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ABSTRACT

Real-world graphs demonstrate region-specific heterophily, where some regions
are smooth and suitable for low-pass averaging and others are sharp and necessi-
tate high-pass contrast. However, spectral GNNs that utilize a global eigenbasis
or high-order polynomial surrogates for filtering rely upon dense, non-orthogonal,
non-local bases that blend signals from distant, semantically unrelated regions.
This results in small clusters connected to large homogeneous hubs becoming
indistinguishable and overshadowed by continuous global mixing, exacerbating
oversmoothing. To address these limitations, this paper presents Hierarchical
Spectral Learning (HSL), a locality-first, multiresolution framework for learning
frequency signal regions by region. HSL estimates diffusion neighborhoods and
constructs a diffusion barrier to identify incompatible neighbors that are weakly
connected under diffusion (i.e., connected by long, low-weight paths), prevent-
ing incompatible clusters from being merged together. A lightweight MLP layer
is applied on the bottom-K eigenspace of a multi-view Laplacian (which com-
bines topology and feature affinity), generating soft node scores for coarsening the
graph into a hierarchy. Rather than a full graph-wide eigen decomposition, at each
level, we create a strictly local, degree-aware block-sparse orthonormal Haar ba-
sis that consists of a low-pass scaling wavelets and a high-pass inter-/intra-cluster
wavelets. The model has linear complexity operations per layer while preserving
strict locality. The multi-scale unpooling layer combines coarse and fine signals
to preserve small, high-contrast local structures while maintaining global context.
The hierarchy reduces effective path lengths for message passing, preventing over-
squashing. Empirically, HSL attains state-of-the-art performance with linear scal-
ability, enhancing node classification by up to 3% on heterophilous benchmarks
and up to 7% on graph classification tasks.

1 INTRODUCTION

Real-world graphs showcase regional heterogeneous properties, where some regions exhibit varying
intensities of similar graph topology and node feature similarity. In graph learning, low-variation
regions (higher similarity in features and topology) benefit from averaging (low-pass filtering) the
signals, whereas boundaries between semantically distinct (lower similarity in features and topol-
ogy) communities require contrast amplification (high-pass filtering) (Chien et al., 2020). Main-
stream spectral approaches implement this filtering by projecting features onto a global eigenbasis
or its polynomial approximation (Zhu & Koniusz, 2021). Many “heterophily-aware” spatial methods
similarly learn propagation operators that eventually induce a global basis (Chien et al., 2020). This
suboptimal global basis exhibits several fundamental limitations, as discussed by He et al. (2022)
and its high-order global polynomial approximation by Huang et al. (2024): (i) Non-locality — the
frequency energy of a node spreads across multiple hop distances, disregarding locality; (ii) Non-
orthogonality — substantial inter-basis correlations cause energy associated with one frequency
band to leak into others, thereby reducing local signal preservation; and (iii) Density of the basis,
which increases computation and memory requirements, thus limiting scalability on large graphs.

Moreover, the construction of the global basis relies solely on topology and remains oblivious to
the feature similarity across different regions of the graph (Zheng et al., 2024). As a result, these
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methods blend information from distant, semantically unrelated areas of the graph without know-
ing the comprehensive characteristics, degrading the ability to preserve fine-grained local structure
(Li et al., 2023). Further, this global signal mixing is magnified in graphs dominated by large ho-
mogeneous clusters (hubs), where small homogeneous clusters (spokes) are densely connected to
hubs. Repeated propagation of the global mixing algorithm enables the hub signals to dominate
the spoke signals, thereby mitigating the well-known challenge of oversmoothing (Fesser & Weber,
2024). Additionally, increased depth of message propagation hinders information from reaching the
farthest semantically aligned neighbors, causing oversquashing (Fesser & Weber, 2024). To address
these challenges, a related work (Anonymous, 2025) proposed a hierarchical pooling method that
utilizes sparse Haar bases with GNN Encoder-guided clustering. However, its reliance only on graph
topology and potentially noisy encoder signals results in suboptimal clustering outcomes.

Motivated by the above limitations, we propose a locality-first, multiresolution framework named
Hierarchical Spectral Learning (HSL) that builds a robust multiscale spectral filter. HSL first esti-
mates diffusion neighborhoods and constructs a diffusion barrier that enforces short-path locality by
marking pairs that are diffusion-distant as incompatible. Using this barrier, we compute the bottom
K eigenspace as a spectral embedding and feed it to an MLP head to predict soft cluster indicators.
Under mild diffusion node cohesion and eigen energy gap conditions, this eigenspace coincides
with the ground-truth cluster indicator subspace. Repeating this coarsening algorithm, we obtain a
multiresolution hierarchy tree. Then, at each level of the tree, we construct a strictly local, sparse, or-
thogonal, and degree-aware Haar basis comprising (i) a scaling vector (local mean), (ii) inter-cluster
contrasts, and (iii) in-cluster contrasts. Each level’s Haar matrix basis is block-sparse with O(|V ℓ|)
nonzero entries where V ℓ is the number of nodes at level ℓ. The construction of the hierarchy and its
sparse basis incurs only linear computational cost, while preserving locality and preventing global
signal mixing. We then apply diagonal spectral filtering in this basis, with learned band gains that
amplify high-frequency content at heterophilous boundaries and apply low-pass smoothing in ho-
mogeneous regions. Finally, we fuse features across coarse and fine levels to retain global context
while preserving small, high-contrast structures. By separating hubs and spokes during coarsening,
HSL learns their contrast rather than smoothing spokes into hubs, thereby mitigating hub domina-
tion and oversmoothing. The coarsening hierarchy reduces effective path lengths logarithmically,
allowing gradients and information to propagate without the exponential decay, which alleviates
oversquashing (Di Giovanni et al., 2023).

Our main contributions are as follows: (I) We introduce a novel framework, HSL, that constructs a
locality-aware, orthonormal, multi-scale, and sparse basis from a multi-view Laplacian (topology +
feature affinity), enabling linear construction and filtering on large graphs. HSL learns graph sig-
nals across multiple resolutions while explicitly preventing global signal mixing. (II) We rigorously
prove and empirically confirm that conventional GNNs suffer from hub domination, oversmoothing,
and oversquashing, whereas our hierarchical local Haar construction and adaptive learning of low-
pass and high-pass filtering gains avoid all the pathologies. (III) We demonstrate that HSL achieves
state-of-the-art accuracy on both node and graph classification tasks while maintaining linear scala-
bility.

2 RELATED WORKS

Spectral Filtering: Early models, like ChebNet (He et al., 2021), used truncated Chebyshev
polynomials to approximate the eigenbasis. Conversely, Generalized Page Rank GNN (GPR-GNN)
(Chien et al., 2020) utilizes generalized PageRank weights with monomial bases for approxima-
tions. In contrast, BernNet (He et al., 2021) and JacobiConv (Wang & Zhang, 2022) provide
Bernstein and Jacobi polynomials, respectively, to enhance the interpretability and adaptability of
the bases. ChebNetII (He et al., 2022) addressed the issue of Chebyshev polynomials overfitting
by employing interpolation, whereas OptBasisGNN (Guo & Wei, 2023) aimed to make basis
polynomials orthogonal to accelerate convergence. Despite these developments, many of these
methodologies continue to employ dense, fixed graph-wide bases that prevent global mixing of
messages.
Hierarchical Graph Learning: Learnable pooling methods, such as DiffPool (Ying et al.,
2018), SAGPool (Lee et al., 2019), TopKPool (Diehl, 2019), and gpool (Gao & Ji, 2019), utilize
node-scoring or soft assignments to coarsen homophilous graphs at a singular resolution. These
methods incur an O(n2) computational cost (Li et al., 2024). EigenPool (Ma et al., 2019) and Haar-
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based pooling employ an expensive eigendecomposition to coarsen the graph, incurring an O(n3)
computational cost, which constrains scalability and overlooks local heterophily (Wang et al., 2020).

2.1 PRELIMINARIES

Let G = (V,E) be a simple, undirected graph, where V denotes the set of vertices and E denotes the
set of edges. Its adjacency matrix A ∈ Rm×m has entries Aij = 1 if i, j ∈ E and 0 otherwise, and
D = diag(A1) is the degree matrix, where 1 is the all-ones vector. Given node features X ∈ Rm×d

and normalized Laplacian L = UΛU⊤, a spectral layer rescales graph Fourier components by
g(L)X = U g(Λ)U⊤X, and in ploynomial spectral methods implements g with a polynomial,
g(L) ≈

∑R
r=0 θr L

r, where R ∈ N is the polynomial order. With k layer message–passing, a GNN
learns the graph signal as a polynomial in a symmetric propagation operator P , which essentially
induces the global eigenbasis of the propagation operator P given by

H(k) ≈
k∑

r=0

Θr P
r X = gP (P )X = UP gP (ΛP )U

⊤
P X, (1)

where UPΛPU
⊤
P is the eigendecomposition of P and Θr are learnable linear maps.

Real-world graphs often exhibit different levels of homophily in different regions of the graph. We
quantify homophily as Hlab = 1

|E|
∑

(u,v)∈E [yu = yv], where y is the node label. To address
the discrepancy between nodes homophily, the sign- based message passing (SMP) (Liang et al.,
2024; Chien et al., 2020) algorithms introduced signed adjacency S matrix defined as Suv = +1 if
(u, v) ∈ E and yu = yv , Suv = −1 if (u, v) ∈ E and yu ̸= yv . So the feature of each layer is
updated as, H(k+1) = σ

(
S H(k)W (k)

)
, H(0) = X, where S works as a propagation operator and

W is weight matrix. Using equation (1), the k-layer SMP can be expressed as a spectral filter in the
global basis of S. To solve the sign flipping of SMP, chunked multi-track aggregation (CMA)-based
methods (Pei et al., 2024) propose to split each node’s neighbors into t tracks (e.g., homo/hetero)
with learned attention sij,t and aggregate messages mi,t per track t given as,

mi,t =
∑

j∈N (i)

sij,t
(
H

(k)
j Wt

)
, H

(k+1)
i = σ

(
(1− β)H

(0)
i W0 + β

C∑
t=1

mi,t

)
. (2)

where σ denotes sigmoid function and β > 0. The existing methods incur these two fundamental
limitations. (i) Oversmoothing occurs as the number of layers grows and all node embeddings
converge to their class means (Epping et al., 2024). (ii) Oversquashing (Topping et al., 2021), which
occurs when gradients (or messages) from distant nodes decay exponentially with graph distance,
preventing long-range information flow.

3 LIMITATIONS OF EXISTING MODELS

The SMP (Liang et al., 2024) and CMA (Pei et al., 2024) methods, discussed above, have the fol-
lowing fundamental limitations: (I) Hub Dominiatoin: In many real-world graphs, it is often seen
that two small clusters A and B, with sizes |A| = a and |B| = b respectively, are each tightly inter-
connected with a large, homophilous hub H of size |H| = M (where a, b≪M ). Although nodes in
A and B are categorized differently, both SMP and CMA/M2M require passing messages primarily
through the same hub signals, as illustrated in Figure 1. The hub dominates the spokes’ messages,
leading to their final attributes of all the nodes blending into an indistinguishable embedding space.

