
Published at LMRL Workshop at ICLR 2025

MULTI-MODAL DISENTANGLEMENT OF SPATIAL
TRANSCRIPTOMICS AND HISTOPATHOLOGY
IMAGING

Hassaan Maan1,2,3∗, Zongliang Ji2,4, Elliot Sicheri6, Tiak Ju Tan5,6, Alina Selega2,6,
Ricardo Gonzalez6, Rahul G. Krishnan 2,4,9, Bo Wang 1,2,3,4,9,10∗†

, Kieran R. Campbell 2,4,5,6,7,8∗†

1. Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
2. Vector Institute, Toronto, ON, Canada
3. Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
4. Department of Computer Science, University of Toronto, Toronto, ON, Canada
5. Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
6. Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
7. Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
8. Ontario Institute for Cancer Research, Toronto, ON, Canada
9. Department of Laboratory Medicine and Pathobiology, University of Toronto,

Toronto, ON, Canada
10. University Health Network AI Hub, Toronto, ON, Canada
* Corresponding authors
† Supervised this work equally

ABSTRACT

Spatially-resolved expression profiling data has revolutionized biological research
with multiple emerging clinical applications. Spatial transcriptomic assays are
often jointly measured with histopathology imaging data, which is frequently used
for diagnosing and staging various diseases. However, determining the extent to
which the spatial transcriptomic and histopathology data represent overlapping or
unique sources of variation is challenging, particularly given the myriad of factors
influencing both, including expression variation, spatial context, tissue morphology,
and batch effects. Here, we view this challenge as multi-modal disentanglement
and develop an evaluation framework. We introduce SpatialDIVA, a disentan-
glement technique for jointly measured spatially resolved transcriptomics and
histopathology data. We demonstrate that SpatialDIVA outperforms baseline tech-
niques in disentangling salient factors of variation in curated pathologist-annotated
multi-sample colorectal and pancreatic cancer cohorts. Further, SpatialDIVA re-
moves batch effects from multi-modal data, allows for factor covariance analysis,
and yields actionable biological insights through a novel conditional multi-modal
generation method. The SpatialDIVA model, evaluation code, and datasets are
available at https://github.com/hsmaan/SpatialDIVA.

1 INTRODUCTION

Spatial context is an important measurement in the study of biological systems, as it dictates the
organization of tissues, the flow of information in the form of cell to cell communication, transport of
biomolecules and nutrients, and many other factors (Rao et al., 2021; Tian et al., 2023). To incorporate
spatial context in molecular measurements, researchers have developed spatial transcriptomics
(ST) technologies, which quantify mRNA expression in small numbers of cells (1-10) at specific
locations in a tissue, commonly referred to as spots (Moses & Pachter, 2022). Barcoding then allows
for identifying the spatial position of captured RNA molecules (Moses & Pachter, 2022). After
determining cell-type identity through the transcriptomic information, the spatial context can be used
to perform additional analysis, such as annotating spatial domains and determining patterns of cell to
cell communication (Rao et al., 2021).
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Figure 1: Overview of contributions and the SpatialDIVA model. Our approach is the first
to frame the challenge of evaluating modality and factor-specific contributions as a multi-modal
disentanglement problem, for which we present the SpatialDIVA model as a solution. SpatialDIVA
allows for biologically and clinically relevant downstream analyses, such as factor covariance, tumor
annotation in cancer biopsy samples, removing batch effects, and determining modality-specific
information through conditional generation.

In addition to quantifying spatially-resolved gene expression, spot-based ST assays such as 10X
Visium (Ståhl et al., 2016) are able to simultaneously image a hematoxylin and eosin (H&E) stain
(Fischer et al., 2008; Janesick et al., 2023) of the tissue section under study for histological analysis.
H&E staining of tissue and examination of associated morphological features is routinely used for
diagnosing and staging many malignancies (He et al., 2012). The addition to H&E staining to ST
technologies allows researchers to associate morphological features with RNA expression of different
genes in the underlying tissue, as well as predict gene expression from H&E (Janesick et al., 2023).

Although there is a myriad of existing approaches to predict RNA expression from histopathology
images (Appendix A), these are limited, as histopathology data is often only weakly correlated with
RNA expression (Zeng et al., 2022; Xie et al., 2023). Further, this correlation is highly variable
across genes (Zeng et al., 2022; Xie et al., 2023). One way to interpret these methods is that they are
approximating the upper bound on mutual information between the two modalities. However, this
upper bound does not answer the question of which information is present or absent in each modality,
and this is more biologically relevant. For example, knowing which variation is exclusively found in
RNA expression and not in histology data allows us to determine which factors relevant to disease
states are being missed through only performing histology analysis, and vice versa.

Many other factors also contribute to modality-specific variation, such as spatial context, and nuisance
factors including batch effects. Delineating the contribution of these factors allows us to obtain an
interpretable model of the multi-modal data generating distribution, infer which gene-programs and
morphological patterns are dictated by specific factors, and remove the effects of nuisance variation.

In this work, we determine the precise effects of different biological and technical factors in multi-
modal ST and histology data. Our contributions are as follows:

• In Sec. 2.1-2.3, we frame the challenge of determining the contribution of distinct biological
factors to multi-modal assays as a multi-modal disentanglement problem. We propose a
general framework that incorporates biological knowledge (Appendix B.1), based on prior
work that demonstrates fully unsupervised approaches to disentanglement are suboptimal
(Locatello et al., 2018).

• We introduce SpatialDIVA (Fig. 1) in Sec. 3, which builds upon previous work in disentan-
gled representation learning (Ilse et al., 2019) by introducing prior-constrained multi-modal
disentanglement in a ST and histopathology setting, with continuous label distributions.

• We show that SpatialDIVA outperforms previous techniques and exhibits strong disen-
tanglement of colorectal and pancreatic cancer data (Sec. 4.1 and 4.2). To benchmark
disentanglement in this setting, we develop a framework incorporating several metrics
and two multi-patient/sample pathologist-annotated datasets, which can be used by the
community to further our contributions (Appendices D and I).

• To determine modality-specific effects of latent factors, we develop a conditional generation
framework for multi-modal data using the SpatialDIVA model (Fig. 1), and use this
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framework to infer modality-specific gene regulatory programs in a multi-patient pancreatic
cancer cohort (Sec. 4.3 and 4.4).

2 BACKGROUND AND PROBLEM FORMULATION

2.1 ST AND HISTOLOGY DATA

Given a slide with a slice of tissue and jointly measured ST and histology (Ståhl et al., 2016), we
obtain the following data representation per spot i on the slide:

S(i) : {Xt(i), Xh(i), L
1..m
(i) , Ld(i), Px,y−(i)} (1)

Where Xt indicates the transcriptomic counts across genes measured in the spot, Xh indicates the
histopathology image distribution, L1..m indicates anym label groups for the spot (such as pathologist
annotations and cell-type labels), Ld indicates a label for the specific slide or tissue section (e.g. slide
1, slide 2, ...), and Px,y are the spatial coordinates of that spot on the slide.

The distribution of expression of each gene j per spot i is given by gi,j ∼ Poisson(λi,j). Log-
normalization of this count data can be performed for modelling (Hao et al., 2024), or the untrans-
formed counts can be used directly (Zhao et al., 2022) (Appendices E and F). The distribution of the
histopathology data follows a 3-channel RGB image, and histopathology foundation models can be
used to extract features for this data (Chen et al., 2024) (Appendix E).

2.2 LATENT VARIABLE MODEL OF ST AND HISTOLOGY

The underlying biology that drives the variation of ST and the paired histology data is often shared.
However, the different biological and technical factors, and the extent to which they contribute to
each modality, is unresolved.

Assume a set of k generative factors V = {v1, v2, ..., vk} account for the data distributions of an
arbitrary number of views (Xk

i ) through an arbitrary number of generative processes G(.)k:

Xk
i ZV

G(.)k R(.)k

The underlying generative processes G(.)k, as well as the generative factors V , are unobservable.
For an arbitrary number of observed views, our goal is to approximate the generative factors jointly
for all views through processes R(.)k and infer m latent variables (Z = z1, z2, . . . , zm):

R(.)k ≈ pθ(Z|X1, X2, . . . , Xn) (2)

In the context of spatial transcriptomics, we know that both ST (Xt) and histology (Xh) are generated
by overlapping biological factors, which we can approximate through m latent variables and the
R(.)t and R(.)h processes :

argmin
q∈Q

DKL(q(Z) ∥ pθ(Z|Xt, Xh)) (3)

Note that any number of views can be considered in this framework, but we restrict it to two based
on our joint ST and histology setting. We aim to learn parameterizations for the functions R(.)t and
R(.)

h. Assuming that these functions are parameterized by ψ1 and ψ2, collectively described as ψ,
the objective becomes:

ψ∗ = argmin
ψ

DKL(q(Z|ψ) ∥ pθ(Z|Xt, Xh)) (4)

2.3 DISENTANGLING EXPLANATORY FACTORS FOR ST AND HISTOLOGY

Given that we want to learn m explanatory factors for both the ST (Xt) and histology (Xh) data that
best approximate the underlying generative distribution corresponding to distinct biological processes,
we aim to learn disentangled representations of the approximated latent distribution Z. In general,
we want to minimize the total correlation between each learned latent covariate:

corr(Z1, Z2, . . . , Zm) = DKL((p(Z) ∥
m∏
k

pk(Zk)) (5)
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The other constraint in our setting is that we want the learned latent factors to correspond to both
known and novel biological sources of variation.

It has been shown by Locatello et al. (2018) that unsupervised approaches to learning disentangled
representations, such as through the Beta variational autoencoder (β-VAE) model (Higgins et al.,
2016), are under-defined, and entangled representations can lead to the same marginal distributions
as disentangled representations in this setting. This renders unsupervised identification of non-linear
latent variables difficult. Therefore, we incorporate relevant prior biological knowledge (Appendix
B.1). Further, we add a residual latent factor that accounts for any variation not captured by prior-
constrained factors, similar to previous work (Ilse et al., 2019).

