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Abstract

Contemporary practices in instruction tuning001
often hinge on enlarging data scaling without a002
clear strategy for ensuring data quality, inadver-003
tently introducing noise that may compromise004
model performance. To address this challenge,005
we introduce NUGGETS, a novel and efficient006
methodology that leverages one-shot learning007
to discern and select high-quality instruction008
data from extensive datasets. NUGGETS as-009
sesses the potential of individual instruction010
examples to act as effective one-shot learning011
instances, thereby identifying those that can012
significantly improve performance across di-013
verse tasks. NUGGETS utilizes a scoring system014
based on the impact of candidate examples on015
the perplexity of a diverse anchor set, facilitat-016
ing the selection of the most advantageous data017
for instruction tuning. Through comprehensive018
evaluations on two benchmarks, including MT-019
Bench and Alpaca-Eval, we show that instruc-020
tion tuning with the top 1% of examples curated021
by NUGGETS substantially outperforms con-022
ventional methods employing the entire dataset.023
For reproducibility, we will release our code024
and data upon acceptance.025

1 Introduction026

Large language models (LLMs) (Brown et al.,027

2020; OpenAI, 2023; Google, 2023; Bai et al.,028

2023; Li et al., 2023a) have showcased remarkable029

capabilities (Wei et al., 2022; Schaeffer et al., 2023;030

Liu et al., 2023) across a wide range of language031

tasks by scaling the model size and training data.032

Despite their proficiency, it is imperative to further033

enhance their alignment with human instructions.034

This alignment process involves supervised fine-035

tuning (SFT) on input-output pairs, known as in-036

struction tuning. Instruction tuning is a crucial step,037

serving not only to activate the valuable knowledge038

acquired by LLMs during pre-training but also to039

facilitate their interaction with humans in a manner040

that aligns with natural conversational dynamics.041

Considerable efforts in instruction tuning have 042

been concentrated on collecting larger (Chung 043

et al., 2022; Wang et al., 2022b), more di- 044

verse (Sanh et al., 2022; Sun et al., 2023; Wang 045

et al., 2023b), and intricate (Xu et al., 2023a; Wei 046

et al., 2023) datasets. This is commonly achieved 047

through human crowd-sourcing (Aghajanyan et al., 048

2021; Ouyang et al., 2022; Tang et al., 2022) 049

or extracting data from larger pre-existing mod- 050

els (Wang et al., 2022a; Taori et al., 2023; Chiang 051

et al., 2023; Xu et al., 2023a). Despite the growth in 052

the size of datasets employed for instruction tuning, 053

certain studies (Zhou et al., 2023; Chen et al., 2023; 054

Cao et al., 2023) suggest that smaller yet valuable 055

datasets tend to be more effective in harnessing 056

the capabilities of LLMs. Blindly expanding the 057

volume of instruction data without ensuring qual- 058

ity may introduce noise and lead to hallucination 059

issues (Zhang et al., 2023c; Zhao et al., 2023a). 060

However, there is a lack of standard criteria for 061

selecting high-quality instruction data (Li and Qiu, 062

2023; Har-Peled and Mazumdar, 2004; Xia et al., 063

2023a; Zhang et al., 2024). As depicted in Fig- 064

ure 1, the common practice depends on empirical 065

methods for data selection (Xia et al., 2023b), in- 066

troducing bias in determining data combinations 067

and adjusting based on outcomes. This trial-and- 068

error approach elevates alignment costs for models. 069

We posit that optimal instruction combinations are 070

present within the extensive data available, yet an 071

efficient and cost-effective identification method 072

remains underexplored. 073

In this paper, we introduce NUGGETS, a simple 074

yet efficient method that harnesses LLMs as data 075

explorers through one-shot (in-context) learning. 076

This approach enables selecting valuable and high- 077

quality data from expansive instructional datasets. 078

Intuitively, an instructional example holds value in 079

training if it serves as an excellent one-shot demon- 080

stration for a specific task. If it can facilitate many 081

tasks, it will be worth being treated as a prime data 082
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Figure 1: The comparison between our NUGGETS and previous empirical methods. In contrast to empirical
methods (blue area), NUGGETS (orange area) can directly sample a gold subset, offering a more direct contribution
to model fine-tuning.