Figure 1: Hub domination in cluster (A, B, H ′)

(II) Suboptimal Basis Spectral approaches
rely on fixed eigendocpositions or polynomial
bases (e.g., Bernoulli, Chebyshev), which
have three major limitations. First, they cre-
ate dense, globally supported vectors with
nonzero weights distributed over almost all
nodes. Therefore, perturbing the signal of a
single node affects the basis functions across
the whole graph. Second, these polynomial
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bases are non-orthogonal across the nodes
and have a strong inter-basis correlation, allowing filtering in one frequency band to leak into others,
which exacerbates hub domination effects. Finally, the dense basis renders the model unscalable for
larger graphs due to higher computation. Theorem 1 formalizes the claim I.

Theorem 1 [Exponential collapse under global-basis models] For architectures based on SMP,
CMA, or spectral filters defined in a fixed global basis, the representational distance between any
node in A and any node in B decays exponentially with depth. Consequently, after a sufficiently
large number of layers, the two become indistinguishable. (Proof in Appendix A.1)

In addition to analytical results in Theorem 1, using synthetic heterophillous graph datasets, we
empirically validated the hub domination phenomenon, as shown in Figure 4.

4 METHODOLOGY

In this section, we describe the formulation of the diffusion heat kernel-guided hierarchical tree, fol-
lowed by the basis formulation for each of the three levels. We then describe the filtering process and
provide a rigorous theoretical guarantee that the proposed HSL effectively solves hub domination,
oversmoothing, and oversquashing.

Figure 2: Overview of the proposed HSL framework. The process begins with hierarchical graph
coarsening guided by Topology and Feature similarity. At each level, orthogonal, local bases are
constructed, followed by diagonal spectral filtering. Finally, multi-scale fusion aggregates trans-
formed messages from all levels.

4.1 MULTI VIEW LAPLACIAN AND DIFFUSION DISTANCE BALLS

Since feature similarity between nodes or regions in the graph carries profound information about
the graph characteristics, we need to take the feature similarity into account (Zheng, 2024). So,
instead of relying exclusively on the graph topology to construct the Laplacian, we have in-
corporated feature affinity as an additional insight. The feature affinity Laplacian is defined as
L(2) = I −D

−1/2
feat WfeatD

−1/2
feat , where Dfeat = diag(Wfeat). To ensure scalability for a larger graph,

the feature-affinity weight matrix Wfeat is computed from a k-nearest neighbor (k-NN) using FAISS
(Danopoulos et al., 2019) algorithm, given by

(Wij)feat =

{
exp

(
−∥xi−xj∥2

2σ2

)
, j ∈ Nk(i),

0, otherwise,
(3)

where Nk(i) denotes the k nearest neighbors of node i. At each hierarchy level ℓ, for an active
cluster C (or the full graph at the root), we form a data-adapted mixture of two Laplacian views as
follows

Lmix,C =

2∑
k=1

α
(k)
C L(k), αC = softmax

(
gθ(ϕC)

)
, (4)

where gθ is a lightweight network fed with cluster statistics ϕC (e.g., conductance, and local ho-
mophily ratio). Conductance measures the proportion of a cluster’s total edges that go to nodes
outside the cluster. The Lmix,C ensures that both topology structure features and affinity between
nodes influence the clustering process.
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To avoid clustering nodes that are structurally dissimilar and superficially related, we determine lo-
cality within each cluster C with the heat kernel Ht,C = exp

(
− t Lmix,C

)
, where t controls the

locality scale (Thanou et al., 2017). It averages information along many short paths while suppress-
ing weak, long-range connections. The diffusion distance between nodes i and j is measured as
dt(i, j) =

∥∥e⊤i Ht,C − e⊤j Ht,C

∥∥
2
, where ei ∈ R|C| denote the i-th standard basis vector (1 at index

i, 0 elsewhere). For each node i, the diffusion ball at scale t is Bt(i, ε) = { j ∈ C : dt(i, j) ≤ ε },
and nodes outside Bt(i, ε) are treated as diffusion-distant relative to i. We encode these diffusion
distant nodes in a sparse, symmetric incompatibility matrix as

(MC)ij =
1{ j /∈ Bt(i, ε) }

DiDj
. (5)

where D denotes the degree. We approximate the heat kernel using polynomials (details are provided
in Appendix B.1). In the next section, we describe how both Lmix and MC guide the construction
of a hierarchical tree.

4.2 FORMULATING HIERARCHICAL TREE AND ORTHOGONAL BASIS

We build a hierarchical tree by recursively partitioning each cluster into balanced subclusters. For
each cluster C, we combine Lmix,C and (MC)i,j in a single positive semi-definite (PSD) operator,

LC = Lmix,C + λMC , λ ≥ 0. (6)
We seek a K-dimensional spectral embedding by solving the balanced relaxation as

min
U∈R|C|×K

Tr(U⊤LCU) s.t. U⊤U = IK , U⊤s
(0)
C = 0, (7)

where s
(0)
C =

D
1/2
C 1

∥D1/2
C 1∥2

and DC is diagonal matrix of the cluster. The solution is given by the K

bottom nontrivial eigenvectors of LC , which we obtain via power iteration (Panju, 2011). Min-
imizing Tr(U⊤LCU) drives the minimizer U into an embedding space that is smooth under the
mixed geometry, while the penalty term λ on MC discourages clustering nodes that are diffusion-
distant, countering hub dominations. The balance constraint U⊤s

(0)
C = 0 enforces degree-balanced

partitions, ruling out trivial solutions that concentrate all degree mass on one side. This process
encourages nodes that are similar in mixed geometry to lie near each other in U -space, while het-
erophilous or diffusion-distant pairs are pushed far apart. Theorem 2 below guarantees that a choice
of λ ensures no diffusion-distant pairs are co-clustered.

Theorem 2 Let S⋆ = {S1, . . . , SK} be a degree-balanced ground-truth partition on C, and let
Y ⋆ ∈ R|C|×K denote its degree-normalized indicator matrix. Assume: (i) diffusion cohesion: if
i, j ∈ Sk then j ∈ Bt(i, ε); (ii) diffusion margin: if i ∈ Sk, j ∈ Sℓ, k ̸= ℓ, then j /∈ Bt(i, ε); and
(iii) geometry gap: for any degree-balanced merge S across parts, Φmix(S)−Φmix(S

⋆) ≥ ∆mix >
0, where Φmix(S) = Tr

(
Y ⊤Lmix,CY

)
for the indicator Y of S. Let Ψmin = Tr

(
Y ⊤MCY

)
>

0 over the same family of balanced merges S. If λ ≥ ∆mix/Ψmin the bottom-K eigenspace of
Lmix,C +λMC equals span(Y ⋆). Consequently, balanced rounding (or a linear/MLP head applied
to U ) recovers S⋆ exactly; no diffusion-distant pairs are co-clustered.(Proof in Appendix A.2)

Given U at level ℓ, the i th row N
(ℓ)
i = Ui: serves as as the node coordinate of i. To resolve the

rotational ambiguity of U , we score cluster affinities with a linear head as

α
(ℓ)
i = W (ℓ)N

(ℓ)
i + b(ℓ) ∈ RKℓ , α

(ℓ)
ik =

(
α
(ℓ)
i

)
k
. (8)

Margin adjustment and Soft assignments. To capture uncertainty near decision boundaries, we
compute a normalized margin µ

(ℓ)
i between the top two scores as

µ
(ℓ)
i =

α
(ℓ)
i,max − α

(ℓ)
i,2nd

|α(ℓ)
i,max|+ |α

(ℓ)
i,2nd|+ ζ

, ζ = 10−3. (8)

A small µ(ℓ)
i indicates ambiguity (node lies near a boundary), while a large µ

(ℓ)
i indicates confident

separation. We obtain probabilistic memberships of the cluster, denoted as soft-assignment matrix
A

(ℓ)
s , by applying a margin-scaled softmax as(

A(ℓ)
s

)
ik

= softmaxk
(
µ
(ℓ)
i α

(ℓ)
ik

)
, A(ℓ)

s ∈ R|V (ℓ)|×Kℓ . (9)
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Feature and edge aggregation. Let X(ℓ) ∈ R|V (ℓ)|×dℓ and A(ℓ) ∈ R|V (ℓ)|×|V (ℓ)| denote features
and adjacency at level ℓ. We coarsen by probability-weighted aggregation given by

X(ℓ+1) =
(
A(ℓ)

s

)⊤
X(ℓ) ∈ RKℓ×dℓ , A(ℓ+1) =

(
A(ℓ)

s

)⊤
A(ℓ)A(ℓ)

s ∈ RKℓ×Kℓ . (10)

Nonzero entries of A
(ℓ)
s , i.e., (A(ℓ)

s )ik > 0, establish parent–child relationships, resulting in the
hierarchical framework employed in the subsequent Haar construction. So, the feature of each
coarse node is the sum of the features of its children, weighted by their probabilities. The coarse
adjacency is the sum of all the fine-level connections between the child sets. The coarsening loop
continues until the size of the coarse graph meets the configurable limit h: |V (L)| ≤ h. Then, the
tree is used to determine the class-aware multiway Haar basis U (ℓ) at each level.

Basis Formulation. Since the coarsest (last) layer collapses all nodes into a single cluster, we use
a bottom-up scheme. We compute the Haar basis at the coarsest layer and then recursively lift it to
obtain bases for all finer (upper) levels. The details are given below.
A. Coarsest level. At the coarsest level L let a graph/cluster consist of KL = |V (L)| supernodes,
The basis U (L) ∈ RKL×KL is calculated in two steps:

(i) Global Scaling Vector (degree-aware). The first basis vector is the degree-weighted constant
u
(L)
sc = D(L) 1/21∥∥D(L) 1/21

∥∥
2

, which captures the low-frequency (average) component across all KL nodes.

(ii) Orthonormal Wavelets (degree-aware). Index the supernodes by i = 1, 2, . . . ,KL and let
vi = d

(L)
i be their degree masses. For each wavelet q = 1, 2, . . . ,KL − 1, define prefix/suffix

degree masses VA(q) =
∑q

i=1 vi, VB(q) =
∑KL

i=q+1 vi. Define the q-th Haar wavelet w(L)
q ∈ RKL

by

w(L)
q (i) =


√

VB(q)
VA(q)(VA(q)+VB(q)) , 1 ≤ i ≤ q,

−
√

VA(q)
VB(q)(VA(q)+VB(q)) , q + 1 ≤ i ≤ KL .

(11)

Now it is easily realizable that
∑KL

i=1 w
(L)
p (i) = 0, ∥w(L)

q ∥2 = 1, and ⟨w(L)
p , w

(L)
q ⟩ = 0 for p ̸= q.

B. Finer levels. Next, for each finer level ℓ = L− 1, L− 2, . . . , 0, we build the basis U (ℓ) in three
steps:
(i) Propagate the Scaling Vector. Given the coarser scaling vector u

(ℓ+1)
sc ∈ R|V (ℓ+1)| and the

soft-assignment matrix A
(ℓ)
s ∈ R|V (ℓ)|×|V (ℓ+1)|, we lift the constant component as follows:

u(ℓ)
sc = A(ℓ)

s u(ℓ+1)
sc ∈ R|V (ℓ)|, u(ℓ)

sc ←
u
(ℓ)
sc

∥u(ℓ)
sc ∥2

. (12)

(ii) Intra-Cluster Wavelets (between clusters). At level ℓ, let the graph be partitioned into Kℓ

clusters C
(ℓ)
1 , C

(ℓ)
2 , . . . , C

(ℓ)
Kℓ

. Let the cluster degree masses be v
(ℓ)
k =

∑
i d

(ℓ)
i s

(ℓ)
i,k. Wavelets

between these nodes in one cluster are calculated according to equation (11).
(iii) In-Cluster Wavelets (inside a cluster). Let C(ℓ)

k be a cluster at level ℓ with membership vector
s
(ℓ)
k = (A

(ℓ)
s ):,k ∈ R|V (ℓ)|. Label its nk nodes by ik,1, . . . , ik,nk

. For each split r = 1, . . . , nk − 1,
define the degree-weighted masses αk,r =

∑r
j=1 d

(ℓ)
ik,j

s
(ℓ)
ik,j ,k

, βk,r =
∑nk

j=r+1 d
(ℓ)
ik,j

s
(ℓ)
ik,j ,k

. Then

the in-cluster wavelet w(ℓ)
k,r ∈ R|V (ℓ)| is

w
(ℓ)
k,r(ik,j) =


βk,r

αk,r + βk,r
s
(ℓ)
ik,j ,k

, j ≤ r,

− αk,r

αk,r + βk,r
s
(ℓ)
ik,j ,k

, j > r,
and w

(ℓ)
k,r(i) = 0 for i /∈ C

(ℓ)
k . (13)

Each such wavelet has zero mean on its cluster, unit norm, and is orthogonal.