3 THE SPATIALDIVA MODEL

Given the problem description outlined in Sec. 2, we introduce a generative framework for disentan-
gling ST and histology data: the Spatial Domain Invariant Variational Autoencoder (SpatialDIVA)
model (Fig. 1 and 2). SpatialDIVA is a deep latent variable model, that aims to infer latent distributions
for m biological covariates (Zky ), batch effects (Zd), and residual variation (Zr), through maximizing
the marginal likelihood of the histology (Xh) and ST (Xt) data, as well as prior knowledge (L):

pθ(Xt, Xh, L) =

∫
pθ(Xt|Z)pθ(Xh|Z)pθ(Z|L)p(L)dz (6)

However, this marginalization is intractable, and therefore we learn a lower bound on the log-
likelihood (Appendix G):

log pθ(Xt, Xh, L) ≥ Eq(Z|Xt,Xh) [log p(Xt|Z)] + Eq(Z|Xt,Xh) [log p(Xh|Z)]
+ Eq(Z|Xt,Xh)[log p(Z|L)− log q(Z|Xt, Xh)]

(7)

Incorporating SpatialDIVA’s prior-constrained latent variables (Appendices B.1 and G), we obtain
our evidence lower bound (ELBO), where θ and ϕ are neural network parameters (Appendix F):

L(θ, ϕ) = Eqϕ(Zk
y ,Zd,Zr|Xt,Xh)[log pθ(Xt|Zky , Zd, Zr)]

+ Eqϕ(Zk
y ,Zd,Zr|Xt,Xh)[log pθ(Xh|Zky , Zd, Zr)]−

m∑
k=1

DKL(qϕ(Z
k
y |Xt, Xh) ∥ pθ(Zky |Lk))

−DKL(qϕ(Zd|Xt, Xh) ∥ pθ(Zd|Ld))−DKL(qϕ(Zr|Xt, Xh) ∥ pθ(Zr))
(8)

Similar to DIVA (Ilse et al., 2019) and CCVAE (Joy et al., 2020), we incorporate classification heads
parameterized by ψ, to ensure that the posterior distributions contain the relevant labeled knowledge
(L), giving the overall objective:

L(θ, ϕ, ψ) = L(θ, ϕ) +

m∑
k=1

Eqϕ(Zk
y |Xt,Xh)[log qψ(L

k
y |Zky )] + Eqϕ(Zd|Xt,Xh)[log qψ(L

d|Zd)].

(9)

We encode the batch labels (Ld) using an index of the slide from which each spot originates, enabling
generalization across slide contexts. Prior biological knowledge is encoded based on labels that
contain biologically relevant information from both modalities (Lk) (Appendices B.1 and H).

For intrinsic transcriptomic variation, we use a categorical distribution of expert-annotated cell-
type labels for each spot (Appendix H). For morphology variation, we use pathologist annotations of
morphology features on histology slides corresponding to each spot, through a categorical distribution
(Appendix H). In cases where prior annotations might not be available, unsupervised clustering on
the ST and histology data individually can be used to derive modality-specific labels.

The last biologically informative prior that we consider is spatial context. Each spot on a spatial
transcriptomics slide has spatial coordinates Px, Py. However, these coordinates are not general-
izable across slides. Therefore, we developed a spatially aware context distribution for each
spot (Appendix H). For each spot i, we determine the N nearest neighbors using the spatial coordi-
nates (Px, Py). For both the transcriptomic (Xt) and histology (Xh) features, we decompose their
information for all spots in a slide through principal component analysis (PCA):
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Σ =
1

N − 1
X⊤X

X̃ = U ΣSVD V
⊤

(10)

We use the concatenated decomposed representations of Xt and Xh (X̃th = [X̃t|X̃h] ∈ RN×(d+d))
of the N neighbors for spot i to obtain a representation of spatial context (Y s):

Y Si =
1

N

N∑
j∈Ni

X̃thj
(11)

A key advantage of this approach is that the model does not have to predict the high-dimensional ST
and histology distributions, leading to faster training when used in the classification loss and prior
distribution (Eqn. 9) (Y S = LSy for spatial context). This generalizable representation of spatial
context can be used across slides/samples, and allows for multi-sample training. Complete details on
all of the biological priors can be found in Appendices B.1 and H.

Within this problem context, SpatialDIVA offers significant advantages compared to other approaches
for modelling multi-modal ST and histology data (Appendix Table 2, Appendix A).

Xt Xh

Zky Lk

Zr Zd Ld

i = 1, . . . , n

k = 1, . . . ,m

(a) Inference

Xt Xh

Zky Lk

Zr Zd Ld

i = 1, . . . , n

k = 1, . . . ,m

(b) Generation

Figure 2: SpatialDIVA model overview. (a) The observed ST (Xt) and histology (Xh) representa-
tions are used to infer latent residual variation (Zr), batch/technical variation (Zd), and variation of
key biological factors (Zky ), including intrinsic transcriptomic, morphological, and spatial factors. (b)
The Xt and Xh likelihoods are generated by conditioning on learned factors, where the conditioning
is controllable.

4 RESULTS

4.1 EVALUATING DISENTANGLEMENT OF MULTI-MODAL ST AND HISTOLOGY DATA

To assess how well SpatialDIVA can disentangle factors of variation affecting both modalities, we
compared it with baseline models using a series of disentanglement metrics across pathologist-
annotated datasets.

Datasets: We collated multi-patient pancreatic ductal adenocarcinoma (PDAC, 13 slides) and
colorectal cancer (CRC, 14 slides) data profiled with ST and H&E imaging (Cui Zhou et al., 2022;
Valdeolivas et al., 2024). We created pathologist annotations for tumour/normal tissue regions for
the PDAC dataset and used existing pathologist annotations for the CRC dataset (Appendix D). We
preprocess the data such that we obtain patches of the H&E image that correspond to the area around
the spots that capture ST data (Appendix D). Image features for a per-spot representation are obtained
through zero-shot inference of the UNI histopathology foundation model (Chen et al., 2024). ST data
is processed uniformly for all datasets (Appendix D), and highly-variable gene (HVG) selection is
performed for all spots across all slides (Appendix E).

Baselines: We compared SpatialDIVA to an array of baselines including PCA, a standard VAE model
(Kingma & Welling, 2013), and an unsupervised disentanglement approach in the β-VAE model
(Higgins et al., 2016) (Appendix I). Comparison with the DIVA model (Ilse et al., 2019) and similar
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approaches (Joy et al., 2020) was not possible as they cannot handle multi-modal data and continuous
label distributions for spatial context (Appendix F).

Evaluation: A disentangled representation would result in each factor containing specific information
about morphology, transcriptomic, spatial, and batch variation. For morphology we used pathologist
annotations of the data at a per-patch level. For transcriptomic information, we used expert-annotated
cell-types within each spot. For batch variation, we used the slide label that each spot originates from.
It was unclear how to evaluate continuous spatial variation in this case, so this was omitted. The
categorical labels for the morphological, transcriptomic, and batch variation were one-hot encoded
and embeddings from the baselines and SpatialDIVA model were compared with the encoded labels
to assess disentanglement (Appendix I).

Models were trained on randomly selected 90% subsets of the datasets for PDAC and CRC (one
model per cancer type), then evaluated on the held-out 10% of the data for 10 iterations (Appendix
I). Disentanglement was assessed using multiple metrics for categorical factors and continuous
embeddings (Appendix J) (Carbonneau et al., 2020).

Overall, SpatialDIVA performed the best considering an aggregate ranking across all disentanglement
metrics used in the benchmark, for both the PDAC and CRC cohorts (Table 1). These results
demonstrate that within a multi-modal disentanglement setting, the conclusions from Locatello et al.
(2018) hold, and that supervision based on prior information leads to better disentanglement.

Table 1: Disentanglement benchmark results for the pancreatic (PDAC) and colorectal cancer (CRC)
datasets. Results are the mean scores across 10 random subsamples of the datasets. The best results
for each metric are in bold and the second best results are underlined. Average rank is based on
rankings across all metrics for each dataset (Appendix I). Standard deviations across iterations can be
found in Appendix C (Table 3).

Colorectal cancer cohort Pancreatic cancer cohort

Metric
Method PCA VAE β-VAE SpatialDIVA PCA VAE β-VAE SpatialDIVA

JEMMING (↑) 0.2011 0.7690 0.9200 0.3537 0.2579 0.7922 0.9032 0.5327
SAP (↑) 0.0049 0.0000 0.0000 0.0024 0.0203 0.0000 0.0000 0.0034
MIG (↑) 0.0075 0.0049 0.0041 0.0128 0.0225 0.0057 0.0038 0.0893
MIG-SUP (↑) 0.0102 0.0541 0.0328 0.0336 0.0186 0.0668 0.0246 0.0577
Modularity (↑) 0.9473 0.9600 0.9562 0.9647 0.9421 0.9298 0.8938 0.9357
DCI-MIG (↑) 0.0337 0.0007 0.0003 0.1231 0.0700 0.0001 0.0001 0.2131
Explicitness (↑) 0.9505 0.1032 0.0409 0.9375 0.9010 0.0293 0.0035 0.9433
IRS (↑) 0.5008 0.5196 0.5001 0.5085 0.4459 0.4951 0.5000 0.5351
Average Rank (↓) 3 2 4 1 2 3 4 1

4.2 ASSESSING DISENTANGLEMENT AND COVARIANCE OF LATENT FACTORS

To determine how the disentanglement properties of SpatialDIVA affect the learned latent spaces,
we trained the model on the 13 PDAC slides and evaluated samples from the posterior distributions
qϕ(Z

k
y |Xt, Xh) and qϕ(Zd|Xt, Xh), conditioned on the observed data Xt and Xh (Appendix I).

We performed PCA on high-dimensional samples from one factor and visualized the first two PCs.
We then overlaid the label distributions onto the PCA reduction of each learned factor, to visually
examine how the annotated labels covary in the factor-specific latent spaces (Fig. 3 and Appendix
Fig. 5).

Examining the first 2 PCs demonstrates qϕ(Z1
y |Xt, Xh) captures variation in the transcriptomic

subgroups, specifically separating the fibroblast and pancreatic ductal cell populations (Fig. 3a).
The posterior distribution for morphology (qϕ(Z3

y |Xt, Xh)) captures distinction between pathologist-
annotated tumor/normal areas in the histology data (Fig. 3b). Interestingly, overlaying these labels
from the histology data onto the transcriptomics latent space (qϕ(Z1

y |Xt, Xh)) demonstrates the
transcriptomics information also distinguishes the tumor and normal pathologist annotations (Fig.
3c), indicating that there is a high degree of mutual information between the pathologist annotations
and transcriptomics information in this setting. This type of analysis can be done with any number of
factors using SpatialDIVA.
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(a) (b) (c)
Figure 3: Transcriptomic and morphology-associated posterior distributions. High-dimensional
samples from the posterior distributions (qϕ(Zky |Xt, Xh)) of the transcriptomic-associated (a, c) and
morphology-associated (b) latent spaces, reduced using PCA and the two axes associated with the
highest variation (x, y) are shown. The cell-type (a) and pathologist annotations (b, c) are overlaid,
with the density of the labels shown across the axes.

