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ABSTRACT

We introduce a class of neural controlled differential equation inspired by quantum
mechanics. Neural quantum controlled differential equations (NQDEs) model the
dynamics by analogue of the Schrédinger equation. Specifically, the hidden state
represents the wave function, and its collapse leads to an interpretation of the
classification probability. We implement and compare the results of four variants
of NQDE:s on a toy spiral classification problem.

1 INTRODUCTION

Controlled differential equations (CDEs) model the dynamics of a sequential output ¥; € RP in
response to a sequential input X; € R? by

for some fixed vector field f(Y;, t). Neural controlled differential equations (NCDEs) introduced by
Kidger et al. (2021a) learn a CDE for a hidden variable z,. The vector field f (2, ) is modelled by a
neural network f(z, t; §) where 0 are learnable parameters. The output is then Y; = I(z;), for some
linear function /. The parameters 6 are fitted by the given input sequences X; and the outputs Y;.

Probabilistic models are popular for alleviating the issue of overfitting, motivating heuristics such
as dropout. Quantum mechanics have probabilistic interpretation and is key in modelling physical
phenomena. We introduce architectures inspired by the Schrodinger equation to model the latent
space of NCDEs. Analogous to the Born interpretation for the collapse of the wave function, we
have a collapse function for observation times (where we need to make an inference for Y;). As
quantum systems and unitary systems (where the transition is unitary i.e. U*U = I) are intricately
linked, we implement and apply four variants to a toy spiral classification problem.

2 NEURAL QUANTUM DIFFERENTIAL EQUATIONS

Complex numbers are indispensable for quantum mechanics. Complex recurrent neural networks,
e.g. uURNN (Arjovsky et al., 2016) and ceRNN (Shafran et al., 2019), have been studied to derive
stability and convergence results. Barrachina et al. (2023) provides a Python library for complex
neural networks complete with backpropogation and other real neural network equivalents like max-
pooling for complex functions. For other related literature, see Appendix C.

Combining neural controlled differential equations with quantum concepts has not yet been ex-
plored. We introduce a family of models based on quantum mechanical postulates. In particular, in
the quantum world, the state of a system is represented by a complex wave function 1 (zx, t). Mea-
surements/observables are modelled as linear operators on 1 (x,t). The set of possible outcomes
of these measurements are eigenvalues of this operator. The probability of obtaining any particular
eigenvalue as the observation is proportional to the inner product between its associated eigenvector
and the state t(x, t). Therefore, the normalised inner products represent a probability distribution
over the states. The hidden quantum state evolves according to the Schrédinger equation (Dirac,
1981)

where £ is the normalised Planck constant and H is the Hamiltonian. The evolution of the quantum
state is a unitary operator, and the exponential of a time-independent Hamiltonian generates this
unitary operator.
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Our model is inspired by the practical success of neural differential equation based models, and the
success of the quantum physics postulate to model physical systems. To obtain a neural quantum
controlled differential equation (NQDE), we suppose that the dynamics of the latent state z; is
modelled by the Schrédinger equation, driven by some control path X4, that is,

dZt = *’LhHthXt (3)
Note that —ihH z; is playing the role of the vector field f in the CDE (1). For this complex vector
field, —¢hH z;, unitary conditions are imposed. Unitary matrices are known to have good stability
properties. ExpRNNs (Lezcano-Casado & Martinez-Rubio, 2019) ensure orthogonality/unitarity
using the exponential map from Lie group theory. The projUNN method developed by Kiani et al.
(2022) projects the updated matrix back into the class of unitary matrices.

For each time that we need to “observe” the hidden state and make an inference for the output Y;, the
hidden states pass through an operation that we refer to as the collapse. For a classification problem
with m classes, the collapse function is given by g : C™ — R™ or equivalently § : R?™ — R™,
where § is composed of g; : R?™ — R™, g, : R™ — R™, and g3 : R™ — R™. The function g;
takes the squared modulus of the complex input (represented in the real space). Then g» normalises
the output from g; to have norm 1, thus the output of g- is a probability distribution, which we can
then sample (g3) for the output Y;. Therefore

Y = g(zt) = g3(92(91(21)))-
This is analogous to the quantum system collapsing to an eigenstate. We see that in practice a
softmax can be utilised for g-.

