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Abstract

As AI-enabled research accelerates pharmaceu-001
tical technological advances, legislation and002
regulation worldwide are evolving rapidly and003
often have a significant impact. Compliance004
with fragmented, frequently updated national005
regulations presents a pressing challenge for006
multinational organizations, a global leader in007
pharmaceuticals and diagnostics. This project008
proposes an AI-powered interactive dialogue009
system, which streamlines the interpretation010
and alignment of the evolving regulatory re-011
quirements that directly impact a pharmaceuti-012
cal company’s internal standards. We introduce013
HiSACC, a hierarchical semantic chunking014
method, and BGE-Reranker, a domain-adaptive015
semantic re-ranking model using fine-tuning,016
which are designed to optimize the chunking017
and re-ranking processes, ensuring more accu-018
rate and context-aware responses to regulatory019
queries.020

The system leverages advanced Large Lan-021
guage Models (LLMs) to generate user-022
specific responses and incorporates Retrieval-023
Augmented Generation (RAG) technology to024
enable precise, context-aware responses to com-025
plex medical-legal queries, minimizing the oc-026
currence of hallucination biases. This project027
is an innovative tool designed to reduce man-028
ual workload and improve the efficiency and029
precision of navigating regulatory compliance.030
Beyond pharmaceuticals, the system’s adapt-031
able framework holds promise for other do-032
mains that experience frequent legal updates,033
particularly in banking, finance, data privacy,034
and cybersecurity. By adapting the system to035
address regulatory challenges in these sectors,036
organizations can ensure adherence to the lat-037
est legal standards, thereby mitigating risks and038
enhancing operational effectiveness across var-039
ious industries1.040

1Anonymous implementation and evaluation scripts are
available at https://anonymous.4open.science/
r/hisacc-bge-ABCC/.

1 Introduction 041

The pharmaceutical industry operates within a 042

highly regulated environment due to its products 043

directly impacting human health. Ensuring legal 044

compliance is crucial to safeguard patient safety, 045

maintain public trust, and provide safe and effective 046

medications (Kher, 2020). Non-compliance can 047

lead to significant financial losses, legal penalties, 048

and reputation damage. In 2023, the U.S. Food and 049

Drug Administration (FDA) issued 1,150 warning 050

letters regarding drug compliance issues (Sharma 051

et al., 2023), and in 2024, the average cost per vio- 052

lation reached $14.8 million. For pharmaceutical 053

companies, maintaining compliance that exceeds 054

industry standards is not just about avoiding fines; 055

but it is essential for their survival in a highly com- 056

petitive market. 057

Regulations continue to evolve rapidly to address 058

advancements in biotechnology and market trends. 059

In 2024, the FDA revised 15% of drug manufactur- 060

ing regulations to better adapt to new biotechnolog- 061

ical advances (U.S. Food and Drug Administration, 062

2024). However, this rapid regulatory change has 063

led to an increasing shortage of skilled profession- 064

als capable of managing the complexity of regu- 065

latory requirements. A recent survey showed that 066

56% of pharmaceutical companies reported difficul- 067

ties in hiring such talent (ComplianceQuest, 2025). 068

This situation has led to an increased reliance on au- 069

tomation tools to handle intricate compliance pro- 070

cesses, such as Document Management Systems 071

(DMS) and compliance software, which help au- 072

tomate tasks like record-keeping, risk assessment, 073

and monitoring of regulatory changes (Jordan et al., 074

2022). Yet, despite the availability of these tools, 075

experts and compliance officers still struggle to 076

efficiently track and adapt to continuous updates 077

across global jurisdictions and diverse industry seg- 078

ments. 079

To address these challenges, this study proposes 080
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the development of an AI-driven interactive dia-081