Stacking the scaling vector and all in-cluster wavelets gives the orthonormal basis

U (ℓ) =
[
u(ℓ)
sc

∥∥W (ℓ)
inter

∥∥W (ℓ)
intra

]
∈ R|V (ℓ)|×|V (ℓ)|. (14)
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Figure 3: (a) Signed Haar Basis. On a 28-node synthetic graph, each column represents a sparse,
highly localized wavelet with coefficients concentrated on a small node cluster; blue represents
positive, red represents negative, and saturation represents magnitude. (b) Eigenvector Basis In
contrast, eigenvectors are global (low sparsity), distributing mass evenly over the graph. (c) Haar
locality (hop-energy): For every Haar vector hk, set the per-node energy ei(hk) = hk(i)

2/∥hk∥22.
Let i⋆ = argmaxi |hk(i)|, and for hop shells s ∈ {0, . . . , 4}, compute

∑
i: dist(i,i⋆)=s ei(hk). The

heatmap shows that more than 85% of the energy is inside two hops, which shows that it is tightly
confined within one hop neighborhood. (d) Eigenvector Basis: Eigenvectors distribute energy more
uniformly across hops 0–4, signifying inadequate localization and demonstrating the merging of
distant cluster signals (hub aliasing). For comparisons of polynomial bases, see App. F.1.

We then filter the node features of every hierarchy graph as, H(ℓ) = U (ℓ) Λ(ℓ) U (ℓ)⊤ X(ℓ), where
Λ(ℓ) is a learnable diagonal matrix of low- and high-pass gains. This ensures full coverage of every
node and cluster with no redundancy. This operation is diagonal in the Haar basis (no cross-mixing).
The low-frequency gain g

(ℓ)
sc and wavelet gains γ(ℓ)

j are learned.

4.3 PREDICTION TASK

For node-level tasks, we compute each node’s final embedding by additive unpooling Ĥj = H
(0)
j +∑L

ℓ=1

∑
i:j∈C

(ℓ)
i

H
(ℓ)
i , so that every node carries its base feature plus the pooled summaries of all

clusters across different scales it belongs to. For graph-level tasks, we coarsen until the number of
nodes is |V (L)| = 1. We then use the embedding of this final supernode for graph classification.
The total loss is defined as Ltotal = LCE + λdiv Ldiv, where LCE is the standard cross-entropy,

Ldiv = −
L−1∑
ℓ=0

1

|V (ℓ)|

|V (ℓ)|∑
i=1

Kℓ∑
k=1

A
(ℓ)
s,ik logA

(ℓ)
s,ik,

maximizes the entropy of each node’s (A(ℓ)
s )i:.λdiv balance the auxiliary terms.

4.4 THEORETICAL PERSPECTIVE

Because U [Wscaling, Winter, Wintra] ∈ RN×N is orthonormal, projecting any signal onto these
subspaces separates its energy into global average, inter-cluster contrast, and intra-cluster varia-
tion without leakage. The basis has both low-frequency and high-frequency directions. The scaling
wavelets Wscaling capture degree-weighted low-frequency directions of the cluster. The inter-cluster
wavelets Winter capture the differences (high frequency content) across neighbouring clusters by
separating differences at the boundaries. In Fig. 3, we showed how Haar basis energy is only
found within a two-hop, closely linked neighbor. Spectral convolution employing the Haar basis
enhances or preserves high-frequency signals for small spokes without expanding or mixing signals
with the rest of the graph nodes or cluster, thereby preventing hub domination and oversmoothing.
Finally, the hierarchical coarsening shortens communication pathways (logarithmically in depth),
which keeps Jacobian norms from getting too close to zero and prevents oversquashing. The subse-
quent theorems formalize the aforementioned claims.

Theorem 3 A spectral filter based on orthonormal and local basis holds any region-specific signal
pattern confined under filtering. (proof in Appendix A.3)
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Theorem 4 Let A,B,H post-filter centroids are µA, µB , µH and set ∆AB = ∥µA−µB∥,∆AH =

∥µA − µH′∥, then ∆AB

∆AH
≥

√
M
a+b

(
1 − 2√

M

)
> 1. Thus HSL model avoids hub domination

regardless of the hub size M. ( proof is in Appendix A.4)

Theorem 5 Regardless of the number of layers in the proposed HMH layer, it overcomes the over-
smoothing and oversquashing problem. (Proof is in Appendix A.5)

Table 1: Graph-classification accuracy (%) comparison on TU datasets. Mean is ±95% CI and ’-’
means no result found

Method PROTEINS NCI1 NCI109 MUTAG D&D IMDB-M REDDIT-12K Mutagenicity

GCN 75.17±3.63 76.29±1.79 75.91±1.84 69.50±1.78 73.26±4.46 50.39±0.41 44.3±1.6 79.81±1.58
GraphSAGE 74.01±4.27 74.73±1.34 74.17±2.89 71.39±1.53 75.78±3.91 48.13±1.36 45.3±0.6 78.75±1.18
GAT 74.72±4.01 74.90±1.72 75.81±2.68 70.81±1.68 77.30±3.68 45.67±2.70 43.9±1.8 77.89±2.05
DGCNN 79.99±0.44 74.08±2.19 78.23±1.31 76.3±1.6 70.06±1.21 81.34±2.68 – 80.41±1.02
DiffPool 68.90±2.95 77.73±0.83 77.13±1.49 79.22±1.02 78.61±1.32 51.31±0.72 44.8±1.5 80.78±1.12
EigenPool 70.84±1.06 77.24±0.96 75.99±1.42 – 78.63±1.36 49.81±0.48 44.23±1.3 80.11±0.73
gPool 71.71±1.75 76.25±1.39 76.61±1.39 67.85±1.38 77.02±1.32 48.3±1.6 44.35±0.76 80.30±1.54
SAGPool(G) 71.72±2.19 77.88±1.59 75.74±1.47 76.78±2.12 78.70±2.29 49.47±0.56 42.3±1.6 79.72±0.79
GMT 75.09±0.59 76.35±2.62 – 84.44±1.33 78.72±0.59 50.66±0.82 43.63±2.6 81.32±2.32
TopKPool 70.48±1.01 67.61±3.36 73.63±0.55 77.61±3.36 73.63±0.55 48.59±0.72 45.3±1.43 82.45±1.32
SEP (Wu et al., 2022) 75.22±0.63 74.83±1.49 76.58±1.04 85.83±1.49 78.58±1.04 50.78±0.75 45.3±1.6 79.1±1.2
HMH (ours) 75.8±2.1 78.9±2.5 80.7±2.0 94.50±1.8 79.7±1.8 52.5±2.2 43.1±1.2 81.7±1.8

5 EXPERIMENT AND RESULT

Setup. We evaluate HSL on standard graph-classification and node-classification benchmarks. All
results are reported as mean ± 95% confidence intervals over 10 random splits. Baselines are run
from authors’ public implementations with hyperparameters tuned on validation sets. The details of
the complete protocol are presented in Appendix A.7
Synthetic Datatsets: In addition to the theoretical guarantee provided in theorem 4, we
construct a synthetic dataset and measure the cluster separation ratio r(L) for L =
0, . . . , 10 message propagation layers. As shown in Figure 4, baseline models exhibit
rapid (approximately exponential) decay in r(L), indicating collapse, whereas HSL pre-
serves the separability between clusters A and B even in the presence of a large hub H ′.

Figure 4: Hub separation ratio

Graph Classification. We evaluate on TU graph-
classification benchmarks: PROTEINS, NCI1, NCI109,
Mutagenicity, IMDB, and REDDIT-12K. Dataset char-
acteristics and hyperparameter choices are provided in
Appendix A.6. We choose well-regarded Hierarchical
pooling and strong graph-classification models as the
baseline, such as DiffPool (Ying et al., 2018), SAGPool
(Lee et al., 2019), TopKPool (Diehl, 2019), Graph U-
Net (Gao & Ji, 2019), ASAP (Ranjan et al., 2020), and
graph classifiers DGCNN (Phan et al., 2018), SEP (Wu
et al., 2022)
Graph Classification Results. HSL yields consistent gains over all baselines (Table 1), improv-
ing test accuracy by +7% on MUTAG and +2% on PROTEINS. On molecular benchmarks (EN-
ZYMES, PROTEINS), our method matches or exceeds diffusion-based pooling approaches (Diff-
Pool, EigenPool) while requiring no dense, expensive eigendecomposition. Ablations study on the
diffusion barrier, basis components, and gain parameterization are provided in Appendix 6
Node Classification. Various benchmark datasets spanning homophilous (Cora, Citeseer, Pubmed,
etc.) and heterophilous (Chameleon, Squirrel, Texas etc.) graphs are used for performing the node
classification task. In Appendix B, the attributes of the datasets, Preprocessing, and hyperparameter
settings are presented. As suggested by Platonov et al. (2023), we use the filtered variants (with
duplicate edges removed) for the Chhamelon and Squirrel datasets.
Node Classification Result. We choose well-regarded, leading spectral/polynomial-filter methods
as Baseline, such as SIGN (Frasca et al., 2020), GPR-GNN (Chien et al., 2020), EvenNet (Lei et al.,

8
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Table 2: Node Classification accuracy (%) comparison with baseline models across all datasets.

