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Abstract

This paper presents a method of learning LOcal-GlObal Contextual Adaptation for1

fully end-to-end and fast bottom-up human Pose estimation, dubbed as LOGO-2

CAP. It is built on the conceptually simple center-offset formulation that lacks3

inaccuracy for pose estimation. When revisiting the bottom-up human pose es-4

timation with the thought of “thinking, fast and slow” by D. Kahneman, we in-5

troduce a “slow keypointer” to remedy the lack of sufficient accuracy of the “fast6

keypointer”. In learning the “slow keypointer”, the proposed LOGO-CAP lifts the7

initial “fast” keypoints by offset predictions to keypoint expansion maps (KEMs)8

to counter their uncertainty in two modules. Firstly, the local KEMs (e.g. 11×11)9

are extracted from a low-dimensional feature map. A proposed convolutional mes-10

sage passing module learns to “re-focus” the local KEMs to the keypoint attraction11

maps (KAMs) by accounting for the structured output prediction nature of human12

pose estimation, which is directly supervised by the object keypoint similarity13

(OKS) loss in training. Secondly, the global KEMs are extracted, with a suffi-14

ciently large region-of-interest (e.g., 97 × 97), from the keypoint heatmaps that15

are computed by a direct map-to-map regression. Then, a local-global contextual16

adaptation module is proposed to convolve the global KEMs using the learned17

KAMs as the kernels. This convolution can be understood as the learnable offsets18

guided deformable and dynamic convolution in a pose-sensitive way. The pro-19

posed method is end-to-end trainable with near real-time inference speed, obtain-20

ing state-of-the-art performance on the COCO keypoint benchmark for bottom-up21

human pose estimation. With the COCO trained model, our LOGO-CAP also22

outperforms prior arts by a large margin on the challenging OCHuman dataset.23

1 Introduction24

1.1 Motivation and Objective25

Human pose is highly articulated with large structural and appearance variations. 2D human pose26

estimation in images is a classic structured output prediction problem, and remains a challenging one27

in computer vision and machine learning. Human pose estimation has numerous applications such28

as people-centered image understanding, autonomous driving and Augmented Reality (AR). With29

the recent resurgence of deep neural networks (DNNs), the performance of human pose estimation30

has witnessed remarkable improvement [12, 3, 15, 22, 11]. This paper focuses on the deep learning31

based problem formulation.32

There are two deep learning based paradigms for human pose estimation in the literature. The top-33

down paradigm consists of human detection and single human pose estimation in each detected34

human bounding box [12]. The bottom-up paradigm also includes two components: human pose35

keypoint detection and keypoint grouping [3]. The top-down paradigm often obtains better accuracy36

performance, but suffers from its inferior efficiency since the computational cost of the single human37
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Figure 1: Illustration of the proposed LOGO-CAP for bottom-up human pose estimation. It is built
on the center-offset representation. See text for detail.

pose estimation component is linearly scaled with respect to the number of detected human bounding38

boxes in an image. It is also largely affected by the performance of the human detection component39

(e.g., not handling occlusion very well). Thanks to its efficiency, especially in real-time applications,40

the bottom-up paradigm becomes more and more attractive. For both paradigms, state-of-the-art41

methods often are not fully end-to-end trained and utilize different post-hoc processing modules42

to improve the performance. This paper is interested in developing a fully end-to-end bottom-up43

paradigm and aims at bridging its performance gap with the top-down paradigm.44

For the bottom-up paradigm, the recently proposed center-offset approach [6, 28, 26, 11] is a con-45

ceptually simple formulation (see the left of Fig. 1 for an illustrative example and Fig. 3 for the46

detailed workflow). It alleviates the need of sophisticated keypoint grouping. When introducing47

human keypoints centers (i.e., anchors) by treating objects as points [35], it encodes a human pose48

as a star structure using the offset vectors of human keypoints relative to the anchors. The main49

challenge of the center-offset regression paradigm lies in the difficulty of accurately learning offset50

vectors with large structural variations, especially the long-range ones, which also leads to inferior51

performance. This paper builds on the center-offset approach and addresses its drawback.52

1.2 Method Overview53

To address the drawback of the center-offset formulation, we build the intuitive idea of54

“Keypointing, fast and slow”, by analogy to the modes of thought suggested by Daniel Kahne-55

man in “Thinking, fast and slow” [14]: (i) Fast Keypointer: We treat the vanilla center-offset based56

estimation [35] as the Fast Initializer of pose estimation. (ii) Slow Keypointer: The lack of localiza-57

tion accuracy in the Fast Initializer entails a Slow Solver that learns to refine the “fast” keypoints. By58

slow, it is only relatively speaking. The Slow Keypointer is actually fast with near real-time speed.59

Table 1: The performance of a vanilla
center-offset regression approach, its
empirical upper bound, and the per-
formance of our proposed LOGO-CAP
using HRNet-W32 [27] as the feature
backbone. See text for detail.