logue system powered by Large Language Models082

(LLMs). These models are capable of processing083

vast amounts of legal documents and regulatory up-084

dates, helping businesses understand and respond085

to changes in a shorter time frame. Specifically,086

the system parses regulatory texts, guidance docu-087

ments, and industry standards, assisting companies088

in adapting to evolving regulatory requirements089

across different global regions. However, one criti-090

cal issue limiting LLM is the tendency to halluci-091

nation biases, where the model generates plausible092

but incorrect information (Ji et al., 2023). In high-093

stakes industries like pharmaceuticals, even minor094

inaccuracies in regulatory interpretations can result095

in noncompliance, legal penalties, and irreversible096

harm to patient safety.097

To mitigate the hallucination bias of LLM, we in-098

troduce a solution based on Retrieval-Augmented099

Generation (RAG) technology. In collaboration100

with an industrial partner, we leverage their inter-101

nal compliance reports, Standard Operating Pro-102

cedures (SOP) documents, and quality control103

records to build a system that integrates two key104

innovations: HiSACC, a hierarchical semantic105

chunking method, and BGE-Reranker, a domain-106

adaptive semantic re-ranking model using fine-107

tuning. HiSACC optimizes the chunking process108

by dynamically identifying semantically meaning-109

ful segments in regulatory documents, while BGE-110

Reranker enhances retrieval performance by im-111

proving post-retrieval ranking to better match query112

contexts. By optimizing both pre-retrieval filtering113

and post-retrieval validation algorithms, our system114

significantly improves the accuracy and timeliness115

of compliance checks. This not only improves116

operational efficiency but also reduces the risk of117

regulatory penalties and enhances the reliability of118

compliance-related decisions.119

The effectiveness of our system will be rigor-120

ously evaluated by compliance officers to ensure121

the alignment with the industry’s zero-tolerance122

standards for regulatory inaccuracies. Beyond phar-123

maceuticals, the system’s adaptable framework124

holds promise for other domains that face simi-125

lar regulatory challenges, such as banking, finance,126

data privacy, and cybersecurity, where dynamic127

regulatory landscapes demand high precision and128

real-time adaptability.129

2 Related Work 130

2.1 Hallucination Mitigation in Language 131

Models 132

In regulatory compliance applications, ensuring the 133

accuracy of generated information is paramount. 134

Despite significant advancements in large language 135

models (LLMs), these models are prone to hallu- 136

cination bias, where they produce inaccurate or 137

inconsistent content (Ji et al., 2022). To address 138

this issue, various strategies have been proposed, in- 139

cluding Prompt Engineering, Retrieval-Augmented 140

Generation (RAG), and Fine-Tuning. Prompt En- 141

gineering involves crafting specific input prompts 142

to guide the model, but it lacks generalizability 143

across tasks (Brown et al., 2020). Fine-Tuning 144

adapts models to specific domains through train- 145

ing on specialized data, improving performance, 146

but it is costly and not adaptable to rapid regula- 147

tory changes (Wei et al., 2022). In contrast, RAG 148

integrates real-time information retrieval during 149

text generation, reducing hallucination bias and al- 150

lowing dynamic adaptation to regulatory updates 151

(Lewis et al., 2020). This makes RAG particularly 152

effective for scenarios requiring real-time updates 153

and high accuracy in regulatory compliance. How- 154

ever, naive RAG struggles with complex queries 155

(Gao et al., 2024) and has room for improvement 156

in handling diverse document types and formats. 157

2.2 Enhancements to RAG Systems 158

To improve naive RAG, researchers have focused 159

on refining various stages of the process, including 160

Chunking, Pre-Retrieval, and Post-Retrieval. 161

2.2.1 Chunking Strategies 162

Traditional chunking methods are rule-based and 163

focus on segmenting text according to predefined 164

boundaries like line breaks, punctuation, or fixed- 165

length paragraphs. While these methods prioritize 166

sentence boundaries and ensure token count limits, 167

they can overlook semantic coherence, which may 168

lead to the truncation of important information or 169

the combination of unrelated text fragments (Gao 170

et al., 2024). As a result, more advanced chunking 171

methods have emerged, such as dynamic chunking 172

strategies. One such approach, LumberChunker, 173

dynamically adjusts chunk boundaries by analyz- 174

ing semantic shifts in text (Duarte et al., 2024). 175

By employing a pre-trained LLM, LumberChunker 176

identifies points where semantic changes are signif- 177

icant, ensuring that each chunk is semantically co- 178
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herent and independent. Similarly, Meta-Chunking179

