some algebra, that

n ~MoM __  * o E(ﬁ’(Z))Q
Vi (Et =) = N (0’ (0 )

Some algebra derives that

E('(2))? 7o?

()3 2

It remains to check the assumptions there. Assumptions (1), (4), and (5) trivially hold. Assumption
(2) can be verified by using the following Berry-Esseen bound.

FactG.1. Lety,. ..,y beii.d. random copies of y with mean y, variance o2 and E|y—pu|*** < oo
for some ¢ € (0, 1]. Then there exists an absolute constant C' such that

‘2+L
sup

teR O-2+LmL/2 :

P(My;“<t>—q>(t)‘<c]Ey_”

It remains to check Assumption (3). Because g(m) < m~*/2, Vkg(m) < Vkm=/% — 0 if
k = o(n/1+9) as n — oo. Thus Assumption (3) holds if & = o(n*/(1*9)) and k — oco. This
completes the proof. O

G.2 PROOF OF THEOREM[3.3]

In this subsection, we state and prove a stronger result of Theorem [3.3] aka Theorem|[G.2] Theorem
can then be proved following the same proof under the assumption that E|e;|?>T* < oo for any
prefixed 0 < ¢ < 1.

Theorem G.2. Assume the same assumptions as in Theorem Take 22 > 2 log(n). If Es? < 00,
then

~ * 2 3
- p B o o Ee? /2
\/ﬁ |:i]\ ’U*:| WN(O,Z), where > = O']EE?/2 (J2E€? _ 0.6)/4 .

Proof of Theorem|[G.2] Now we are ready to analyze the self-tuned mean estimator /i = 7i(v). For
any 0 € (0, 1), following the proof of Theorem 3.1} we obtain with probability at least 1 — ¢ that

R N VZ log(n/é)
(@) = p*| < sup () — pt| <20 0 o
ve[vo, Vol v zVn

Taking 2> > log(n/d) with § = 1/n in the above inequality, we obtain /i — u* in probability.

Theorem |G.3|implies that ¥ — o in probability. Thus we have ||§ — 6*||]2 — 0 in probability, where
0= (7,9)", and 0" = (u*,0)".

Using the Taylor’s theorem for vector-valued functions, we obtain

~

VL, (0) =0=VL,(0") + H,(6")(0 — 0*) + 322(0) (6-067)%?,

where ® indicates the tensor product. Let 7, = o+/n/z. We say that X,, and Y,, are asymptotically
equivalent, denoted as X,, ~ Y,,, if both X,, and Y,, converge in distribution to some same random
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variable/vector Z. Rearranging, we obtain
Vi (0= 0%) =~ [H, (%) (—v/n VL, (6%))
n 72 n n ToEi
@ . %Zi:l (7_3_’_;2)3/2 22 . %21:1 (.,-34_%)3/2

1IN reey o w2 1w g
n 2121 (rZ+e2)3/2 3 ' n 21':1 (T2 42572

NN‘B n

15 ;
\/ﬁ' EZi:1UT7 /:;Ts;z
2 2_
Vi BL YL YIS ia
e
or/T2+e2

1 Vitel/m2-1
\/ﬁ'ﬂgzzll m —vn-a

2
| —|
o9
QC,OO
_

_lo O
— 10 o3
where the second ~ uses the fact that
1
H,(0%) 2 {a ?} .
0

We proceed to derive the asymptotic property of (I, II)*. For I, we have

=

To€i

2 2
o\ T5 + €5

1 — ToEi TeEi
I:\/ﬁ L ofi _E oti
(nEJ\/Tg+€% o\/T2 +¢e2

To€i
+ lim vn E | ———
) n—oo [a\/Tg—i—a?

