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Abstract

As Al-enabled research accelerates pharmaceu-
tical technological advances, legislation and
regulation worldwide are evolving rapidly and
often have a significant impact. Compliance
with fragmented, frequently updated national
regulations presents a pressing challenge for
multinational organizations, a global leader in
pharmaceuticals and diagnostics. This project
proposes an Al-powered interactive dialogue
system, which streamlines the interpretation
and alignment of the evolving regulatory re-
quirements that directly impact a pharmaceuti-
cal company’s internal standards. We introduce
HiSACC, a hierarchical semantic chunking
method, and BGE-Reranker, a domain-adaptive
semantic re-ranking model using fine-tuning,
which are designed to optimize the chunking
and re-ranking processes, ensuring more accu-
rate and context-aware responses to regulatory
queries.

The system leverages advanced Large Lan-
guage Models (LLMs) to generate user-
specific responses and incorporates Retrieval-
Augmented Generation (RAG) technology to
enable precise, context-aware responses to com-
plex medical-legal queries, minimizing the oc-
currence of hallucination biases. This project
is an innovative tool designed to reduce man-
ual workload and improve the efficiency and
precision of navigating regulatory compliance.
Beyond pharmaceuticals, the system’s adapt-
able framework holds promise for other do-
mains that experience frequent legal updates,
particularly in banking, finance, data privacy,
and cybersecurity. By adapting the system to
address regulatory challenges in these sectors,
organizations can ensure adherence to the lat-
est legal standards, thereby mitigating risks and
enhancing operational effectiveness across var-

ious industries!.

! Anonymous implementation and evaluation scripts are
available at https://anonymous.4open.science/
r/hisacc-bge—-ABCC/.

1 Introduction

The pharmaceutical industry operates within a
highly regulated environment due to its products
directly impacting human health. Ensuring legal
compliance is crucial to safeguard patient safety,
maintain public trust, and provide safe and effective
medications (Kher, 2020). Non-compliance can
lead to significant financial losses, legal penalties,
and reputation damage. In 2023, the U.S. Food and
Drug Administration (FDA) issued 1,150 warning
letters regarding drug compliance issues (Sharma
et al., 2023), and in 2024, the average cost per vio-
lation reached $14.8 million. For pharmaceutical
companies, maintaining compliance that exceeds
industry standards is not just about avoiding fines;
but it is essential for their survival in a highly com-
petitive market.

Regulations continue to evolve rapidly to address
advancements in biotechnology and market trends.
In 2024, the FDA revised 15% of drug manufactur-
ing regulations to better adapt to new biotechnolog-
ical advances (U.S. Food and Drug Administration,
2024). However, this rapid regulatory change has
led to an increasing shortage of skilled profession-
als capable of managing the complexity of regu-
latory requirements. A recent survey showed that
56% of pharmaceutical companies reported difficul-
ties in hiring such talent (ComplianceQuest, 2025).
This situation has led to an increased reliance on au-
tomation tools to handle intricate compliance pro-
cesses, such as Document Management Systems
(DMS) and compliance software, which help au-
tomate tasks like record-keeping, risk assessment,
and monitoring of regulatory changes (Jordan et al.,
2022). Yet, despite the availability of these tools,
experts and compliance officers still struggle to
efficiently track and adapt to continuous updates
across global jurisdictions and diverse industry seg-
ments.

To address these challenges, this study proposes
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the development of an Al-driven interactive dia-
logue system powered by Large Language Models
(LLMs). These models are capable of processing
vast amounts of legal documents and regulatory up-
dates, helping businesses understand and respond
to changes in a shorter time frame. Specifically,
the system parses regulatory texts, guidance docu-
ments, and industry standards, assisting companies
in adapting to evolving regulatory requirements
across different global regions. However, one criti-
cal issue limiting LLM is the tendency to halluci-
nation biases, where the model generates plausible
but incorrect information (Ji et al., 2023). In high-
stakes industries like pharmaceuticals, even minor
inaccuracies in regulatory interpretations can result
in noncompliance, legal penalties, and irreversible
harm to patient safety.

To mitigate the hallucination bias of LLM, we in-
troduce a solution based on Retrieval-Augmented
Generation (RAG) technology. In collaboration
with an industrial partner, we leverage their inter-
nal compliance reports, Standard Operating Pro-
cedures (SOP) documents, and quality control
records to build a system that integrates two key
innovations: HiSACC, a hierarchical semantic
chunking method, and BGE-Reranker, a domain-
adaptive semantic re-ranking model using fine-
tuning. HiSACC optimizes the chunking process
by dynamically identifying semantically meaning-
ful segments in regulatory documents, while BGE-
Reranker enhances retrieval performance by im-
proving post-retrieval ranking to better match query
contexts. By optimizing both pre-retrieval filtering
and post-retrieval validation algorithms, our system
significantly improves the accuracy and timeliness
of compliance checks. This not only improves
operational efficiency but also reduces the risk of
regulatory penalties and enhances the reliability of
compliance-related decisions.