Baseline Emp. Bound LOGO-CAP

AP 60.1 88.9 70.0
AP50 85.2 93.1 88.2
AP75 66.7 90.6 76.4
APM 53.7 87.7 64.4
APL 71.5 90.2 78.4

To realize the Slow Keypointer, as illustrated in Fig. 160

and Fig. 3, this paper presents a method of learning61

LOcal-GlObal Contextual Adaptation for fully end-to-62

end and fast bottom-up human Pose estimation, dubbed63

as LOGO-CAP. To quantitatively motivate the proposed64

method, we first present a surprisingly strong observa-65

tion for a vanilla center-offset regression method (Ta-66

ble 1) in the fully-annotated subset of the COCO val-201767

dataset.Specifically, the vanilla regression method utilizes68

the HRNet-W32 [27] as the feature backbone to directly69

predict keypoints center heatmap and the offset vectors.70

This vanilla center-offset model obtains 60.1 average pre-71

cision (AP), which is not great, but reasonably good. It72

clearly shows that the pose keypoints center and the offset vectors can be learned reasonably well.73

Instead of directly utilizing the learned offset vectors for human pose estimation, we treat them as74

human pose keypoint initialization and do a local window search to compute the empirical upper-75

bound of performance. More detailed, based on the predicted human poses, by introducing a local76

window (e.g., 11 × 11) centered at each detected key point and by computing the single keypoint77

similarity with the ground-truth keypoint, an empirical upper-bound of 88.9 AP is obtained, which78

is significantly higher than the state of the art and shows the potential of improving the vanilla79

center-offset regression paradigm.80

Motivated by the above observation, a straightforward way is just to learn a local heatmap (e.g.,81

11 × 11) for each human pose keypoint based on the learned center and offset vectors, and then to82
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compute the refined keypoints by taking arg max within the local heatmap. Although appealing,83

this does not work as observed during our development of the LOGO-CAP. The underlying reason84

is easy to understand: if this can work, the original offset vector regression should work at the85

first place since no additional information is introduced through learning the local heatmap. We86

hypothesize that on the one hand, on top of the local heatmap, the structural relationship between87

different keypoints of a human pose needs to be taken into account, and on the other hand, the88

intrinsic uncertainty of the local information in a local heatmap needs to be resolved. The former89

is the key challenge of structured output prediction problems. Many message passing algorithms90

have been developed in the literature. The latter can not be addressed by simply increasing the local91

window size. It entails learning stronger local-global information interaction and adaptation,.92
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Figure 2: Speed-accuracy comparisons
between our LOGO-CAP and prior arts
on the COCO val-2017 dataset. Wx-
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Along with the two hypotheses, the proposed LOGO-93

CAP lifts the initial keypoints via the center-offset pre-94

diction to keypoint expansion maps (KEMs) to counter95

their lack of localization accuracy in two modules (Sec-96

tion 3.2). The KEMs extend the star-structured repre-97

sentation of the center-offset formulation to the pictorial98

structure representation [10, 8]. The first module com-99

putes local KEMs and learns to account for the struc-100

tured output prediction nature of the human pose esti-101

mation problem, leading to the keypoint attraction maps102

(KAMs). The second computes global KEMs and learns103

to refine the global KEMs by leveraging the KAMs.104

Our LOGO-CAP is a fully end-to-end bottom-up hu-105

man pose estimation method with near real-time infer-106

ence speed. It obtains 70.0 AP in the fully-annotated sub-107

set of the COCO val-2017 dataset, which is an absolute108

increase of 9.9 AP compared to the vanilla center-offset109

method, making a significant step forward. Fig. 1 shows a110

pose estimation example. Fig. 2 shows the advantage of the proposed LOGO-CAP in terms of over-111

all speed-accuracy comparisons between our LOGO-CAP and prior arts. Meanwhile, we should112

notice that there is also a significant gap compared to the empirical upper bound (Table 1), which113

encourages more work to be investigated.114

2 Related Works and Our Contributions115

There is a vast body of literature for human pose estimation. Many elegant representation schema116

have been developed for modeling articulated human pose in the traditional approaches such as the117

well-known pictorial structure model [10, 8] and its many variants [24, 1, 23, 33, 25]. Most of them118

focused on single person pose estimation. They perform inference over a combination of local ob-119

servations on body parts (i.e., the data term) and the spatial dependencies between them (i.e., the120

spring or clique term). The spatial dependencies are captured either using directed and acyclic struc-121

tures that facilitate the global optimization by dynamic programming [2, 9], or using structures with122

loop introduced (for high-order part relationship modeling) which resort to approximate inference123

by loopy belief propagation [19]. The bottleneck of the traditional methods lies in the data term124

which is often based on hand-crafted features. With the resurgence of DNNs and the end-to-end125

learning, the data term has been largely improved. We briefly review the recent deep learning based126

approaches for bottom-up human pose estimation.127

Limb-based Grouping Approaches have been extensively developed due to the naturalness of128

modeling limbs based on keypoints. Given a predefined limb configuration (e.g., the COCO person129

skeleton template consisting of 19 limbs based on 17 keypoints), the grouping can be addressed by130