We next investigated how SpatialDIVA removes batch and technical effects (Fig. 1). To our knowl-
edge, SpatialDIVA is the first method that explicitly models batch effects from both the ST expression
data and histology image data in a joint manner (Fig. 2a). Batch correction is a challenging task in
both the transcriptomics and histology spaces (Kothari et al., 2014; Guo et al., 2023). Visualizing
the batch covariate and associated posterior samples (qϕ(Zd|Xt, Xh)) shows that this latent factor
captures the batch variation, as most batches can be distinguished even in the first two PCs of this
distribution (Appendix Fig. 5a). When we examine the transcriptomic and morphological latent
distributions (qϕ(Z1

y |Xt, Xh) and qϕ(Z3
y |Xt, Xh) respectively) and overlay the batch/slide labels,

we find that this variation has been removed from these factors (Appendix Fig. 5b,c), validating that
Zd effectively captures batch variation.

We compared the batch-correction ability of SpatialDIVA to a conditional VAE (cVAE) model that
conditions on batch (slide number), removing all respective across-slide variation (Appendix I).
We find that the different posterior distributions of SpatialDIVA minimize batch effects, but do not
remove inter-batch variation completely, as biological variation for the relevant posterior distributions
(Zky ) differs between batches (Appendix Table 4). As expected, the batch-associated posterior (Zd)
has the lowest batch-correction score, as it captures batch variation (Appendix Table 4). The residual
variation (Zr) has the highest score, indicating it is strongly independent of slide context (Appendix
Table 4). Furthermore, SpatialDIVA preserves biological information in its latent spaces better than
the cVAE baseline (Appendix Table 5).

4.3 CONDITIONAL GENERATION OF MULTI-MODAL DATA

As SpatialDIVA is a generative model, it is possible to generate new data (Xt, Xh) while intervening
on disentangled factors. Specifically, we can sample from the likelihoods by conditioning on specific
factors sampled from the posterior, while setting others to a constant value. For instance, if we
condition on only transcriptomic context (Z1

y ):
Z1
y ∼ qϕ(Z

1
y |Xt, Xh)

pθ(Xt|Z1
y , Z

i/∈1
y = C,Zr = C,Zd = C)

pθ(Xh|Z1
y , Z

i/∈1
y = C,Zr = C,Zd = C)

(12)

Essentially, Eqn. 12 indicates that the generated samples forXt andXh will vary according to Z1
y , but

not the other factors, as they are held constant. This allows us to quantify how one disentangled factor
influences variation in the multi-modal data. For example, if we want to evaluate the information
that morphology-associated variation qϕ(Z3

y |Xt, Xh) encodes in the ST data (Xt), we can condition
on the morphology factor and hold others constant, when generating the transcriptomic likelihood
(Appendix Fig. 6).

4.4 CONDITIONAL GENERATION ANALYSIS OF PDAC CANCER BIOPSY SAMPLES

Using this setup (Sec. 4.3), we sought to understand which gene programs and pathways can be
exclusively associated with transcriptomic variation, spatial context, and morphology information,
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and which are shared, in pancreatic cancer. Specifically, we trained the SpatialDIVA model on
all 13 slides of the multi-patient PDAC cohort and used the generated counts for further analysis
(Appendix I). After training the model using a negative binomial likelihood for the ST counts (Xt),
we sampled the shape (θ) and mean (µ) parameters for each spot and gene across the PDAC slides,
based on each conditional factor: θi,g, µi,g ∼ pθ(Xt,i,g|ZCond

y,i , Z
i/∈[Cond]
y,i = 0, Zr,i = 0, Zd,i = 0).

After obtaining these parameters for each spot on a per-gene level, we obtained negative binomial
distribution parameterizations which we then sampled counts from: Xt,i,g ∼ NBi,g(θi,g,

µi,g

θi,g
). This

was done for a random subset of 10000 spots sampled from all PDAC slides.

We first determined whether the differentially expressed genes (DEGs) in the counts generated are
specific or shared across factors (Appendix I). Differential expression quantifies which genes exhibit
statistically significant variance between clusters of spots, and are indicative of cell-types, cell-states
and gene programs that can be captured by transcriptional counts (Wolf et al., 2018) (Appendix I).

The top 500 DEGs in the conditionally generated counts from each factor showed mutual exclusivity
(Appendix Fig. 7a). This indicates that the gene programs associated with these factors are likely
to be mutually exclusive, and is another result that shows the SpatialDIVA model has successfully
performed multi-modal disentanglement.
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Figure 4: Pathway enrichment of top 500 DEGs from conditional generation. (a) The number of
enriched pathways specific to a functional group for each posterior factor, as a percentage of total
enriched pathways from that posterior factor. (b) The top 5 antigen presentation-specific pathways
with the highest enrichment based on corrected p-value for the Z1

y (intrinsic transcriptomic variation)
conditioned generated transcriptomic counts.

We analyzed more concretely the higher-level gene programs encoded by the top DEGs based on
pathway enrichment analysis. Pathway analysis assesses statistical overrepresentation for a set of
genes in biological pathways curated by experts (Kolberg et al., 2023) (Appendix I). As expected
based on the DEG analysis, there were many factor-specific enriched pathways, with spatial (Z2

y )
and morphological (Z3

y ) pathways exhibiting the highest overlap (Appendix Fig. 7b). Further
examination of the pathways based on keyword matching (Appendix I) reveals that all three factors
encode general pancreatic and metabolic functions (Fig. 4a). Transcriptomic variation (Z1

y ) was
found to capture the majority of the immunological signal (Fig. 4a,b). This result is important as
PDAC characterization and progression is significantly influenced by immune cells in the tumor
microenvironment (Karamitopoulou, 2019). The morphological variation (Z3

y ) was enriched for
translation-specific functions (Fig. 4a).

This analysis offers a vignette showing the capabilities of SpatialDIVA in determining the contribution
of disentangled factors to specific information in the observed data. Depending on the clinical
importance of certain gene programs, specific assays and analyses can be prioritized, such as assays
for transcriptomic variation, which was found to capture most of the immunological signal in the
PDAC data.

5 CONCLUSION

Here, we framed the challenge of determining the generative factors of ST and histopathology, and
their overlap, as multi-modal disentanglement. We introduced SpatialDIVA, the first technique to
perform multi-modal disentanglement in this setting, which leads to an interpretable and flexible
set of posterior distributions that are able to generate novel biological insights through multi-modal
conditional generation. The problem formulation and evaluation framework we developed is an
important resource for the community in creating models that learn factors relevant to each modality.
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MEANINGFULNESS STATEMENT

A meaningful representation of life should be interpretable, representative of the population, biologi-
cally/clinically useful, and be invariant to artifacts that may arise during data acquisition, such as
batch effects. Within these constraints, SpatialDIVA is the first approach to jointly model multi-modal
histopathology and spatial transcriptomics data in a manner that removes batch-effects, while return-
ing a disentangled and interpretable model of the data generating distributions for both modalities.
Further, SpatialDIVA allows biologists and clinicians to draw insights on the type of information
present in histopathology and spatial transcriptomics, which can help guide experimental and clinical
workflows.
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A RELATED WORK

ST and H&E models: Existing task-specific models for ST data include inferring cell-cell communi-
cation in a given tissue context (Fischer et al., 2023), general representation learning (Xu et al., 2024),
deconvolving cell-types in ST spots (Ma & Zhou, 2022), and aligning ST data with single-cell RNA
sequencing data (Biancalani et al., 2021).

Advances in foundation models have naturally led to an increasing interest in their uses for biological
data (Consens et al., 2023). Large pretrained models for histopathology data have been developed
since the rise of self-supervised pretraining in computer vision models (Ciga et al., 2022; Chen et al.,
2024; Xu et al., 2024). In our work, we use the UNI model (Chen et al., 2024) to obtain informative
representations of the histology images (Xh). ST foundation models have also been introduced
(Schaar et al., 2024; Cao & Yuan, 2024), and can be used to generate embeddings of the ST counts
(Xt) for use in the SpatialDIVA model.

Several models have been developed that aim to learn joint representations of the ST and histology
data, for various downstream tasks (Hu et al., 2021; Xu et al., 2022; Pham et al., 2023; Zhao et al.,
2024). However, these models do not learn disentangled representations of factors of variation for
both modalities, as we do in this work.

Histology to gene expression prediction models: Many models exploit paired ST and histology to
predict gene expression for a given region of an H&E slide (He et al., 2020; Pang et al., 2021; Zeng
et al., 2022; Xie et al., 2023). Although this approach can impute gene expression from morphology
alone, it is bounded by the maximum mutual information between the two modalities and does not
return any relevant information on the specific type of information in each, as well as their associated
generative factors.

Disentangled representation learning: There have been several advances in unsupervised disen-
tanglement (Higgins et al., 2016; Chen et al., 2018). However, Locatello et al. (2018) demonstrated
empirically and theoretically that without inductive biases, there are no guarantees for learning
disentangled representations. Consequently, multiple methods adopted strong and weak supervision,
as well as semi-supervised approaches (Ilse et al., 2019; Joy et al., 2020; Locatello et al., 2020;
Brehmer et al., 2022).

The two approaches that form the basis for our work are the domain invariant variational au-
toencoder (DIVA) (Ilse et al., 2019) and the characteristic capturing VAE (ccVAE) (Joy et al.,
2020) models. These models were not designed to handle multi-modal data and continuous label
distributions, as is the case for our spatial supervision covariate. As such, we explicitly build upon
their work for disentanglement of spatial transcriptomics and histopathology imaging.
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B SPATIALDIVA - EXTENDED BACKGROUND AND PROBLEM FORMULATION

Table 2: SpatialDIVA compared to other methods for jointly modeling ST and H&E image data.

Method Joint Disentangled Interpretable Conditional
embeddings? representations? latent space? multi-modal

generation?

SpatialDIVA ✓ ✓ ✓ ✓
Unsupervised disen-
tanglement

✓ ✓ ✗ ✗

Histology to gene ex-
pression

✓ ✗ ✗ ✗

B.1 BIOLOGICALLY INFORMATIVE PRIORS

Through outlining the flow of information within and across cells, we can determine some of the
important factors that generate the ST and histology data distributions.

Intrinsic transcriptomic variation: Variation in the RNA expression of different genes caused by
cell intrinsic genetic or epigenetic factors, is an important driving factor for both the ST and histology
data. This affects both ST expression variation as well as morphological variation, driven by changes
in expression of morphology-associated genes (Kiger et al., 2003).