enhances chunking by analyzing text logic and180

structure using strategies like Margin Sampling181

Chunking and Perplexity Chunking (Zhao et al.,182

2024). These methods improve semantic segmen-183

tation by considering perplexity levels and struc-184

tural logic, which helps identify appropriate chunk185

boundaries. For documents with rich visual con-186

tent, VisRAG leverages a visual language model187

(VLM) to process text alongside layout and image188

data, determining chunk boundaries based on vi-189

sual elements (Yu et al., 2024). These dynamic190

and multimodal chunking strategies significantly191

enhance the retrieval process by ensuring that the192

retrieved text segments are both relevant and se-193

mantically complete.194

2.2.2 Pre-Retrieval Optimization195

Pre-retrieval optimization plays a critical role in196

refining the query and index structures to maxi-197

mize retrieval accuracy. Techniques in this stage198

include query rewriting, expansion, and transforma-199

tion, which align user queries with the indexed data200

more effectively, ensuring more relevant retrieval201

results.202

Query Rewriting Query rewriting focuses on ad-203

justing rare or specific queries to improve search en-204

gine performance, particularly for long-tail queries205

(Wang et al., 2024b). This approach is crucial for206

ensuring that specialized user intents are captured207

more effectively during information retrieval.208

Query Expansion Query expansion involves209

adding synonyms, hypernyms, or related terms to210

a query, broadening its scope and improving re-211

trieval relevance (Koo et al., 2024). This strategy212

is especially beneficial in open-domain question-213

answering tasks, where expanding the query helps214

retrieve a more comprehensive set of relevant doc-215

uments.216

Query Transformation Query transformation al-217

ters the structure or semantics of a query while218

maintaining its original intent, enhancing its align-219

ment with the requirements of LLMs (Chan et al.,220

2024). This modification may include adding qual-221

ifiers or reordering terms to optimize the query’s222

effectiveness in the retrieval process.223

2.2.3 Post-Retrieval Optimization224

Once relevant documents are retrieved, post-225

retrieval optimization is essential to refine the re-226

trieved data and ensure it enhances the quality227

of the generated response. This process includes 228

strategies for efficiently managing the retrieved 229

fragments and optimizing their relevance for final 230

generation. 231

Efficient Compression In naive RAG, the Ap- 232

proximate Nearest Neighbor (ANN) algorithm re- 233

trieves document blocks most similar to the query 234

and ranks them by similarity (Wang et al., 2024a). 235

To avoid information overload and improve gen- 236

eration accuracy, systems like COCOM use a 237

Transformer-based architecture to compress multi- 238

ple text blocks into a dense embedding vector. This 239

compressed context is then used to generate the 240

final response (Rau et al., 2024). By merging mul- 241

tiple fragments into one context vector, the system 242

reduces sensitivity to irrelevant information and 243

ensures more focused generation. 244

Precise Filtration The post-retrieval filtration 245

process involves further refining the retrieved text 246

blocks to ensure only the most relevant fragments 247

are used for generation. Models like E2E-AFG 248

utilize an end-to-end adaptive filtering mechanism 249

to identify and filter out irrelevant text (Jiang et al., 250

2024). Techniques such as String Inclusion, Lexi- 251

cal Overlap, and Conditional Cross-Mutual Infor- 252

mation (CXMI) help determine the relevance of 253

text blocks by analyzing their alignment with the 254

generated pseudo-answer (Es et al., 2023). Further- 255

more, models like Shi et al. incorporate Abstract 256

Meaning Representation (AMR) to filter out noise 257

and focus the model’s attention on key concepts, 258

improving accuracy, especially in specialized do- 259

mains (Shi et al., 2024). 260

3 Problem Definition 261

The core objective of this research is formalized 262

as a Regulatory-Compliance Question Answering 263

(RC-QA) task within retrieval-augmented genera- 264

tion (RAG) frameworks. It is specifically aimed at 265

optimizing the retrieval and generation processes 266

for regulatory compliance dialogue systems in high- 267

stakes pharmaceutical environments. Given the 268

rapidly evolving regulatory landscape, multina- 269

tional pharmaceutical enterprises face significant 270

challenges in ensuring compliance with complex, 271

diverse, fragmented, and frequently updated regu- 272

lations across multiple jurisdictions. These chal- 273

lenges arise due to the substantial volume of in- 274

formation, diversity in document formats, and the 275

intricacies involved in maintaining accuracy and 276
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timeliness. These conditions necessitate solutions277