The effectiveness of our system will be rigor-
ously evaluated by compliance officers to ensure
the alignment with the industry’s zero-tolerance
standards for regulatory inaccuracies. Beyond phar-
maceuticals, the system’s adaptable framework
holds promise for other domains that face simi-
lar regulatory challenges, such as banking, finance,
data privacy, and cybersecurity, where dynamic
regulatory landscapes demand high precision and
real-time adaptability.

2 Related Work

2.1 Hallucination Mitigation in Language
Models

In regulatory compliance applications, ensuring the
accuracy of generated information is paramount.
Despite significant advancements in large language
models (LLMs), these models are prone to hallu-
cination bias, where they produce inaccurate or
inconsistent content (Ji et al., 2022). To address
this issue, various strategies have been proposed, in-
cluding Prompt Engineering, Retrieval-Augmented
Generation (RAG), and Fine-Tuning. Prompt En-
gineering involves crafting specific input prompts
to guide the model, but it lacks generalizability
across tasks (Brown et al., 2020). Fine-Tuning
adapts models to specific domains through train-
ing on specialized data, improving performance,
but it is costly and not adaptable to rapid regula-
tory changes (Wei et al., 2022). In contrast, RAG
integrates real-time information retrieval during
text generation, reducing hallucination bias and al-
lowing dynamic adaptation to regulatory updates
(Lewis et al., 2020). This makes RAG particularly
effective for scenarios requiring real-time updates
and high accuracy in regulatory compliance. How-
ever, naive RAG struggles with complex queries
(Gao et al., 2024) and has room for improvement
in handling diverse document types and formats.

2.2 Enhancements to RAG Systems

To improve naive RAG, researchers have focused
on refining various stages of the process, including
Chunking, Pre-Retrieval, and Post-Retrieval.

2.2.1 Chunking Strategies

Traditional chunking methods are rule-based and
focus on segmenting text according to predefined
boundaries like line breaks, punctuation, or fixed-
length paragraphs. While these methods prioritize
sentence boundaries and ensure token count limits,
they can overlook semantic coherence, which may
lead to the truncation of important information or
the combination of unrelated text fragments (Gao
et al., 2024). As a result, more advanced chunking
methods have emerged, such as dynamic chunking
strategies. One such approach, LumberChunker,
dynamically adjusts chunk boundaries by analyz-
ing semantic shifts in text (Duarte et al., 2024).
By employing a pre-trained LLM, LumberChunker
identifies points where semantic changes are signif-
icant, ensuring that each chunk is semantically co-



herent and independent. Similarly, Meta-Chunking
enhances chunking by analyzing text logic and
structure using strategies like Margin Sampling
Chunking and Perplexity Chunking (Zhao et al.,
2024). These methods improve semantic segmen-
tation by considering perplexity levels and struc-
tural logic, which helps identify appropriate chunk
boundaries. For documents with rich visual con-
tent, VisRAG leverages a visual language model
(VLM) to process text alongside layout and image
data, determining chunk boundaries based on vi-
sual elements (Yu et al., 2024). These dynamic
and multimodal chunking strategies significantly
enhance the retrieval process by ensuring that the
retrieved text segments are both relevant and se-
mantically complete.

2.2.2 Pre-Retrieval Optimization

Pre-retrieval optimization plays a critical role in
refining the query and index structures to maxi-
mize retrieval accuracy. Techniques in this stage
include query rewriting, expansion, and transforma-
tion, which align user queries with the indexed data
more effectively, ensuring more relevant retrieval
results.

Query Rewriting Query rewriting focuses on ad-
justing rare or specific queries to improve search en-
gine performance, particularly for long-tail queries
(Wang et al., 2024b). This approach is crucial for
ensuring that specialized user intents are captured
more effectively during information retrieval.

Query Expansion Query expansion involves
adding synonyms, hypernyms, or related terms to
a query, broadening its scope and improving re-
trieval relevance (Koo et al., 2024). This strategy
is especially beneficial in open-domain question-
answering tasks, where expanding the query helps
retrieve a more comprehensive set of relevant doc-
uments.

Query Transformation Query transformation al-
ters the structure or semantics of a query while
maintaining its original intent, enhancing its align-
ment with the requirements of LLMs (Chan et al.,
2024). This modification may include adding qual-
ifiers or reordering terms to optimize the query’s
effectiveness in the retrieval process.