Part affinity field (PAF) [4, 3], Associative Embedding (AE) [20], mid-range offset fields in Person-131

Lab [22] and the fields of Part Intensity and Association [15]. Typically, sophisticated designs are132

entailed to achieve good performance. For example, a bipartite graph matching is used in Open-133

Pose [3]. In addition to be computationally expensive, another drawback of these methods is not134

fully end-to-end trainable. More recently, the differentiability issue was studied by the Hierarchical135

Graph Clustering (HGG) method [13], which utilizes graph convolution networks to repeatedly de-136

lineate pose parameters of multiple persons from a keypoint graph. HGG improves the performance137

compared to its baseline, the Associative Embedding method [20] at the expense of significantly138
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increased computational cost. In contrast to thoses approaches, our proposed LOGO-CAP is fully139

end-to-end trainable and achieves near real-time inference speed.140

Direct Regression based Approaches have attracted much attention due to their conceptually sim-141

ple formulation [6, 28, 26, 11, 30]. These center-offset based formulation are inspired by the re-142

cent remarkable success of direct bounding box regression in object detection such as the FCOS143

method [29] and CenterNets [35, 6]. As aforementioned, one main challenge is the difficulty of ac-144

curately regress the offset vectors, especially for the long-range keypoints with respect to the center.145

Sophisticated post-processing schema are often entailed to improve the performance. For example,146

a method of matching the directly regressed poses to the nearest keypoints that are extracted from147

the global keypiont heatmaps is used in [35]. Although being simple, the performance of this line of148

work is usually inferior to the limb-based approaches. The mixture regression network [30] allevi-149

ated the issue of regression quality to some extent, but still remained an indispensable performance150

gap comparing with the grouping-based approaches. Most recently, Geng et al. presented the first151

competitive direct method, DEKR [11] with a novel pose-specific neural architecture for disentan-152

gled keypoint regression. To improve the performance, the DEKR method utilizes a lightweight153

rescoring network to recalibrate the pose scores that are computed based on the keypoint heatmaps.154

Despite good performance, the DEKR method entails the additional rescoring stage in both training155

and testing, and thus is not fully end-to-end. The proposed LOGO-CAP retains the simplicity of the156

vanilla center-offset formulation and enjoys fully end-to-end training and fast inference speed.157

Our Contributions. The proposed LOGO-CAP makes three main contributions to the field of158

bottom-up human pose estimation: (i) It addresses the drawback of the vanilla center-offset for-159

mulation while retaining its efficiency. It proposes the key idea of lifting a keypoint to a keypoint160

expansion map to counter the lack of localization accuracy. To our knowledge, it is the first fully161

end-to-end trainable method that achieves state-of-the-art performance. (ii) It presents a novel local-162

global contextual adaptation formulation that accounts for the nature of structured output predic-163

tion in human pose estimation and harnesses local-global structural information integration. (iii) It164

obtains state-of-the-art performance in the COCO val-2017 and test-2017 datasets. It also shows165

state-of-the-art transferability performance in the OCHuman dataset.166

3 Approach167

3.1 Problem Formulation168

We follow the COCO protocol of defining the human pose. It consists of 17 human pose keypoints:169

8 pairs of symmetric keypoints (hips, ankles, knees, shoulders, elbows, wrists, ears and eyes) and170

the nose keypoint. Let P = {1, · · · 17} be the set of keypoint indexes using a predefined order.171

Let Λ be an image lattice of the spatial size H ×W (e.g., 512 × 512), and I be an image defined172

on Λ. Let PnI be the set of keypoint indexes for a human pose instance n in an image I and we173

have PnI ⊆ P . For example, in COCO, we typically have 1 ≤ n ≤ 30, and different human pose174

instances have different number of visible keypoints due to occlusion and/or truncation. Denote by175

LnI = {(xi, yi); i ∈ PnI } the keypoint locations of a human pose instance n in an image I , where176

(xi, yi) ∈ Λ. In the center-offset formulation, we introduce the keypoints center (i.e., the anchor),177

(xc, yc) based on a given LnI and we have,178

xc = 1/|LnI | ·
∑
i∈Pn

I

xi, yc = 1/|LnI | ·
∑
i∈Pn

I

yi. (1)