Method Cora Citeseer Actor Chameleon Squirrel Texas Wisconsin Cornell

FAGCN 87.42 ± 2.10 76.35 ± 1.70 35.67 ± 0.90 36.98 ± 2.30 42.20 ± 1.80 77.00 ± 7.70 86.55 ± 2.36 84.41 ± 3.80
ACM–GCN 87.91 ± 0.90 77.32 ± 1.70 36.28 ± 1.00 38.93 ± 1.80 44.40 ± 1.80 87.84 ± 4.40 74.19 ± 3.15 88.14 ± 6.00
ASGC 85.35 ± 0.98 76.52 ± 0.36 35.41 ± 0.80 37.38 ± 1.06 46.91 ± 0.89 75.34 ± 2.30 87.25 ± 1.63 87.32 ± 2.30
GPR–GNN 82.82 ± 1.30 70.28 ± 1.40 31.47 ± 1.60 39.27 ± 2.30 46.09 ± 1.30 87.91 ± 1.32 91.08 ± 1.79 90.57 ± 1.96
ChebNet 79.72 ± 1.10 70.48 ± 1.00 27.42 ± 2.30 41.20 ± 1.20 39.82 ± 0.80 86.28 ± 2.62 91.71 ± 1.62 83.91 ± 2.17
ChebNet II 83.95 ± 0.80 71.76 ± 1.20 33.48 ± 1.20 42.50 ± 3.10 46.40 ± 1.10 88.28 ± 1.47 90.45 ± 1.22 88.30 ± 1.48
BernNet 82.96 ± 1.10 73.25 ± 1.00 37.92 ± 0.80 39.80 ± 3.40 44.68 ± 1.50 86.62 ± 1.37 91.72 ± 1.27 92.13 ± 1.64
JacobiConv 84.12 ± 0.70 72.59 ± 1.40 36.61 ± 0.70 42.90 ± 1.90 48.65 ± 0.80 93.44 ± 2.13 92.98 ± 1.84 92.95 ± 2.46
OptBasisGNN 81.97 ± 1.20 76.46 ± 1.60 38.84 ± 1.30 39.70 ± 2.40 45.66 ± 1.10 87.32 ± 0.80 91.55 ± 1.68 89.43 ± 4.50
Specformer 82.27 ± 0.70 73.45 ± 1.40 40.12 ± 0.60 41.10 ± 1.20 48.24 ± 0.90 91.34 ± 3.40 91.33 ± 1.95 93.43 ± 3.50

HSL (ours) 88.9 ± 0.6 79.2 ± 0.8 43.3 ± 0.7 41.9 ± 1.2 50.9 ± 0.9 91.5 ± 1.0 92.26 ± 1.85 93.7 ± 0.9

2022), ChebNet II (He et al., 2022), BernNet (He et al., 2021), JacobiConv (Wang & Zhang, 2022),
and UniFilter (Huang et al., 2024). Across most of the dataset, our model consistently outperforms
(Table 2) all baselines with gains up to 2% on citation networks and up to 3% on highly heterophilous
graphs squirrel, demonstrating that multi-scale Haar filtering yields more discriminative embeddings
than fixed, local polynomial spectral filters.

Ablation Study. We ablate four components of HSL. (i) Topology-only mixing: Excluding
Lfeat from equation (4) reduces the accuracy on feature-informative datasets, such as Muta-
genicity by ∼2.1% and Chameleon by ∼ 2.3 %. (ii) No diffusion barrier: By Substituting
(λ = 0 in equation (6) we drop MC constraints, which then allows unrelated nodes to clus-
ter together reducing the accuraccy of Chameleon by ∼5.2 % and Squirrel by ∼4.8 % (iii) No
degree-aware basis: Substituting a degree-aware basis of equation (14) by a eigendecompo-
sition of Lmix incurs additional (n2) computation cost and reduces the accuracy of the graph
learning task; reducing accuracy for Actor by ∼1.6 pp and Squirrel ∼1.9 pp (v) Without bal-
anced relaxation: We omit projection Us

(0)
c = 0 in equation (7) during subspace iteration,

which may allow the eigenvector to carry a constant/near-constant direction impairing cluster bal-
ance. The accuracy of a highly heterogeneous graph, such as Chameleon, dropped by ∼6 %.

Table 3: Ablation study on HSL variants (mean±std over 5
seeds).

Variant Mutagenicity Actor Chameleon Squirrel

Full HSL (ours) 94.4 ± 4.8 43.3 ± 0.7 41.8 ± 1.2 50.9 ± 1.4

Topology-only 89.8 ± 0.7 41.1 ± 1.0 39.5 ± 1.5 49.2 ± 1.4
w/o barrier MC 88.1 ± 0.6 38.9 ± 1.2 36.6 ± 1.7 46.1 ± 1.6
w/o degree-aware Haar 89.0 ± 0.6 41.7 ± 0.9 40.1 ± 1.3 49.0 ± 1.5
w/o balanced relaxation 88.4 ± 0.5 37.8 ± 1.3 37.4 ± 1.8 45.0 ± 1.7

Scalability. HSL scales linearly with
graph size. For n = |V | nodes,
m = |E| edges, and feature dimen-
sion d, each forward/backward pass
costsO(md+nd). The memory cost
is O(n+m), storing only sparse ad-
jacencies and wavelets. In contrast,
almost every graph pooling baselines
incurO(n2) time complexity Li et al.
(2024).

6 CONCLUSION

We introduced HSL, a locality-first, multi-view, multiresolution framework for learning on het-
erophilous graphs. HSL estimates diffusion neighborhoods and enforces a diffusion barrier to pre-
vent spurious co-clustering, then solves a balanced spectral relaxation to obtain soft assignments for
hierarchical coarsening. At each level, it builds a strictly local, degree-aware, orthonormal Haar
basis—whose energy is confined to small neighborhoods—and applies diagonal spectral filtering
with learned gains, amplifying boundary-aligned (high-frequency) contrasts while smoothing ho-
mogeneous (low-frequency) regions. This design avoids dense global mixing and expensive full
eigendecompositions, operates in near-linear time, and directly mitigates hub dominations and over-
squashing. Theoretically, we establish the effectiveness of multiresolution learning with respect
to the basis that can adapt and respect the locality of graph regions. Empirically, HSL matches
prior state-of-the-art on node classification and delivers strong improvements on graph classifica-
tion, while retaining linear scalability. Future research will extend HSL to dynamic graphs and
temporal graphs.
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REPRODUCIBILITY STATEMENT

The algorithm is comprehensively described in our Methodology section, enabling readers to easily
understand and reimplement it. We’ve also uploaded our entire code as supplemental information.
Each section of the code has been clearly marked to correspond to the related theory in the Methodol-
ogy, allowing for easy cross-referencing. In the Appendix, we include a table of all hyperparameters
used in the study. The supplementary code includes a Jupyter notebook for graph classification,
where we train and test our model on the MUTAG datasets, demonstrating that it achieves 95% test
accuracy and outperforms a well-known state-of-the-art method by at least 7 percentage points. We
provide a Jupyter notebook for node classification on the heterophilous Cornell dataset, in which
we train and test both our approach and the strong baseline GPRGNN, and present a side-by-side
comparison of the findings.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Case I: Hub Domination in SMP: Consider three clusters A, B, and H ′. The tiny clusters or
spokes A and B of size a = |A| and b = |B| are attached to a common hub H ′ of size M = |H ′|
with M ≫ a, b. Let the cluster mean features for A, B, and H ′ is µA ∈ Rd, µB ∈ Rd, µH′ ∈ Rd,
respectively. To proceed further, we need the following two assumptions:
Assumption (i) The spoke–spoke expected representation gap is small compared to the spoke–hub
expected representation gap, reflecting that the hub’s expected representation is well separated from
that of the spokes. We can define the base spoke–spoke and spoke–hub expected gaps as

δ0 = Eu∈A, v∈B

∥∥h(0)
u − h(0)

v

∥∥
2
, ∆0 = Eu∈A, h∈H

∥∥h(0)
u − h

(0)
h

∥∥
2
. (15)

So the ultimate spoke-spoke and spoke-hub gaps can be written as

δ = ∥µA − µB∥2, and ∆ = ∥µu − µh

∥∥
2
. (16)

(ii) The hub’s size M is sufficiently larger than the combined size with the weighed geometric factor
(∆/δ), i.e., M ≥ (a+b)∆

δ (1 + ε) for some ε > 0.

Let the signed adjacency is Suv = +1 if (u, v) ∈ E and yu = yv , and Suv = −1 if yu ̸= yv . The
SMP update is given by

H(k+1) = SH(k)W (k), ∥W (k)∥2 = 1, H(0) = X. (17)

Taking the norm in equation (17), we can write∥∥S H(k)W (k)
∥∥
2
≤
∥∥S H(k)

∥∥
2
.

In addition, two consecutive steps of the SMP can be expressed as

H(k+2) = S
(
S H(k)W (k)

)
W (k+1) ≈ S2 H(k).

Since there are no edges between A and B, a walk from a node in A to another region of the graph
must pass through H ′. Similarly, a walk from a node in B to another region must pass through H ′.
Hence for u ∈ A, v ∈ B, and any h ∈ H ′ the second layer embedding can be expressed as

h(2)
u = (S2X)u =

∑
w∈H

∑
z∈N(w)∩A

Xz

+
∑

z∈N(u)∩A

∑
w∈N(z)∩H

Xw ≈ M µH + (a− 1)µA,
(18)

Similarly, for node v and h the following can be written as follows,

h(2)
v ≈M µ′

H + (b− 1)µB , (19)
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h
(2)
h ≈M µ′

H + (a− 1)µA + (b− 1)µB . (20)
By subtracting equation (18) and equation (19), taking the norm, and applying the definition in
equation (16), we obtain

∥h(2)
u − h(2)

v ∥2 ≤ ∥(a− 1)µA − (b− 1)µB∥2
≤ (a+ b) ∥µA − µB∥2 = (a+ b) δ.

(21)

By subtracting equation (18) and equation (20), taking the norm, and applying the definition in
equation (16), we obtain

∥h(2)
u − h

(2)
h ∥2 ≥

∥∥M µH −
(
(a− 1)µA + (b− 1)µB

)∥∥
2
− (a+ b) δ

≥ M ∆− (a+ b) δ
(22)

Dividing equation (21) by equation (22) gives

∥h(2)
u − h

(2)
v ∥2

∥h(2)
u − h

(2)
h ∥2

≤ (a+ b) δ

M ∆− (a+ b) δ
≤ r

1 + ϵ
, r =

a+ b

M
. (23)

So that after L = 2k layers equation (23) becomes,

∥h(L)
u − h

(L)
v ∥2

∥h(L)
u − h

(L)
h ∥2

≤
( r

1 + ϵ

)k
=
( r

1 + ϵ

)⌈L/2⌉
, (24)

Since r < 1, we can write r
1+ϵ < 1. Therefore, spoke-spoke separation diminishes exponentially in

relation to the spoke-hub separation across the layer of SMP.

Case II: CMA Setup: Each node i at layer ℓ has embedding h
(ℓ)
i ∈ Rd, with fixed base features

h
(0)
i . A linear projection of the embedding can be expressed as

zi := Wh
(ℓ)
i ∈ Rd′

. (25)

Before proceeding further, we need the following standard assumptions:
Assumption 1: Uniform bound. There exists F > 0 such that

∥zj∥ ≤ F for all j ∈ V. (26)

Remarks. This is a mild boundedness condition on the projected representations at the working
layer ℓ. If ∥W∥2 ≤ C and ∥h(ℓ)

j ∥ ≤ B satisfy uniformly in j, in which case one can write F = CB.
Thus, the bound is trivially satisfied.
Assumption 2: The spoke–spoke expected representation gap is small compared to the spoke–hub
expected representation gap, reflecting that the hub’s expected representation is well separated from
that of the spokes. We can define the base spoke–spoke and spoke–hub expected gaps as

δ0 = Eu∈A, v∈B

∥∥h(0)
u − h(0)

v

∥∥
2
, and ∆0 = Eu∈A, h∈H

∥∥h(0)
u − h

(0)
h

∥∥
2
. (27)

given the hub dominance, we can assume δ0 < k∆0 where 0 < k << 1.
Assumption 3: Hub dominance. Let πH′ is a probability vector based on the hub set H ′ (for
instance, degree-weighted: πH′(h) = deg(h)/

∑
h∈H deg(h′)). For each node i ∈ V , the attention

distribution πi across its message sources decomposes as

πi = (1− ρi)πH′ + ρiqi, 0 ≤ ρi ≤ ρ < 1, (28)

where qi is an arbitrary probability distribution supported on N(i). A (1−ρi) portion of i’s attention
mass is pooled from the hub via the fixed hub mixture πH′ , while the other ρi fraction is shared
among its local neighbors according to qi. The global constant ρ < 1 sets the maximum value for
all ρi and measures the “strength of hub dominance”– the smaller ρ, the stronger the dominance of
hub messages.
The aggregated message is for node i in the graph G is

mi :=
∑
j

πi(j)zj . (29)
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According to the CMA algorithm, the single-layer update is defined as

h
(ℓ+1)
i := (1− β)h

(0)
i + βmi, β ∈ (0, 1]. (30)

We can define the hub means in the projected space by using the probability vector πH′ as

µz
H′ :=

∑
h∈H′

πH′(h)zh. (31)

From equation (28) and equation (29), we can expand the updated mesage mi for node i as follows,

mi =
∑
j

[
(1− ρi)πH′(j) + ρiqi(j)

]
zj = (1− ρi)µ

z
H′ + ρim̃i, (32)

where m̃i :=
∑

j qi(j)zj .