. To€q
~ N[0, lim var | —2—=—
( n—o0 o\/T2+ €2

It remains to calculate
. \/HTUEi . TE;
lim E | —— and lim var | ——
n—00 < /T2 + 53) n—00 /T2 + 512

For the former term, if there exists some 0 < ¢ < 1 such that E|5i|2“ < 00, using the fact that
Ee; = 0, we have

E \/ﬁTge’:‘i
T2 + &7

—ei/T Jr T 1e; (\/1 +e2/12 — 1)
K v g = NTg * E
V1+e?/r2 V1+e?/r2

< N~ E e3/r3 < Vnr, [Elg;l?T
T2 Vite/2| - 2 gt
E 124
< % 0, (G.1)

where the first inequality uses Lemma (i) with r = 1/2, thatis, v1 4+ 2 <14 x/2forz > —1.
For the second term, we have

li To€i
1m var | —F—————
n— 00 / 7—3 + 512
by the dominated convergence theorem. Thus

I~ N(0,1).

2.2

. TSE;

= lim E | 555 =02,
n—oo Ta+5i

For II, recall ¢ = 1/2 and using the facts that
..on Vi+e2/r2-1 . n 1 V1+eZ/r2 -1 1
im — - E| Y+—~% | =1lim —— - E . =,
V1+el/72 n—oo 27227 V1+er/r2 1/(273) 2
N Y VAR i S B B
Vitei/m

n—oo z2

2
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we have
" /14¢€2/r2 -1 1
+€Z—/To_\/ﬁ.,
i=1 \/1‘1’512/7'3 2
1 (n Ji+tei/rZ-1 n l+el/r2-1
SIVZEES DY SR Gtz by of (PN E S 7 ke
i=1

V1+e2/r2 2\ [Ttelr2

V1+e2/m2 -1
~ N |0, lim var %Jrel—/% .
o\ T

n 1
= Lz
" 22 n

If Ee} < oo, then

22 V1+e?/r2
and thus I ~ \V (0, (Ee} /o* — 1)/4). For the cross covariance, we have
To€i n 1+e?/r2—-1
o242 22 14 e2/r2
_ lim E( ToEi n \/1+€?/T3—1>
o

T 40t 4

n—oo

va! 2/r2 -1 Ee?
lim var(n VIEETT £/ > i

lim cov
n—oo

_ Ee?
203"
Thus
Vi (0 —6°) ~ N(0,5),
where

<o oo DR -l

Therefore, for ji only, we have

Vi (= 1)~ N(0,02).

G.3 CONSISTENCY OF U

This subsection proves that ¥ is a consistent estimator of o. Recall that

n

n 1 T

i=1 T2+ (yz -

where a = 1/2. We emphasize that the following proof only needs the second moment assumption
0? = Ee? < oc.

Theorem G.3 (Consistency of ¥). Assume the same assumptions as in Theorem Take 22 >
log(n). Then

U —> o in probability.

Proof of Theorem By the proof of Theorem we obtain with probability at least 1 — § that
the following two results hold simultaneously:

~ Vg log(n/d)
sup |pv) —pf| <20 — =L~ =1, (G.2)
o [fi(v) | v avn
vy < 000'750,1 < v < Coo < Vo, (G.3)
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provided that 22 > log(5/9) and n is large enough. Therefore, the constraint in the optimization
problem (3.1)) is not active, and thus
VoL (f,0) = 0.
Using Lemma|G.4] together with the equality above, we obtain with probability at least 1 — ¢ that
€0 |~ 2 € |~ 2 ~ 2
V—(?|’U—o| < a3\/03|U*U| < pefv — o
< <VUL7L(,ZI7 6) - v'uLn (ZZ’ O'), V- G>
< |V Ln(f,0)| [0 — o

n 1< Ty

> [ —0].
i=1 Ta+(yi_ﬂ

Plugging (G.2) into the above inequality and canceling | — o| on both sides, we obtain with
probability at least 1 — 24 that

co n 1< Ty
—lv—0c — = —— 1| +a
VO3| | < 22 n;( 721 (y; — h)2 )
n 1w T,
< sup —2~72 —_— 1] +a
REB,(u*) | # nizl Tg+(yi_ﬂ)2
n 2
A — lz _Te )4
2T peB,(pr) | i=1 7—3 + (yl - N)Q n
1 n
N £ 3 T, I (P
2% pueB,(ur) | o T2+ (yi — 1)? T2+ (yi — p)?

n
+ -+ sup
z HEB,(u*)