2.2.3 Post-Retrieval Optimization

Once relevant documents are retrieved, post-
retrieval optimization is essential to refine the re-
trieved data and ensure it enhances the quality

of the generated response. This process includes
strategies for efficiently managing the retrieved
fragments and optimizing their relevance for final
generation.

Efficient Compression In naive RAG, the Ap-
proximate Nearest Neighbor (ANN) algorithm re-
trieves document blocks most similar to the query
and ranks them by similarity (Wang et al., 2024a).
To avoid information overload and improve gen-
eration accuracy, systems like COCOM use a
Transformer-based architecture to compress multi-
ple text blocks into a dense embedding vector. This
compressed context is then used to generate the
final response (Rau et al., 2024). By merging mul-
tiple fragments into one context vector, the system
reduces sensitivity to irrelevant information and
ensures more focused generation.

Precise Filtration The post-retrieval filtration
process involves further refining the retrieved text
blocks to ensure only the most relevant fragments
are used for generation. Models like E2E-AFG
utilize an end-to-end adaptive filtering mechanism
to identify and filter out irrelevant text (Jiang et al.,
2024). Techniques such as String Inclusion, Lexi-
cal Overlap, and Conditional Cross-Mutual Infor-
mation (CXMI) help determine the relevance of
text blocks by analyzing their alignment with the
generated pseudo-answer (Es et al., 2023). Further-
more, models like Shi et al. incorporate Abstract
Meaning Representation (AMR) to filter out noise
and focus the model’s attention on key concepts,
improving accuracy, especially in specialized do-
mains (Shi et al., 2024).

3 Problem Definition

The core objective of this research is formalized
as a Regulatory-Compliance Question Answering
(RC-QA) task within retrieval-augmented genera-
tion (RAG) frameworks. It is specifically aimed at
optimizing the retrieval and generation processes
for regulatory compliance dialogue systems in high-
stakes pharmaceutical environments. Given the
rapidly evolving regulatory landscape, multina-
tional pharmaceutical enterprises face significant
challenges in ensuring compliance with complex,
diverse, fragmented, and frequently updated regu-
lations across multiple jurisdictions. These chal-
lenges arise due to the substantial volume of in-
formation, diversity in document formats, and the
intricacies involved in maintaining accuracy and



timeliness. These conditions necessitate solutions
that meet the practical and stringent demands of
real-world industrial settings.

3.1 Task Definition

Input: The input consists of a corpus D =
{di,da,...,d,} containing diverse regulatory doc-
uments, guidelines, compliance records, and a con-
tinuously evolving set of various internal docu-
mentation, such as Standard Operating Procedures
(SOPs), audit reports, and regulatory guidance doc-
uments. Each document d; within the corpus may
include structured, semi-structured, or unstructured
data, undergoing secure ingestion and metadata
normalization processes.

Query: A natural language query ¢ posed by a
compliance officer seeking precise regulatory in-
formation, operational guidance, or compliance
interpretations.

System Objective: Given a query ¢, the
system must retrieve context segments C' =
{c1,¢a,...,ci} from the corpus D, with relevance
assessed by semantic similarity metrics, notably
Context Relevance (CR), and validated through
accurate File ID Match (FIM). The retrieval pro-
cess aims to identify minimal yet highly relevant
evidence passages, ensuring high CR, precise iden-
tification of source documents (FIM), extensive
coverage of authoritative regulatory content (Con-
text Coverage (CC)), and minimal inclusion of ir-
relevant information to reduce the Over-Retrieval
Penalty (ORP).

Based on these retrieved context segments, the
system is tasked with generating coherent, accu-
rate, and contextually grounded natural language
responses 7 that precisely answer the query gq.
Response quality is quantitatively assessed using
metrics such as Answer Relevance (AR), Answer
Source Match (ASM), and Language Fluency (LF).
All generated tokens must have verifiable ground-
ing in the retrieved context, with ungrounded to-
kens considered hallucinations and penalized ac-
cordingly. These constraints are quantified by the
Groundedness Rate (GR) and Faithfulness Test
(FT).

To operationalize this objective, we formulate
the RC-QA task as a multi-metric optimization
problem evaluated by a comprehensive set of auto-
matic metrics:

F = {AR,CR, GR, FIM, CC, ASM, LF, FT, ORP}

The overall optimization goal is defined as:
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where w represents a weight vector prioritizing
compliance-critical metrics such as AR, GR, and
FIM, and © denotes the tunable parameters govern-
ing retrieval and response generation.

4 Methodology

4.1 Baseline System Architecture

To facilitate the development and evaluation of
improved retrieval and generation methods, we
present a complete end-to-end baseline architec-
ture grounded in the standard Retrieval-Augmented
Generation (RAG) paradigm (Figure 1). Our sys-
tem integrates secure document ingestion, semantic
indexing, and context-aware response generation
into a unified pipeline.