focus, i.e., "gold instruction". Another notewor-083

thy perspective arises from the observation that084

in-context learning (Dai et al., 2022; Yang et al.,085

2023; Wang et al., 2023a) employs prompting to086

implicitly fine-tune the model, while instruction087

tuning operates through gradient descent. Leverag-088

ing the performance of in-context learning offers a089

promising avenue to predict the effects of instruc-090

tion tuning. Concretely, we first select a set that091

spans multiple tasks, designated as the anchor set,092

and the dataset of instructions to be optimized is093

identified as the candidate set. One example is se-094

quentially chosen from the candidate set to act as095

a one-shot example for in-context learning. Sub-096

sequently, it is scored based on its impact on the097

perplexity of each anchor example. This scoring098

mechanism enables the inference of dependencies099

between anchor and candidate examples, providing100

a reference standard for data selection.101

To evaluate the effectiveness of the proposed102

NUGGETS, we conduct extensive evaluations on103

two widely recognized benchmarks, namely MT-104

Bench (Zheng et al., 2023) and Alpaca-Eval (Li105

et al., 2023d). We choose a popular and powerful106

LLM, LLaMA (Touvron et al., 2023a), as our base107

model. Experimental findings demonstrate that108

the NUGGETS’ data filtering strategy engenders a109

significant improvement in comparison to vanilla 110

fine-tuning approaches. 111

We summarize our main contributions as fol- 112

lows: 113

• We present NUGGETS, a methodology de- 114

signed to dynamically assess the quality of 115

instructional examples by using LLMs them- 116

selves. NUGGETS is expected to extract the 117

most valuable data from a vast pool of instruc- 118

tion data for the purpose of fine-tuning. 119

• Fine-tuning LLMs with solely the top 1% of 120

highest-scoring instructional examples yields 121

superior results than using the entire instruc- 122

tion dataset. This observation underscores 123

the significance of prioritizing the quality and 124

strategic composition of the training data over 125

sheer volume. 126

• The results of extensive experiments substanti- 127

ate our hypotheses regarding "golden instruc- 128

tions", indicating that the effectiveness of an 129

instructional example is measured by its im- 130

pact on the task generalization capability of 131

the model following the fine-tuning process. 132

This observation holds considerable promise, 133

potentially providing valuable insights for fu- 134

ture endeavors in data quality screening. 135
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2 Related Work136