3 EXPERIMENTAL RESULTS

We look a classification problem on the bi-directional spiral dataset as detailed by Chen et al. (2018)
using 128 spirals. We implemented four vector fields. Two of these have unitary constraints as im-
posed by ProjUNN (Kiani et al., 2022) (and denoted by _unn in the name) and the other two with
orthogonal constraints using GeoTorch (Lezcano-Casado, 2019) (denoted by _geo in the name). For
each constraint method, we look at two variants: the first looks at modelling each class of the classifi-
cation task separately, then concatenates the results together before a final linear layer (NQDE1 _unn
and NQDE3_geo) and the second performs the concatenation after the linear layer (NQDE2 _unn and
NQDEA4 _geo). For specific architectures that we utilised and the number of trainable parameters, see
Appendix A. The results are given in Table 1. Hyperparameters can be found in Appendix B.

model | final loss | forward NFE | backward NFE | accuracy

NQDEI_unn | 0.00028 (0.0004) | 1069.79 (58.71) | 2337.67 (431.67) | 1.000 (0)
NQDE2_unn | 0.00717 (0.0111) | 1102.86 (54.95) | 3093.38 (489.91) | 1.000 (0)
NQDE3_geo | 0.12472 (0.2095) | 1348.19 (43.75) | 6781.65 (1690.76) | 1.000 (0)
NQDE4_geo | 0.03786 (0.0167) | 1288.21 (325.52) | 4425.68 (1561.47) | 1.000 (0)

Table 1: Spiral classification results on various architectures. Standard deviation in brackets are
reported over 3 repeats.

The models all use 20 epochs so that we can compare data efficiency. Given very limited data of only
128 spirals, we see that all of these architectures learn relevant dynamics for spiral classification and
can reach 100% accuracy after hyperparameter optimisation. Using orthogonal linear layers with
GeoTorch requires more function evaluations. This is not unexpected as ProjUNN architectures
makes a rank-k approximation for computational efficiency. Using ProjUNN with the concatenation
occurring before the linear layer gives the best model in terms of both loss and has the smallest
number of function evaluations (NFEs). The code for the experiments can be found at the Github
repository https://github.com/lingyiyang/NQDE.

4 CONCLUSION/DISCUSSION

We have demonstrated that neural controlled differential equation architectures that emulate quan-
tum evolutions can learn relevant dynamics on a toy classification problem. For future work, we
would like to explore the approximation power of these models in greater depths (to derive similar
results to Voigtlaender (2023)) as well as compare with other models on larger datasets.


https://github.com/lingyiyang/NQDE
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A MODEL ARCHITECTURE

In this Appendix, we give details about the structure of the four NQDE models (for the vector field
of the controlled differential equation).

Using ProjUNN, the model for the first architecture where we combine the representation of complex
values (for each class) before the final linear layer is seen below. This model has 5052 trainable
model parameters.

NeuralQDE (
(func) : QDEFunc (
(linearl) : Linear (in_features=4, out_features=32, bias=True)
(linear?): Linear (in_features=64, out_features=12, bias=True)
(rnn_layer): OrthogonalRNN (
(recurrent_kernel): Linear (in_features=32, out_features=32,
— bias=False)
(input_kernel): Linear (in_features=32, out_features=32,

< bias=False)
(nonlinearity): RelLU()
)
(rnn_layer2): OrthogonalRNN (
(recurrent_kernel): Linear (in_features=32, out_features=32,
< bias=False)
(input_kernel) : Linear (in_features=32, out_features=32,
< bias=False)
(nonlinearity): ReLU()
)
)

(initial) : Linear (in_features=3, out_features=4, bias=True)

Using ProjUNN, the model for the second architecture where we combine the representation of
complex values (for each class) after the final linear layer is seen below. This model has 4470
trainable model parameters.

NeuralQDE (
(func) : QODEFunc?2 (
(linearl) : Linear (in_features=4, out_features=32, bias=True)
(linear2): Linear (in_features=32, out_features=6, bias=True)

(rnn_layer): OrthogonalRNN (
(recurrent_kernel): Linear (in_features=32, out_features=32,
< bias=False)

(input_kernel) : Linear (in_features=32, out_features=32,
< bias=False)
(nonlinearity): ReLU()

)
(rnn_layer2): OrthogonalRNN (

(recurrent_kernel): Linear (in_features=32, out_features=32,
< bias=False)
(input_kernel): Linear (in_features=32, out_features=32,

— bias=False)
(nonlinearity): ReLU()
)
)

(initial) : Linear (in_features=3, out_features=4, bias=True)

Using GeoTorch, the model for the third architecture where we combine the representation of com-
plex values (for each class) before the final linear layer is seen below. This model has 3068 trainable
model parameters.
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NeuralQDE (
(func) : QDEFunc3 (
(linearl) : Linear (in_features=4, out_features=32, bias=True)
(linear2) : ParametrizedLinear (

in_features=32, out_features=32, bias=True
(parametrizations) : ModuleDict (
(weight) : ParametrizationList (
(0): Stiefel (n=32, k=32, triv=linalg matrix_exp)
)
)
)
(linear3) : ParametrizedLinear (
in_features=32, out_features=32, bias=True
(parametrizations) : ModuleDict (
(weight) : ParametrizationList (
(0): Stiefel (n=32, k=32, triv=linalg matrix_exp)
)
)
)
(linear4) : Linear (in_features=64, out_features=12, bias=True)
)

(initial) : Linear (in_features=3, out_features=4, bias=True)

)

Using GeoTorch, the model for the fourth architecture where we combine the representation of
complex values (for each class) after the final linear layer is seen below. This model has 2486
trainable model parameters.