With the anchor, a keypoint (xi, yi) is equivalently defined by its offset/displacement, denoted by179

(∆xi,∆yi) with ∆xi = xi − xc and ∆yi = yi − yc. So, LnI can also be equivalently expressed as180

LnI = {(xc, yc), (∆xi,∆yi); i ∈ PnI }.181

The objective of human pose estimation is to recover LnI = {(xi, yi); i ∈ PnI } for all human pose182

instances in an image. Denote by L̂nI = {(x̂i, ŷi); i ∈ PnI } the estimated human pose. Following183

the COCO protocol, the object keypoint similarity (OKS) is used to evaluate the accuracy,184

`OKS(L̂nI , L
n
I ) = 1/|PnI | ·

∑
i∈Pn

I

exp (−d2i /2s2κ2i ), (2)

where di is the Euclidian distance between the ground-truth keypoint (xi, yi) and the predicted one185

(x̂i, ŷi). s is the square root of the human segment area, and κ per-keypoint constant that controls186

fall-off in evaluation. We have `OKS(L̂nI , L
n
I ) ∈ [0, 1]. The OKS metric is to evaluate the distance187

between predicted keypoints and ground-truth keypoints normalized by the scale of the person with188

the importance of keypoints equalized. In benchmarking different methods, the average precision189
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Figure 3: Illustration of the network and algorithmic flow of the proposed LOGO-CAP for bottom-
up human pose estimation. See text for detail.

(AP) at OKS= 0.50 : 0.05 : 0.95 is used as the primary metric, together with AP 50 at OKS= 0.50,190

AP 75 at OKS= 0.75, and AP across medium and large scales, APM and APL respectively.191

3.2 The Proposed LOGO-CAP192

We first present the network and the inference of LOGO-CAP, and then give details of the train-193

ing. We keep different modules of the proposed LOGO-CAP simple, which in turn highlights the194

effectiveness of the proposed representation and algorithmic flow.195

3.2.1 The Network and the Inference196

As illustrated in Fig. 3, the proposed LOGO-CAP consists of four components as follows.197

i) A convolution neural network feature backbone. Given an input image I , the output of the fea-198

ture backbone is a C-dim feature map, denoted by F ∈ RC×h×w, where C is the feature dimension199

of the last convolutional layer in the feature backbone, and the spatial size h × w depends on the200

total stride in the feature backbone. We use off-the-shelf HRNets [27] in our experiments.201

ii) A parallel keypoint-offset regression module. Given the feature map F , the output of keypoint202

regression is an 18-dim feature map (i.e., heatmaps) for the 17 keypoints and the keypoints center203

respectively. Denote by H ∈ R18×h×w the heatmaps, and by H↑ ∈ R18×H×W the up-sampled204

heatmaps (using bi-linear interpolation in our experiments). The output of offset regression is a205

34-dim feature map (i.e., the offset vector fields) for the 17 keypoints. Denote by O ∈ R34×h×w206

the offset fields. We adopt a minimally-simple design in realizing the regression modules using a207

channel-wise multi-layer perceptron (MLP). In implementation, we first apply dimension reduction208

to the feature map F using a 1× 1 convolution followed by a Batch Normalization (BN) and a Rec-209

tified Linear Unit (ReLU). Then, the output is computed by a 1× 1 convolution. More specifically,210

we have the two parallel branches as follows,211

FC×h×w
Conv+BN+ReLU
============⇒

C×1×1×C1

FHC1×h×w
Conv

=======⇒
C1×1×1×18

H18×h×w
UpSampling
========⇒

bi-linear
H↑18×H×W , (3)

FC×h×w
Conv+BN+ReLU
============⇒

C×1×1×C2

FOC2×h×w
Conv

=======⇒
C2×1×1×34

O34×h×w, (4)

where C1 and C2 are predefined (e.g., C1 = 32 and C2 = 256 are typically used).212

Initial pose estimation via the center-offset approach. Based on the computed keypoints center213

heatmap H↑(18) and offset fields O, a predefined maximum number of pose candidates is computed214

as done in the vanilla center-offset approach. A non-maximum suppression (NMS) with a 3 × 3215

window is applied in H↑(18) and then the top-N keypoints centers are selected (e.g., N = 30 in our216

experiments). The N pose instances are computed by retrieving their offset vectors in O based on217

the selected N keypoints centers. The N pose instances are further pruned by thresholding their218

confidence scores inH↑(18) with a predefined threshold (e.g., 0.01 used in our experiments). Without219

confusion in the context, we still use N to denote the number of poses instances by this initial pose220

estimation step. We obtain the set of estimated keypoints centers, denoted by CN×3 each row of221

which represents the position coordinates and the confidence score.222
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Lifting a keypoint to a keypoint expansion map (KEM) by imposing a mesh. For each of the N223

pose instances, each of the 17 keypoints are placed in a local geometric mesh (e.g., 11×11) with the224

estimated location as the mesh center, capturing the uncertainty of the center-offset pose estimation225

as aforementioned in the introduction. This mesh can thus be interpreted as keypoint expansion226

map (KEM), accounting for competency-aware representations. The entire mesh is denoted by227