Instruction Tuning Recent works have intro-137

duced a series of techniques that aim to refine large138

language models (LLMs), showcasing their ability139

to generalize effectively to instructions not encoun-140

tered before. For instance, T5 (Raffel et al., 2020)141

pioneered the initial effort of training various nat-142

ural language processing (NLP) tasks in a unified143

text-to-text format. FLAN (Wei et al., 2021) in-144

troduced the novel concept of instruction tuning,145

aiming to improve zero-shot task performance by146

transforming NLP tasks into natural language in-147

structions during model training. Furthermore, In-148

structGPT (Ouyang et al., 2022) handled a wide ar-149

ray of human-created instructions encompassing di-150

verse forms and a broad range of task types tailored151

for real-world user scenarios. In the absence of the152

source code release for these notable projects by153

OpenAI, subsequent efforts by Alpaca (Taori et al.,154

2023; Peng et al., 2023) and Vicuna (Chiang et al.,155

2023) were undertaken to explore open-domain in-156

struction tuning, employing the open-source LLM157

LLaMA (Touvron et al., 2023a).158

Instruction Construction The fine-tuning in-159

struction datasets by previous methods are often160

created manually or tailored to specific tasks. To161

alleviate the issue of extensive human annotations162

and manual data gathering, various semi-automated163

techniques have emerged. Self-Instruct (Wang164

et al., 2022a) randomly selected a limited num-165

ber of instances from the initial task pool and used166

them as demonstrations to guide a language model167

in generating new instructions, along with their cor-168

responding input-output pairs. Evol-Instruct (Xu169

et al., 2023a) adopted a progressive modification170

strategy for the original instructions, which facil-171

itated precise control over the difficulty and com-172

plexity levels of the generated instructions. Tree-173

Instruct (Zhao et al., 2023b), in contrast to Self-174

Instruct or Evol-Instruct, guided LLMs by instruct-175

ing them to append a specified number of new176

nodes to the semantic tree of an existing instruction177

rather than directly manipulating the text sequence.178

Conversely, certain investigations are oriented to-179

wards augmenting the performance of LLMs by180

leveraging a reduced yet higher-quality set of in-181

struction examples. LIMA (Zhou et al., 2023)182

demonstrated remarkably strong performance by183

strategically selecting a thousand high-quality data184

points for learning. InstructMining (Cao et al.,185

2023) introduced a collection of carefully chosen186

natural language indicators for evaluating the qual- 187

ity of instruction-following data. Notably, this ap- 188

proach necessitates the division of data into mul- 189

tiple bins. Consequently, it encounters limitations 190

in assessing the quality of individual examples at a 191

fine-grained level. Moreover, ALPAGASUS (Chen 192

et al., 2023) utilized the capabilities of an external 193

and powerful model, ChatGPT, to directly evaluate 194

each example. Despite the proven efficacy of this 195

approach, a notable limitation lies in its inability to 196

account for the inherent variations present in each 197

model subjected to fine-tuning. It predominantly re- 198

lies on the predilections of ChatGPT. Although Li 199

et al. (2023c) proposed a self-guided method for 200

selecting data in instruction tuning, it still requires 201

preliminary fine-tuning of the model, introducing 202

uncertainty into subsequent operations. 203

3 NUGGETS 204

Motivation As illustrated in Figure 1, the con- 205

ventional paradigm for enhancing instructional data 206

in the fine-tuning process of large language mod- 207

els (LLMs) has predominantly relied on empirical 208

methods. These methods encompass the applica- 209

tion of heuristic rules, expert analysis, and itera- 210

tive adjustments to the data guided by feedback on 211

model performance. Notably, this trial-and-error 212

approach imposes significant costs in terms of both 213

human effort and computational resources. 214

Recent scholarly consensus suggests that instruc- 215

tion tuning significantly enhances the task gener- 216

alization capabilities of pre-trained models across 217

various specific tasks (Longpre et al., 2023; Zhang 218

et al., 2023a,b; Shu et al., 2023). In light of this, 219

we posit the hypothesis of a golden instruction: the 220

efficacy of an instructional example is gauged by 221

its influence on the task generalization capability 222

of the model subsequent to the fine-tuning proce- 223

dure. As the extent of improvement becomes more 224

conspicuous, the instruction gravitates towards clas- 225

sification as “golden instruction”. 226

According to this hypothesis, a straightforward 227

method involves fine-tuning an independent model 228

using an instruction example and then comparing 229

the performance of the fine-tuned model with the 230

base model on a predefined dataset containing mul- 231

tiple tasks. This process aims to discern whether 232

the given example qualifies as a “golden instruc- 233

tion”. However, this method would lead to an im- 234

practical proliferation of fine-tuned models, equiva- 235

lent to the number of distinct instructions. Further- 236
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- Generate a meaningful quote about education.

- Education is not about accumulating knowledge, 
but rather about learning how to think for yourself.

One-Shot Learning : For each instruction in              , calculate its corresponding One-Shot Score for a 
series of  predefined tasks

A - What is the capital city of France?

B - Calculate the result of this equation: 6 + 4 x 11

C - How does the internet of things (IoT) work?

- Pairs.

- The result of the equation is 110.

- The Internet is a vast and intricate network 
that enables communication …

Predefined 
Task Set

As One-Shot Prompt

➕

Task A

Task B

Task C

- Pairs.

- The result of the equation is 50.

- The internet of things (IoT) uses physical 
sensors and devices connected …

① Calculate the Zero-Shot Score of a series of predefined tasks

②

③ Calculate the golden score for each instruction

④ Sort              by Golden Score and select the subset of data with the highest golden scores

Golden Score  =   One-Shot Score  -  Zero-Shot Score  =  - =  0.67

1.00 0.33

Instruction Set 1 Golden Subset

 Nuggets(              ,            ,  Predefined Task Set )

Figure 2: The illustration of the framework of our NUGGETS. Note that we do not directly let the model generate
answers for assessment. Instead, we calculate the model’s logit scores on the ground truth answers as zero-shot
scores or one-shot scores.

more, fine-tuning with only a single example may237

introduce unstable updates to the model’s gradi-238

ents, making it challenging to ascertain the genuine239

acquisition of the example. Motivated by the in-240

herent duality between In-Context Learning (ICL)241

and gradient descent (Dai et al., 2022; Aizerman242

et al., 1964; Yang et al., 2023; Irie et al., 2022),243

we “fine-tune” the instruction implicitly through244

one-shot learning, replacing the need for actually245

fine-tuning the model. More information can be246

found in Appendix A.247

Overview The framework of our NUGGETS is248

illustrated in Figure 2. Firstly, we evaluate the pro-249

ficiency of LLMs across a diverse range of tasks250

using a predefined set of tasks, denoted as the zero-251

shot score. Subsequently, we designate each ex-252

ample from the instruction dataset as a distinct253

one-shot prompt, concatenating it in front of the254

predefined tasks. We then recalibrate the model’s255

completion level for these tasks, referred to as the256

one-shot score. By exploiting the disparity between257

one-shot and zero-shot scores, we can compute258

the golden score for each instruction. Once the 259

golden scores for all instructions are computed, we 260

can identify the highest-scoring subset, deemed 261

the golden subset, which is subsequently provided 262

directly to the model for the fine-tuning process. 263

3.1 Algorithm Details 264

Zero-Shot Score Given a predefined task set, it 265

encompasses a variety of m tasks, where each task 266

is structured as [Task (T),Answer (A)]. Each word 267

in Task or Answer is denoted as wT
i or wA

i . Let 268

LLM denote the pre-trained base large language 269

model we use. For the j-th task that is represented 270

by Tj , the probability of zero-shot inference by the 271

model can be calculated by continuously predicting 272

the next tokens given the task and their proceeding 273

words: 274

sjzsl =
1

L

L∑
i=1

log p(w
Aj

i |C;LLM),

C = [Tj , w
Aj

1 , w
Aj

2 , . . . , w
Aj

i−1],

(1) 275

4



where L is the number of words of the ground-truth276

answer A. The score sjzsl is employed to signify the277

extent of the model’s proficiency on the j-th task.278

A higher sjzsl denotes superior model performance279

on the j-th task, whereas a lower sjzsl implies infe-280

rior performance. Therefore, we can acquire the281

model’s performance across m tasks as:282

Szsl = [s1zsl, s
2
zsl, . . . , s

m−1
zsl , smzsl]. (2)283

One-Shot Score With an instruction tuning284

dataset D, we aim to identify a set of ex-285

amples Dgold that most closely align with the286

golden instructions. For each example zk =287

[InstructionQ
k (IQk), InstructionA

k (IAk)], we ini-288

tially perform implicit instruction tuning on the289

base model using that specific example. Here,290

InstructionQ
k denotes the question associated with291

the k-th example zk ∈ D, while InstructionA
k sig-292

nifies its corresponding answer. Subsequently, we293

employ the model with in-context learning to con-294

duct another round of testing on the tasks within295

the predefined task set. That is,296

sjiit(zk) =
1

L

L∑
i=1

log p(w
Aj

i | IQk, IAk︸ ︷︷ ︸
One-Shot Prompt

, C; LLM),

C = [Tj , w
Aj

1 , w
Aj

2 , . . . , w
Aj

i−1],

(3)

297

where IQk and IAk can be considered one-shot298

prompt. Similarly, we can obtain the performance299

of the model after implicit fine-tuning across m300

different tasks:301

Sk
iit = [s1iit(zk), s

2
iit(zk), . . . , s

m−1
iit (zk), s

m
iit (zk)].