NeuralQDE (
(func) : QDEFunci4 (
(linearl) : Linear (in_features=4, out_features=32, bias=True)
(linear?): ParametrizedLinear (

in_features=32, out_features=32, bias=True
(parametrizations) : ModuleDict (
(weight) : ParametrizationList (
(0) : Stiefel (n=32, k=32, triv=linalg matrix_exp)
)
)
)
(linear3) : ParametrizedLinear (
in_features=32, out_features=32, bias=True
(parametrizations) : ModuleDict (
(weight) : ParametrizationList (
(0) : Stiefel (n=32, k=32, triv=linalg matrix_exp)
)
)
)

(lineard4) : Linear (in_features=32, out_features=6, bias=True)

)

(initial) : Linear (in_features=3, out_features=4, bias=True)

B HYPER-PARAMETER SETTINGS

The hyperparamter of the experiments can be seen in Table 2.

C RELATED NEURAL DIFFERENTIAL EQUATION WORK

Seen as a continuous time generalisation of discrete models, differential equation based neural net-
works enjoyed successes in recent years. Chen et al. (2018) proposed neural ordinary differential
equations (ODEs) and demonstrated its performance on classification and time-series generation
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model | epoch | Ir | lin_size

NQDEI1_unn 20 0.002 32
NQDE2_unn 20 0.002 32
NQDE3_geo 20 0.001 32
NQDE4_geo 20 0.001 32

Table 2: Hyperparameter settings for the four models

problems. In a follow-up work Rubanova et al. (2019) uses a neural ODE to model the (autonomous)
evolution of the hidden state before the next observation arrives, and obtained encouraging results.
This approach is then generalised to the neural controlled differential equations (CDEs) (Kidger
et al., 2020). Kidger et al. (2021a) also worked on an extension to neural stochastic differential
equations (SDEs) and application to GANs for learning path distribution. Neural rough differential
equations (RDEs) are proposed as an improvement on neural CDEs by summarising sub-intervals
using log-signatures, deriving the theoretical justifications from the log-ODE method (Morrill et al.,
2021b). Pal et al. (2023) proposed another way of adapting neural CDEs to handle long time series.

Heavy ball method is proposed to improve training of neural ODE in (Xia et al., 2021). Norcliffe
etal. (2021) combines neural ODEs with the so-called neural processes so that the model (the trained
neural network) can adapted to incoming data stream. Morrill et al. (2021a) uses neural CDEs for
online prediction task. Jia & Benson (2019) extends neural ODEs to handle stochastic jumps and
discussed training techniques when the latent state has discontinuities. Oganesyan et al. (2020) and
Liu et al. (2019) view neural SDEs as a stochastic regularisation technique for training neural ODEs
and evaluated empirically the performances. Kidger et al. (2021b) proposed improved technique for
training of neural SDEs. Salvi et al. (2022) proposed using neural network to learn the dynamics
of stochastic partial differential equations (SPDEs) and showed that for several well-known SPDE
dynamics, the solver can be learned faster than traditional numerical solvers of SPDE. Deep state
space models such as the S4 (Gu et al., 2021a;b) can effectively model long range dependency in
sequence modelling, this is subsequently improved by Smith et al. (2022).

The survey (Lee et al., 2022) discuses split-complex neural networks, which split the complex value
input into real and imaginary parts which are fed into a real-valued neural network, that could have
real-valued weight and real activation or complex-valued weights and real activation. Some training
instability issues are highlighted. There are few applications of complex RNNs. De Brouwer et al.
(2019) improves the variational autoencoder application of neural ODE by combining neural ODE
with a continuous version of a GRU. Schirmer et al. (2022) uses an SDE with a Kalman filter to
connect observations at different timestamps in an RNN. Rusch & Mishra (2021) studied a restricted
class of ODE discretised RNN based on Hamiltonian system ODE. Li et al. (2021) implicitly made
a connection between unitary RNNs and quantum-inspired theory, and experimented a unitary RNN
on an emotional recognition problem from multi-modal time-series data.

In terms of function approximation power, Voigtlaender (2023) finds that unlike the classical case of
real networks, the set of “good activation functions”—which give rise to networks with the universal
approximation property—differs significantly depending on whether one considers deep networks
or shallow networks. For deep networks with at least two hidden layers, the universal approximation
property holds as long as o, the activation function, is neither a polynomial, a holomorphic function,
nor an antiholomorphic function. Shallow networks, on the other hand, are universal if and only if
the real part or the imaginary part of ¢ is not a polyharmonic function.
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