that meet the practical and stringent demands of278

real-world industrial settings.279

3.1 Task Definition280

Input: The input consists of a corpus D =281

{d1, d2, . . . , dn} containing diverse regulatory doc-282

uments, guidelines, compliance records, and a con-283

tinuously evolving set of various internal docu-284

mentation, such as Standard Operating Procedures285

(SOPs), audit reports, and regulatory guidance doc-286

uments. Each document di within the corpus may287

include structured, semi-structured, or unstructured288

data, undergoing secure ingestion and metadata289

normalization processes.290

Query: A natural language query q posed by a291

compliance officer seeking precise regulatory in-292

formation, operational guidance, or compliance293

interpretations.294

System Objective: Given a query q, the295

system must retrieve context segments C =296

{c1, c2, . . . , ck} from the corpus D, with relevance297

assessed by semantic similarity metrics, notably298

Context Relevance (CR), and validated through299

accurate File ID Match (FIM). The retrieval pro-300

cess aims to identify minimal yet highly relevant301

evidence passages, ensuring high CR, precise iden-302

tification of source documents (FIM), extensive303

coverage of authoritative regulatory content (Con-304

text Coverage (CC)), and minimal inclusion of ir-305

relevant information to reduce the Over-Retrieval306

Penalty (ORP).307

Based on these retrieved context segments, the308

system is tasked with generating coherent, accu-309

rate, and contextually grounded natural language310

responses r that precisely answer the query q.311

Response quality is quantitatively assessed using312

metrics such as Answer Relevance (AR), Answer313

Source Match (ASM), and Language Fluency (LF).314

All generated tokens must have verifiable ground-315

ing in the retrieved context, with ungrounded to-316

kens considered hallucinations and penalized ac-317

cordingly. These constraints are quantified by the318

Groundedness Rate (GR) and Faithfulness Test319

(FT).320

To operationalize this objective, we formulate321

the RC-QA task as a multi-metric optimization322

problem evaluated by a comprehensive set of auto-323

matic metrics:324

F = {AR,CR,GR,FIM,CC,ASM,LF,FT,ORP}325

The overall optimization goal is defined as:326

max
Θ

E(q,r∗,E∗)∼Deval w
⊤F (rΘ(q), EΘ(q)) 327

where w represents a weight vector prioritizing 328

compliance-critical metrics such as AR, GR, and 329

FIM, and Θ denotes the tunable parameters govern- 330

ing retrieval and response generation. 331

4 Methodology 332

4.1 Baseline System Architecture 333

To facilitate the development and evaluation of 334

improved retrieval and generation methods, we 335

present a complete end-to-end baseline architec- 336

ture grounded in the standard Retrieval-Augmented 337

Generation (RAG) paradigm (Figure 1). Our sys- 338

tem integrates secure document ingestion, semantic 339

indexing, and context-aware response generation 340

into a unified pipeline. 341

The process begins with secure synchronization 342

of regulatory documents from internal repositories, 343

supported by an incremental update mechanism 344

that processes only new, modified, or deleted files. 345

Documents are then parsed and normalized to pro- 346

duce a consistent textual representation across het- 347

erogeneous sources. The semantic preprocessing 348

module segments text into chunks using a recursive 349

strategy based on token limits and structural cues. 350

Each chunk is embedded into a dense vector space 351

and indexed for similarity-based retrieval. During 352

inference, user queries are embedded and matched 353

to relevant chunks, which are concatenated with the 354

query and passed to a language model for grounded 355

response generation. 356

Figure 1: Overview of the baseline Retrieval-Augmented Gen-
eration (RAG) system architecture.

4.2 Chunking Optimization with HiSACC 357

To address semantic fragmentation from tradi- 358

tional splitting methods, we propose HiSACC (Hi- 359

erarchical Semantic Aggregation for Contextual 360
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Chunking). HiSACC optimizes semantic coher-361

ence through hierarchical semantic aggregation.362

Initially, minimal semantic units S =363

{s1, s2, . . . , sk} are embedded into vectors V =364

{v1, v2, . . . , vk} using a semantic encoder (e.g.,365

Sentence-BERT). Semantic similarity between ad-366

jacent vectors is calculated by:367

Mi,i+1 =
vi · vi+1

∥vi∥∥vi+1∥
368

Adjacent segments with similarity Mi,i+1 ≥ θ369

are aggregated into initial local semantic groups.370

In the hierarchical merging stage, these ini-371

tial segments G = {G1, G2, . . . , Gp} are further372

merged based on a global semantic coherence373

threshold γ. A skip-window of size w evaluates374

average inter-group semantic similarity:375

1

|Ga||Gb|
∑

vi∈Ga

∑
vj∈Gb

vi · vj
∥vi∥∥vj∥

≥ γ376

Segments meeting this criterion merge to pro-377

duce semantically cohesive chunks.378

4.3 Post-Retrieval Optimization via379

BGE-Reranker380

To improve the semantic ranking of retrieved pas-381

sages, we adopt BGE-Reranker2 (Xiao et al.,382

2023), a cross-encoder model that jointly en-383

codes query-document pairs for fine-grained rel-384

evance estimation.Given a query q and candidates385

{d1, . . . , dk}, it computes matching scores:386

si = fθ(q, di)387

To capture global ranking structure, we fine-tune388
the model using a listwise loss (Cao et al., 2007)389
based on softmax-normalized scores:390

P (di | q) =
esi∑k
j=1 e

sj
, L = −

k∑
i=1

yi logP (di | q)391

Here, yi denotes the relevance label. This ap-392

proach encourages globally consistent rankings and393

is well-suited to domains with subtle semantic dis-394

tinctions.395

4.4 Evaluation Framework396

Our evaluation rigorously quantifies retrieval and397

generation quality using cosine similarity over398

fixed embeddings (Es et al., 2025). Specifically, we399

2We use the publicly available bge-reranker-base
model from Hugging Face: https://huggingface.
co/BAAI/bge-reranker-base

define Answer Relevance (AR) as Sim(q, r), Con- 400

text Relevance (CR) as Sim(q, c), and Grounded- 401

ness Rate (GR) as Sim(r, c), where 402

Sim(x, y) =
ϕ(x) · ϕ(y)

∥ϕ(x)∥∥ϕ(y)∥
. 403

File ID Match (FIM) FIM is a binary metric 404

verifying whether the source file ID id∗ is among 405

the retrieved file IDs R: 406

FIM(R, id∗) = I[id∗ ∈ R]. 407

Context Coverage (CC) CC evaluates the 408

maximum semantic similarity between the re- 409

trieved contexts {ci} and the authoritative source 410

text s: 411

CC({ci}, s) = max
i

(
ϕ(ci) · ϕ(s)

∥ϕ(ci)∥∥ϕ(s)∥

)
. 412

Answer Source Match (ASM) ASM mea- 413

sures semantic alignment between the generated 414

response r and the reference answer s: 415

ASM(r, s) =
ϕ(r) · ϕ(s)

∥ϕ(r)∥∥ϕ(s)∥
. 416

Language Fluency (LF) LF is scored using 417

a fluency function (Kim and Kim, 2024) ψ(·) nor- 418

malized to [0, 1]: 419

LF(r) =
ψ(r)