(4)302

Afterward, we use the Golden Score (GS) to reflect303

the impact of this instruction tuning example on the304

base model. The GS of the example zk is calculated305

as306

GS(zk) =
1

m

m∑
i=1

I
[
siiit(zk) > sizsl

]
∈ [0, 1],

(5)307

where I[·] is the indicator function. At a high level,308

the GS measures the increment of performance309

improvement of the model after one-shot learning310

through the given instruction.311

In this study, we calculate the GS score for each312

instructional example, facilitating the generation313

of a ranked list of scores encompassing the entire314

set of examples. Our objective is to explicitly fine- 315

tune the base model by selectively employing a 316

small subset comprising the most pivotal examples. 317

Specifically, we prioritize examples exhibiting high 318

golden scores, aiming to achieve superior outcomes 319

compared to utilizing the entire dataset. 320

4 Experiments 321

4.1 Experimental Setup 322

Instruction Dataset We adopt the Alpaca 323

dataset (Taori et al., 2023) as instruction data. It 324

is an important resource in the open-source com- 325

munity for instruction tuning, which is constructed 326

by employing the self-instruct (Wang et al., 2022a) 327

method to distill instruction data from text-davinci- 328

003. The success of this dataset in fine-tuning 329

the LLaMA model has sparked a series of explo- 330

rations into instruction fine-tuning (Li et al., 2023b; 331

Ji et al., 2023; Xu et al., 2023b). Besides, we per- 332

form more types of instruction datasets to verify 333

the transferability of NUGGETS, please refer to C. 334

Predefined Task Set The predefined task set 335

plays a crucial role in computing golden scores 336

for instructions. These data are employed to evalu- 337

ate the model’s ability to generalize across diverse 338

tasks. The adequacy of the predefined task set is 339

contingent upon its encompassing a substantial vol- 340

ume of data and incorporating a broad range of 341

tasks. As the Alpaca dataset inherently possesses 342

these attributes, we randomly choose 1,000 exam- 343

ples from it to constitute the predefined task set. 344

Evaluation Datasets This work uses two meth- 345

ods to assess the model’s capabilities. The first 346

approach involves rating the responses generated 347

by models on a scale ranging from 1 to 10. For 348

this purpose, we utilize the GPT-4 labeled MT- 349

Bench (Zheng et al., 2023) dataset, which evalu- 350

ates instruction-following proficiency across eight 351

categories: writing, roleplay, extraction, reasoning, 352

math, coding, STEM, and humanities. Notably, 353

since we only fine-tune on single-turn instruction 354

data, the evaluation is restricted to Turn 1 of MT- 355

Bench, similar to previous studies (Cao et al., 2023; 356

Zheng et al., 2023; Chen et al., 2023). The second 357

method involves comparing the model’s generated 358

responses with those produced by the Davinci-003 359

model, employing the well-established Alpaca- 360

Eval dataset (Li et al., 2023d). This dataset adopts 361

the “win_rate” as the evaluation metric. 362
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Model Nums Helpful_Base Koala Self-instruct Oasst Vicuna Length Results

LLaMA - 0.00 1.28 1.19 0.53 1.25 2,980 0.87
Alpacafull 52,002 20.15 25.64 27.77 25.00 15.00 396 25.43

Alpaca≤0.5 9,542 7.75 5.12 13.09 9.57 8.75 241 10.96
Alpaca>0.5 42,460 24.03 20.51 28.57 29.78 15.00 413 26.06
Alpaca>0.8 7,525 34.10 30.76 30.95 35.10 30.00 519 32.48
Alpaca>0.85 619 37.20 26.90 25.00 29.30 22.50 617 28.20

Table 1: The win_rate results of various models under the Alpaca-Eval benchmark evaluation.

Model Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Overall

LLaMA 4.6 4.5 5.2 1.0 1.20 2.2 5.0 4.1 3.47
Alpacafull 8.5 5.8 3.3 1.0 2.0 4.5 6.5 7.1 4.83

Alpaca≤0.5 7.2 5.1 2.1 1.3 1.9 5.5 5.3 6.9 4.41
Alpaca>0.5 8.3 5.7 3.5 1.1 1.7 5.0 6.6 7 4.86
Alpaca>0.8 8.3 5.9 5.6 1.8 2.5 4.0 7.3 7.4 5.34
Alpaca>0.85 6.6 6.3 4.9 1.0 2.3 3.3 6.3 7.3 4.87

Table 2: Experimental results of various models on the GPT-4 labeled MT-Bench benchmark.