Since qi and πH′ are probability vectors and by equation (26) in the Assumption, we can rewrite
following expression

∥m̃i∥ ≤
∑
j

qi(j)∥zj∥ ≤ F, ∥µz
H′∥ ≤

∑
h∈H

πH′(h)∥zh∥ ≤ F. (33)

Using the bounds in equation (33), the equation (32) can be rewritten as follows,

mi = µz
H′ + ρi(m̃i − µz

H′). (34)

For any u ∈ A and v ∈ B, using equation (34),

mu −mv = ρu(m̃u − µz
H′)− ρv(m̃v − µz

H′). (35)

Taking norms and applying the triangle inequality to 35 we get,

∥mu −mv∥ ≤ ρu∥m̃u − µz
H′∥+ ρv∥m̃v − µz

H′∥. (36)

For a node u ∈ A using equation (33), we can wrtie

∥m̃u − µz
H′∥ ≤ ∥m̃u∥+ ∥µz

H′∥ ≤ 2F. (37)

Similarly, we can prove the following for node v ∈ B:

∥m̃v − µz
H′∥ ≤ ∥m̃u∥+ ∥µz

H′∥ ≤ 2F (38)

Combinining equation (37) and equation (38) and given ρu, ρv ≤ ρ, equation (36) can be written as

∥mu −mv∥ ≤ 4ρF. (L1)

Substituting i = u and i = h into equation (34) and substracting them follows,

mu −mh = ρu(m̃u − µz
H′)− ρh(m̃h − µz

H′).

The same bound as in equation (36), equation (37), and equation (38) applies, yields,

∥mu −mh∥ ≤ 4ρF. (L2)

For u ∈ A, v ∈ B, using equation (30), we can write

h(ℓ+1)
u − h(ℓ+1)

v = (1− β)(h(0)
u − h(0)

v ) + β(mu −mv). (39)

Taking norms, using equation (L1), and recalling Eu∈A,v∈B ∥h(0)
u − h

(0)
v ∥ = δ0 the equation (39)

can be written as
∥h(1)

u − h(1)
v ∥ ≤ (1− β)δ0 + 4βρF, (40)

Similarly for u ∈ A and h ∈ H we can write using equation (30)

h(ℓ+1)
u − h

(ℓ+1)
h = (1− β)(h(0)

u − h
(0)
h ) + β(mu −mh). (41)
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Using reverse triangle inequality, using equation (L2) and recalling Eu∈A,h∈H ∥h(0)
u − h

(0)
h ∥ = ∆0

yields
∥h(1)

u − h
(1)
h ∥ ≥ (1− β)∆0 − 4βρF, (42)

Now define the per-layer separation ratio

r(1) =
Eu∈A,v∈B ∥h(1)

u − h
(1)
v ∥

Eu∈A,h∈H ∥h(1)
u − h

(1)
h ∥

. (43)

Using the bound in equation (40) and equation (42) we can rewrite equation (43) as follows,

r(ℓ+1) ≤ (1− β)δ0 + 4βρF

(1− β)∆0 − 4βρF
= η. (R1)

The denominator in equation (R1) is (1 − β)∆0 − 4βρF . For fixed β ∈ (0, 1) and F > 0 it is
positive whenever

(1− β)∆0 > 4βρF ⇐⇒ ρ <
1− β

4βF
∆0.

Thus, decreasing ρ (stronger hub dominance) or increasing ∆0 (clearer hub–spoke margin) ensures
the denominator is positive. Employing Assumption 2, we get η < 1. So the R1 can be writtens as

∥h(L)
u − h

(L)
v ∥

∥h(L)
u − h

(L)
h ∥

≤ η (44)

where η < 1. For the L layer, we can write,

∥h(L)
u − h

(L)
v ∥

∥h(L)
u − h

(L)
h ∥

≤ (η)L. (45)

We can state that the spoke–spoke separation decays geometrically relative to the spoke–hub sepa-
ration as depth increases, so CMA concentrates information toward the hub.

Case III: Global Basis. Let G = (V,E,w) be an undirected weighted graph with a symmetric
Laplacian L ∈ Rn×n. Its eigendecomposition is

L = UΛU⊤, U = [u1 · · · un], U⊤U = I, Λ = diag(λ1, . . . , λn), (46)

where {uk}nk=1 are orthonormal eigenvectors with eigenvalues {λk}nk=1. According to the figure 1,
there are no edges between A and B. We can define the global spectral filtering f : R→ R as

Φ = f(L) = Uf(Λ)U⊤. (47)

A global spectral filter is any matrix function

Φ = f(L) = Uf(Λ)U⊤, f(Λ) = diag(f(λ1), . . . , f(λn)).

For i ∈ V let ei ∈ Rn be the coordinate vector and set the ith row of Φ as r⊤i := e⊤i Φ.

Assumption: Hub Dominance. For each eigenvector uk, we can define the degree-weighted hub
mean as

µk(H) :=

∑
h∈H dh uk(h)∑

h∈H dh
.

Then, there exist nonnegative numbers {δk}nk=1 such that

max
i∈A∪B

∣∣uk(i)− µk(H)
∣∣ ≤ δk for all k = 1, . . . , n. (48)

Remark 1 Hub dominance ensures that δk is small. At any spoke node i ∈ A ∪B, the eigenvector
equation (Luk)(i) = λkuk(i) forces uk(i) to be a weighted average of neighbor values. When most
of i’s neighbors lie in the hub H , uk(i) must be close to the hub average µk(H), resulting in a small
δk. Larger and denser hubs shrink δk further. This hub-dominance condition informally states that
each eigenvector is nearly flat on the spoke sets and tied to the hub average.
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%[ The i-th row of Φ can be written as,

r⊤i = e⊤i Φ = e⊤i Uf(Λ)U⊤ =

n∑
k=1

f(λk)uk(i)u
⊤
k . (49)

For a ∈ A, b ∈ B using the equation (49), we can write as follows,

r⊤a − r⊤b =

n∑
k=1

f(λk)
(
uk(a)− uk(b)

)
u⊤
k . (50)

Since {uk} forms an orthonormal basis, Parseval’s identity Poulin (2020) gives

∥r⊤a − r⊤b ∥22 =

n∑
k=1

f(λk)
2
(
uk(a)− uk(b)

)2
. (51)

From the hub-dominance condition equation (48),

|uk(a)− uk(b)| ≤ |uk(a)− µk(H)|+ |uk(b)− µk(H)| ≤ 2δk. (52)

Plugging equation (52) into equation (51) and taking square roots yields

∥e⊤a Φ− e⊤b Φ∥2 ≤ 2

(
n∑

k=1

f(λk)
2 δ2k

)1/2

, (53)

where ri = eiϕ. Aso plugging equation (52) into equation (51) gives∥∥ra − rb
∥∥
2
≤ 2

∥∥f(Λ) δ∥∥
2
. (54)

Since (ΦXW )i = r⊤i XW , we have

∥(ΦXW )a − (ΦXW )b∥2 = ∥(r⊤a − r⊤b )XW∥2 ≤ ∥r⊤a − r⊤b ∥2 ∥XW∥2→2, (55)

Using equation (54), we can rewrite the equation (55) as

∥(ΦXW )a − (ΦXW )b∥2 ≤ ∥XW∥2→2 · 2

(
n∑

k=1

f(λk)
2 δ2k

)1/2

. (56)

Multi-hop message passing. Take the random-walk Laplacian Lrw = I − P where P = D−1A. A

pure k-hop propagation equals

Φk = P k = (I − Lrw)
k = fk(Lrw), fk(λ) = (1− λ)k. (57)

Now given the k-hop filtering is fk and L = Lrw gives, for any a ∈ A, b ∈ B. we obtain

∥e⊤a P k − e⊤b P
k∥2 ≤ 2

(
n∑

j=1

(1− λj)
2k δ2j

)1/2

. (58)

For Lrw, the trivial eigenpair is λ1 = 0 with u1 ∝ 1, so δ1 = 0. Given that the graph is aperiodic,
we can define

ρ := max
j≥2
|1− λj | < 1. (59)

Then. it holds that

∥e⊤a P k − e⊤b P
k∥2 ≤ 2ρk

(
n∑

j=2

δ2j

)1/2

. (60)

Thus, the difference contracts exponentially in hop count k. The same reasoning applies to any
polynomial-in-P (or L) message-passing kernel. So using the fact that r=eaP k we can write

∥r⊤a P k − r⊤b P
k∥2 ≤ 2ρk

(
n∑

j=2

δ2j

)1/2

. (61)
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Substituting equation (61) into equation (55) gives

∥(ΦXW )a − (ΦXW )b∥2 ≤ ∥XW∥2.2

(
n∑

k=1

ρkδ2(k−1)

)1/2

. (62)

Defining

C = ∥XW∥2 · 2

(
n∑

j=1

δ2j

)1/2

< 1,

We obtain the concise rate bound

∥(ΦXW )a − (ΦXW )b∥2 ≤ C · ρk.

Assume the feature head is normalized, ∥XW∥2→2 ≤ 1. Now Given the δk << 1 and 0 ≤ ρ < 1,
the geometric factor ρk dominates the decay. So the embeddings contract at the strict geometric rate
ρ ∈ (0, 1). Hence, as k →∞, the right-hand side decays to zero exponentially, and the embeddings
of a and b become indistinguishable.

A.2 THEOREM 2

For U ∈ R|C|×K with U⊤U = I and U⊤s
(0)
C = 0, define

Eλ(U) := Tr
(
U⊤(Lmix,C + λMC)U

)
. (63)

Since Y ⋆ ∈ R|C|×K , denote its degree-normalized indicator matrix according to diffusion, cohesion,
and diffusion margin we can write Tr(Y ⋆⊤MCY

⋆) = 0. Hence we can write,

Eλ(Y
⋆) = Φmix(S

⋆). (64)

(Discrete exactness). Let S be any other balanced partition that merges node across parts of S⋆,
and let Y be its degree-normalized indicator. By the mixed-geometry gap and incompatibility mass,
we can write, Ψ(S) := Tr(Y ⊤MCY ),

Eλ(Y ) = Φmix(S) + λΨ(S) ≥ Φmix(S
⋆) + ∆mix + λΨmin.