Morphological variation: Morphological variation on a per-cell level clearly influences the mor-
phological variation on a per-spot level. However, changes in protein expression can also influence
transcriptomic variation (Vogel & Sheetz, 2006; Dupont et al., 2011) - there is not a simple linear
flow of information from DNA to RNA to protein expression. Therefore, this factor of variation can
affect both ST and histology readouts.

Spatial variation: Aside from intrinsic cellular variation at the per-spot level, variation in both
transcriptomic and morphological distributions can be driven by spatial context (Bressan et al., 2023).
The most concrete example of this is cell to cell communication across spatial domains. This type
of communication can influence transcriptomic variation, which in turn can affect both the ST and
histology contexts.

Technical/batch variation: Biological factors can influence changes in spot-level representations
of the data, however, technical variation can also drive these changes. Batch effects are variations
caused by assay differences, experimental differences, or even ambient conditions (Leek et al., 2010).
This variation is often conflated with biological variation, unless specifically accounted for (Leek
et al., 2010).

Residual variation: Any variation in the ST and histology data distributions that is not accounted
for by the aforementioned factors is considered residual variation. If batch/technical effects have
been accounted for, residual variation should capture biological effects not captured by the prior
information injected through the other factors.
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C SPATIALDIVA - EXTENDED RESULTS

C.1 RESULTS SECTION 4.1

Table 3: Disentanglement benchmark results for the pancreatic and colorectal cancer datasets,
standard deviation results from Table 1. Results are shown from 10 random subsamples of the
datasets.

Colorectal cancer cohort Pancreatic cancer cohort

Metric
Method PCA VAE β-VAE SpatialDIVA PCA VAE β-VAE SpatialDIVA

JEMMING 0.0063 0.2730 0.0481 0.0212 0.0098 0.2400 0.0030 0.0254
SAP 0.0004 0.0000 0.0000 0.0013 0.0008 0.0000 0.0000 0.0023
MIG 0.0005 0.0054 0.0023 0.0020 0.0009 0.0082 0.0025 0.0058
MIG-SUP 0.0012 0.0728 0.0231 0.0019 0.0006 0.0585 0.0181 0.0023
Modularity 0.0051 0.0262 0.0102 0.0077 0.0045 0.0440 0.0311 0.0129
DCI-MIG 0.0044 0.0008 0.0003 0.0166 0.0021 0.0001 0.0001 0.0166
Explicitness 0.0022 0.1582 0.0971 0.0029 0.0042 0.0581 0.0020 0.0047
IRS 0.0014 0.0616 0.0001 0.0016 0.0596 0.0183 0.0000 0.0400

C.2 RESULTS SECTION 4.2

(a) (b) (c)
Figure 5: Batch-associated posterior distribution and invariance in other factors. High-
dimensional samples from the posterior distributions of the batch-associated (a), transcriptomic-
associated (b), and morphology-associated (c) latent spaces, reduced using PCA with the two axes of
highest variation presented (x, y). The batch labels, based on the slide number of the samples, are
overlaid, with the density of the labels shown across the axes.

Table 4: Batch correction evaluation for the SpatialDIVA model. The average batch silhouette
width (ASWbatch) measures the degree of batch mixing where 0 indicates no batch mixing and 1
indicates perfect batch mixing. Results are shown for 5 random seeds for the conditional variational
autoencoder (cVAE) model and the different posterior latent distributions of SpatialDIVA. The best
results in each dataset are bolded.

Colorectal cancer Pancreatic cancer
cohort batch cohort batch

Method ASW ASW
cVAE 1.000± 0.000 0.949 ± 0.114
SpDIVA Z1

y 0.729 ± 0.028 0.704 ± 0.008
SpDIVA Z2

y 0.610 ± 0.031 0.393 ± 0.084
SpDIVA Z3

y 0.721 ± 0.009 0.571 ± 0.018
SpDIVA Zr 1.000± 0.000 1.000± 0.000
SpDIVA Zd 0.200 ± 0.049 0.144 ± 0.020
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Table 5: Biological conservation evaluation for the SpatialDIVA model. The average biology
conservation score, which is an aggregate of several metrics (Appendix I) is shown. Results are
shown for 5 random seeds for the conditional variational autoencoder (cVAE) model and the different
posterior latent distributions of SpatialDIVA. The best results in each dataset are bolded, and the
second-best results are underlined.

Colorectal cancer Pancreatic cancer
cohort biology cohort biology

Method conservation conservation
cVAE 0.388± 0.000 0.359 ± 0.042
SpDIVA Z1

y 0.433± 0.006 0.519± 0.011
SpDIVA Z2

y 0.328 ± 0.017 0.296 ± 0.021
SpDIVA Z3

y 0.412 ± 0.005 0.462 ± 0.009
SpDIVA Zr 0.388± 0.000 0.378± 0.000
SpDIVA Zd 0.336 ± 0.007 0.388 ± 0.007

C.3 RESULTS SECTION 4.3

Figure 6: Conditional generation of transcriptomic data. The trained model can be frozen and
posterior samples for the morphology-specific latent can be used to generate morphology-specific ST
gene expression values, as the other factors are held constant (0) during generation.

C.4 RESULTS SECTION 4.4
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Figure 7: Overlap of DEGs and pathways for conditional generation. For PDAC, conditional
generation of the ST counts (Xt) was performed based on the intrinsic transcriptomic (Z1

y ), spatial
(Z2
y ) and morphological (Z3

y ) factors of variation. (a) The overlap of the top 500 DEGs for the
generated counts conditioned on each factor. (b) Overlap of the enriched pathways in the top 500
DEGs for each factor.
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D DATASETS AND DATASET FORMATTING

The SpatialDIVA model is dependent on having spot-level alignment of ST data and patches from
the histology image. Given this constraint, we used data that was either already processed by the
HEST-1k pipeline (Jaume et al., 2024), or used their preprocessing scripts to process other paired
ST/histology data.

D.1 ST DATA PREPARATION

D.1.1 COLORECTAL CANCER DATA

The spatial transcriptomics data for the colorectal cancer cohort (Valdeolivas et al., 2024) was
obtained from the HEST-1k dataset of jointly measured ST and histology data using the Visium
platform (Jaume et al., 2024). The HEST-1k uses a specific pipeline for segmentation of tissue and
alignment of ST and histology data (Jaume et al., 2024). Given the data as it was procecessed by
HEST-1k, we aimed to match the annotations by the authors in the original paper for the ST spot-level
cell-type deconvolution and expert pathologist annotations (Valdeolivas et al., 2024), to the data as
processed by HEST-1k. We used the barcode information from each ST sample to achieve this, and
subset the data from HEST-1k to spots that have both pathologist and ST cell-type annotations from
the supplementary information from Valdeolivas et al. (2024). This resulted in 14 tissue sections,
corresponding to 14 samples for paired ST and histology measurements.

D.1.2 PANCREATIC CANCER DATA

The pancreatic cancer data (Cui Zhou et al., 2022) was reprocessed and reannotated with updated
single-cell references (Peng et al., 2019; Yu et al., 2024).

The dataset consists of 15 sections from 10 patients available on the Human Tumour Atlas Network
(HTAN) under the atlas code WUSTL. To estimate the number of cells per spot, we performed nuclear
segmentation on the full resolution histology image. Briefly, image crops of each Visium spot were
obtained and nuclear segmentation was performed using squidpy (Palla et al., 2022) and stardist
(Schmidt et al., 2018) to obtain cell counts per spot. An average cell count per spot was derived
for each Visium slide after segmentation of all spots. To infer cell-type proportions for each spot,
we utilized cell2location (Kleshchevnikov et al., 2022) and cell-type labels from publicly available
single cell adenocarcinoma datasets from Peng et al. (Peng et al., 2019) and Cheng et al (Yu et al.,
2024). Briefly, the single cell reference was trained in cell2location using the following parameters
for gene selection: (cell count cutoff: 5, cell percentage cutoff2: 0.03, nonz mean cutoff: 1.12,
non-mitochondrial genes) and training (num samples: 1000, batch size: 2500, num epochs: 250,
batch key: sample id). To predict cell-type proportions for each Visium sample, we utilized the
average cells per spot from segmentation for each slide and the following parameters (detection alpha:
20, max epochs: 30000). Lastly, the 5% quantile of the posterior distribution was utilized as the
inferred cell-type abundance per spot and projected onto the histology image for visualization. We
used 13 of the 15 sections due to annotation limitations for the histology data (Sec. D.2).

For both the colorectal and pancreatic cancer data ST-labels, which are a proportion of cell-types
per spot, we selected the cell-type that had the highest proportion in each spot to use as a categorical
label when training and evaluating the SpatialDIVA model.

End-users of the SpatialDIVA method can use their own datasets for ST data, provided there are
labels for both the cell-type (ST-derived) and pathologist annotations. In cases where these labels
have not yet been derived, unsupervised clustering can be used within each modality to obtain labels.

D.2 HISTOLOGY DATA PREPARATION

Alignment of ST data at the level of spots and the histology data which is split up into patches,
is necessary for training the SpatialDIVA model. The Visium data from HEST-1k (Jaume et al.,
2024) was processed using an end-to-end pipeline that the authors developed for Visium datasets that
performs automatic tissue segmentation, alignment, and resolution detection. The pipeline results in
processed ST data with a measurement of gene expression per spot on the ST slide, and histology
patches that are centered around each ST spot. The pipeline does this by creating 224x224 px patches
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at 20X magnification around each spot. This results in patches of histology images that approximately
correspond to each of the ST spots in the slide.

From here, we extract image features for each spot-aligned patch using the UNI foundation model
(Chen et al., 2024). The UNI model is loaded via the timm library (Wightman, 2019) and the
Huggingface Hub (Wolf et al., 2019). The pretrained model is loaded via the following parameters:
{pretrained = True, init values = 1e-5, dynamic img size = True}. Specifically, we used the ViT-L/16
model from the first version of UNI (Chen et al., 2024). Using UNI in inference mode with no
further fine-tuning, we obtained 1024 dimensional embeddings for each spot-level patch for both the
colorectal cancer and pancreatic cancer datasets.

D.2.1 COLORECTAL CANCER DATA

The colorectal cancer data (Valdeolivas et al., 2024) had already undergone the respective processing
using the HEST-1k pipeline to obtain spot-level patch representations of the histology image. As
such, there was no further processing necessary and we used these patches and the corresponding
ST spots (Sec. D.1) with ST cell-type labels and pathologist annotations from the original study
(Valdeolivas et al., 2024) for further analysis. The pathologist annotations were done at the spot-level,
so aligning these with the spot-level patches used the same code as aligning cell-type labels.