MN×17×11×11×2, which is used in computing the empirical upper bound in Table 1. We have,228

{H↑(18),O34×h×w}
initial pose estimation
===========⇒

center-offset
{CN×3,MN×17×11×11×2} (5)

iii) A convolution message passing module. We first encode the geometric meshMN×17×11×11×2229

in a latent space with the dimensionality C3 (e.g., 64 in our experiments), computed based on the230

feature backbone output. Then, a keypoint is represented by a C3 × 11 × 11 local feature map. A231

pose instance is represented by concatenating all the 17 keypoints. We have,232

FC×h×w
Conv+BN+ReLU
============⇒

C×1×1×C3

FMC3×h×w
MN×17×11×11×2
===========⇒

bi-linear
KN×(17×C3)×11×11, (6)

where the bi-linear interpolation is used due to the sub-pixel based locations in the mesh and for233

better feature alignment.234

To facilitate the structural information flow between different latent codes of the keypoints of a pose235

instance, we propose a simple convolutional message passing (CMP) module with three layers of236

Conv+BN+ReLU operations,237

KN×(17×C3)×11×11 ⇒ [
Conv+BN+ReLU
============⇒
Cin×3×3×Cout

]×3 ⇒ ·
Conv

=======⇒
C6×1×1×17

KN×17×11×11, (7)

where Cin ∈ {(17× C3), C4, C5} and Cout ∈ {C4, C5, C6} (e.g., C4 = 512, C5 = 256, C6 = 128238

in our experiments). The resulting KN×17×11×11 can be interpreted as keypoint attraction maps239

(KAMs) which are “re-focused” based on the KEMs by the CMP. To account for the specificity of240

different pose instances in the CMP, we adopt the Attention Normalization [17] to replace the BN in241

the second Conv+BN+ReLU layer, which further improves the performance in our experiments.242

Through the CMP, we obtain the dynamic (a.k.a., data-driven) kernels for the 17 keypoints in a pose243

instance-sensitive way, which are used to refine the global heatmapsH↑ for the 17 keypoints.244

iv) A local-global contextual adaptation module. We first compute another geometric mesh with245

enlarged mesh window a×a (e.g., a = 97) for each keypoint of theN pose instances, and the entire246

mesh is denoted byML
N×17×a×a×2, as done in Eqn. 5. The mesh can be interpreted as the global247

KEM. It is then instantiated with appearance features extracted from the global heatmaps H↑(1:17),248

similar to Eqn. 6, and we have,249

H↑(1:17)
ML

N×17×a×a×2
=========⇒

bi-linear
HN×17×a×a

Ga×a(0,σ)
======⇒

reweighing
H̄N×17×a×a. (8)

where to encode the Gaussian prior of keypoint heatmaps, the resulting pose-guided heatmaps H is250

reweighed by a Gaussian kernel Ga×a(0, σ = a−1
2×3 ) (e.g., σ = 16 when a = 97) in an element-wise251

way. By doing so, it means that the enlarged mesh follows the 3σ principle.252

Then, we apply the learned keypoint 11 × 11 kernels Kn,i’s (Eqn. 7) to convolve the reweighed253

a × a heatmap H̄n,i (Eqn. 8) in a pose instance-sensitive and keypoint-specific way, leading to254

LOcal-GlObal Contextual Adaptation,255

H̄N×17×a×a
KN×17×11×11
========⇒

LOGO-CA
H̃N×17×a×a, (9)

which represents the refined heatmaps for the 17 human pose keypoints.256

The Pose Estimation Output. With the local-global contextually adpated heatmaps H̃N×17×a×a,257

we maintain the top-2 locations for each keypoint within the a×a heatmap, and then utilize a convex258

average of the top-2 locations as the final predicted offset vectors (i.e. (∆x′i,∆y
′
i)’s in Fig. 3), and259

of their confidence scores as the prediction score, with a predefined weight λ for the top-1 location260

(0.75 in our experiments). Together with the predicted keypoints centers CN×3 (Eqn. 5), the final261

prediction score for each keypoint is the product between the convex average confidence score and262

the center confidence score. We keep the keypoints whose final scores are greater than 0. We have,263