Implementation Details In our experiments, we363

designate the LLaMA-7B model as the founda-364

tional model. To ensure a fair comparison, we also365

set the maximum input length for the models fine-366

tuned with the Alpaca dataset to be consistent with367

LLaMA, which is 2048. In the model fine-tuning368

phase, we employ the Adam optimizer with a learn-369

ing rate of 2 × 10−5 and utilize a batch size of370

64, conducting training over three epochs. In the371

subsequent model evaluation phase, we maintain372

all parameter settings consistent with the original373

work (Li et al., 2023d; Zheng et al., 2023).374

4.2 Experimental Results375

The Alpaca dataset comprises a total of 52,002 in-376

struction examples, and the distribution of their377

golden scores is illustrated in Appendix B. Among378

these examples, 42,460 instances exhibit a golden379

score surpassing 0.5. In addition, a subset of ex-380

amples closely aligned with the golden instruc-381

tions has been selected, specifically those attaining382

golden scores above 0.8 and 0.85. In particular,383

there are 7,525 examples with golden scores sur-384

passing 0.8 and 619 examples with golden scores385

exceeding 0.85. Notably, the latter subset consti-386

tutes a mere 1% of the entire dataset.387

We conduct instruction tuning on the LLaMA388

model using various subsets of examples dis-389

tinguished by their golden scores: those with390

scores less than 0.5, greater than 0.5, greater391

than 0.8, greater than 0.85, and the complete392

dataset. The fine-tuned models are denoted as393

Alpaca≤0.5, Alpaca>0.5, Alpaca>0.8, Alpaca>0.85, 394

and Alpacafull, respectively. 395

Main Results The experimental results are pre- 396

sented in Table 1 and Table 2 for the Alpaca-Eval 397

and MT-Bench benchmarks, respectively. As ex- 398

pected, Alpaca>0.8 produces the most impressive 399

outcomes. This can be attributed to its ability to 400

maintain an optimal balance between the volume 401

and quality of the instructions it utilizes, leading 402

to the most desirable results. We also note that in- 403

corporating lower-quality instructions adversely af- 404

fected model fine-tuning. This trend is clear when 405

we see that Alpaca≤0.5 lagged behind Alpacafull 406

in performance, while Alpaca>0.5 shows a slight 407

edge over Alpacafull. Remarkably, Alpaca>0.85, us- 408

ing only 1% of the dataset for fine-tuning, achieved 409

results comparable to or even surpassing those of 410

Alpacafull. This underscores the efficacy of our 411

data selection method. More qualitative results can 412

be found in Appendix D. 413

Ablation on Predefined Task Sets To evaluate 414

how different predefined task sets affect the selec- 415

tion of instruction data for fine-tuning, we include 416

two additional predefined task set variations. One 417

is randomly exampled from the Alpaca dataset but 418

with a smaller task set size, which is limited to 100 419

examples. The other one entails clustering the Al- 420

paca dataset into 100 clusters using the K-Means 421

algorithm and selecting the centroids of each clus- 422

ter as examples of the task set. 423

We use the two predefined sets to calculate 424
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Figure 3: The distribution of the golden score for the instruction dataset across different predefined task sets, along
with the corresponding fine-tuning results on the Alpaca-Eval benchmark.

Predefined Task Set Alpaca≤0.5 Alpaca>0.5 Alpaca>0.6 Alpaca>0.7 Alpaca>0.8 Alpaca>0.85 Alpaca>0.9

K-Means100 11.91 24.44 23.94 25.93 34.25 25.25 17.35

Random100 9.65 22.28 24.16 26.56 31.67 27.74 26.34

Random1000 10.96 26.06 24.46 28.43 32.48 28.21 -

Table 3: Win_rate results on Alpaca-Eval Benchmark across different predefined task sets