I+ 1L

It remains to bound terms I and II. We start with term II. Let 72 = (y; — u)2. We have
n
I=—- sup

el To az?
2% ueB, (u*) T2+ (yi — p)? n

V1+7r2/r2 -1 1
= max sup %-E_‘_Tz—/%—a ,  sup a—%—i—Ei
REB.(n*) \ 7 V1471272 HEB, (1) z V1+r7 /72

=: Hl vV HQ

In order to bound II, we bound II; and II5 respectively. For term II;, using Lemma @] (ii), aka
(I+2z)"<1l+rzforx>—1landr € (0,1),and a = 1/2, we have

(n E\/l—l—r?/rg—l —a)

VA s

2
< sup {Z.(IJFIETZQl)a}
HEB,. (1) z 27'0.

2 4 2rle; 2
n.EEZ—&— rleil +r7

1
22 272 2

T r
(1 L)
0'( +20

2r
<

II, = sup
HEB, (1*)

IN

(a=1/2)

IN

T o
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if n is large enough such that » < 2¢. To bound II,, we need Lemma [D.1I] Specifically, for any
0 <~ <1, we have

(142 <1—(1 -7, foranyogxg%.
-7

Using this result, we obtain

1 1

S | R
i s iy
A=\ (1 _ 1 7
< Jrd(1- 2"V (L < (s T
_\/ {( T2 T2 71— Jr1—&—7‘1-2/7'3 7'3>1—fy

v
> (Lemma|D. 1)

E (concavity of /)

Sl—l_’y]E 5%—2r|5i|+r21 2(5?4—7‘2)S ~ 7

T2 T2 1—7
where the first inequality uses the concavity of 1/, the third inequality uses Lemma|D.1} and the
last inequality uses the inequality that (1 + z)~! <1 — /2 for z € [0, 1], aka Lemma[H.4|(iii) with
r = —1, provided that

|- )E 5?—2r|5i|—r21 2(5?+r2)< vy < 1_702—2r0—r2§1.
gl LF

2 2 - _
o T 1 o

Thus term II; can be bounded as

I n n n E 1
= sup a——+ — E——
P e\ 2 2\ 14127

n o n L—n (2 =2rle;| +7% [2(e2 +7r?) v
<a- i - E (& 1 (2 <
A { 2 ( 2 2 T 1l-vy

_ 1—
<a-— U].Estr 2027-27«-E(|gz|)
<otz =9
2 o
7, r(l=17)
SRANTLAC vy =1/2
2+ o (a /2)

Combining the upper bound for II; and II; and using the fact that, we obtain
2
11 < max{Il;, Iy} < g +2 50,
o

ify=~(n) — 0.
We proceed to bound I. Recall that

17L a a
L ¥ S S Y O S
ni 72+ (yi — p)? T2+ (yi — p)?
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For any 0 < € < 2, there exists an e-cover N' C B,.(1*) of B,.(1*) such that |[N'| < 6r/e. Then for
any pu € B,.(u*) there exists a w € N such that |w — pu| < v, and

—” —FE T
; ( s+ (i — u)2> (1 72+ (yi —u)2>‘
\513447571151+meWﬁ71

= L+ (yi — p)?/73 1+ (y; —
E:ﬁiiﬁ?7?—11@ﬁ?@fﬁﬁé—l
N e T TR
TG -1 1 T o -1
i R

3\'—‘

LVt P/ — L VI (w1
L+ (yi — p)?/72 L+ (y; —w)?/72
=1 +1 +1I.