Thus, if
λ ≥ λ⋆ := ∆mix/Ψmin, (3)

then Eλ(Y ) ≥ Eλ(Y
⋆) with strict inequality whenever S merges across parts. Hence, Y ⋆ is the

unique minimizer among balanced indicator matrices.
(Spectral relaxation). Consider any feasible U that is orthonormal and balanced. Then, we have
(a) If Tr(U⊤MCU) > 0, then U mixes across ground truth nodes. Given the diffusion margin

Tr(U⊤MCU) ≥ Ψmin, (4)

using equation (63), equation (64), and equation (A.2), we get

Eλ(U) ≥ λΨmin ≥ Φmix(S
⋆) + ∆mix > Eλ(Y

⋆)

Hence no minimizer can have positive barrier.

(b) Let U⋆ minimize Eλ. Since MC is strictly positive on cross–part pairs (i.e., (MC)ij > 0
whenever i ∈ Sk, j ∈ Sℓ, k ̸= ℓ), the only way for the cross–part node mass ⟨MC , P

⋆⟩ to be zero is
that P ⋆ := U⋆(U⋆)⊤ has no off-block entries. Equivalently, P ⋆ is block–diagonal with respect to
the ground-truth partition S⋆. So from (a), we can write Tr(U⋆⊤MCU

⋆) = 0. So given (MC)ij > 0
for all i ∈ S⋆

k , j ∈ S⋆
ℓ , k ̸= ℓ (diffusion margin), Tr(U⋆⊤MCU

⋆) = 0 forces(
U⋆U⋆⊤)

ij
= 0 for all i ∈ S⋆

k , j ∈ S⋆
ℓ , k ̸= ℓ, (S6)

i.e., the projector U⋆U⋆⊤ is block–diagonal w.r.t. S⋆. After an orthogonal change of basis in the
columns, each column of U⋆ can be taken to be supported on a single part S⋆

k .
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(c) Within–part optimal directions. Inside any fixed part S⋆
k , the mixed Laplacian Rayleigh quo-

tient is minimized (uniquely, under the balance constraint) by the degree-normalized constant on that
part (the corresponding column of Y ⋆). Any vector orthogonal to that constant has strictly larger
Rayleigh energy. So let’s fix a part S⋆

k . Over vectors v supported on S⋆
k and orthogonal to s

(0)
C , the

Rayleigh quotient

R(v) :=
v⊤Lmix,C v

∥v∥22
is minimized uniquely by the degree–normalized constant y⋆k on S⋆

k . Because we must pick exactly
K orthonormal directions overall and each lives in a distinct part by (b), the optimal choice is one
constant per part. So given any v ⊥ y⋆k has R(v) > R(y⋆k). Therefore, among all K–column
block–supported U , the minimal trace

Tr
(
U⊤Lmix,CU

)
=

K∑
m=1

R(um)

is attained by choosing exactly one constant per part, so

span(U⋆) = span(Y ⋆). (65)

(d) Bottom–K eigenspace. Let Aλ := Lmix,C + λMC . Any orthonormal basis of span(Y ⋆) min-
imizes the relaxed objective, hence the optimal relaxed subspace equals the bottom–K eigenspace
of Aλ on the balanced subspace. If λK+1(Aλ) − λK(Aλ) > 0, this subspace is unique up to rota-
tion, and standard balanced rounding (e.g., K–means on rows or a linear/MLP head) recovers S⋆.
Conclusion. For λ ≥ λ⋆, every minimizer of the spectral relaxation spans the degree-normalized in-
dicator subspace of S⋆. Equivalently, the bottom-K eigenspace of Lmix,C+λMC equals span(Y ⋆),
so balanced rounding (or a simple MLP head) recovers S⋆ exactly.

A.3 PROOF OF THEOREM 3

Set up two distinct, non-overlapping small clusters A,B ⊂ V , next to a significant hub region
H ′ ⊂ V , ensuring that A ∩ B = ∅, A ∩H ′ = ∅, B ∩H ′ = ∅. Let xA and xB be unit-norm
normalized indicator signal vectors that exist only in clusters A and B. This means that (xA)i = 0
for every node i /∈ A.

Let F : R|V | → R|V | be a single linear filter. A stack of L layers of a filter is defined as F (L) =
FL · · · F1, where eachFℓ is a linear filter. The separation ratio of two cluster signals after L filtering
layers for pre-filtering embeddings is given by

r(L) =

∥∥F (L)xA −F (L)xB

∥∥
2

∥xA − xB∥2
.

The filter used on region A takes the form F (L)xA, and the filter used on region B is referred to
asF (L)xB . The filter F (L) is diagonal in the localized orthonormal basis, which means that it shifts
the scale of each coordinate by the gains gk. We will show that ⟨F (L)xA, F

(L)xB⟩ = 0, which
means that there is no cross-region leakage. We will also show that the difference between the two
signals after filtering stays the same within a scaling factor, precisely, gmin ≤ r(L) ≤ gmax. This
suggests that the filter restricts regional patterns and preserves their contrast, modifying only their
magnitude through diagonal gains.

Let T = [t1, . . . , tn] ∈ Rn×n be an orthonormal, spatially localized basis (T⊤T = TT⊤ = I)
whose bases have disjoint supports across the regions A,B,H , where every column tk is supported
fully inside exactly one of A, B, or H . We can define the index sets as ,

ΩA := {k : supp(tk) ⊆ A}, ΩB := {k : supp(tk) ⊆ B}, ΩH := {1, . . . , n} \ (ΩA ∪ ΩB).

Assume each layer Fℓ (ℓ = 1, . . . , L) is diagonal in the T -coordinates:

Fℓ = T diag
(
h(ℓ)

)
T⊤, h(ℓ) ∈ Rn.
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Then the L-layer stack equals

F (L) := FL · · ·F1 = T diag(g)T⊤, gk :=

L∏
ℓ=1

h
(ℓ)
k .

Now, any signal x ∈ R|V | can be expanded as x = Tc, where c = T⊤x. Localization means that an
A-supported component has coefficients supported only on ΩA. So we can write,

xA = TcA, (cA)k = 0 for k /∈ ΩA, xB = TcB , (cB)k = 0 for k /∈ ΩB .

Since T is orthonormal, ⟨xA, xB⟩ = c⊤AcB = 0, and ∥x∥2 = ∥T⊤x∥2.
No cross-region leakage. Using F (L) = Tdiag(g)T⊤,

⟨F (L)xA, F
(L)xB⟩ =

(
diag(g)cA

)⊤(
diag(g)cB

)
=
∑
k

g2k (cA)k(cB)k = 0,

because the supports of cA and cB are disjoint.

Separation bounds. From orthogonality and disjoint supports,

∥xA − xB∥22 = ∥cA∥22 + ∥cB∥22. (66)

Applying F (L) gives

∥F (L)xA − F (L)xB∥22 = ∥diag(g)cA∥22 + ∥diag(g)cB∥22 =
∑
k

g2k
(
(cA)

2
k + (cB)

2
k

)
.

Let gmin = mink |gk| and gmax = maxk |gk|. Then

g2min

(
∥cA∥22 + ∥cB∥22

)
≤ ∥F (L)xA − F (L)xB∥22 ≤ g2max

(
∥cA∥22 + ∥cB∥22

)
.

Combining with equation (66) and taking square roots yields the separation ratio

r(L) :=
∥F (L)xA − F (L)xB∥2

∥xA − xB∥2
satisfies gmin ≤ r(L) ≤ gmax.

Under diagonal, region-localized filtering, A and B maintain orthogonality regardless of how many
layers there are. The only thing that affects their separation is the coordinate-wise gains {gk}: the
ratio r(L) is squeezed between the smallest and largest magnitudes of those gains.

A.4 PROOF OF THEOREM 4

At Level 2 of the hierarchy, we are applying the HSL algorithm. Let’s denote the clusters as A,
B, and H, where A = |a|, B = |b|, H = |M |, and a, b << M . Now we assume their means by
µH′ , µA, µB with µA ̸= µB . Also, since we assumed the encoder output X is constant within each
cluster, its inner product with any such wavelet (inter-class wavelets) vanishes due to the orthogonal
property.

Define the global scaling and cluster-contrast basis vectors as

s := 1
M+a+b 1,

wA,H :=

√
a(M+a)

M 1A −
√

M(M+a)
a 1H ,

wB,H :=

√
b(M+b)

M 1B −
√

M(M+b)
b 1H .

(67)

where 1A, 1B and 1H are indicator vectors for clusters A B, and H respectively. These are the only
basis vectors with nonzero projection on constant-per-cluster signals.

Now define the projector of this basis as

P := ss⊤, W := wA,Hw⊤
A,H + wB,Hw⊤

B,H .

The Haar filter is defined as

Φ := λscP + λwavW, 0 < λsc ≤ λwav. (68)
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According to the encoder design, it follows that P +W = I on that subspace; every such vector x
decomposes uniquely as x = Px+Wx, where Px is the hub-dominated mean component and Wx
encodes the spoke–hub contrasts. The filter then suppresses the former and amplifies the latter as,

Φx = λscPx+ λwavWx,
λwav

λsc
= λgain ≫ 1.

Let’s denote the post-filter value of the node is h. For any cluster T ∈ {A,B,H}, denote h̄T =
1
|T |
∑

i∈T hi as the mean of embedding h over T . The mean embeddings for A,B and H can be
defined as

h̄A = λscx̄+ λwav
cA
a
,

h̄B = λscx̄+ λwav
cB
b
,

h̄H = λscx̄− λwav

(
M

a
cA +

M

b
cB

)
.

(69)

where x̄ = MµH′+aµA+bµB

M+a+b and cA = aM
M+a (µA − µH′), cB = bM

M+b (µB − µH′).

To assess the separation between clusters A and B after filtering, subtract their means and square
the means using equation (69), we get

∥h̄A − h̄B∥2 = λ2
wav

M

a+ b
∥µA − µB∥2. (70)

Similarly, for the difference between cluster A and the hub H using equation (69), we get

h̄A − h̄H =
(
λsc x̄+ λwav

cA
a

)
−
(
λsc x̄− λwav

cA + cB
M

)
= λwav

(
cA
a

+
cA + cB

M

)
. (71)

Then, we have
∥h̄A − h̄H∥2 ≲ λ2

wav

a

M
∥µA − µH′∥2. (72)

Let’s define the two key distances after filtering as

∆AB := ∥h̄A − h̄B∥, ∆AH := ∥h̄A − h̄H∥, (73)

where h̄A, h̄B , and h̄H are the cluster means of the filtered features on A, B, and H respectively.

Substituting equation (73) into equation (70) we get

∆2
AB = λ2

wav

M

a+ b
∥µA − µB∥2, (74)

and again substituting equation (73) into equation (72), we have

∆2
AH ≤ λ2

wav

a

M
∥µA − µH′∥2. (75)

Dividing equation (74) by equation (75), we obtain

∆AB

∆AH
≳

√
λ2
wav

M
a+b∥µA − µB∥2√

λ2
wav

a
M ∥µA − µH′∥2

(76)

=

√
M/(a+ b)√

a/M
· ∥µA − µB∥
∥µA − µH′∥

(77)

=
M

a+ b
· ∥µA − µB∥
∥µA − µH′∥

. (78)

Now, before applying the basis, we applied the heterophyllous encoder, which gave us the mean
embeddings of the cluster.
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Work in the k-dimensional spectral embedding X whose rows are the top-k eigenvectors (optionally
row-normalized). In the ideal block-constant case

xi =


µA (i ∈ A),

µB (i ∈ B),

µH′ (h ∈ H),

where µA, µB , µH′ ∈ Rk are the spoke and hub means. Normalize the cluster means to have equal
norm (standard in spectral clustering; if not, apply layer normalization):

∥µA∥ = ∥µB∥ = ∥µH′∥ = 1.