golden scores for the Alpaca dataset separately.425

The distribution of golden scores is depicted in426

Figure 3. We select instruction data with golden427

scores less than or equal to 0.5, greater than 0.5,428

greater than 0.6, greater than 0.7, greater than 0.8,429

greater than 0.85, and greater than 0.9 for model430

fine-tuning, respectively. Table 3 suggests that with431

random sampling, increasing the size of the task set432

can enhance the identification of high-quality in-433

struction data. The logic behind this is that a larger434

encompasses a broader diversity of data, facilitat-435

ing a more nuanced assessment of an instruction’s436

effect on model task generalization. However, a437

shift occurs when K-Means is employed to cherry-438

pick more distinct examples for the task set. With439

as few as 100 examples, K-Means outshines the440

results from 1,000 examples acquired through ran-441

dom sampling. In this instance, Alpaca>0.8 deliv-442

ered a superior performance with just 5,419 exam-443

ples, compared to the 7,524 examples seen with444

Random1000. This outcome also indirectly con-445

firms the validity of our hypothesis regarding the446

definition of golden instructions.447

Ablation on Instruction Sets To delve deeper448

into the generalization capabilities of NUGGETS449

across varied instruction datasets, we undertake a450

series of experiments utilizing the Alpaca-GPT4 451

dataset (Peng et al., 2023). It generates instruc- 452

tional data from the powerful GPT-4 model (Ope- 453

nAI, 2023), which is considered to have superior 454

data quality. Additionally, it shares the same ques- 455

tions in instructions with the Alpaca dataset, which 456

facilitates our direct comparison between the two. 457

Inspired by Table 3, we employ the K-Means 458

algorithm on the Alpaca-GPT4 dataset to sample 459

100 examples, forming the predefined task set. Sub- 460

sequently, we apply the NUGGETS method to score 461

all instructions in the dataset with the golden score, 462

as depicted in Figure 4. Compared to the Alpaca 463

dataset, the Alpaca-GPT4 dataset boasts a higher 464

number of instructions with golden scores: 25,100 465

instructions exceed a score of 0.8, 16,943 surpass 466

0.85, and 4,250 instructions exceed 0.9. These 467

numbers far exceed the corresponding high-scoring 468

instructions in the Alpaca dataset. This also demon- 469

strates that the golden score can serve as an abso- 470

lute metric to assess the quality of instructional 471

data. The results from model fine-tuning indicate 472

that on the Alpaca-GPT4 dataset, conclusions align 473

with those of previous experiments. The large lan- 474

guage models fine-tuned on subsets with golden 475

scores less than or equal to 0.5 exhibit the poorest 476
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Figure 4: The distribution of the golden score for the instruction dataset across different instruction sets, along with
the corresponding fine-tuning results on the Alpaca-Eval benchmark. Both predefined task sets utilize K-Means to
sample 100 examples from their respective instruction datasets.

GS≤0.5 GS>0.5 GS>0.6 GS>0.7 GS>0.8 GS>0.85 GS>0.9 Full Data

LLaMA2 NUM 3,730 48,272 40,905 28,644 10,409 2,411 87 52,002
Win_Rate 13.17 27.09 27.85 27.62 33.92 34.98 27.08 26.47

Mistral NUM 78 51,924 51,610 49,398 36,068 23,147 9,356 52,002
Win_Rate 0 12.26 11.10 12.45 11.28 10.60 13.53 9.85

Table 4: Win_rate results on Alpaca-Eval Benchmark across two different foundation models.

performance, with a win rate of only 19.23% in the477

Alpaca-Eval benchmark. In contrast, the models478

fine-tuned on subsets with golden scores greater479

than 0.85 demonstrate superior performance, boast-480

ing a high win rate of 72.05%. This success can481

be attributed to the dual assurance of quantity and482

quality in this particular subset. It is worth empha-483

sizing that fine-tuning on a small and high-quality484

dataset consistently and significantly outperforms485

the results of fine-tuning on the full dataset. Over-486

all, the models fine-tuned using Alpaca-GPT4 sig-487

nificantly outperform those fine-tuned with Alpaca.488

This implicitly corroborates the superior quality489

of the Alpaca-GPT4 dataset compared to the Al-490

paca dataset. For more experiments on instruction491

datasets, please refer to Appendix C.492

Ablation on Foundation Models To verify the493

transferability of the NUGGETS method, we con-494

ducted experiments on different foundation models495

using the Alpaca instruction dataset. We selected496

LLaMA2 (Touvron et al., 2023b) and Mistral (Jiang497

et al., 2023) at the 7B size as the new base models.498

The distribution of the golden scores and the per-499

formance of models fine-tuned on corresponding500

subsets of instructions are shown in Table 4. We 501

found that the NUGGETS method is also applicable 502

to other models. LLaMA2 achieved the best results 503

under fine-tuning on subsets with a golden score 504

greater than 0.85, reaching 34.98, which is signif- 505

icantly higher than the 26.47 achieved under full 506

data. Although the absolute value of the win_rate 507

for the Mistral series of fine-tuned models is some- 508

what low, their performance is also significantly 509

boosted by the NUGGETS data filtering. 510

5 Conclusion 511

This paper presents NUGGETS, a method leverag- 512

ing LLMs to discern more pivotal data for instruc- 513

tion tuning. Grounded in one-shot learning, this 514

approach facilitates the identification of examples’ 515

value, enabling efficient data selection without de- 516

pendence on additional annotation and associated 517

costs. Benefiting from NUGGETS, we observe im- 518

proved instruction following abilities even with 519

smaller training subsets. Furthermore, we posit that 520

our method underscores the significance of metic- 521

ulous data selection, offering valuable insights for 522

future instruction fine-tuning endeavors. 523
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Limitations524

Although the efficacy of the proposed approach525

has been confirmed through empirical experiments,526

opportunities for refinement persist. One avenue527

for improvement involves a thorough investigation528

into the inclusion of a diverse and compact set of529

predefined tasks during the golden scoring phase.530

This exploration aims to enhance the efficiency of531

model evaluation on instructional data, leading to532

improved identification of high-quality instructions533

suitable for subsequent model fine-tuning. Sec-534

ondly, due to resource constraints, the majority535

of experiments in this study are confined to the536

LLaMA-7B model. While this model holds sig-537

nificant influence within the large language model538

open-source community, comprehensive validation539

across a broader spectrum of models is imperative540

to ensure the generalizability of the proposed ap-541

proach. Lastly, to fortify the empirical foundation542

of our findings, it is crucial to subject the proposed543

method to validation on a more extensive array of544

instructional datasets. This step aims to ascertain545

the robustness and applicability of the methodol-546

ogy across a diverse range of instructional contexts,547

contributing to its broader utility in real-world sce-548

narios. These outlined avenues for future work are549

anticipated to refine and extend the scope of our550

proposed method.551
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A Discussion: One-Shot Learning as Implicit Instruction Tuning825