For I, using Lemma [F2] acquires with probability at least 1 — 24 that

L < \/E(yi —w)? log(1/6) N log(1/6)

2
nTg 3n

\/ 2(0 + r*)log(1/6)  log(1/9)

2
nr; 3n

log(1/3) |, log(1/9)
n 3n

provided r? < o2. Let

Y e
n = (x +¢;)?
Using the mean value theorem and the inequality that |2/(1 + x2)3/2| < 1/2, we obtain

n

|1 (T+ei)/715 T —y \a:—y\
o) =00 = L T e e |
where T is some convex combination of x and y. Then we have
AESS Bt/ Ay=Bul_ e
n i—1 1+ A-l—ff /T3)3/2 To 2TU

where A is some convex combination of Ay =p*—wand A, = p* — . For I3, a similar argument

for bounding Il yields
o B+, A - A
A+ @E+e/2p?) 7

SE\&#—EH'%

<€ 2(r?2 4 02)
s—— =

I =

)

where the last inequality uses Jensen’s inequality, i.e. E|A + ;| < \/E(A +£2) < \/2(r2 + 02).
Putting the above pieces together and using the union bound, we obtain with probability at least
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1—12¢ 176

T+ (g — 21 T+ (—w)/r2—1
I<— sup Z + (yi —w) /7' _E + (yi —w)?/73
weN | L+ (yi —w)?/72 1+ (yi — w)?/72
€ 24/2(r? + 02)
T E R i)
22 27, Ty

log(1/0) | log(1/6) | evn

z 322 oz’

provided that

2y/2(r2 +02) < 71,.

Putting above results together, we obtain with probability at least 1 — (121 /¢ + 2)0 that
[0—0o| ST+
log(1/6 log(1/6
g(1/9)  log(1/d)  evn v 2r
z 322 oz 2 o

Let C' = 24C'V;# Jvg. Therefore, taking € = 1/y/n, § = 1/logn, and 22 > log(n), we obtain with
probability at least

C’(v/logn + loglogn/+/logn) + 2

logn

~ log 1 log 1 1
[v—0] < ce08h | 0808 +v+r—0.
logn logn logn

Therefore ¥ — o in probability. This finishes the proof.

that

G.4 LOCAL STRONG CONVEXITY IN v

In this section, we first present the local strong convexity of the empirical loss function with respect
to v uniformly over a neighborhood of p*.

Lemma G.4 (Local strong convexity in v). Let B, (u*) = {p : |p — p*| < r}. Assume r =
r(n) = o(1). Let 0 < § < 1 and n is sufficiently large. Take w such that max{wry/n,w} —
0 and @+/n — oo. Then, with probability at least 1 — §, we have

(Vo Ln(p,v) = Vo Lin(p,vs),v — 0) U?wzn/(4z2) > ‘o

inf >pr= e ,
B, =P 2(v3Vvod) T 3Vl

peEB, (1) v —o|?

where ¢ and c( are some constants.

Proof of Lemma|G.4} Recall 7 = v\/n/z. For notational simplicity, write 7, = o+v/n/z, T,, =
vo/N/2, Tw = wy/n/z, and A = p* — p. It follows that

<VUL7L(ILL7 U) - V’ULTL(NH 0)7 i O-> =

:n3/2_li (ZUi‘M)Q v — ol?

2B (TR (y — p)?)P2
>n3/2_l§n: (yi_ﬂ)z |’U—O’|2
T2 n (TVT)E+ (- )PP



where 7 is some convex combination of 7 and 7,, thatis 7 = (1 — A\)7, + A7 for some A € [0, 1].
Because 7322 /(72 4 22)3/2 is an increasing function of 7, if 7, § 7V 7, we have
<van(,u7 U) — Van(,uv U)) v = U*> > n3/2 - Z T \ TO Yi /’4)2
lv— o2 ~ 2(1V1,)? (T2V 72+ (y; —u) )3/2

n3/2 )2

Z BV '72 (72 + (i —u) )32

Thus
inf <V“L”(:u7 U) - V'uLn(Ua 0’)7 v — U*>
HEB,(u*) v —ol?
3/2 n 3

n

. T (yz - /~L>2
> inf — w -
= SV ekt n & GE G

3/2 30, 2
BTV 1e)3 \ e (w) \ (12 + (y; — p)2)3/2
~ sup |1 ~ Ty —p)? g TeWi—n?
peB () |1 = (T2 + (yi — p)?)?/2 (12 + (yi — p1)?)3/2
n3/2
= a-.
23(17V 75)3 ( )