The process begins with secure synchronization
of regulatory documents from internal repositories,
supported by an incremental update mechanism
that processes only new, modified, or deleted files.
Documents are then parsed and normalized to pro-
duce a consistent textual representation across het-
erogeneous sources. The semantic preprocessing
module segments text into chunks using a recursive
strategy based on token limits and structural cues.
Each chunk is embedded into a dense vector space
and indexed for similarity-based retrieval. During
inference, user queries are embedded and matched
to relevant chunks, which are concatenated with the
query and passed to a language model for grounded
response generation.
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Figure 1: Overview of the baseline Retrieval-Augmented Gen-
eration (RAG) system architecture.

4.2 Chunking Optimization with HiSACC

To address semantic fragmentation from tradi-
tional splitting methods, we propose HiSACC (Hi-
erarchical Semantic Aggregation for Contextual



Chunking). HiSACC optimizes semantic coher-
ence through hierarchical semantic aggregation.

Initially, minimal semantic units S =
{s1,s2,..., sk} are embedded into vectors V =
{v1,v9,...,v} using a semantic encoder (e.g.,
Sentence-BERT). Semantic similarity between ad-
jacent vectors is calculated by:
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Adjacent segments with similarity M; ;11 > 0
are aggregated into initial local semantic groups.

In the hierarchical merging stage, these ini-
tial segments G = {G1, Ga,...,G)} are further
merged based on a global semantic coherence
threshold . A skip-window of size w evaluates
average inter—group semantic similarity:
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Segments meeting this criterion merge to pro-
duce semantically cohesive chunks.

4.3 Post-Retrieval Optimization via
BGE-Reranker

To improve the semantic ranking of retrieved pas-
sages, we adopt BGE-Reranker’ (Xiao et al.,
2023), a cross-encoder model that jointly en-
codes query-document pairs for fine-grained rel-
evance estimation.Given a query ¢ and candidates
{d1,...,dy}, it computes matching scores:

S = fe(qa dl)

To capture global ranking structure, we fine-tune
the model using a listwise loss (Cao et al., 2007)
based on softmax-normalized scores:
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Here, y; denotes the relevance label. This ap-
proach encourages globally consistent rankings and
is well-suited to domains with subtle semantic dis-

tinctions.

4.4 Evaluation Framework

Our evaluation rigorously quantifies retrieval and
generation quality using cosine similarity over
fixed embeddings (Es et al., 2025). Specifically, we

2We use the publicly available bge-reranker-base
model from Hugging Face:
co/BAAI/bge-reranker-base

https://huggingface.

define Answer Relevance (AR) as Sim(q, ), Con-
text Relevance (CR) as Sim(q, ¢), and Grounded-
ness Rate (GR) as Sim(r, ¢), where

o(z) - 9(y)
lo(@)[[llé(y) Il

File ID Match (FIM) FIM is a binary metric
verifying whether the source file ID ¢d* is among
the retrieved file IDs R:

Sim(z,y) =

FIM(R, id*) = I[id* € R].

Context Coverage (CC) CC evaluates the
maximum semantic similarity between the re-
trieved contexts {¢;} and the authoritative source
text s:

) nax _o(a) - ¥ls)
CC({ci},s) = <H¢(Q)H||¢( )H).

Answer Source Match (ASM) ASM mea-
sures semantic alignment between the generated
response r and the reference answer s:

o(r) - o(s)
lp(r)lll¢(s)lI
Language Fluency (LF) LF is scored using

a fluency function (Kim and Kim, 2024) v(-) nor-
malized to [0, 1]:

ASM(r, s) =

Faithfulness Test (FT) FT evaluates how
many factual statements in the answer S = {s;}
are supported by retrieved contexts (Maynez et al.,
2020) C = {Ci}3

FT(r,C) = Z [He; e C:sj€¢).
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Over-Retrieval Penalty (ORP) ORP penal-
izes the proportion of retrieved contexts not seman-
tically similar to the source answer. Let 7 be the
similarity threshold:

{¢; : CC(¢;, 8) > T}|

ORP({Cz}v ) 1 ’{Cz}’

S Experiment and Results

5.1 System Implementation

Data Acquisition and Synchronization. Reg-
ulatory documents are sourced from enterprise-
level Google Shared Drives using the Google Drive
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API with OAuth 2.0 authentication for secure ac-
cess (Google Developers, 2024b,a)3. To enable effi-
cient incremental updates, a local SQLite database
tracks document metadata. During each synchro-
nization cycle, the system compares metadata to
detect newly added, updated, or removed files, min-
imizing redundant processing.