Transformer has risen as the prevailing architecture for language models, where self-attention plays a826

crucial role as a pivotal element within Transformer. Let Xins,Xtest ∈ Rdin denote the instruction tuning827

sample and the test input respectively. Xins can be likened to IQk and IAk in Equation 3, while Xtest can be828

seen as T and wA
1 , w

A
2 , . . . , w

A
i−1. That Q = WQX

⊤
test be the attention query vector, K = WK [Xins∥Xtest]829

be the attention key vector and V = WV [Xins∥Xtest] be the attention value vector, where ∥ represents830

concatenation operation, WK ,WV ,WQ ∈ Rdout×din are the projection matrices for computing the831

attention queries, keys, and values, respectively. The result of self-attention in an arbitrary layer for a head832

is formulated as:833

Attention(K,V,Q) = WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)
834

≈ WV [Xins∥Xtest] (WK [Xins∥Xtest])
⊤ Q835

= WV Xtest(WKXtest)
⊤︸ ︷︷ ︸

Only test input.

Q +WV Xins(WKXins)
⊤︸ ︷︷ ︸

Only instruction sample.

Q836

= Wzsl Q +∆Wiit Q837

= (Wzsl +∆Wiit) Q, (6)838

where
√
din serves as a scaling factor. The term WV Xtest(WKXtest)

⊤ could be denoted as Wzsl, which839

represents the zero-shot learning scenario where no instruction tuning is performed since it solely focuses840

on the test input. In addition, the term WV Xins(WKXins)
⊤ can be seen as implicit instruction tuning841

∆Wiit achieved via the meta-gradient (Dai et al., 2022; Yang et al., 2023) derived from the instruction842

sample. Readers can refer to previous papers (Dai et al., 2022; Aizerman et al., 1964; Irie et al., 2022) for843

more details on implicit instruction tuning.844

B The Distribution of Golden Score845

As shown in Figure 5, in a total of 52,002 cases, there are 9,549 instructions with a gold score of less846

than 0.5, indicating that these data have a side effect on overall task completion. Besides, there are 7,524847

instructions with a gold score greater than 0.8, suggesting that the model improves the task completion848

rate through one-shot learning from these data, which can be considered high-quality instruction data.
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Figure 5: The distribution of the golden score for the Alpaca instruction dataset.
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C Experiment on Other Instruction Sets 850

Based on the LLaMA-7B model, we conducted experiments on several other instruction datasets, further 851

validating the effectiveness of our NUGGETS method. 852

C.1 Code Alpaca 853

The Code Alpaca instruction dataset (Chaudhary, 2023) is designed to develop large language models 854

capable of following instructions and generating code. Leveraging self-instruct (Wang et al., 2022a) 855

technology, it has produced 20,000 examples of instruction data. We use HumanEval (Chen et al., 2021) 856

as a benchmark to evaluate the model’s code generation capabilities. It is used to measure functional 857

correctness for synthesizing programs from docstrings. It consists of 164 original programming problems, 858

assessing language comprehension, algorithms, and simple mathematics, with some being comparable to 859

simple software interview questions. We adopt the approach outlined by Chen et al. (2021) to calculate 860

pass rates at k values of 1, 10, and 100 for each problem. Essentially, pass@1 predicts the probability of a 861

model producing a correct solution on the first try, while pass@10 and pass@100 predict the probability 862

of achieving a correct solution within 10 and 100 tries, respectively. We generate 200 completions at a 863

temperature setting of 0.2 (Luo et al., 2023) to estimate pass@1, pass@10, and pass@100 rates. The

16.8

25.4
26.6

22.1

3.2

12.9

21.321.3
19.9

1.6

GS<=0.5

50k 

25k

5k 

Hu
ma

nE
va

l

15k

20k

10k 

30k

35k

40k

45k

30

15

3

9

12

6

18

21

24

27

0 
GS>0.5 GS>0.6 GS>0.7 GS>0.8

instructions

Full Data Pass@1 

Full Data Pass@10 

Full Data Pass@100 

Pass@100Pass@100Pass@1

2,150

17,850

11,373

4,715

153

71.39

0.7

14.4 13.7
14.5

7.1

26.8

13.6

19.9

Figure 6: The distribution of the golden score for the Code Alpaca instruction dataset, along with the corresponding
fine-tuning results on the HumanEval benchmark. Predefined task sets utilize K-Means to sample 100 examples
from the Code Alpaca instruction dataset.

864
experimental results are shown in the Figure 6. Out of 20,000 instructions, 4,715 instructions have a gold 865

score greater than 0.85, achieving the best pass@1 and pass@10 results in the HumanEval benchmark, 866

superior to the fine-tuning results of the full dataset. Additionally, this experiment also proves that the 867

NUGGETS method can be applied to fine-tuning for specific tasks, demonstrating good transferability. 868

C.2 WizardLM 869

The WizardLM instruction dataset (Xu et al., 2023a), which employs Evol-Instruct to iteratively refine an 870

initial set of instructions into more complex ones, contains 70,000 instruction examples. The distribution 871

of the golden scores and the performance of models fine-tuned on corresponding subsets of instructions 872

are shown in Table 5. We can observe that the quality distribution of the WizardLM dataset is relatively 873

balanced, with 65,190 instruction examples having a golden score greater than 0.8, accounting for 93% of 874

the total number of instructions. In the evaluation of the Alpaca-Eval benchmark, models fine-tuned on 875
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GS≤0.5 GS>0.5 GS>0.6 GS>0.7 GS>0.8 GS>0.85 GS>0.86 GS>0.87 Full Data