It remains to lower bound I and upper bound II. We start with I. Let f(z) = /(1 4 )3/ which

satisfies
ex T < ce
x) > -
f(@) = {O T > Ce,

and Z = (y — p)?/72 in which y ~ 5;. Suppose 72 < ¢.72 /4, then we have

3 L 2 2 VA
inf (E =i m) 2) = mf E[T=0
neB )\ (T2 + (i — 2% )  nemury \ (14 2)Y
>e- inf E[(y—p)’1((y—p)’® < cer2)]
HEB(p*)

>e- inf E [(y — ,u)21(52 < CGT;/Q - 7‘2)]
HEB, (™)

2 A 2
>e- inf E (A2 + 52)1 2 < €Tz || _ BAC
HEB, (™) 4 CeTZ

2 8ro?
>e (El21(e2< =) - .
e (mn (7<) |- 25

We then proceed with II. For any 0 < v < 2r, there exists an y-cover N of B,.(u*) such that
V| < 67/~. Then for any 1 € B,.(u*) there exists an w € A such that |w — u| <+, and thus by
LemmalG.3l we have

I~ 73y —p)? g Tolyi—p)’
n = (12 + (yi — p)?)%/? (T2 + (yi — p)?)3/2
n 3. N2 30, N2
< lz o (Yi —w) E To(yi — w)
W R PR G (w0

=10, + I, + 1I;.
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For II;, Lemma|G.5]implies with probability at least 1 — 2§

\/QTéE(yi —w)?log(1/8) 72 log(1/6) \/27';(02 +712)log(1/8) 72 log(1/6)
I, < + < + .
3n 3v3n 3n 3v3n

Let

1 3 (2 + &)
g(x) = n ; (72 + (x +£)2)3/2

Using the mean value theorem and the inequality that |72z /(72 4 22)3/2| < 1/4/3, we obtain

1 =737+ &) (72 — (§+€i)2) T
_ — = _ <z —ul
l9(2) = 9| = |~ ; FiGiaEE @S Flol
Then we have
L &S B e (2 - (B+e)?) oy
I = |~ = (A —Ay)| < —=
n = (72 + (A +¢;)2)5/2 V3

where A is some convex combination of A, = p* —wand A, = p* — p. ForIl3, we have

A +e) (72— (B+e)?) _ 2
II; = |[E = (Ay —Ap)| SAEIA 46 < E(A—i—gi) ,
(72 + (A +¢:)?)5/2

where the last inequality uses Jensen’s inequality. Putting the above pieces together and using the
union bound, we obtain with probability at least 1 — 12y~ 176

Ly T (i = w)* T (yi —w)? T
o< — w —E w 4+ = 5 T 3
N jleljr\)f n ; (12 + (y; — w)?)3/2 (72 + (y; — w)?)3/2 /3 VW
2 (12 2 2
< \/QTw(T +02)log(1/6) 72 1og(1/6) B e
3n 3\/§n \/3
2072 log(l/é) w? log(l/é) ZU’}/\/ﬁ
=Vt (T |+ L En
\/7 ( 3.2 Y 37322 /3

Combining the bounds for I and II yields with probability at least 1 — §
inf (VoLn(p,v) = VoLn(p,0),v —0)
pEB, (u*) v —ol?

st )] 5E)
. m( 2% 10g(1/9) H) _ w?log(1/8) wv\/ﬁ}
)

322 3v/322 V3
1
> _E|1(e?< =2
~2(vVo) [E (6 - 4
where €, @, v, n are picked such that e = 3/4, v = 12r, and

. (E [621 <€2 . cev{iﬂ - 8r0222> - m( 2w log(1/5) +7>  @’log(1/8)  wy/n

4 cew?n 322 3v/322 V3
1 T2 1
> 51[*3 [521 (52 < C;-w)] > ZU'

For example, we can pick w such that
max{wry/n,w} — 0 and wy/n — oo
as n — oo. This completes the proof.
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G.5 SUPPORTING LEMMAS