Spoke–spoke margin. Assume a spectral margin between A and B: there exists κspec > 0 such
that

⟨µA, µB⟩ ≤ −κspec. (79)

That is, the spoke means point in sufficiently different directions in spectral space. Then the
spoke–spoke mean gap is

δAB := ∥µA − µB∥ = ∥µA∥2 + ∥µB∥2 − 2⟨µA, µB⟩ ≥ 2(1 + κspec). (A)

Spoke–hub gap. By unit normalization, the spoke–hub mean gap satisfies

∆AH := ∥µA − µH′∥ = 2− 2⟨µA, µH′⟩ ≤ 2, (B1)

since ⟨µA, µH′⟩ ≥ −1. In practice, if µH′ is a mixture or centroid influenced by both spokes,
then |⟨µA, µH′⟩| is not near −1, so ∆AH ≤ CH < 2 for some constant CH . To be maximally
conservative, one may take CH = 2.

Ratio bound in spectral space. Combining equation (A) and equation (B1) yields

δAB

∆AH
≥ 2(1 + κspec)

2
= 1 + κspec =: c0 > 0. (C)

If a tighter constant CH is used in equation (B1), replace the denominator 2 by CH to obtain an even
larger c0.

Plugging into HMH post-filter formula. From the HSL mean-level derivation in equation (78),
we have

∆AB

∆AH
=

M

a+ b
· δAB

∆AH
≥ M

a+ b
· c0.

Because M ≫ a, b, the right-hand side is strictly greater than 1 (and actually increases with M ).
Therefore,

∆AB > ∆AH .

So we can say that HSL avoids hub aliasing: the spoke–spoke separation remains larger than
spoke–hub overlap, and the ratio improves with scale.

A.5 THEORM 5

Case I: Oversquashing: Oversquashing develops when gradients (or messages) from far nodes
shrink exponentially with graph distance, preventing long-range flow of data (Giraldo et al., 2023).
The Jacobian of the L-layer embedding of node u with respect to the input of node v can be defined
as J (L)

uv =
∂h(L)

u

∂xv
where δxv be a perturbation at node v ∈ G and δh

(L)
u the change in the output at

node u ∈ G. Given the shortest-path distance dG(u, v), oversquashing occurs if there exist constants
0 < σ < 1 and D∗≥ 1 such that∥∥J (L)

uv

∥∥
2
≤ σ dG(u,v), ∀L, ∀u, v with dG(u, v) ≥ D∗.
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Let the fine-level input features be h(0) = x ∈ RN0×d0 with h
(0)
i = xi, i ∈ V (0). For each

macro-layer ℓ = 0, . . . , L− 1 of the hiearachy we can define the follwing ,

Coarsen: h̃(ℓ+1) = P (ℓ+1)h(ℓ) ∈ RNℓ+1×dℓ

Haar filter: h̄(ℓ+1) = Φ(ℓ)h̃(ℓ+1)

Unpool: h(ℓ+1) = P (0)h̄(ℓ+1),

where P (ℓ+1) ∈RNℓ+1×Nℓ coarsens the graph, Φ(ℓ) = U (ℓ) diag
(
λ
(ℓ)
sc ,Λ

(ℓ)
wav

)
U (ℓ)⊤ is the (degree-

aware) Haar filter, and P (0) ∈RN0×Nℓ+1 up-samples back to the original nodes. Composing them
gives h(ℓ+1) = P (0)Φ(ℓ)P (ℓ+1)h(ℓ). So we define the linear macro-layer map of messages as
M (ℓ) = P (0)Φ(ℓ)P (ℓ+1) where M (ℓ) : RNℓ×dℓ → RN0×dℓ+1 .

With each macro-layer linear,

h(ℓ+1) = M (ℓ) h(ℓ), ℓ = 0, . . . , L− 1, h(0) = x, (80)

So by unrolling the equation (80) we can write,

h(1) = M (0)x, h(2) = M (1)M (0)x, . . . , h(L) = M (L−1) · · ·M (0)x. (81)

Using the chain rule, we can find the change of the message at layer L in terms of feature X ,

∂h(L)

∂x
= M (L−1) · · ·M (0),

hence

J (L)
uv =

[L−1∏
ℓ=0

M (ℓ)
]
u,v

. (82)

After ℓ layers of coarsenings, the u→ v effective path has length k(ℓ) ≤ ⌈d/rℓ⌉ for some con-
traction r > 1. Assume u and v map to super-nodes connected by a path i1, . . . , ik(ℓ) ⊆ V (ℓ).
Define the path–tube subspace T (ℓ) := span{ei1 , . . . , eik(ℓ)

} ⊂ RNℓ and its pooled image
S(ℓ) := P (ℓ+1)T (ℓ) ⊂ RNℓ+1 . By the restricted operator norm we can write (Horn & Johnson,
2012),

∥M (ℓ)∥2, T (ℓ) = sup
x∈T (ℓ)

∥x∥=1

∥P (0)Φ(ℓ)P (ℓ+1)x∥ ≥ sup
z∈S(ℓ)

∥z∥=1

∥P (0)Φ(ℓ)z∥. (83)

(i) Pool/Unpool stability. Along the tube, assume the pooling and unpooling are tube-preserving.
So, there exist constants cp, cu ∈ (0, 1] ( e.g., minimal soft-assignment mass on the tube) such that

∥P (ℓ+1)x∥2 ≥ cp ∥x∥2 ∀x ∈ T (ℓ), ∥P (0)z∥2 ≥ cu ∥z∥2 ∀z ∈ S(ℓ). (A3)

(ii) Haar-filter passband. The Haar filter has a scale-local passband floor on S(ℓ):

∥Φ(ℓ)z∥2 ≥ cϕ ∥z∥2 ∀z ∈ S(ℓ), cϕ := inf
ℓ
min

{
λ(ℓ)
sc , (λ

(ℓ)
wav,min)

2
}
> 0, (84)

where λ
(ℓ)
wav,min is the smallest wavelet gain at level ℓ. The model allows the cross-entropy loss to

determine how much the Haar diagonal filter gain should be. If themmodel choose to λ
(ℓ)
wav,min≥ 1

then we will have cϕ≥ infℓ λ
(ℓ)
sc .)

Combining equation (83)–equation (84) gives a per-layer tube lower bound

∥M (ℓ)∥2, T (ℓ) ≥ cu cϕ cp =: c > 0. (A5)

Therefore, from equation (82),

∥J (L)
uv ∥2 ≥

L−1∏
ℓ=0

∥M (ℓ)∥2, T (ℓ) ≥ (c)L. (85)
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After ℓ rounds of coarsening, k(ℓ) ≤ ⌈d/rℓ⌉, so choosing depth

L =
⌈
logr d

⌉
is sufficient to compress the path to O(1). Substituting into equation (85) yields

∥J (L)
uv ∥2 ≥ (c) ⌈logr d⌉ = d log c/ log r · (c)O(1) ≡ d−α · (c)O(1), α =

− log c

log r
≥ 0. (86)

The bound of equation (86) is, at worst, a polynomial lower bound in the graph distance d. But the
oversquashing phenomenon would require a uniform exponential upper bound ∥J (L)

uv ∥2 ≤ σd with
some σ ∈ (0, 1), for all L. A polynomial lower bound cannot be dominated by σd as d → ∞.
Hence, HSL is able to avoid oversquashing.
Case II: Oversmoothing: Oversmoothing means different class means collapse for distinct classes
(e.g., spokes) A,B,∥µ(L)

A − µ
(L)
B ∥ → 0 as depth L grows. In theorem 4 (A.4), we have proved,

∥µ(L)
A − µ

(L)
B ∥

∥µ(L)
A − µ

(L)
H ∥

≥
√
M
(
1− 2√

M

)
> 1, (87)

so ∥µ(L)
A − µ

(L)
B ∥ > ∥µ(L)

A − µ
(L)
H ∥. Thus, any decay of the spoke–spoke gap forces at least as

fast (indeed faster) decay of the spoke–hub gap. Now, we can assume the spoke consists of nodes
of the same class, and hubs are the neighbors of the spokes. Equation equation (87) still holds for
the assumption. So we can say if over any class means it is separated from the other class, node
means irrespective of the neighbor node influence. This ensures that limL→∞ ∥µ(L)

A − µ
(L)
B ∥ ̸= 0,

avoiding over-smoothing. This completes the proof.

DATA SOURCE

The PyTorch Geometric TUDatasetwrapper provided us with access to all the graph-classification
datasets used in this work. The TU collection comprises more than 120 datasets, encompassing
bioinformatics, chemistry, and social networks. We used the regular versions that come with PyG,
unless otherwise specified. We didn’t do any additional cleaning of the data.

A.6 DATASET DESCRIPTIONS

• PROTEINS. A biomolecular dataset of 1,113 graphs, with nodes representing protein sec-
ondary structure elements (SSEs) and edges indicating proximity in the 3D structure. The
graphs are labeled as either enzyme or non-enzyme class. The average graph contains 39.06
nodes and 72.82 edges. The task at hand is binary classification.

• MUTAG. A chemical compound dataset consisting of 188 graphs, with nodes representing
atoms and edges representing chemical bonds. Graph labels show if a certain bacterium can
cause mutations. On average, graphs contain 17.93 nodes and 19.79 edges. Task: binary
classification.

• D&D. A protein structure dataset consisting of 1,178 graphs, each representing a protein
with amino acid nodes and spatially near edges. The label determines if the protein is
an enzyme. Graphs are large on average (284.32 nodes and 715.66 edges), which makes
scaling this dataset challenging. Task: binary categorization.

• NCI1 and NCI109.The National Cancer Institute provides two significant molecular graph
databases, each including over 4,000 graphs. Nodes represent atoms, whereas edges corre-
spond to bonds. Labels indicate a compound’s activity against non-small cell lung cancer
(NCI1) or ovarian cancer (NCI109). Average graph size is ∼30 nodes with ∼32 edges.
Task: binary classification.

• Mutagenicity. A large extension of MUTAG with 4,337 molecular graphs. The label
indicates a mutagenic effect on a bacterial strain. Average graph size: 30.32 nodes and
30.77 edges. Task: binary classification.

• IMDB-MULTI. A dataset of 1,500 ego-networks from the IMDB actor collaboration graph
that shows how people work together. Each graph illustrates the connections between per-
formers in the same movie. One of three movie genres is represented by each label. The
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average number of nodes in a graph is 13.0, while the average number of edges is 65.94.
Task: Classifying into three categories.

• REDDIT-12K. A social network dataset with 11,929 graphs representing discussion
threads on Reddit. Nodes represent users, edges indicate interaction, and graph labels cor-
respond to the subreddit. The average graph size is large (∼233 nodes and 4,700+ edges),
making it a standard benchmark for scalability. Task: multi-class classification.

In Table 4, we described the number of edges, classes, average degree, and average number of edges.
We also measured the feature homophily ratio of the datasets using cosine similarity between fea-
tures. In Figure 5, we showcase the structure homophily of the TU datasets. The cosine homophily
is calculated as follows.

Cosine Homophily. We compute the cosine-based homophily as:

Hcos 01 =
1

|E|
∑

(i,j)∈E

max (0, cos(xi,xj))

where cos(xi,xj) is the cosine similarity between node feature vectors xi and xj , and E denotes
the edge set of the graph. This measure captures the degree of alignment between the features of
connected nodes.
The binary threshold homophily is calculated as follows,
Binary Threshold Homophily. We also compute a thresholded binary version:

Hbin(τ) =
1

|E|
∑

(i,j)∈E

I [cos(xi,xj) ≥ τ ]

where I[·] is the indicator function and τ = 0.5 by default. This measure reflects the fraction of
edges connecting nodes that are sufficiently similar.