D.2.2 PANCREATIC CANCER DATA

The pancreatic cancer data (Cui Zhou et al., 2022) was not present in the HEST-1k dataset. As
such, we used the HEST-1k pipeline to perform tissue segmentation, upscaling, and patching at the
spot-level for this data (Jaume et al., 2024). Specifically, we used the VisiumReader() function from
HEST-1k, which loads the histopathology image, feature matrix for ST, and the spatial coordinates.
Then we used a built-in function for OTSU segmentation, followed by patching at a size of 224 px.
This resulted in patches corresponding to ST spots for the segmented tissue from HEST-1k. The ST
data that we had from (Cui Zhou et al., 2022) was inner-joined with the spots that were segmented
through the HEST-1k pipeline.

For the samples of the pancreatic cancer data (Cui Zhou et al., 2022), of the 15 samples, 13 of them
were annotated by a clinical pathologist in our team, for tumor versus normal regions of the slide.
As such, we only used the 13 pathologist-annotated samples from the original study for subsequent
analysis. The pathologist annotations for the 13 samples were transferred onto the ST spots through
the Shapely library (Gillies et al., 2007).

After processing both datasets, the resulting representations had spot-aligned UNI features (1024
dimensional), pathologist annotations at the spot-level, deconvolved cell-type annotations at the
spot-level, as well as expression across all mapped genes, spatial coordinates on each slide for each
spot, and other metadata that was used (such as batch/slide number).
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E ST AND HISTOLOGY DATA PREPROCESSING

E.1 ST DATA PREPROCESSING

After data preparation, the raw counts from the ST data can be processed further depending on the
experiments.

In general, for the ST-derived labels, which comprised of deconvolved cell-type proportions for
each spot, we took the cell-type with the highest proportion (representation) for each spot as a soft
categorical label. This label was used for model training and evaluation across all results sections.

For evaluation of the SpatialDIVA model versus baselines in quantification of disentanglement
(Results Sec. 4.1, Table 1) and the quantitative evaluation of batch-correction effects (cVAE and
SpatialDIVA, Results Sec. 4.2, Appendix Table 4), the SpatialDIVA model and baselines were trained
after the following preprocessing procedures to the ST counts:

• Count normalization per spot to a fixed value (10000)
• Log1p, equivalent to ln(x+ 1), transformation of the counts
• Highly-variable gene selection using the ’seurat’ method

Count normalization and Log1p transformations were done for each sample/slide individually, and
samples for the complete datasets (pancreatic and colorectal cancer) were concatenated to perform a
joint highly-variable gene selection. Joint highly-variable gene selection ensures that cell-types and
states across all slides are best captured. These transformations were done using the Scanpy library
(Wolf et al., 2018).

For the qualitative disentanglement results in Figs. 3 and 5, the SpatialDIVA model was trained after
count and Log1p normalization, but no highly-variable gene selection was done and all genes were
used in training the model and evaluating the empirical posterior distributions.

E.2 HISTOLOGY DATA PREPROCESSING

The extracted UNI (Chen et al., 2024) features for the spot-level patches of histopathology image
data (Sec. D.2) were standardized at the feature-level (1024 dimensions = 1024 features) for all
experiments. Standardization of these features was done for each slide (sample) individually. The
reasoning for this was to ensure that batch-effects are not introduced by standardization of the UNI
features across samples/slides (Lin & Lu, 2022).

E.3 PREPROCESSING AND EXPERIMENTAL SETUP

A potential challenge in the across-slide selection of highly-variable genes and within-slide standard-
ization of UNI features, is when evaluating disentanglement quantitatively (Sec. 4.1). However, we
consider all samples of one cohort to be part of a single observed data distribution, and effectively
evaluate samples that are i.i.d. in the disentanglement benchmark. As such, factors such as generaliza-
tion and data leakage are not considered, because this is a statistical learning problem. This is in line
with previous work on evaluating disentanglement (Locatello et al., 2018). The approach of training
and evaluating on different subsets of a known data distribution can be interpreted as bootstrapping
our estimates of disentanglement performance (Sec. 4.1).
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F SPATIALDIVA MODEL DETAILS

F.1 SPATIALDIVA DISTRIBUTIONS

The SpatialDIVA model architecture is that of a neural network with separate encoders for each
posterior covariate (qϕ(Zi)) that is considered in the model, linear decoders that use samples from
the posterior distribution to reconstruct the likelihoods for the ST (Xt) and histology (Xh) data
distributions (pθ(Xi)), encoders for the prior distributions (pθ(Zi)), and classification heads for the
label distributions (qψ(Li)). Table 6 summarizes the distributions used in the model, as well as the
data required for each.

Table 6: Distributions used in the SpatialDIVA model and details.

Distribution Specification Dependency
pθ(Xt|Zky , Zd, Zr) Gaussian/Negative Binomial likelihood Posterior distributions of Zky , Zd, Zr
pθ(Xh|Zky , Zd, Zr) Gaussian likelihood Posterior distributions of Zky , Zd, Zr
qϕ(Z

1
y |Xt, Xh) Gaussian posterior for transcriptomic variation Empirical data distributions for Xt and Xh

qϕ(Z
2
y |Xt, Xh) Gaussian posterior for spatial variation Empirical data distributions for Xt and Xh

qϕ(Z
3
y |Xt, Xh) Gaussian posterior for morphological variation Empirical data distributions for Xt and Xh

qϕ(Zd|Xt, Xh) Gaussian posterior for batch variation Empirical data distributions for Xt and Xh

qϕ(Zr|Xt, Xh) Gaussian posterior for residual variation Empirical data distributions for Xt and Xh

pθ(Z
1
y |L1) Gaussian prior for transcriptomic variation Categorical cell-type labels/clusters from ST

pθ(Z
2
y |L2) Gaussian prior for spatial variation Continuous neighborhood labels (Xt and Xh)

pθ(Z
3
y |L3) Gaussian prior for morphological variation Categorical pathologist labels/clusters from H&E

pθ(Zd|Ld) Gaussian prior for batch variation Categorical batch, sample, or slide labels
pθ(Zr) Standard normal Gaussian prior for residual variation N/A

qψ(L
1|Z1

y) Categorical of ST cell-type/cluster labels Posterior distribution of Z1
y

qψ(L
2|Z2

y) Gaussian of neighborhood representations (Xt, Xh) Posterior distribution of Z2
y

qψ(L
3|Z3

y) Categorical of pathologist/cluster H&E labels Posterior distribution of Z3
y

qψ(L
d|Zd) Categorical of batch labels Posterior distribution of Zd

F.2 SPATIALDIVA ARCHITECTURE

For each of the given distributions outlined in the previous section, Tables 7, 8, 9, 10, and 11
summarize the SpatialDIVA architecture choices for the different experiments in the paper. Exceptions
based on experiments are noted after the tables.

Table 7: Architecture for data likelihood distribution for ST - pθ(Xt|Zky , Zd, Zr)

Module number Component
1 nn.Linear(100, 64)
2 mu = Softplus(nn.Linear(64, 36601))
3 logvar = nn.Linear(64, 36601)

Table 8: Architecture for data likelihood distribution for histology - pθ(Xh|Zky , Zd, Zr)

Module number Component
1 Linear(100, 64)
2 mu = Linear(64, 1024)
3 logvar = Linear(64, 1024)
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Table 9: Architecture for posterior distributions - qϕ(Zi|Xt, Xh)

Module number Component
1 Linear(37625, 64)
2 BatchNorm1D(64)
3 ReLU()
4 mu zy = Linear(64, 20)
5 logvar zy = Linear(64, 20)

Table 10: Architecture for prior distributions - pθ(Zi|Li). Variable here indicates the variable input
length for the prior labels, which depends on the posterior/label combination and dataset.

Module number Component
1 Linear(Variable, 64)
2 ReLU()
3 mu zy = Linear(64, 20)
4 logvar zy = Linear(64, 20)

Table 11: Architecture for label distributions - qψ(Li|Zi). Variable here indicates the variable output
length for the prior labels, which depends on the posterior/label combination and dataset.

Module number Component
1 ReLU()
2 Linear(20, Variable)

In terms of exceptions to the architectures outlined in Tables 7, 8, 9, 10, and 11:

• For the experiments benchmarking disentanglement (Table 1) and batch-correction (Ap-
pendix Table 4), the input size for ST counts (Xt) was 2500 (instead of 36601), as highly-
variable gene selection was done for these experiments (changes Table 7 output size, Table
9 input size)

• For the latent space covariance analysis, the dimensionality of output for the posterior
of batch variability (qϕ(Zd|Xt, Xh)) was changed from 20 to 5 (Table 9). Also for this
analysis, two hidden layers were used for the ST and histology data distributions (pθ(Xt|..),
pθ(Xh|..)) of sizes 256 followed by 128 (Tables 7 and 8). Lastly, an extra hidden layer
was used for the encoders of the posterior distributions (qϕ(Zi|Xt, Xh)), of size 32 (two
sequential hidden layers, size 64 and 32 with ReLU() non-linearities after each) (Table 9)

• For the conditional generation experiments (Results Sec. 4.3 and 4.4), the likelihood
distribution for ST (Table 7) outputs θ and µ to parametrize a Negative Binomial distribution,
which are both constrained to be positive via Softplus, instead of µ and logvar for a Gaussian
distribution. Further, the dimensionality of output for the posterior of batch variability
(qϕ(Zd|Xt, Xh)) was changed from 20 to 5 (Table 9). Two hidden layers were used for
the ST and histology data distributions (pθ(Xt|..), pθ(Xh|..)) of sizes 256 followed by 128
(Tables 7 and 8). Lastly, an extra hidden layer was used for the encoders of the posterior
distributions (qϕ(Zi|Xt, Xh)), of size 32 (two sequential hidden layers, size 64 and 32 with
ReLU() non-linearities after each) (Table 9).
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G SPATIALDIVA OBJECTIVE DERIVATION

For the SpatialDIVA model (Fig. 2), we want to maximize the following marginal likelihood of the
ST counts (Xt), histology features (Xh) and observed labels (L):

pθ(Xt, Xh, L) =

∫
pθ(Xt|Z)pθ(Xh|Z)pθ(Z|L)p(L)dz

However, this marginalization over all possibilities of Z is intractable. We can instead learn a lower
bound on the log-likelihood:

log (pθ(Xt, Xh, L)) = log

∫
pθ(Xt|Z)pθ(Xh|Z)pθ(Z|L)p(L)dz

= log

∫
pθ(Xt|Z)pθ(Xh|Z)pθ(Z|L)p(L)

q(Z|Xt, Xh)

q(Z|Xt, Xh)
dz

= Eq(Z|Xt,Xh)[log p(Xt|Z) + log p(Xh|Z) + log p(Z|L)

+�����:not dependent on q(Z|.)
log p(L)− log q(Z|Xt, Xh)]

Using Jensen’s inequality, which indicates that log(E(..)) ≥ E[log(..)]:

log (pθ(Xt, Xh, L)) ≥ Eq(Z|Xt,Xh)[log p(Xt|Z) + log p(Xh|Z) + log p(Z|L)− log q(Z|Xt, Xh)]

≥ Eq(Z|Xt,Xh)[log p(Xt|Z)] + Eq(Z|Xt,Xh)[log p(Xh|Z)]

+ Eq(Z|Xt,Xh)[log p(Z|L)− log p(Z|Xt, Xh)]

We have two types of label distributions - Lk for k biologically informative prior labels, Ld for the
batch/sample. These correspond to m Zky posterior distributions, a Zd posterior. There is also a
posterior for residual variation in Zr. We can break down this bound further based on these distinct
factors, without explicitly summing over the k posteriors and labels for biologically informative
labels. The posterior for residual variation (Zr) is not constrained by a label distribution.