{CN×3, H̃N×17×a×a}
Output

=========⇒
Score thresholding

{L̂nI ;n = 1, · · ·N ′}, (10)

where N ′ is the number of the final predicted pose instances in an image I .264
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3.2.2 Loss Functions in Training265

In the fully end-to-end training, we need to define loss functions for the global heatmapH (Eqn. 3),266

the refined local heatmap H̃ (Eqn. 9), the offset field O (Eqn. 4), and the keypoint kernels (Eqn. 7).267

The Heatmap Loss. The widely adopted mean squared error (MSE) loss is used. Denoted by268

HGT18×h×w the ground truth heatmaps in which each keypoint (including the center) is modeled by a269

2-D Gaussian with dataset-provided mean and variance. Let p = (i,x) be the index of the domain270

D of dimensions 18× h× w. For the predicted heatmapsH18×h×w, the MSE loss is defined by,271

LH = 1/|D| ·
∑
p∈D
‖w(x)(H(p)− Ĥ(p))‖22, (11)

where w(x) represents the weight for the foreground and the background pixels. The foreground272

mask is provided by the dataset annotation. In our experiment, we set w(x) = 1 for a foreground273

pixel and w(x) = 0.1 for a background pixel.274

In defining the loss function LH̃ for the refined local heatmap H̃ (Eqn. 9), the ground-truth heatmap275

H̃GT is generated on-the-fly based on the mesh ML
N×17×a×a (Eqn. 8) and the ground-truth key-276

points using a Gaussian model with mean being the displacement between the current predicted277

keypoints and the ground-truth ones, and variance σ (i.e., the standard deviation of the reweighing278

Gaussion prior model in Eqn. 8).279

The Offset Field Loss. The widely adopted SmoothL1 loss [] is used. LetOGT34×h×w be the ground-280

truth offset field, and CGT be the non-empty set of ground-truth keypoints centers (Eqn. 1). For the281

predicted offset field O34×h×w (Eqn. 4), we have,282

LO = 1/|CGT | ·
∑

p∈CGT

A(p) · SmoothL1
(
O(·,p),OGT (·,p);β

)
, (12)

whereA(p) is the area of the person centered at the pixel p, and β the cutting-off threshold (e.g., 1
9 in283

our experiments), and SmoothL1(a, b;β) = 0.5×|a−b|2/β if |a−b| ≤ β, otherwise |a−b|−0.5×β.284

The OKS Loss for the Keyoint Kernels. Consider a single predicted pose instance, learning the285

keypoint kernels, K17×11×11 (Eqn. 7) is the key to facilitate the local-global contextual adaptation.286

To that end, the figure of merits of the KEF,M17×11×11×2 (Eqn. 5) needs to directly reflect the task287

loss, i.e., the OKS loss (Eqn. 2). With respect to the NGT ground-truth pose instances in an image,288

we can compute the similarity score per keypoint candidate in the KEF, and obtain the score tensor289

S17×11×11×NGT . The score tensor is further clamped with a threshold 0.5, i.e., S17×11×11×NGT =290

max(S17×11×11×NGT , 0.5). A mean reduction is applied to the first three dimensions of the clamped291

score tensor to compute the matching score for each of the NGT pose instance. Then, the best292

ground-truth pose instance indexed by n∗ is selected in terms of the matching score, and its matching293

score is denoted by sn∗ . Based on the selected ground-truth pose instance, we compute the per-294

keypoint similarity score for the predicted pose instance at hand, denoted by sk (k ∈ [1, 17]). Then,295

the loss function fo the keypoint kernels are defined by,296

LK = sn∗ ·
∑
k,i,j

sk · |Kk,i,j − Sk,i,j,n∗ |2. (13)

The Total Loss is then defined by L = LH + LH̃ + λ · (LO + LK), where the trade-off parameter297

λ is used to balance the different loss items (λ = 0.01 in our experiments).298

4 Experiments299

In this section, we present detailed experimental results and analyses of the proposed LOGO-CAP.300

Our PyTorch source code will be released for reproducibility.301

Datasets. We use two datasets in our experiments: The COCO dataset [18] is the most popu-302

lar testbed for human pose estimation. It consists of 65k, 5k and 20k images with human pose303

well-annotated in the training, validation and testing datasets respectively. In all experiments, the304

proposed LOGO-CAP is trained using the 65k training images. The OCHuman dataset [34] is one305

popular testing-only dataset for evaluating human pose estimation under the occlusion scenarios. It306

consists of a total number of 4713 images with 8110 detailed annotated human pose instances using307

the COCO keypoint configuration. All the annotated 8110 human pose instances have occlusions308

with the maxIOU≥ 0.5. Furthermore, 32% instances are more challenging with the maxIOU≥ 0.75.309
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Figure 4: Examples of human pose estimation in the COCO val-2017 dataset by the proposed
LOGO-CAP with the HRNet-W32 backbone. Top: The COCO skeleton template based visual-
ization. Bottom: The close-up visualization and OKS comparisons between the initial center-offset
estimation and the refined keypoints.