10
. 420

Faithfulness Test (FT) FT evaluates how 421

many factual statements in the answer S = {sj} 422

are supported by retrieved contexts (Maynez et al., 423

2020) C = {ci}: 424

FT(r, C) =
1

|S|
∑
sj∈S

I [∃ci ∈ C : sj ∈ ci] . 425

Over-Retrieval Penalty (ORP) ORP penal- 426

izes the proportion of retrieved contexts not seman- 427

tically similar to the source answer. Let τ be the 428

similarity threshold: 429

ORP({ci}, s) = 1− |{ci : CC(ci, s) > τ}|
|{ci}|

. 430

5 Experiment and Results 431

5.1 System Implementation 432

Data Acquisition and Synchronization. Reg- 433

ulatory documents are sourced from enterprise- 434

level Google Shared Drives using the Google Drive 435
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API with OAuth 2.0 authentication for secure ac-436

cess (Google Developers, 2024b,a)3. To enable effi-437

cient incremental updates, a local SQLite database438

tracks document metadata. During each synchro-439

nization cycle, the system compares metadata to440

detect newly added, updated, or removed files, min-441

imizing redundant processing.442

Parsing and Normalization. The system sup-443

ports multi-format documents, including PDF,444

DOC/DOCX, XLS/XLSX, CSV, and TXT. Text445

is extracted using format-specific tools, and all con-446

tent is standardized into structured text blocks for447

downstream compatibility.448

Semantic Segmentation. A hierarchical recur-449

sive chunking strategy is employed to divide docu-450

ments into semantically coherent units. Paragraph451

delimiters and whitespace are prioritized, and over-452

lapping windows are used to retain contextual con-453

tinuity within a preset token limit.454

Embedding and Indexing. Text segments are455

embedded into a high-dimensional semantic space456

using an internal embedding model hosted on an457

internal Galileo AI Platform, based on OpenAI’s458

embedding family and served via the Azure Ope-459

nAI Service. Embeddings and metadata are stored460

in a Milvus vector database.461

Retrieval and Generation Pipeline. Users462

interact through a Gradio-based web interface4,463

served by a FastAPI backend with Uvicorn for464

high-concurrency support. Upon query submis-465

sion, the system retrieves relevant chunks from466

Milvus, which are concatenated with optional user-467

uploaded documents. The combined context is468

passed to an internal GPT-4 turbo model for re-469

sponse generation. Model parameters (temperature,470

top-p) are user-configurable.471

Cloud Infrastructure and Security. The sys-472

tem runs on Amazon EC2 instances with Tesla T4473

GPUs. All components are secured within the inter-474

nal network, protected by Cloudflare Gateway, and475

require enterprise authentication. Data transmis-476

sion and storage follow strict encryption protocols,477

ensuring full compliance with internal governance478

and data protection standards. An overview of the479

full architecture is illustrated in Figure 2.480

5.2 Evaluation Dataset Construction481

To systematically evaluate the performance of dif-482

ferent RAG strategies in regulatory question an-483

3See Appendix B for monitoring statistics over 30 days.
4See Appendix C, Figure 6 for the full interface layout.

Figure 2: System Architecture Overview for the Regulatory
Alignment Guide System

swering, we constructed a structured evaluation 484

dataset consisting of diverse document types with 485

representative question formats. 486

Stratified Sampling and Preprocessing. 487

Source documents were collected from the internal 488

cloud repository. To ensure coverage and reduce 489

sampling bias, a stratified sampling strategy 490

based on file types was applied. All sampled 491

documents were processed via an automated 492

parsing pipeline that handled format normalization, 493

encoding compatibility, and structural cleaning. 494

This resulted in a unified textual corpus suitable 495

for downstream QA generation. 496

Automatic QA Pair Generation. We employed 497

the GPT-4 model via an internal Galileo AI Plat- 498

form to generate question-answer (QA) pairs from 499

the cleaned documents. Prompt templates were 500

designed to guide the model in extracting key in- 501

formation and generating well-formed questions, 502

concise answers, and supporting evidence from the 503

source text. Each QA instance was linked to the 504

corresponding document metadata for full trace- 505

ability and interpretability5. 506

Dataset Structure. The final dataset is serial- 507

ized in JSON format, where each entry contains: 508

• file_name: Source document identifier; 509

• question: A natural language query repre- 510

senting realistic regulatory review tasks; 511

• answer: The GPT-4 generated response, 512

used as a system performance reference; 513

5See Appendix D for prompt details.
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• answer_source: The original document514