≥ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xt|Zky , Zd, Zr)]

+ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xh|Zky , Zd, Zr)]

+ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Z

k
y |Lk) + log p(Zd|Ld) + log p(Zr)

− log q(Zky |Xt, Xh)− log q(Zd|Xt, Xh)− log q(Zr|Xt, Xh)]

≥ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xt|Zky , Zd, Zr)]

+ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xh|Zky , Zd, Zr)]

+ Eq(Zk
y |Xt,Xh)[log p(Z

k
y |Lk)− log q(Zky |Xt, Xh)]

+ Eq(Zd|Xt,Xh)[log p(Zd|L
d)− log q(Zd|Xt, Xh)]

+ Eq(Zr|Xt,Xh)[log p(Zr)− log q(Zr|Xt, Xh)]

Through the definition of the KL-divergence:

≥ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xt|Zky , Zd, Zr)]

+ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xh|Zky , Zd, Zr)]

−DKL(q(Z
k
y |Xt, Xh) ∥ p(Zky |Lk))−DKL(q(Zd|Xt, Xh) ∥ p(Zd|Lk))

−DKL(q(Zr|Xt, Xh) ∥ p(Zr))
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The first two expectations correspond to the likelihoods of the ST (Xt) and histology (Xh) data.
The last three KL divergence terms penalize the learned posterior distributions based on the learned
prior distributions. The exception is q(Zr|Xt, Xh), which is penalized based on a standard normal
Gaussian prior p(Zr). We can decompose the KL divergences for all of the Zy terms we consider,
including intrinsic transcriptomic variation Z1

y , spatial variation Z2
y , and morphological variation Z3

y :

≥ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xt|Zky , Zd, Zr)]

+ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xh|Zky , Zd, Zr)]

−
3∑
k=1

(
DKL(q(Z

k
y |Xt, Xh) ∥ p(Zky |Lk))

)
−DKL(q(Zd|Xt, Xh) ∥ p(Zd|Lk))
−DKL(q(Zr|Xt, Xh) ∥ p(Zr))

Similar to ccVAE (Joy et al., 2020) and DIVA (Ilse et al., 2019), we incorporate classification losses
for the posterior samples based on the labeled data (Appendix 6):

≥ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xt|Zky , Zd, Zr)]

+ Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xh|Zky , Zd, Zr)]

−
3∑
k=1

(
DKL(q(Z

k
y |Xt, Xh) ∥ p(Zky |Lk))

)
−DKL(q(Zd|Xt, Xh) ∥ p(Zd|Lk))

−DKL(q(Zr|Xt, Xh) ∥ p(Zr)) +
m∑
k=1

Eqϕ(Zk
y |Xt,Xh)[log qψ(L

k
y |Zky )]

+ Eqϕ(Zd|Xt,Xh)[log qψ(L
d|Zd)]

This leads to the following objective, with β’s corresponding to hyperparameters. We minimize the
loss, and hence the signs flip:

−L(θ, ϕ, ψ) = −β1Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xt|Zky , Zd, Zr)]

− β2Eq(Zk
y ,Zd,Zr|Xt,Xh)[log p(Xh|Zky , Zd, Zr)]

+ β3

3∑
k=1

(
DKL(q(Z

k
y |Xt, Xh) ∥ p(Zky |Lk))

)
+ β4DKL(q(Zd|Xt, Xh) ∥ p(Zd|Lk))
+ β5DKL(q(Zr|Xt, Xh) ∥ p(Zr))

− β6

m∑
k=1

Eqϕ(Zk
y |Xt,Xh)[log qψ(L

k
y |Zky )]

− β7Eqϕ(Zd|Xt,Xh)[log qψ(L
d|Zd)]

The parameterizations of θ, ϕ, and ψ for the different distributions are outlined in Appendix F.

In general, across experiments, we use hyperparameters where all β’s are set to 1. Exceptions are
explicitly indicated in Appendix I.
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H BIOLOGICAL FACTORS OF VARIATION IN ST AND HISTOLOGY

For the key biological factors of variation that we considered in our analysis that are initially
described in Appendix B.1, we provide more detail on the rationale behind their selection, framing in
the problem, and preprocessing below.

H.1 INTRINSIC TRANSCRIPTOMIC VARIATION - Z1
y

Intrinsic variation of gene expression takes into account the biological processes that are not strongly
influenced by cellular organization and cell-cell communication. Within a tissue context there is
a large-scale orchestration of cell-cell communication that occurs via signalling, both short and
long-range (Alberts et al., 2022). Even longer range signals can arrive from entirely different organs
and parts of the body that influence the transcriptomic state of individual cells, for functional effects
such as differentiation (Alberts et al., 2022). Variation in gene expression that is intrinsic, therefore,
should capture effects and functional changes to gene expression that are dictated by the internal
state of a cell. An example of this could be immune evasion functions governed by gene expression
changes that are activated in cancer cells due to mutations (Hanahan, 2022).

We consider intrinsic transcriptomic variation to be an important factor, as this variation will affect
both the transcriptomic counts (Xt) in a trivial manner, and the histology features (Xh) due to the
relationship between transcription and protein expression (more details provided in the Morphology
section). A potential challenge is determining how to isolate intrinsic versus extrinsic transcriptomic
variation, where extrinsic variation is due to factors such as cell-cell communication. From a
supervision perspective, the labels we utilize, whether they are clusters or expert-annotated cell-types
derived from the ST data, will also likely be influenced by extrinsic variation as this will affect the
ST counts (Xt) as well. In SpatialDIVA, we aim to remove the extrinsic variation captured in the
posterior distribution for Z1

y by introducing a spatial variation covariate (Z2
y ). Although we constrain

intrinsic transcriptomic variation on labels that may contain information from both intrinsic and
extrinsic sources, by encouraging disentanglement through the Z2

y posterior, we aim to remove as
much extrinsic variation from the posterior distribution of Z1

y as possible.

In our analysis, we use expert-annotated cell-type labels derived from the ST counts, for both the
colorectal and pancreatic cancer datasets (L1). These labels are derived using a single-cell reference,
as the Visium ST protocol does not yield single-cells per spot but a mixture of cells (Ståhl et al., 2016).
The process is referred to as cell-type deconvolution, and returns a proportion of cell-types estimated
to be in each spot of the ST slide (Ma & Zhou, 2022). As we use a categorical distribution of labels to
constrain our posterior for intrinsic transcriptomic variation (Appendix 6), we take the cell-type that
has the highest proportion in each spot as a label, and we consider the entire set of cell-type labels
derived in this manner as a categorical distribution. This was done for both the colorectal cancer data
and re-annotated pancreatic cancer datasets.

H.2 SPATIAL VARIATION - Z2
y

Spatial variation considers the influence of extracellular signalling as well as more direct means
of cell-cell communication, such as at cellular junctions (Alberts et al., 2022). Spatial context is
relevant across many biological scenarios, including development and cancer. Within development,
cellular signalling gradients which are organized spatially, dictate how certain cells differentiate and
what cells and tissues they will give rise to (Barresi & Gilbert, 2023). In cancer, as we highlight in
the case of PDAC, spatial context is important for characterization of a tumor as well as potential
diagnostic and therapuetic avenues (Karamitopoulou, 2019; Cui Zhou et al., 2022). We consider both
intrinsic transcriptomic and morphological variation as separate covariates, and therefore, the spatial
variation posterior (Z2

y ) should aim to capture spatial variation that will affect both the ST (Xt) and
histology profiles (Xh). Therefore, for our spatial context covariate (Eqns. 10, 11), we consider the
concatenation of reduced features for both the transcriptomic (Xt) and histology data (Xh).

Essentially, through our neighborhood decomposition, we aim to represent a label distribution (L2)
that captures the context of all the cells in each spot i, by having a representation that is predictive of
the Xt and Xh features of the spatial neighbors of i. These neighbors are defined by locality, and we
are using the spatial coordinates available in the data (Px,y) to create this predictive representation. If
the prior and posterior distributions for Z2

y retain this context, and if disentanglement in the model is
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working appropriately, the spatial context should be captured by Z2
y , while being minimized in all of

the other posterior distributions.

H.3 MORPHOLOGICAL VARIATION - Z3
y

The last factor of variation that we considered was morphological variation. Cellular morphology is
dictated primarily by protein expression, cellular shape, and organization of subcellular organelles
like the nucleus (Alberts et al., 2022). Morphological features have a long history of being utilized
to differentiate the state of cells, such as the use of H&E staining in histopathology to differentiate
cancer cells from normal cells (He et al., 2012). Morphological features are distinguished through
the histology aspect of the multi-modal data we consider (Xh), and therefore have a direct effect on
this modality, much like intrinsic transcriptomic variation has a direct effect on the transcriptomic
counts per spot (Xt). However, as described in Appendix B.1, both morphological and intrinsic
transcriptomic variation can affect both the transcriptomic (Xt) and histology (Xh) readouts.

Further, we have observed a direct case where transcriptomic variation is correlated with mor-
phological features, in that intrinsic transcriptomic variation (Z1

y ) was found to be predictive of a
histopathology derived label (tumor/normal) in PDAC (Fig. 3).

For labels that constrain the morphology posterior and prior distributions (L3), we used pathologist
annotations of the histopathology slides based on regions. For the colorectal cancer data (Valdeolivas
et al., 2024), this comprised of annotations for distinctive tumor, stromal, and normal regions of cells
stained by H&E. For the pancreatic cancer data (Cui Zhou et al., 2022), the slides were annotated
by a pathologist on our team, delineating tumor and normal epithelial regions. As such, we had a
categorical distribution of labels for the colorectal cancer data, and a binary distribution of labels for
the pancreatic cancer data. These labels were derived exclusively through the histology features, and
they should thus be significantly correlated with the morphological variation we aimed to capture in
this covariate (Z3

y ).