Parsing and Normalization. The system sup-
ports multi-format documents, including PDF,
DOC/DOCX, XLS/XLSX, CSV, and TXT. Text
is extracted using format-specific tools, and all con-
tent is standardized into structured text blocks for
downstream compatibility.

Semantic Segmentation. A hierarchical recur-
sive chunking strategy is employed to divide docu-
ments into semantically coherent units. Paragraph
delimiters and whitespace are prioritized, and over-
lapping windows are used to retain contextual con-
tinuity within a preset token limit.

Embedding and Indexing. Text segments are
embedded into a high-dimensional semantic space
using an internal embedding model hosted on an
internal Galileo Al Platform, based on OpenAl’s
embedding family and served via the Azure Ope-
nAl Service. Embeddings and metadata are stored
in a Milvus vector database.

Retrieval and Generation Pipeline. Users
interact through a Gradio-based web interface®,
served by a FastAPI backend with Uvicorn for
high-concurrency support. Upon query submis-
sion, the system retrieves relevant chunks from
Milvus, which are concatenated with optional user-
uploaded documents. The combined context is
passed to an internal GPT-4 turbo model for re-
sponse generation. Model parameters (temperature,
top-p) are user-configurable.

Cloud Infrastructure and Security. The sys-
tem runs on Amazon EC2 instances with Tesla T4
GPUs. All components are secured within the inter-
nal network, protected by Cloudflare Gateway, and
require enterprise authentication. Data transmis-
sion and storage follow strict encryption protocols,
ensuring full compliance with internal governance
and data protection standards. An overview of the
full architecture is illustrated in Figure 2.

5.2 Evaluation Dataset Construction

To systematically evaluate the performance of dif-
ferent RAG strategies in regulatory question an-

3See Appendix B for monitoring statistics over 30 days.
“See Appendix C, Figure 6 for the full interface layout.
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Figure 2: System Architecture Overview for the Regulatory
Alignment Guide System

swering, we constructed a structured evaluation
dataset consisting of diverse document types with
representative question formats.

Stratified Sampling and Preprocessing.
Source documents were collected from the internal
cloud repository. To ensure coverage and reduce
sampling bias, a stratified sampling strategy
based on file types was applied. All sampled
documents were processed via an automated
parsing pipeline that handled format normalization,
encoding compatibility, and structural cleaning.
This resulted in a unified textual corpus suitable
for downstream QA generation.

Automatic QA Pair Generation. We employed
the GPT-4 model via an internal Galileo AI Plat-
form to generate question-answer (QA) pairs from
the cleaned documents. Prompt templates were
designed to guide the model in extracting key in-
formation and generating well-formed questions,
concise answers, and supporting evidence from the
source text. Each QA instance was linked to the
corresponding document metadata for full trace-
ability and interpretability>.

Dataset Structure. The final dataset is serial-
ized in JSON format, where each entry contains:

e file_ name: Source document identifier;

* question: A natural language query repre-
senting realistic regulatory review tasks;

* answer: The GPT-4 generated response,
used as a system performance reference;

3See Appendix D for prompt details.



* answer_source: The original document
span supporting the answer, used for ground-
ing and relevance evaluation.

5.3 Fine-tuning Dataset Construction

To train a task-specific reranker for regulatory ques-
tion answering, we constructed a binary-labeled
dataset tailored for passage-level semantic rele-
vance modeling. This dataset forms the supervision
signal for cross-encoder fine-tuning in the rerank-
ing module.

Document Sampling and QA Generation. Us-
ing a stratified sample of internal regulatory docu-
ments (PDF, Word, Excel), we extracted text con-
tent through an automated pipeline and invoked
the GPT-4 model via the Galileo AI Platform to
generate initial QA pairs. Prompts were carefully
designed to elicit logically structured, verifiable
QA examples, each grounded in specific document
spans.

Positive Instance Collection. Each generated
QA pair was recorded with the associated file meta-
data and the supporting text passage. Only high-
quality pairs with non-empty answers and explicit
supporting evidence were retained as positive sam-
ples, each labeled with "1abel™: 1.

Negative Sampling Strategy. For each posi-
tive instance, we applied a multi-stage negative
sampling strategy. Negatives were selected from
unrelated passages across other documents (cross-
document), semantically distinct segments from
the same document (intra-document), or fallback
segments when needed. Each negative instance
reuses the same question as the positive sample,
but pairs it with a semantically irrelevant passage,
labeled with "1abel": 0.

Dataset Format. The final dataset is serialized
in JSONL format, with each line representing one
training instance. Each entry contains:

* question: The regulatory query;

* passage: The candidate passage (positive
or negative);

* label: A binary label indicating relevance
(1 for positive, 0 for negative);

e file _name / file_id: Metadata for
traceability;

* (Optional) answer, answe_source:
Available only for positive samples, used for
evaluation alignment.