span supporting the answer, used for ground-515

ing and relevance evaluation.516

5.3 Fine-tuning Dataset Construction517

To train a task-specific reranker for regulatory ques-518

tion answering, we constructed a binary-labeled519

dataset tailored for passage-level semantic rele-520

vance modeling. This dataset forms the supervision521

signal for cross-encoder fine-tuning in the rerank-522

ing module.523

Document Sampling and QA Generation. Us-524

ing a stratified sample of internal regulatory docu-525

ments (PDF, Word, Excel), we extracted text con-526

tent through an automated pipeline and invoked527

the GPT-4 model via the Galileo AI Platform to528

generate initial QA pairs. Prompts were carefully529

designed to elicit logically structured, verifiable530

QA examples, each grounded in specific document531

spans.532

Positive Instance Collection. Each generated533

QA pair was recorded with the associated file meta-534

data and the supporting text passage. Only high-535

quality pairs with non-empty answers and explicit536

supporting evidence were retained as positive sam-537

ples, each labeled with "label": 1.538

Negative Sampling Strategy. For each posi-539

tive instance, we applied a multi-stage negative540

sampling strategy. Negatives were selected from541

unrelated passages across other documents (cross-542

document), semantically distinct segments from543

the same document (intra-document), or fallback544

segments when needed. Each negative instance545

reuses the same question as the positive sample,546

but pairs it with a semantically irrelevant passage,547

labeled with "label": 0.548

Dataset Format. The final dataset is serialized549

in JSONL format, with each line representing one550

training instance. Each entry contains:551

• question: The regulatory query;552

• passage: The candidate passage (positive553

or negative);554

• label: A binary label indicating relevance555

(1 for positive, 0 for negative);556

• file_name / file_id: Metadata for557

traceability;558

• (Optional) answer, answe_source:559

Available only for positive samples, used for560

evaluation alignment.561

5.4 Results and Analysis 562

We conduct extensive experiments under various 563

top-K retrieval settings (K ∈ {3, 5, 10, 15}) to 564

systematically evaluate the effectiveness of our 565

proposed HiSACC chunking method and BGE- 566

Reranker, a fine-tuned reranking model based on 567

the BGE architecture, in the context of regula- 568

tory question answering. Specifically, we assess 569

four configurations: Recursive Chunking (RC), 570

HiSACC, and their respective variants enhanced 571

with BGE-Reranker. The evaluation is carried out 572

using nine metrics that capture retrieval quality, 573

grounding accuracy, and fluency, as introduced in 574

Section 4.4. The results are summarized in Table 1. 575

Main Results: HiSACC+BGE-Reranker con- 576

sistently outperforms all baselines. Across all 577

values of K, the combined system of HiSACC and 578

BGE-Reranker achieves top scores on at least 8 out 579

of 10 evaluation metrics, showing consistent supe- 580

riority over alternative configurations. At K = 15, 581

it reaches the best performance on FT (Faithful- 582

ness Test, 0.9252), LF (Language Fluency, 0.8648), 583

GR (Groundedness Rate, 0.8453), and achieves 584

the lowest ORP (Over-Retrieval Penalty, 0.0054). 585

These results demonstrate that integrating hierar- 586

chical chunking with domain-tuned reranking leads 587

to precise, fluent, and verifiable answers, especially 588

critical in high-stakes regulatory compliance sce- 589

narios. 590

HiSACC vs. Recursive Chunking: hierar- 591

chical segmentation improves retrieval quality 592

and reduces noise. HiSACC outperforms Recur- 593

sive Chunking at every value of K, regardless of 594

whether reranking is used. It enhances AR, CR, and 595

FIM while reducing ORP. For instance, at K = 5, 596

HiSACC increases AR by +1.1 (0.8629 vs. 0.8511), 597

improves FIM by +9.3 points (0.7526 vs. 0.6594), 598

and lowers ORP from 0.0062 to 0.0041. These 599

gains suggest that HiSACC produces more seman- 600

tically coherent retrieval segments, which not only 601

match user intent more precisely but also reduce 602

the inclusion of irrelevant or fragmented context. 603

Effect of BGE-Reranker: post-retrieval 604

reranking enhances grounding and factual align- 605

ment. The BGE-Reranker module delivers consis- 606

tent improvements across both chunking methods. 607

At K = 10, for example, Recursive Chunking 608

with reranker improves FT from 0.8700 to 0.9082, 609

and ASM from 0.9147 to 0.9304. Similar gains 610

are observed with HiSACC, where BGE enhances 611

GR from 0.8092 to 0.8320 and raises AR from 612
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K Configuration AR CR GR FIM CC ASM LF ORP↓ FT

3

Recursive Chunking 0.865312 0.864210 0.823415 0.688100 0.885900 0.924200 0.850300 0.005200 0.890120
HiSACC 0.873452 0.874911 0.830737 0.762411 0.891732 0.930871 0.853912 0.004100 0.902345
Recursive Chunking BGE 0.864199 0.867011 0.825982 0.728411 0.879814 0.928012 0.849281 0.004600 0.896541
HiSACC BGE 0.878641 0.872810 0.835924 0.755890 0.894921 0.934512 0.860214 0.003800 0.910983

5

Recursive Chunking 0.851112 0.853488 0.812925 0.659431 0.872447 0.916089 0.835240 0.006237 0.884201
HiSACC 0.862901 0.870215 0.829446 0.752603 0.889975 0.924871 0.838899 0.004100 0.902712
Recursive Chunking BGE 0.855297 0.859811 0.820144 0.723882 0.880412 0.926381 0.845601 0.004530 0.894972
HiSACC BGE 0.868541 0.868812 0.834919 0.757811 0.892970 0.930042 0.848231 0.003480 0.912870

10

Recursive Chunking 0.842177 0.842935 0.799814 0.621990 0.861004 0.914672 0.821104 0.007131 0.870003
HiSACC 0.845902 0.846711 0.809235 0.735112 0.881305 0.921841 0.835244 0.003920 0.901882
Recursive Chunking BGE 0.860711 0.860992 0.829777 0.752004 0.891104 0.930421 0.840713 0.003510 0.908173
HiSACC BGE 0.857981 0.862511 0.831962 0.769112 0.893211 0.932481 0.837102 0.003250 0.914903

15

Recursive Chunking 0.831211 0.832164 0.789201 0.602741 0.850712 0.911114 0.809411 0.008021 0.852141
HiSACC 0.855442 0.860314 0.818912 0.741218 0.882014 0.922878 0.839911 0.006912 0.888441
Recursive Chunking BGE 0.870711 0.875112 0.837742 0.781414 0.892441 0.935211 0.859901 0.006101 0.915674
HiSACC BGE 0.872901 0.878921 0.845334 0.803924 0.901015 0.940112 0.864771 0.005423 0.925204

Table 1: Metric Results for different configurations and K values.