28



Published at LMRL Workshop at ICLR 2025

I EXPERIMENT DETAILS AND CONFIGURATIONS

This appendix section provides details on the experiment settings, as well as baselines that were used
and their setup. The different experiments and their details are contained in their own sections.

I.1 RESULTS SEC. 4.1

I.1.1 QUANTITATIVE DISENTANGLEMENT BENCHMARK

For the quantitative evaluation of disentanglement, we used a modified version of SpatialDIVA with
highly-variable genes (Sec. F.2). For both the colorectal and pancreatic cancer datasets, preprocessing
was done in a uniform manner for all baselines and the SpatialDIVA method:

• ST count (Xt) normalization to 10000 counts per spot
• Log1p transformation per spot-gene pair across all spots and genes
• Highly-variable gene selection using all slides in a cohort (2500 genes)
• Standardization of UNI features (1024) for the histology (Xh) data, per slide

For both the colorectal cancer and pancreatic cancer datasets, we sampled 90% of the spots from
the combined slides and held-out 10% for evaluation of disentanglement. These splits were done
randomly using the numpy (Harris et al., 2020) library, and 10 random seeds.

The baselines for disentanglement benchmarking were set up as follows:

PCA: For principal component analysis, the transcriptomic counts (Xt) and standardized UNI
histology features (Xh) were concatenated and the transcriptomic counts were also standardized. A
PCA reduction (Pedregosa et al., 2011) was done on the concatenated representation, and the first 20
dimensions were used as embeddings for disentanglement quantification.

VAE: For a base variational autoencoder, we considered a VAE (Kingma & Welling, 2013) with a
20 dimensional latent posterior (qϕ(Z|Xt, Xh)), with a 64 dimensional hidden layer for the encoder
and decoder. ReLU activations were done after the hidden layers, but not before the likelihood and
posterior mean and logvar output steps. Similar to SpatialDIVA, a Gaussian posterior and likelihood
were used.

β-VAE: The configuration for the β-VAE and VAE were the exact same, the only difference was that
the weight on the KL divergence term for the posterior distribution was increased to 100, as outlined
in Higgins et al. (Higgins et al., 2016):

1 ∗ Eqϕ(Z|Xt,Xh)[log pθ(Xt, Xh|Z)] + 100 ∗DKL(qϕ(Z|Xt, Xh) ∥ p(Z))

SpatialDIVA used the configuration outlined previously, with a Gaussian likelihood for the log-
normalized transcriptomic counts (Xt) as well as the standardized UNI histology features (Xh). The
trained SpatialDIVA model is used on the test data (frozen model) to extract the mean parameters (µi)
from the following posterior distributions: qϕ(Z1

y |Xt, Xh), qϕ(Z3
y |Xt, Xh), qϕ(Zd|Xt, Xh). The

means from these distributions were then concatenated to obtain test embeddings.

The PCA baseline was trained directly on the training set for each iteration using a singular value
decomposition (SVD) solver (Pedregosa et al., 2011). The test data is then projected onto the principal
components (n=20) calculated via the training data. This 20 dimensional embedding is used for
further testing.

The VAE and β-VAE baselines were trained on each training subset and the test embeddings from
the latent spaces (qϕ(Zd|Xt, Xh)) were extracted after the models were frozen. The 20 dimensional
means µi of the latent embeddings were used for further testing.

The VAE, β-VAE, and SpatialDIVA models were trained using the Adam optimizer (Kingma & Ba,
2014) at a learning rate of 0.001 for 100 epochs and batch size of 64.

The extracted embeddings for SpatialDIVA and each of the baseline methods were used to com-
pute the disentanglement metrics (Appendix J). The factors used in the metrics comprised of the
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cell-type labels (from the ST data), pathologist annotations from the histology, and batch
labels. Essentially, these metrics measure how well the latent spaces of the baselines, as well as the
SpatialDIVA method, capture variance in ST-labelled cell-types, pathologist-annotated histology data,
and batch/technical effects. These factors were one-hot encoded and were used with the embeddings
extracted from each method to quantify the disentanglement scores across metrics (Appendix J).

The assessment of disentanglement for this setup was done for both the pancreatic and colorectal
cancer datasets (Table 1).

Using the metric values, the methods were ranked based on performance, where a 1 indicated the
best rank in a dataset for a given metric and 4 indicated the worst rank. Ranks were added up across
metrics for the methods and the method with the lowest aggregate score was the best and was ranked
first overall, and the other methods followed and were ranked using the same aggregation procedure.

I.2 RESULTS SEC. 4.2

I.2.1 DISENTANGLED LATENT SPACE AND COVARIANCE ANALYSIS

To assess the latent spaces of the posterior distributions, the SpatialDIVA model was trained on all
of the genes quantified in the ST (Xt) data for the pancreatic cancer cohort, with all slides used for
training the model. In terms of architecture, the architecture indicated in Sec. F was used with the
indicated changes (Sec. F.2).

The following preprocessing steps were done for the PDAC data before training:

• ST count (Xt) normalization to 10000 counts per spot
• Log1p transformation per spot-gene pair across all spots and genes
• Standardization of UNI features (1024) for the histology (Xh) data, per slide

The model was trained with a batch size of 256, for 50 epochs with the Adam (Kingma & Ba, 2014)
optimizer at a learning rate of 0.001.

After training the model with all of the PDAC data, embeddings were extracted for the poste-
rior distributions of the model: qϕ(Z1

y |Xt, Xh), qϕ(Z2
y |Xt, Xh), qϕ(Z3

y |Xt, Xh), qϕ(Zd|Xt, Xh),
qϕ(Zr|Xt, Xh). In this case, the means were not only used, and distributions for each posterior were
sampled once per datapoint. For example, for Z1

y and sample s for spot i in the observed data:

µi ∼ qϕ(Z
1
y |Xt, Xh)

σi ∼ qϕ(Z
1
y |Xt, Xh)

ϵ ∼ N(0, 1)

si = µi + ϵ ∗ σi

The samples for these posterior distributions were high dimensional (all 20 except for Zd which was
5). Therefore, for visualization, these were reduced to 2-dimensions using PCA (Pedregosa et al.,
2011), and the two axes of highest variation were visualized (Fig. 3 and Appendix 5).

The available cell-type labels derived from the ST data, pathologist annotations, and batch labels
were overlaid on the posterior samples for each spot in the data, for the respective plots.

For this experiment, the SpatialDIVA model we trained had modified ELBO hyperparameters (β’s as
defined in Appendix G). Specifically, β1 and β2, corresponding to the likelihood expectations, were
set to 100. All other β’s remained 1.

I.2.2 MULTI-MODAL BATCH CORRECTION BENCHMARK

The batch-correction benchmark used a conditional variational autoencoder (cVAE) (Sohn et al.,
2015) as a baseline, which conditioned on batch/slide label during training.

We trained SpatialDIVA and the cVAE using the exact same architecture and training setup as the
quantitative disentanglement experiments (Sec. I.1.1). The key difference is that we performed this
analysis for 5 iterations and in each iteration we used the entire dataset (colorectal or pancreatic
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cancer) for training and then subsequently evaluated batch-correction by freezing the network and
getting embeddings for all datapoints. Training on the full dataset and obtaining batch-corrected
embeddings is standard practice (Tran et al., 2020; Luecken et al., 2022).

Randomization in this case corresponded to different torch seeds for initialization of the models to
capture training variability. The architecture of the cVAE model is the same as that of the VAE model
in Sec. I.1.1, other than an added input of one-hot encoded batch-labels. This is done to reflect the
supervision for batch-correction available to the SpatialDIVA model.

For evaluation, we extracted the 20 dimensional posterior means from the cVAE latent space
(qϕ(Z|Xt, Xh, L

d)), and the following 20 dimensional posterior means from SpatialDIVA:
qϕ(Z

1
y |Xt, Xh), qϕ(Z3

y |Xt, Xh), qϕ(Zd|Xt, Xh), qϕ(Zr|Xt, Xh).

The posterior means from each latent outlined from SpatialDIVA was used in the analysis, as well as
the posterior means from the cVAE. We used the the scib-metrics package for benchmarking batch
correction (Luecken et al., 2022). Specifically, we used the average silhouette width (ASW) (Luecken
et al., 2022), which measures how well the batches mix across cells in given cell-types, and averages
this value across cell-types. For each cell-type label Cj with n total cells:

batchASWj =
1

n

∑
i∈Cj

1− |silhouette(i)|

This value effectively measures how well the batches are mixed in the embeddings for a given
cell-type Cj , where 1 indicates perfect mixing and 0 indicates the most suboptimal mixing of batches
possible. After obtaining this quantity per cell-type, we can average across M cell-types:

average batchASW =
1

M

∑
i∈M

batchASWi

For cell-type labels, we combined the ST-celltypes and pathologist annotations for both the colorectal
and pancreatic cancer datasets, into one string value which was then encoded for use with this metric.
We calculated this metric for each of the latent subspaces indicated from SpatialDIVA and the latent
subspace from cVAE. The calculation was done for 5 iterations for both cVAE and SpatialDIVA, as
indicated.

I.2.3 MULTI-MODAL BIOLOGY CONSERVATION BENCHMARK

For the results in Table 5, we used the exact same pipeline as in Sec. I.2.2, but instead of using
the ASW metric, we used an aggregated score that measures how well the embeddings preserve
biological signal with respect to the combined pathologist annotation and ST celltype labels. The
metrics we used were also from the scib-metrics package (Luecken et al., 2022), and included the
following bio-conservation metrics:

• Isolated biology label score

• Cell-type local inverse simpson index (cLISI)

• NMI using k-means clusters and biology labels

• ARI using k-means clusters and biology labels

• Biology label ASW

Full details on all of these metrics can be found in the scib-metrics documentation and the original
scib publication (Luecken et al., 2022).

The values of these metrics for cVAE and SpatialDIVA were averaged per iteration to determine the
biology conservation score.
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I.3 RESULTS SEC. 4.4

I.3.1 CONDITIONAL MULTI-MODAL GENERATION OF PDAC

For this analysis, the PDAC data was processed using the following steps:

• Standardization of UNI features (1024) for the histology (Xh) data, per slide

The model was trained on all of the genes, hence no highly-variable gene selection. Further, nor-
malization and log transformation of the counts was not done as we considered a negative binomial
likelihood for the ST data (Xt), which works best with untransformed transcriptomic counts (Lopez
et al., 2018).