5.4 Results and Analysis

We conduct extensive experiments under various
top-K retrieval settings (K € {3,5,10,15}) to
systematically evaluate the effectiveness of our
proposed HiSACC chunking method and BGE-
Reranker, a fine-tuned reranking model based on
the BGE architecture, in the context of regula-
tory question answering. Specifically, we assess
four configurations: Recursive Chunking (RC),
HiSACC, and their respective variants enhanced
with BGE-Reranker. The evaluation is carried out
using nine metrics that capture retrieval quality,
grounding accuracy, and fluency, as introduced in
Section 4.4. The results are summarized in Table 1.

Main Results: HISACC+BGE-Reranker con-
sistently outperforms all baselines. Across all
values of K, the combined system of HISACC and
BGE-Reranker achieves top scores on at least 8 out
of 10 evaluation metrics, showing consistent supe-
riority over alternative configurations. At K = 15,
it reaches the best performance on FT (Faithful-
ness Test, 0.9252), LF (Language Fluency, 0.8648),
GR (Groundedness Rate, 0.8453), and achieves
the lowest ORP (Over-Retrieval Penalty, 0.0054).
These results demonstrate that integrating hierar-
chical chunking with domain-tuned reranking leads
to precise, fluent, and verifiable answers, especially
critical in high-stakes regulatory compliance sce-
narios.

HiSACC vs. Recursive Chunking: hierar-
chical segmentation improves retrieval quality
and reduces noise. HiSACC outperforms Recur-
sive Chunking at every value of K, regardless of
whether reranking is used. It enhances AR, CR, and
FIM while reducing ORP. For instance, at K = 5,
HiSACC increases AR by +1.1 (0.8629 vs. 0.8511),
improves FIM by +9.3 points (0.7526 vs. 0.6594),
and lowers ORP from 0.0062 to 0.0041. These
gains suggest that HISACC produces more seman-
tically coherent retrieval segments, which not only
match user intent more precisely but also reduce
the inclusion of irrelevant or fragmented context.

Effect of BGE-Reranker: post-retrieval
reranking enhances grounding and factual align-
ment. The BGE-Reranker module delivers consis-
tent improvements across both chunking methods.
At K = 10, for example, Recursive Chunking
with reranker improves FT from 0.8700 to 0.9082,
and ASM from 0.9147 to 0.9304. Similar gains
are observed with HISACC, where BGE enhances
GR from 0.8092 to 0.8320 and raises AR from



K  Configuration AR CR GR FIM CcC ASM LF ORP/| FT
Recursive Chunking 0.865312  0.864210  0.823415  0.688100  0.885900  0.924200  0.850300  0.005200  0.890120
3 HiSACC 0.873452  0.874911  0.830737  0.762411  0.891732  0.930871 0.853912  0.004100  0.902345
) Recursive Chunking BGE ~ 0.864199  0.867011 0.825982  0.728411 0.879814  0.928012  0.849281 0.004600  0.896541
HiSACC BGE 0.878641 0.872810  0.835924  0.755890  0.894921 0.934512  0.860214  0.003800  0.910983
Recursive Chunking 0.851112  0.853488  0.812925  0.659431 0.872447 0916089  0.835240  0.006237  0.884201
5 HiSACC 0.862901 0.870215  0.829446  0.752603  0.889975  0.924871 0.838899  0.004100  0.902712
Recursive Chunking BGE ~ 0.855297  0.859811 0.820144  0.723882  0.880412  0.926381  0.845601  0.004530  0.894972
HiSACC BGE 0.868541 0.868812  0.834919  0.757811 0.892970  0.930042  0.848231 0.003480  0.912870
Recursive Chunking 0.842177  0.842935  0.799814  0.621990  0.861004  0.914672  0.821104  0.007131 0.870003
10 HiSACC 0.845902  0.846711 0.809235  0.735112  0.881305  0.921841 0.835244  0.003920  0.901882
Recursive Chunking BGE ~ 0.860711  0.860992  0.829777  0.752004  0.891104  0.930421 0.840713  0.003510  0.908173
HiSACC BGE 0.857981 0.862511  0.831962  0.769112  0.893211  0.932481  0.837102  0.003250  0.914903
Recursive Chunking 0.831211 0.832164  0.789201 0.602741 0.850712 0911114  0.809411 0.008021 0.852141
15 HiSACC 0.855442  0.860314  0.818912  0.741218  0.882014  0.922878  0.839911 0.006912  0.888441
Recursive Chunking BGE ~ 0.870711  0.875112  0.837742  0.781414  0.892441 0.935211 0.859901 0.006101 0.915674
HiSACC BGE 0.872901 0.878921  0.845334  0.803924  0.901015  0.940112  0.864771  0.005423  0.925204

Table 1: Metric Results for different configurations and K values.