NUM 480 69,520 69,377 68,898 65,190 40,223 23,579 3, 316 70,000

Win_Rate 19.42 58.08 57.40 56.21 59.81 58.40 57.81 54.68 57.65

Table 5: The distribution of golden scores for the WizardLM dataset and the evaluation results of models fine-tuned
on corresponding score subsets on the Alpaca-Eval benchmark.

subsets with golden scores greater than 0.8 achieved a win rate of 59.81, outperforming models fine-tuned876

on the full dataset.877

C.3 FLANv2878

We sampled 50,000 examples from the FLANv2 (Chung et al., 2022) dataset to constitute the instruction879

tuning data for this experiment. Additionally, the Predefined task set was also derived from these 50,000880

examples, using the K-Means algorithm to sample 100 examples. We evaluated the performance of the881

fine-tuned model using MMLU (Hendrycks et al., 2020) in a 5-shot setting. MMLU is a test designed882

to measure a text model’s multitask accuracy. The test encompasses 57 tasks, including elementary883

mathematics, US history, computer science, law, and more. The experimental results are shown in the

GS≤0.5 GS>0.5 GS>0.6 GS>0.7 GS>0.8 GS>0.85 GS>0.9 Full Data

NUM 1,361 48,639 46,009 39,046 17,037 4,798 321 50,000

Acc 34.68 41.38 41.92 41.87 41.97 35.51 26.41 40.45

Table 6: The distribution of golden scores for the sampled FLANv2 dataset and the evaluation results of models
fine-tuned on corresponding score subsets on the MMLU benchmark.

884
table. It can be observed that the model fine-tuned with examples having a golden score greater than 0.8885

(totaling 17,037 examples) achieved the best results, followed by those fine-tuned with examples having a886

golden score greater than 0.6 (totaling 46,009 examples). Additionally, we noted that the model fine-tuned887

with examples having a golden score less than 0.5 (totaling 1,361 examples) outperformed the model888

fine-tuned with examples having a golden score greater than 0.9 (totaling 321 examples).889

We speculate that the reason for this outcome is that the MMLU evaluation itself is a knowledge-890

intensive assessment, which thus imposes higher demands on the quantity of fine-tuning examples. In891

the future, some optimizations in the selection of the Predefined Task Set may potentially improve this892

situation.893

D Case Study894

To evaluate NUGGETS qualitatively, we also select some instruction examples from the Alpaca dataset for895

case studies, as shown in Figure 7. We observe that noisy instructions without outputs display extremely896

low golden score values. Such examples consistently score very low throughout the instruction dataset.897

Additionally, instructions with hallucinatory outputs and some that are a bit confusing also typically898

exhibit lower golden scores. In contrast, instructions with higher scores often possess fluent language and899

meticulous logic, and are oriented towards assisting humans in problem-solving. Therefore, we believe900

that the high golden scores can represent high-quality instruction tuning data.901
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[ Instruction ] Create a pictogram to show the meaning of the following phrase: "The wheels on the bus go 
round and round."
[Picture of a bus with circles around its wheels][ Output ]

[ Golden Score ] 0.193

[ Instruction ] Write six original rhymes for the provided word.

1. To ride a skate is where I'd like to go,It zooms past skiers, 'cause I'm so pro. 
2. The skateboarding ramp seemed so tall,But I made it over with no stall. 
3. I take a ride on my trusty skate,And carve the roads with a twist of fate. 
4. I spin around the rink so full,Check me out, I'm lookin' cool. 
5. You don't believe I can skate on the sand,But watch me do it with a little hand! 
6. Skateboard's my name and it's my game, […]

[ Output ]

[ Golden Score ] 0.403

[ Input ] Skate

[ Instruction ] Construct a timeline to show the development of artificial intelligence over the last 5 years.
"  "[ Output ]

[ Golden Score ] 0.046

[ Instruction ] What are three qualities that a good product manager should possess ?

A good product manager should possess strong communication skills, a strategic mindset, and 
the ability to collaborate with different members of the organization.

[ Output ]

[ Golden Score ] 0.803

[ Instruction ] Create a fact sheet about AI.

What is AI? 
AI (Artificial Intelligence) is the science and engineering of programming machines to think 
and act on their own. 
What can AI do? 
AI can be used to automate mundane tasks, analyze complex data and patterns, identify trends, 
provide personalized services, and more. 
Who uses AI?  
AI is used by many industries, […]

[ Output ]

[ Golden Score ] 0.803

[ Instruction ] Describe the following place. Output the description.

[ Output ]

[ Golden Score ]

[ Input ] The Grand Canyon
The Grand Canyon is one of the most incredible natural wonders in the world. The canyon 
spans 277 miles in length and can be up to 18 miles wide in certain places. With towering cliff 
walls, evergreen forests, and the mighty Colorado River running its length, it truly is an awe-
inspiring sight. The area around the canyon is home to diverse wildlife, including endangered 
species like the California condor and the desert tortoise. Visiting the Grand Canyon is an 
unforgettable experience that is sure to take your breath away.

0.859

Figure 7: Examples of instructions and their corresponding golden scores.
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