The SpatialDIVA model was set up based on the changes to the default architecture as indicated in
Sec. F.2. A negative binomial parametrization of the ST (Xt) likelihood allowed for resampling of
the counts after training the model, based on conditioning of certain covariates. We maximized a
Negative Binomial likelihood, with the formulation taken from the scVI model (Lopez et al., 2018;
Gayoso et al., 2022). The same formulation was used for subsequent sampling of Negative Binomial
distributions using the obtained parameters.

The model was trained on all of the PDAC data, with a batch size of 256, the Adam optimizer
(Kingma & Ba, 2014) at a learning rate of 0.001, and for 50 epochs.

After training, conditional multi-modal generation was done, as outlined in Sec. 4.3, after conditioning
on transcriptomic (Z1

y ), spatial (Z2
y ) and morphological variation (Z3

y ), while holding other factors
constant. This process was the same across all 3 covariates. As an example, for the intrinsic
transcriptomic-conditioned generation for spot i:

Algorithm 1 Conditional generation of Xt|Z1
y

Input: N spots with Xt and Xh features, frozen (θ, ϕ, ψ) SpatialDIVA model
for Spoti in range(N ) do
µi, σi ∼ qϕ(Z

1
yi|Xti, Xhi)

ϵ ∼ N(0, 1)
Si = µi + σi ∗ ϵ
θi, µi ∼ pθ(Xti|Z1

y = Si, Z
2
y = 0, Z3

y = 0, Zd = 0, Zr = 0)

X̂ti ∼ NBi(θi, µi

θi
)

end for

This conditional generation was done by conditioning on the three indicated covariates, for 10000
(N ) randomly selected spots across the PDAC data. This resulted in three distributions of the
transcriptomic counts, conditioned on each factor.

For each of these three distributions [(X̂t|Z1
y ), (X̂t|Z2

y ), (X̂t|Z3
y )], we performed the following

processing steps to obtain the top 500 differentially expressed genes (DEGs) (Wolf et al., 2018):

• ST count (X̂t) normalization to 10000 counts per spot

• Log1p transformation per spot-gene pair across all spots and genes

• Highly-variable gene selection using all 10000 spots (2500 genes)

• Count standardization and principal component reduction for the top 50 PCs

• Nearest-neighbor graph construction using the PCA embedding

• Leiden clustering of the data using the nearest-neighbor graph

• Differential gene expression across Leiden-derived clusters using the Wilcoxon rank-sum
test

The scanpy (Wolf et al., 2018) library was used for these steps (v1.10.0). Default parameters were
used, except where indicated. After determining the DEGs for each of the conditionally generated
distributions, the top 500 were selected based on those exhibiting the highest Log-fold change
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in expression between clusters (Wolf et al., 2018). An all-versus one differential expression test
was done, meaning that the expression in each cluster is compared with all of the other clusters to
determine DEGs. Therefore, sorting by the highest Log-fold change can be interpreted as sorting
genes that exhibit the highest specificity to their respective clusters in the reconstructed counts.

Using the top 500 DEGs from each of the conditionally generated count distributions [(X̂t|Z1
y ),

(X̂t|Z2
y ), (X̂t|Z3

y )], we used the gProfiler online platform (Kolberg et al., 2023) to perform pathway
enrichment analysis. Default parameters were used, except for the following changes:

• ’Ordered query’ was used
• The pathway databases were subset to GO molecular function, GO biological process, and

REACTOME

Ordered query was utilized as the top 500 DEGs are ordered, and the subsetting of pathway databases
was done to ensure that outdated and uncurated databases did not affect the analysis (Wadi et al.,
2016).

The resulting enriched pathways were further analyzed for overlap. Pathways were sorted based on
multiple-testing corrected p-values (Kolberg et al., 2023). The functional grouping of the pathways
(Fig. 4a,b) was done based on presence of any of the following keywords:

• Pancreas and metabolic functions: keywords = (”pancreas”, ”pancreatic”, ”islet”,
”beta cell”, ”alpha cell”, ”acinar cell”, ”ductal cell”, ”exocrine”, ”endocrine”, ”insulin”,
”glucagon”, ”somatostatin”, ”delta cell”, ”langerhans”, ”pdac”, ”secretin”, ”cck”, ”chole-
cystokinin”, ”metabolic”, ”catabolic”, ”biosynthetic”, ”oxidation”, ”mito”, ”glycolysis”,
”glucose”, ”pyruvate”, ”metabolism”)

• Immune functions: keywords = ( ”immune”, ”immuno”, ”immune-mediated”, ”immu-
nity”, ”inflammation”, ”inflammatory”, ”inflammasome”, ”antigen”, ”antigen presentation”,
”mhc”, ”hla”, ”immunoglobulin”, ”antibody”, ”adaptive immunity”, ”innate immunity”, ”t
cell”, ”t lymphocyte”, ”b cell”, ”b lymphocyte”, ”nk cell”, ”natural killer”, ”tcr”, ”bcr”,
”chemokine”, ”chemokine receptor”, ”cytokine”, ”interleukin”, ”il-”, ”ifn”, ”interferon”,
”complement”, ”fc receptor”, ”immunoregulation”, ”immunosuppression”, ”lymphocyte”,
”dendritic cell”, ”macrophage”, ”monocyte”, ”phagocytosis”, ”phagosome”, ”influenza”,
”viral)

• Translation functions: keywords = (”ribosome”, ”ribosomal”, ”rRNA”, ”ribosomal sub-
unit”, ”polysome”, ”polyribosome”, ”translation”, ”translational”, ”protein biosynthesis”,
”elongation factor”, ”peptide chain”, ”tRNA”,”rna processing”)

• Antigen presentation functions: keywords = ( ”antigen”, ”antigen presentation”, ”mhc”,
”hla” )
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J METRICS TO ASSESS DISENTANGLEMENT IN A CONTINUOUS SPACE

In this section, we provide a detailed explanation of the metrics outlined in Table 1. These metrics
and the disentanglement evaluation framework are adapted from Carbonneau et al. (2020).

We define a set of N observations as X = {x1, x2, ..., xN}. Each observation is assumed to be fully
determined by a set of M factors V = {v1, v2, ..., vM} through a generative process g(v) 7→ x. Let
V = {v1, v2, ..., vN} represent the factor realizations that generate X . A representation learning
algorithm maps r(x) 7→ z, where z ∈ Rd is a point in the learned latent space Z = {z1, z2, ..., zd}.
The set Z = {z1, z2, ..., zN} contains all points in X projected into the latent space by r(.). The
disentanglement metrics evaluate the relationship between V and Z to compute a disentanglement
score.

In our setup, we consider Z to be the continuous learned latent space from embeddings of the baseline
models and SpatialDIVA, and the one-hot encoded labels from the data (Appendix I) to be V .

The details of the metrics, originally outlined in Carbonneau et al. (2020), are indicated below. The
terms latent space and latent codes are used interchangeably for Z = {z1, z2, ..., zN}.

J.1 EXPLICITNESS SCORE

As proposed in Ridgeway & Mozer (2018), explicitness is measured by training a classifier on
the entire latent space to predict factor classes, assuming discrete factor values. A simple logistic
regression classifier is employed, and its performance is evaluated using the area under the ROC curve
(AUC-ROC). The final explicitness score is the average AUC-ROC across all classes and factors.
Since the minimum AUC-ROC value is 0.5, the scores are normalized to fall within the range [0, 1].
The logistic regression loss is adjusted due to class imbalance.

J.2 ATTRIBUTE PREDICTABILITY SCORE (SAP)

SAP (Kumar et al., 2018) assigns a score Sij for every factor-code pair (vi, zj). For categorical
factors, a decision tree classifier is used, and balanced accuracy is returned. Scores for codes below a
user-defined energy threshold (dead-codes) are set to 0. The complete SAP score is calculated as the
average difference between the two highest scores Sij for each factor:

SAP =
1

M

M∑
i=1

(Si⋆ − Si◦) (13)

Here, Si⋆ and Si◦ are the highest and second-highest scores for factor vi, respectively. Large
differences indicate better disentanglement.

J.3 MODULARITY SCORE

Modularity measures whether each code dimension zj is associated with only one factor. Following
Ridgeway & Mozer (2018), the factor v⋆ with the highest mutual information (MI) for each code
dimension is identified, and the MI values with other factors are penalized:

modularity = 1−
∑
i∈V ̸=⋆

I(i, zj)
2

I(v⋆, zj)2(M − 1)
(14)

Here, V̸=⋆ is the set of all factors except v⋆, and M is the number of factors. The modularity score is
averaged over all code dimensions.

J.4 MUTUAL INFORMATION GAP (MIG) AND MIG-SUP

MIG (Chen et al., 2018) evaluates the compactness of the representation by computing the MI
between each factor and code dimension. The difference between the highest and second-highest MI
for each factor is normalized by the factor entropy:

MIG =
I(vi, z⋆)− I(vi, z◦)

H(vi)
(15)
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The MIG score is the average gap across all factors.

MIG-sup (Li et al., 2020) extends MIG to include modularity. It computes the MI gap from the
perspective of the code:

MIG-sup = I(zj , v⋆)− I(zj , v◦) (16)
The meaningful code dimensions are determined by a threshold on I(zj , v⋆). All code dimensions
are considered to avoid thresholding.

J.5 JOINT ENTROPY MINUS MUTUAL INFORMATION GAP (JEMMIG)

JEMMIG (Do & Tran, 2020) addresses MIG’s inability to measure modularity by incorporating the
joint entropy of the factor and its most related code dimension:

JEMMIG = H(vi, z⋆)− I(vi, z⋆) + I(vi, z◦) (17)

The score is normalized to lie between 0 and 1:

̂JEMMIG = 1− H(vi, z⋆)− I(vi, z⋆) + I(vi, z◦)

H(vi) + log(Bz)
(18)

The average score across all factors is reported.

J.6 DCI-MIG

DCIMIG (Sepliarskaia et al., 2020) combines elements of DCI and MIG. It computes MI gaps for
each factor and code dimension and aggregates the scores into a single disentanglement measure:

DCIMIG =

∑M
i=1 Si∑M

i=1H(vi)
(19)

Here, Si is derived from the maximum MI gap associated with each factor.

J.7 INTERVENTIONAL ROBUSTNESS SCORE (IRS)

IRS (Suter et al., 2019) quantifies the robustness of code dimensions to changes in nuisance factors.
Sets of codes are compared before and after targeted interventions, and the maximum observed
distances are used to compute the final score, weighted by factor realization frequencies.
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