0.8459 to 0.8580. This highlights the reranker’s
effectiveness in eliminating distractor chunks that
may be superficially similar but lack semantic align-
ment with the actual query intent, leading to more
grounded and contextually supported answers.

6 Conclusion and Future Work

This research presents a robust Al-powered reg-
ulatory compliance assistant that leverages hi-
erarchical semantic chunking (HiSACC) and
domain-adaptive reranking (BGE-Reranker) within
a Retrieval-Augmented Generation (RAG) archi-
tecture. Through comprehensive evaluation across
multiple metrics—including groundedness, answer
relevance, and over-retrieval penalty—the system
demonstrates significant improvements in contex-
tual accuracy, factual alignment, and language flu-
ency over traditional baseline methods. The con-
sistent performance across varying retrieval depths
(K) affirms the scalability and reliability of the
proposed methods in real-world pharmaceutical
compliance scenarios.

Beyond technical contributions, this work offers
a practical pathway toward reducing manual over-
head and mitigating regulatory risk in high-stakes
environments. By encoding enterprise knowledge
into dynamically retrieved, contextually grounded
responses, the system bridges the gap between com-
plex, evolving regulations and actionable compli-
ance decisions.

Looking ahead, two critical directions can fur-
ther advance the intelligence and autonomy of the
system: the integration of a Model Context Proto-
col (MCP) and Reinforcement Learning from Hu-
man Feedback (RLHF). MCP will enable LLMs to
access distributed internal and external regulatory

data sources through a unified, plugin-based inter-
face—drastically reducing manual ingestion bot-
tlenecks and enabling real-time compliance align-
ment. Meanwhile, RLHF introduces a feedback
loop between compliance officers and the model, al-
lowing the system to iteratively learn from domain-
specific user preferences and factual corrections.
This transition from static prompting to continuous
human-in-the-loop optimization will improve both
the quality and auditability of system outputs.

Together, these future enhancements pave the
way toward a more autonomous, adaptive, and
regulation-aware Al framework—not only for phar-
maceuticals, but also for other compliance-critical
industries such as finance, data privacy, and cyber-
security.

Limitations

Despite promising performance in regulatory ques-
tion answering and compliance-aware generation,
our system presents several limitations in architec-
ture design, user interaction, scalability, and knowl-
edge updating capabilities.

Ephemeral Context Fusion. The system em-
ploys a dual-source context mechanism, integrat-
ing both persistent semantic retrieval from Milvus
and real-time content uploaded via the frontend.
While this design allows dynamic fusion of long-
term and ad-hoc contexts, uploaded documents are
treated as transient input and are not persisted for
future retrieval. This limits support for multi-turn
interaction, user-specific memory, and longitudinal
compliance tracking.

Shallow Context Integration. The current strat-
egy concatenates retrieved and uploaded content
without modeling semantic hierarchy or salience.



This naive fusion may introduce context conflicts
in multi-document scenarios and lack interpretabil-
ity. Additionally, due to the token limits of large
language models (e.g., GPT-40), only one docu-
ment can be uploaded per query, constraining the
system’s applicability to long-form reporting or
comparative analysis.

Frontend Usability Constraints. The fron-
tend interface is built with Gradio, which facili-
tates rapid deployment but lacks extensibility for
enterprise-level use. Essential features—such as
multilingual support, persistent session memory,
interactive chunk highlighting, and advanced input
modalities (e.g., voice or structured queries)—are
not currently supported. This reduces usability in
professional auditing or multilingual regulatory re-
view scenarios.

Concurrency Fragility. The backend does not
currently implement robust throttling or fallback
mechanisms. Under high concurrency, API re-
quests to the language model may exceed rate
limits, leading to request failures without queuing,
retry, or graceful degradation strategies. This lim-
its system reliability in production or peak usage
environments.

Incomplete Knowledge Synchronization. Al-
though the backend supports periodic synchroniza-
tion from Google Shared Drives, real-time up-
dates are constrained by the manual maintenance of
source documents. The system is not yet integrated
with structured compliance databases or internal
regulatory platforms, reducing responsiveness in
rapidly changing regulatory contexts.
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A Corpus Construction and
Preprocessing

All documents used in this study were collected
from a Google Shared Drive. File-level meta-
data—including MIME type, name, path, ID, and
modification timestamp—was extracted to support
structured processing. The initial MIME-type dis-
tribution is shown in Table 2.