Figure 5: Cosine Feature similarity score for different graph classification datasets

A.3 DATASET STATISTICS

The hyperparameter search is described in detail.

A.7 HYPERPARAMETER SETTINGS

Shared settings (all datasets). The following is the description of the hypermeter settings.

• Optimization. We trained all models using the Adam optimizer with a learning rate of
3 × 10−3 and weight decay of 10−4 for 100 epochs, reporting test accuracy at the epoch
with the best validation performance, while logging training, validation, and test losses and
accuracies at each epoch.

• Geometry. Lmix = α1Ltopo + α2Lfeat with α = (0.5, 0.5); diffusion barrier MC with
strength λ = 0.1 and final operator LC = Lmix + λMC . Ltopo from the undirected input
graph (no added self-loops); Lfeat from FAISS kNN (IndexFlatL2), Gaussian weights with
median–distance bandwidth, symmetrized by max(W,W⊤).
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Table 4: Benchmark datasets from the TU collection. |G|: number of graphs; Avg. |N |: average
number of nodes; Avg. |E|: average number of edges.

Dataset |G| Classes Avg. |N | Avg. |E| Domain

PROTEINS 1,113 2 39.06 72.82 Biomolecular
MUTAG 188 2 17.93 19.79 Chemical
D&D 1,178 2 284.32 715.66 Biomolecular
NCI1 4,110 2 29.87 32.30 Chemical
NCI109 4,127 2 29.68 32.13 Chemical
Mutagenicity 4,337 2 30.32 30.77 Chemical
IMDB-MULTI 1,500 3 13.00 65.94 Social Network
REDDIT-12K 11,929 11 232.96∗ 4,700∗ Social Network

• Diffusion. Heat kernel Ht ≈ e−tLmix with theat=0.6; Chebyshev order 25; diffusion kNN
via FAISS on the diffusion embedding. Dataset-specific kfeat, kdiff (see table).

• Balanced relaxation. We estimate the bottom–K nontrivial eigenspace of the augmented
operator by solving minU∈R|C|×K Tr(U⊤LCU) s.t. U⊤U = I and U⊤s = 0, where s ∝
D1/21. The orthogonality U⊤s = 0 removes the degree-weighted constant mode and
enforces degree-balanced partitions (mitigates hub magnetism). In practice we run block
power on B = I−λ−1

maxLC (12 iters): per step Q←BQ, project Q←Q− s(s⊤Q) to keep
Q⊤s = 0, then thin QR to re-orthonormalize; the final U (columns of Q) approximates the
desired bottom–K eigenvectors.

• Assignments. Margin-scaled Sinkhorn (temperature τ=0.9, 10 iters) with “cover-all”
hardening; switch to margin–softmax by assign method="softmax".

• Coarsening. X ′ = S⊤X , A′ = S⊤AS; build to the target depth; the classifier uses levels
0..L−2 (top 1-node level omitted).

• Haar basis. Class-aware Haar vectors are propagated down the tree with degree normal-
ization (degree-weighted lifting); the uniform variant is used only in ablations.

• Classifier. Per level: linear projection to 32 dims, ReLU, dropout 0.3, learnable diagonal
spectral filter; per-level outputs unpooled to level 0 and concatenated; final linear layer
outputs logits. Spectral block caps to max K if Kℓ exceeds the cap.

• Batching / features. PyG DataLoader (dataset-specific batch size); shuffle for train
only. If a graph lacks node features, a constant 1-d feature is used.

• Loss. Ltotal = 0.8LCE + λdiv Ldiv with λdiv=0.1; Lrec is monitored but not weighted in
main runs (λrec=0).

• Compute / reproducibility. Tree construction on CPU in float64; classifier on GPU if
available. Seed = 42 for splits and internal randomness.

Table 5: Per-dataset hyperparameters.

Dataset Levels L Ratio kfeat kdiff max K Batch size Split

PROTEINS 5 0.5 4 4 64 60 80/10/10
MUTAG 4 0.8 4 4 8 60 80/10/10
D&D 5 0.3 8 8 128 16 80/10/10
NCI1 5 0.4 6 6 64 64 80/10/10
NCI109 5 0.4 6 6 64 64 80/10/10
Mutagenicity 4 0.8 4 4 8 60 80/10/10
IMDB–MULTI 4 0.5 4 4 32 128 80/10/10
REDDIT–12K 5 0.3 8 8 128 8 80/10/10

B NODE CLASSIFICATIONS DATASETS AND EXPERIMENTAL SETUP

Cora & Citeseer (citation networks). Nodes represent publications, and edges represent citation
links; features are bag-of-words vectors, and labels are subject areas (7 classes for Cora, 6 for

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Ablation across TU graph classification datasets Mean std over 5 seeds

Variant PROTEINS MUTAG D&D NCI1 NCI109 Mutagenicity IMDB-MULTI

Full HSL (ours) 78.5± 0.7 89.5± 0.8 78.2± 0.6 80.1± 0.5 79.8± 0.6 88.9± 0.5 52.4± 1.0
Topology-only 76.8± 0.9 87.3± 0.9 76.1± 0.8 78.5± 0.6 78.1± 0.7 86.8± 0.7 50.1± 1.2
w/o barrier MC 77.0± 0.8 88.7± 0.7 76.8± 0.7 78.3± 0.7 78.0± 0.6 88.1± 0.6 49.0± 1.3
w/o degree-aware Haar 77.5± 0.7 88.6± 0.8 77.1± 0.7 79.0± 0.6 78.8± 0.7 88.0± 0.6 51.0± 1.1
w/o balanced relaxation 76.1± 0.9 88.9± 0.7 75.6± 0.8 77.2± 0.7 77.0± 0.8 88.4± 0.5 48.3± 1.2

Citeseer). We follow the common semi-supervised splits: for Cora, 140 training nodes (20 per
class), 500 validation, and 1000 test; for Citeseer, 120 training (20 per class), 500 validation, and
1000 test.

Actor (co-occurrence network). Nodes are actors from Wikipedia; an edge connects two actors
that co-appear on a page. Features are keyword counts; labels denote actor categories (5 classes).
We use the standard split with 100 training nodes (20 per class), 500 validation nodes, and 1000 test
nodes.

Chameleon & Squirrel (Wikipedia page networks). Nodes are pages; undirected edges reflect
mutual hyperlinks. Features are keyword indicators; labels partition pages by traffic (5 classes each).
We use the “filtered” graphs and the dense splits: 60% train, 20% validation, 20% test.

WebKB: Texas, Wisconsin, Cornell. Nodes represent computer science department webpages,
and edges represent hyperlinks. Features are bag-of-words; labels indicate page type (5 classes).
We adopt the standard semi-supervised protocol: 20 labeled nodes per class for training, 30 per
class for validation, and the remainder for testing.

Table 7: Edge homophily ratio h (fraction of same-label edges). Higher means more homophily.
Values from a unified benchmark summary.

Dataset Cora Citeseer Pubmed Chameleon Squirrel Actor Cornell Wisconsin Texas

h 0.81 0.74 0.80 0.23 0.22 0.22 0.30 0.21 0.11

Definition. We use edge homophily h(G) = 1
|E|
∑

(i,j)∈E 1{yi = yj}, following prior work. Values
in Table 7 are taken from a single source for consistency.1

Table 8: Tree & assignment hyperparameters (per dataset). L: hierarchy depth; Ratio: target
cluster ratio per level; kfeat: FAISS kNN in feature space; kdiff: FAISS kNN in diffusion space; t:
heat diffusion scale; Cheb: Chebyshev order; α: blend in Lmix = α1Ltopo + α2Lfeat; λ: barrier
strength in LC = Lmix + λMC ; Assign: Sinkhorn parameters; max K: spectral cap per level.

Dataset L Ratio kfeat kdiff t Cheb α λ Assign (τ /iters) max K Split

Cora 5 0.50 8 8 0.6 25 (0.5,0.5) 0.10 Sinkhorn (0.9/10) 64 20/500/1000
Citeseer 5 0.50 8 8 0.6 25 (0.5,0.5) 0.10 Sinkhorn (0.9/10) 64 20/500/1000
Actor 5 0.50 8 10 0.6 25 (0.5,0.5) 0.10 Sinkhorn (0.9/10) 96 100/500/1000
Chameleon 5 0.50 12 12 0.6 25 (0.5,0.5) 0.10 Sinkhorn (0.9/10) 128 60%/20%/20%
Squirrel 5 0.50 12 15 0.6 25 (0.5,0.5) 0.10 Sinkhorn (0.9/10) 128 60%/20%/20%
Texas 4 0.80 4 4 0.6 25 (0.5,0.5) 0.10 Sinkhorn (0.9/10) 32 20/30/rest
Wisconsin 4 0.80 4 4 0.6 25 (0.5,0.5) 0.10 Sinkhorn (0.9/10) 32 20/30/rest
Cornell 4 0.80 4 4 0.6 25 (0.5,0.5) 0.10 Sinkhorn (0.9/10) 32 20/30/rest

B.1 HEAT KERNEL APPROXIMATION.

To efficiently approximate the heat diffusion operator exp(−tL) on graphs, we use a truncated
Chebyshev expansion, which avoids the need for costly eigendecompositions. Given a normalized

1Homophily ratios and dataset statistics are from the ICLR’22 study “Is Homophily a Necessity for Graph
Neural Networks?”, Table 8.
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Table 9: Training & model hyperparameters (per dataset).

Dataset Hidden Drop Epochs Opt (lr/wd) Loss Batch

Cora 48 0.50 100 Adam (3×10−3/ 10−4) 0.8LCE + 0.1Ldiv 1
Citeseer 64 0.60 100 Adam (3×10−3/ 10−4) 0.8LCE + 0.1Ldiv 1
Actor 64 0.40 100 Adam (3×10−3/ 10−4) 0.8LCE + 0.1Ldiv 1
Chameleon 96 0.40 150 Adam (3×10−2/ 10−4) 0.8LCE + 0.1Ldiv 1
Squirrel 128 0.35 140 Adam (3×10−3/ 10−4) 0.8LCE + 0.1Ldiv 1
Texas 32 0.40 100 Adam (3×10−3/ 10−4) 0.8LCE + 0.1Ldiv 1
Wisconsin 32 0.35 150 Adam (3×10−3/ 10−4) 0.8LCE + 0.1Ldiv 1
Cornell 24 0.40 140 Adam (3×10−3/ 10−4) 0.8LCE + 0.1Ldiv 1

graph Laplacian L (with spectrum in [0, 2]), we shift it to L̃ = L − I , so its spectrum lies within
[−1, 1], the domain of Chebyshev polynomials.

The heat kernel is then approximated as:

exp(−tL) ≈ e−t

[
I0(t)T0(L̃) + 2

K∑
k=1

(−1)kIk(t)Tk(L̃)

]
,

where Ik(t) are modified Bessel functions of the first kind, and Tk(·) denotes the k-th Chebyshev
polynomial. This expression is applied to a probe matrix Ω ∈ Rn×r, yielding an efficient approx-
imation of exp(−tL)Ω without explicitly forming the exponential. In practice, this approximation
converges rapidly with a modest number of terms (e.g., K=30), and is particularly useful in large-
scale graph learning.
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