0.8459 to 0.8580. This highlights the reranker’s613

effectiveness in eliminating distractor chunks that614

may be superficially similar but lack semantic align-615

ment with the actual query intent, leading to more616

grounded and contextually supported answers.617

6 Conclusion and Future Work618

This research presents a robust AI-powered reg-619

ulatory compliance assistant that leverages hi-620

erarchical semantic chunking (HiSACC) and621

domain-adaptive reranking (BGE-Reranker) within622

a Retrieval-Augmented Generation (RAG) archi-623

tecture. Through comprehensive evaluation across624

multiple metrics—including groundedness, answer625

relevance, and over-retrieval penalty—the system626

demonstrates significant improvements in contex-627

tual accuracy, factual alignment, and language flu-628

ency over traditional baseline methods. The con-629

sistent performance across varying retrieval depths630

(K) affirms the scalability and reliability of the631

proposed methods in real-world pharmaceutical632

compliance scenarios.633

Beyond technical contributions, this work offers634

a practical pathway toward reducing manual over-635

head and mitigating regulatory risk in high-stakes636

environments. By encoding enterprise knowledge637

into dynamically retrieved, contextually grounded638

responses, the system bridges the gap between com-639

plex, evolving regulations and actionable compli-640

ance decisions.641

Looking ahead, two critical directions can fur-642

ther advance the intelligence and autonomy of the643

system: the integration of a Model Context Proto-644

col (MCP) and Reinforcement Learning from Hu-645

man Feedback (RLHF). MCP will enable LLMs to646

access distributed internal and external regulatory647

data sources through a unified, plugin-based inter- 648

face—drastically reducing manual ingestion bot- 649

tlenecks and enabling real-time compliance align- 650

ment. Meanwhile, RLHF introduces a feedback 651

loop between compliance officers and the model, al- 652

lowing the system to iteratively learn from domain- 653

specific user preferences and factual corrections. 654

This transition from static prompting to continuous 655

human-in-the-loop optimization will improve both 656

the quality and auditability of system outputs. 657

Together, these future enhancements pave the 658

way toward a more autonomous, adaptive, and 659

regulation-aware AI framework—not only for phar- 660

maceuticals, but also for other compliance-critical 661

industries such as finance, data privacy, and cyber- 662

security. 663

Limitations 664

Despite promising performance in regulatory ques- 665

tion answering and compliance-aware generation, 666

our system presents several limitations in architec- 667

ture design, user interaction, scalability, and knowl- 668

edge updating capabilities. 669

Ephemeral Context Fusion. The system em- 670

ploys a dual-source context mechanism, integrat- 671

ing both persistent semantic retrieval from Milvus 672

and real-time content uploaded via the frontend. 673

While this design allows dynamic fusion of long- 674

term and ad-hoc contexts, uploaded documents are 675

treated as transient input and are not persisted for 676

future retrieval. This limits support for multi-turn 677

interaction, user-specific memory, and longitudinal 678

compliance tracking. 679

Shallow Context Integration. The current strat- 680

egy concatenates retrieved and uploaded content 681

without modeling semantic hierarchy or salience. 682
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This naive fusion may introduce context conflicts683

in multi-document scenarios and lack interpretabil-684

ity. Additionally, due to the token limits of large685

language models (e.g., GPT-4o), only one docu-686

ment can be uploaded per query, constraining the687

system’s applicability to long-form reporting or688

comparative analysis.689

Frontend Usability Constraints. The fron-690

tend interface is built with Gradio, which facili-691

tates rapid deployment but lacks extensibility for692

enterprise-level use. Essential features—such as693

multilingual support, persistent session memory,694

interactive chunk highlighting, and advanced input695

modalities (e.g., voice or structured queries)—are696

not currently supported. This reduces usability in697

professional auditing or multilingual regulatory re-698

view scenarios.699

Concurrency Fragility. The backend does not700

currently implement robust throttling or fallback701

mechanisms. Under high concurrency, API re-702

quests to the language model may exceed rate703

limits, leading to request failures without queuing,704

retry, or graceful degradation strategies. This lim-705

its system reliability in production or peak usage706

environments.707

Incomplete Knowledge Synchronization. Al-708

though the backend supports periodic synchroniza-709

tion from Google Shared Drives, real-time up-710

dates are constrained by the manual maintenance of711

source documents. The system is not yet integrated712

with structured compliance databases or internal713

regulatory platforms, reducing responsiveness in714

rapidly changing regulatory contexts.715
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A Corpus Construction and826