File Type MIME Type Count
PDF File application/pdf 454
Word Document (. docx) application/vnd.openxmlformats- 169

officedocument.wordprocessingml.document

Microsoft Word (. doc) application/msword 44
Excel File (. x1sx) application/vnd.openxmlformats- 12
officedocument.spreadsheetml.sheet
Google Sheets application/vnd.google-apps.spreadsheet 4
Google Docs application/vnd.google-apps.document 2
URL File text/x-url 2
Google Apps Script File  application/vnd.google-apps.script 1
Excel File (. x1s) application/vnd.ms-excel 1
Presentation File application/vnd.openxmlformats- 1

officedocument.presentationml.presentation

Table 2: Initial distribution of file MIME types.

Files unsuitable for text extraction (e.g., URL
and script files) were removed. Table 3 shows the
retained document types used in downstream pro-
cessing.

File Type MIME Type Count
PDF File application/pdf 454
Word Document (. docx) application/vnd.openxmlformats- 169

officedocument.wordprocessingml.document

Microsoft Word (.doc)  application/msword 44

Excel File (. x1sx) application/vnd.openxmlformats- 12
officedocument.spreadsheetml.sheet

Google Sheets application/vnd.google-apps.spreadsheet 4

Google Docs application/vnd.google-apps.document 2

Excel File (. x1s) application/vnd.ms-excel 1

Table 3: Retained file types after filtering out non-
extractable formats.

Text extraction was conducted using format-
specific parsers. OCR was applied to scanned
PDFs. The overall text extraction success rate ex-
ceeded 90%. Table 4 summarizes failure statistics
before and after OCR.

11

File Type Initial Failures Post-OCR Failures
Word Document (. docx) 2 2
Excel File (.x1sx) 1 1
Google Sheets 3 3
Excel File (. x1s) 1 1
PDF File 140 5

Table 4: Text extraction failures before and after OCR
processing.

Unprocessable files (e.g., encrypted or empty
documents) were logged and excluded from the
experimental pipeline.

B Google Drive API Usage Monitoring

To evaluate the reliability and performance of our
document ingestion pipeline, we monitored API
usage across a 30-day window. As shown in Fig-
ures 3-5, the Google Drive API exhibited stable,
low-frequency traffic, with occasional spikes cor-
responding to bulk synchronization events. Error
analysis (Figure 4) reveals that while the Drive
API maintained a manageable 5% error rate across
7,858 requests, the Gemini for Google Cloud API
experienced consistent failure (100% error rate
across 42 requests), indicating critical service in-
compatibility. In terms of latency (Figure 5), the
Drive API showed a median response time of 163
ms, with outliers reaching up to 2.8 seconds. These
observations confirm that the Google Drive API
provides a relatively stable and scalable foundation
for downstream document alignment tasks.

Traffic
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Figure 3: Traffic rate of the Google Drive API over 30 days.

C User Interface Overview

The system front-end is implemented using Gra-
dio, providing an intuitive interface for user inter-
action. Users can input natural language queries,
optionally enable Milvus-based retrieval, and up-
load documents for context-specific analysis. The
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Figure 4: Error rates of Drive and Gemini APIs.
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Figure 5: Median latency trends of API responses.

interface also includes adjustable parameters under
“Advanced Settings” (specifically, temperature and
top-p) to control the response behavior of the lan-
guage model. A feedback section is available to
collect user comments, facilitating potential system
improvement.

Chat Interface

Uso Mivus Rotroved Toxts

Send

Figure 6: Gradio-based front-end interface
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D Prompt Design for QA Generation

Task

Prompt for Generating Question-Answer Pairs from a
Document

In the following task, you are given a complete semi-
structured or structured document. You are a senior doc-
ument analysis expert familiar with medical, legal, and
standardized documents. Your task is to generate high-
quality question-answer pairs from the document. These
pairs will be used to assess the comprehension ability of
semantic retrieval and generation models in a Retrieval-
Augmented Generation (RAG) system.

You should proactively identify high-value information
that can be questioned and produce multiple challenging
and practically meaningful Q&A pairs. Questions should
avoid simple paraphrasing or copying, and instead focus
on logic, synthesis, or judgment. Answers should be
concise and accurate, supported by a direct sentence from
the document.

Output format (JSON array):

[

"question": "Question content",
"answer": "Concise answer",
"answer_source": "Sentence from

the document that supports the
answer"
by
]
Requirements:

¢ Include factual, procedural, comparative, or reasoning-
based questions.

* Answers must be verifiable. Subjective speculation is
not allowed.

¢ The answer_source must be a direct quote from the
document that supports the answer.

Task steps:

1. Read the entire document to understand its topic and
structure.

2. Identify valuable questions beyond surface-level con-
tent.

3. Provide concise and accurate answers.

4. Quote directly from the document as the an-
swer_source.

5. Return the output as a JSON array.