Table 2: Evaluation results on the COCO-val-2017 and COCO-testdev-2017 dataset. For
HGG [13] and SimplePose [16], the multi-scale inference† is applied on the testdev-2017 dataset.
For DEKR [11] that uses an rescoring network to get the final predictions, we report both the per-
formance with and without rescoring (which is the fair baseline for our LOGO-CAP). The numbers
of SPM [21] and HGG [13] are extracted from their papers.

COCO-val-2017 COCO-testdev-2017
Method Backbone AP [%] AP50 [%] AP75 [%] APM [%] APL [%] AP [%] AP50 [%] AP75 [%] APM [%] APL [%]

G
ro

up
in

g

OpenPose [35] VGG-19 61.0 84.9 67.5 56.3 69.3 61.8 84.9 67.5 57.1 68.2
PifPaf [15] ResNet-152 67.4 86.9 73.8 63.1 74.1 66.7 87.8 73.6 62.4 72.9

PersonLab [22] ResNet-152 66.5 86.2 71.9 62.3 73.2 66.5 88.0 72.6 62.4 72.3

AE [20, 5] HrHRNet-W32 67.1 86.2 73.0 61.5 76.1 66.4 87.5 72.8 61.2 74.2
HrHRNet-W48 69.9 87.2 76.1 65.4 76.4 68.4 88.2 75.1 64.4 74.2

HGG [13] Hourglass 60.4 83.0 66.2 − − 67.6† 85.1† 73.7† 62.7† 74.6†

SimplePose [16] IMHN 66.1 85.9 71.6 59.8 76.2 68.5† 86.7† 74.9† 66.4† 71.9†

D
ir

ec
t

SPM [21] Hourglass − − − − − 66.9 88.5 72.9 62.6 0.731
CenterNet [35] Hourglass 64.0 85.6 70.2 59.4 72.1 63.0 86.8 69.6 58.9 70.4

DEKR [11]
(w. Rescoring)

HRNet-W32 68.0 86.7 74.5 62.1 77.7 67.3 87.9 74.1 61.5 76.1
HRNet-W48 71.0 88.3 77.4 66.7 78.5 70.0 89.4 77.3 65.7 76.9

DEKR [11]
(w.o. Rescoring)

HRNet-W32 67.2 86.3 73.8 61.7 77.1 66.6 87.6 73.5 61.2 75.6
HRNet-W48 70.3 87.9 76.8 66.3 78.0 69.3 89.1 76.7 65.3 76.4

LOGO-CAP
(Ours)

HRNet-W32 69.6 87.5 75.9 64.1 78.0 68.2 88.7 74.9 62.8 76.0
HRNet-W48 72.2 88.9 78.9 68.1 78.9 70.8 89.7 77.8 66.7 77.0

4.1 Results on the COCO dataset310

Fig. 4 shows some qualitative examples of human pose estimation by the proposed LOGO-CAP.311

More examples will be provided in the supplementary material.312

The proposed LOGO-CAP is compared with prior arts including OpenPose [3], PifPaf [15], Person-313

Lab [22], AE [20] and DEKR [11]. As reported in Table 2, the proposed LOGO-CAP outperforms314

all of them on both both validation and test-dev datasets.315

In comparisons to the best-performing grouping approach, AE [20] with a larger backbone316

HrHRNet-W48 [5], our LOGO-CAP obtains competitive performance with a smaller HRNet-32317

backbone, and improves the AP score with HRNet-W48 backbone on the validation and testdev318

datasets by 2.3 and 2.5 points, respectively. For the fully differentiable grouping approach319

HGG [13], our LOGO-CAP achieves better performance by a significantly large margin, more than320

9.2 points on the validation set under the single-scale testing. Although the performance of HGG321

is improved by the multi-scale testing on the test-dev set, the performance of our LOGO-CAP is still322

significantly better without using the multi-scale testing scheme.323

In comparisons to the direct regression based approaches, our LOGO-CAP obtains the best results324

without incurring either the matching scheme used in CenterNet [35] or the additional rescoring325

network used in DEKR [11]. When we disable the rescoring network for DEKR [11] for fair com-326

parisons, our LOGO-CAP significantly improves the AP on the validation and testdev datasets by327

2.4 points and 1.6 points respectively when HRNet-W32 is used as backbone. The larger back-328

bone is beneficial for both DEKR and our method, which further improves the AP score of our329

LOGO-CAP to 72.2 and 70.8 on the validation and test-dev dataset respectively, outperforming330

DEKR by 1.9 and 1.5 respectively.331
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Table 3: Results on the OCHuman valida-
tion and testing datasets [34].