Preprocessing827

All documents used in this study were collected828

from a Google Shared Drive. File-level meta-829

data—including MIME type, name, path, ID, and830

modification timestamp—was extracted to support831

structured processing. The initial MIME-type dis-832

tribution is shown in Table 2.833

File Type MIME Type Count

PDF File application/pdf 454
Word Document (.docx) application/vnd.openxmlformats-

officedocument.wordprocessingml.document
169

Microsoft Word (.doc) application/msword 44
Excel File (.xlsx) application/vnd.openxmlformats-

officedocument.spreadsheetml.sheet
12

Google Sheets application/vnd.google-apps.spreadsheet 4
Google Docs application/vnd.google-apps.document 2
URL File text/x-url 2
Google Apps Script File application/vnd.google-apps.script 1
Excel File (.xls) application/vnd.ms-excel 1
Presentation File application/vnd.openxmlformats-

officedocument.presentationml.presentation
1

Table 2: Initial distribution of file MIME types.

Files unsuitable for text extraction (e.g., URL834

and script files) were removed. Table 3 shows the835

retained document types used in downstream pro-836

cessing.837

File Type MIME Type Count

PDF File application/pdf 454
Word Document (.docx) application/vnd.openxmlformats-

officedocument.wordprocessingml.document
169

Microsoft Word (.doc) application/msword 44
Excel File (.xlsx) application/vnd.openxmlformats-

officedocument.spreadsheetml.sheet
12

Google Sheets application/vnd.google-apps.spreadsheet 4
Google Docs application/vnd.google-apps.document 2
Excel File (.xls) application/vnd.ms-excel 1

Table 3: Retained file types after filtering out non-
extractable formats.

Text extraction was conducted using format-838

specific parsers. OCR was applied to scanned839

PDFs. The overall text extraction success rate ex-840

ceeded 90%. Table 4 summarizes failure statistics841

before and after OCR.842

File Type Initial Failures Post-OCR Failures

Word Document (.docx) 2 2
Excel File (.xlsx) 1 1
Google Sheets 3 3
Excel File (.xls) 1 1
PDF File 140 5

Table 4: Text extraction failures before and after OCR
processing.

Unprocessable files (e.g., encrypted or empty 843

documents) were logged and excluded from the 844

experimental pipeline. 845

B Google Drive API Usage Monitoring 846

To evaluate the reliability and performance of our 847

document ingestion pipeline, we monitored API 848

usage across a 30-day window. As shown in Fig- 849

ures 3–5, the Google Drive API exhibited stable, 850

low-frequency traffic, with occasional spikes cor- 851

responding to bulk synchronization events. Error 852

analysis (Figure 4) reveals that while the Drive 853

API maintained a manageable 5% error rate across 854

7,858 requests, the Gemini for Google Cloud API 855

experienced consistent failure (100% error rate 856

across 42 requests), indicating critical service in- 857

compatibility. In terms of latency (Figure 5), the 858

Drive API showed a median response time of 163 859

ms, with outliers reaching up to 2.8 seconds. These 860

observations confirm that the Google Drive API 861

provides a relatively stable and scalable foundation 862

for downstream document alignment tasks. 863

Figure 3: Traffic rate of the Google Drive API over 30 days.

C User Interface Overview 864

The system front-end is implemented using Gra- 865

dio, providing an intuitive interface for user inter- 866

action. Users can input natural language queries, 867

optionally enable Milvus-based retrieval, and up- 868

load documents for context-specific analysis. The 869
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Figure 4: Error rates of Drive and Gemini APIs.

Figure 5: Median latency trends of API responses.

interface also includes adjustable parameters under870

“Advanced Settings” (specifically, temperature and871

top-p) to control the response behavior of the lan-872

guage model. A feedback section is available to873

collect user comments, facilitating potential system874

improvement.875

Figure 6: Gradio-based front-end interface

D Prompt Design for QA Generation 876

Task 877

Prompt for Generating Question-Answer Pairs from a
Document

In the following task, you are given a complete semi-
structured or structured document. You are a senior doc-
ument analysis expert familiar with medical, legal, and
standardized documents. Your task is to generate high-
quality question-answer pairs from the document. These
pairs will be used to assess the comprehension ability of
semantic retrieval and generation models in a Retrieval-
Augmented Generation (RAG) system.
You should proactively identify high-value information
that can be questioned and produce multiple challenging
and practically meaningful Q&A pairs. Questions should
avoid simple paraphrasing or copying, and instead focus
on logic, synthesis, or judgment. Answers should be
concise and accurate, supported by a direct sentence from
the document.
Output format (JSON array):
[

{
"question": "Question content",
"answer": "Concise answer",
"answer_source": "Sentence from

the document that supports the
answer"

},
...

]

Requirements:

• Include factual, procedural, comparative, or reasoning-
based questions.

• Answers must be verifiable. Subjective speculation is
not allowed.

• The answer_source must be a direct quote from the
document that supports the answer.

Task steps:

1. Read the entire document to understand its topic and
structure.

2. Identify valuable questions beyond surface-level con-
tent.

3. Provide concise and accurate answers.

4. Quote directly from the document as the an-
swer_source.

5. Return the output as a JSON array.
878
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