This subsection proves a supporting lemma that is used prove Lemma
Lemma G.5. Let w; be i.i.d. copies of w. For any 0 < ¢ < 1, we have

m3w? 272Ew? log(1/8)  7%log(1/8) .
fZ 7.2 3/2_E(72+w)3/2 _—\/ o BV , with prob. 1 — 6,
1< T3w? 3w? \/272sz log(1/8) = 72log(1/4)
n —E < : ith prob. 1 — 20.
n ; (72 4+ w?)3/2 (12 +w?)3/2| — 3n + 3v3n with pro

Proof of Lemmal|G.5] We only prove the first result and the second result follows similarly. The
random variables Z; = Z;(7) := 73w? /(12 +w?)?/? with y, = EZ; and 02 = var(Z;) are bounded
i.i.d. random variables such that

™ Twl
O<Z—Tw2 T—i-w 3/2<w/\ /\T iy
- / 2 V33
Moreover we have
6,4 2R 02 2R 2
EZ? =E( % =) < T 52 = var(Zy) < T2
(124 €2) 3 3

For third and higher order absolute moments, we have
3,2

ToW; k<72]Ewi2 2 k_2<k! 2 Ew? 2 \"? for all int L3
( +5)3/2 = 3 ’ ﬁ 75' 3 : ﬁ , for all integers k > 3.

Therefore, using Lemmawith v =n7?Ew?/3 and ¢ = 7%/(3V/3) acquires that for any ¢ > 0

- 3w? " T3w? [2nT2Ew?t 7%t
P R S— E({ ——2—— | > — L < —t).
(; (7.2 + €32 )3/2 ; ((T2+E )3/2) = 3 3\/:;) < eXP( )

Taking ¢t = log(1/d) acquires that for any 0 < 6 < 1

1< T3w? 1< T3w? \/272Ew2 log(1/8)  12log(1/4)
P(-S "% SN T ) i - 1-6.
(n;(72+w)3/2 n; ((72+5)3/2> ~ 3n 3v/3n ~

This finishes the proof. O

E|Z;|* =E

H PRELIMINARY LEMMAS

This section collects preliminary lemmas that are frequently used in the proofs for the main results and
supporting lemmas. We first collect the Hoeffding’s inequality and then present a form of Bernstein’s
inequality. We omit their proofs and refer interested readers to|Boucheron et al.| (2013)).

Lemma H.1 (Hoeffding’s inequality). Let Z1, ..., Z, be independent real-valued random variables
such that @ < Z; < b almost surely. Let S,, = Y7, (Z; — EZ;) and v = n(b — a)?. Then for all
t>0,

P (Sn > \/qT/2) <et, P (Sn < —M) <et, P (|Sn| > \/M> <2t

Lemma H.2 (Bernstein’s inequality). Let 71, ..., Z,, be independent real-valued random variables
such that

ZEZ2<’U ZE|Z ¥ < Zwvc 2 forall k > 3.

IfS, =31 ,(Z —EZ;), thenforall t > 0,
P (Sn > V20t + ct> <e ' P (Sn < —(V2ut + ct)) <e ' P (|Sn| > V2ut + ct) <27t
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Proof of LemmalH.2] This lemma involves a two-sided extension of Theorem 2.10 by Boucheron
et al.[(2013). The proof follows from a similar argument used in the proof of Theorem 2.10, and thus
is omitted. O

Our third lemma concerns the localized Bregman divergence for convex functions. It was first
established in |[Fan et al.| (2018)). For any loss function L, define the Bregman divergence and the
symmetric Bregman divergence as

Dr(B1,B2) = L(B1) — L(B2) — (VL(B2), B1 — B2),
D3 (B1,B2) = Dp(B1, B2) + Dr(B2, B1).

Lemma H.3. Forany 3, = 8* +n(8 — 8*) with n € (0, 1] and any convex loss function L, we have
Di(By, 8%) < nDL(B,8%).

Our forth lemma in this section concerns three basic inequalities that are frequently used in the proofs.

Lemma H.4. The following inequalities hold:
i) I+z)">1+rzforz>—-1landr € R\ (0,1);
() 1+=z)" <1l+rxforz>—landr € (0,1);
(i) (14+2)" <1+ (2" -1z forz €[0,1]andr € R\ (0,1).
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