Methods Backbone Val.
AP [%]

Test
AP [%]

To
p-

do
w

n RMPE [7] Hourglass 38.8 30.7
SBL [32] ResNet-50 37.8 30.4
SBL [32] ResNet-152 41.0 33.3

B
ot

to
m

-u
p

AE [20] Hourglass 32.1 29.5
HGG [20] Hourglass 35.6 34.8

DEKR [11] HRNet-W32 37.9 36.5
HRNet-W48 38.8 38.2

LOGO-CAP
(Ours)

HRNet-W32 39.0 38.1
HRNet-W48 41.2 40.4

Table 4: The single image inference speed com-
parison for bottom-up human pose estimation ap-
proaches.

Method AP [%] Backbone Time ↓
[ms] FPS ↑

PifPaf [15] 67.4 ResNet-152 213 4.68
AE [20, 5] 67.1 HrHRNet-W32 560 1.78

CenterNet [35] 64.0 Hourglass 147 6.80
DEKR [11] 68.0 HRNet-W32 63 15.8
DEKR [11] 71.0 HRNet-W48 139 7.21

LOGO-CAP 69.6 HRNet-W32 48 20.7
LOGO-CAP 72.2 HRNet-W48 112 8.95

4.2 Results on the OCHuman dataset332

Table 3 shows that our LOGO-CAP achieves the best AP performance on both the validation and333

testing datasets by significant margins of 2.4 and 2.2 points in comparing with the bottom-up334

approaches. For the top-down approaches, although they obtain strong AP scores on the validation335

split, there exists a large performance gap between the validation and testing sets. In comparisons336

to DEKR [11] (with the rescoring network), our LOGO-CAP improves the performance from 37.9337

to 39.0 and from 36.5 to 38.1 on the validation and testing splits with the same backbone HRNet-338

W32, respectively. The similar improvement is observed when the HRNet-W48 backbone is used,339

outperforming both bottom-up and top-down approaches.340

4.3 Inference Speed341

In comparing the inference speed, we test all the models on a single TITAN RTX GPU for its342

popularity in practice. The average inference speed, FPS (frames per second), over the 5000 images343

in COCO-val-2017 is used for the comparison. For DEKR [11], we re-implement their inference344

code with better speed obtained for fair comparisons at the algorithm level. For methods that have345

post-processing schema on CPU, only one thread is used. As shown in Table 4, our LOGO-CAP346

runs significantly faster than PifPaf [15] and AE [20]. The CenterNet [35] runs slower than DEKR347

and our LOCO-CAP as it requires a post-processing scheme to match the predicted offsets to the348

keypoints obtained from heatmaps. Comparing with DEKR, the speed improvement of our LOGO-349

CAP is from the lightweight design of head modules since the same backbones are used. For the350

comparisons in Table 2, we run the models with different resolutions of testing images.351

4.4 Potentials and Limitations of the Proposed LOGO-CAP352

Consider the generic applicability of the center-offset formulation to many computer vision tasks as353

demonstrated in [35], we hypothesize that the proposed LOGO-CAP has a great potential to remedy354

the lack of sufficient accuracy using the vanilla center-offset method in those tasks. We also notice355

that the minimally-simple design in learning the “Slow Keypointer” can be relaxed for different356

accuracy-speed trade-offs in practice. For example, for the convolutional message passing module,357

an alternative method could be the Transformer model [31], which potentially will further improve358

the performance at the expense of inference speed. We leave these for future work.359

5 Conclusion360

This paper focuses on deep learning based formulation for bottom-up human pose estimation. It361

presents a method of learning LOcal-GlObal Contextual Adaptation for Pose estimation, dubbed as362

LOGO-CAP. The proposed LOGO-CAP is built on the conceptually simple center-offset paradigm363

and addresses its drawback of lacking the capability of accurately localizing human pose keypoints.364

The key idea of our LOG-CAP is to lift the center-offset predicted keypoints to keypoint expansion365

maps (KEMs),which counters the inaccuracy and uncertainty of the initial keypoints. Two types of366

KEMs are introduced in two parallel modules on top of the feature backbone. Local KEMs are used367

to learn keypoint attraction maps (KAMs) via a convolutional message passing module that accounts368

for the structured output prediction nature of human pose estimation. Global KEMs are used to369

learn local-global contextual adaptation which convolves global KEMs using the KAMs as kernels.370

The refined global KEMs are used in computing the final human pose estimation. The proposed371

LOGO-CAP obtains state-of-the-art performance in COCO val-2017 and test-dev 2017 datasets for372

bottom-up human pose estimation. It also achieves state-of-the-art transferability performance in373

the OCHuman dataset with the COCO trained models.374
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