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ABSTRACT

Multimodal sensors (e.g., visual, non-visual, and wearable) provide complemen-
tary information to develop robust perception systems for recognizing activities.
However, most existing algorithms use dense sampling and heterogeneous sub-
network to extract unimodal features and fuse them at the end of their framework,
which causes data redundancy, lack of multimodal complementary information
and high computational cost. In this paper, we propose a novel multi-modal neu-
ral architecture based on RGB and IMU wearable sensors (e.g., accelerometer,
gyroscope) for human activity recognition called Multimodal Temporal Segment
Attention Network (MMTSA). MMTSA first employs a multimodal data isomor-
phism mechanism based on Gramian Angular Field (GAF) and then applies a
novel multimodal sparse sampling method to reduce redundancy. Moreover, we
propose an inter-segment attention module in MMTSA to fuse multimodal fea-
tures effectively and efficiently. We demonstrate the importance of imu data imag-
ing and attention mechanism in human activity recognition by rigorous evalua-
tion on three public datasets, and achieved superior improvements (11.13% on the
MMAct dataset) than the previous state-of-the-art methods.

1 INTRODUCTION

With the increased interests of wearable technologies and the development of deep learning, human
activity recognition (HAR) has recently attracted widespread attention in human-computer inter-
action, healthcare, and multimedia analysis. Uni-modal (e.g., RGB video, audio, acceleration, in-
frared sequence, etc.) HAR methods have been extensively investigated in the past years Wang et al.
(2016); Lin et al. (2019); Garcı́a-Hernández et al. (2017); Slim et al. (2019); Akula et al. (2018).
However, unimodal HAR methods limit generalization ability in real-world scenarios. The perfor-
mance of a video-based HAR method is usually sensitive to illumination intensity, visual occlusion,
or complex background. Meanwhile, noisy or missing data and movement variance between dif-
ferent users can negatively affect a sensor-based HAR method. In these cases, it is important to
leverage both vision-based and sensor-based modalities to compensate for the weaknesses of single
modality and improve the performance of HAR in multi-modal manners. For instance, the move-
ment trajectories of hands are similar when people eat or drink, thus it is not easy to distinguish the
two actions only based on imu sensor data. However, when the vision modality is considered, the
two actions can be distinguished based on the visual characteristics of the objects held by the hands.
Another example is outdoor activity recognition. Due to the similarity of the outdoor environment,
it is challenging for the single-modality systems to classify whether a user is walking or running by
relying only on the visual data of the smart glasses. On the other hand, the imu sensor data (i.e.,
accelerometer data) of these two activities reveal significantly different feature representations.

In recent years, sensors have been widely equipped in smart glasses, smartwatches, and smartphones,
making the available input modalities for HAR more abundant. Therefore, various multimodal learn-
ing methods have been proposed to exploit complementary properties among modalities for fusion
and co-learning-based HAR. Existing multimodal learning methods fuse vision-sensor and imu sen-
sor data have the following shortcomings: 1) Owing to data heterogeneity, most existing methods
feed uni-modal data into separate sub-networks with different structures to extract features and fuse
them at the end stages. Obviously, there is a huge structure divergence between imu sensor and
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vision-sensor data. Since the imu sensor data are one-dimensional time-series signals, most of the
previous literature utilize 1D-CNN or LSTM network to extract spatial and temporal features of
raw imu sensor data Steven Eyobu & Han (2018); Panwar et al. (2017); Wang et al. (2019a). The
vision-sensor activity data, however, are usually images or videos with two or more dimensions,
which is suitable for 2D-CNN or 3D-CNN to extract visual features Simonyan & Zisserman (2014);
Karpathy et al. (2014b); Sun et al. (2017). Thus, the form of input of existing multi-modal learn-
ing models not only ignore the temporal synchronization correlation between multimodal data but
also lose valuable complementary information. Additionally, it costs to add new sub-networks to
extract the learning representations of new modality inputs. 2) Dense temporal sampling, which
means sampling frames densely in a video clip or sampling the entire series of sensor data in a time
period, is widely used in previous work to capture long-range temporal information in long-lasting
activities. For example, those methods Tanberk et al. (2020); Wei et al. (2019) mainly rely on dense
temporal sampling to improve the performance, which results in data redundancy and unnecessary
computation since the adjacent frames in the video have negligible difference and the imu data of
some activities are periodic. 3) Although some newly proposed attention-based multi-modal learn-
ing methods have improved the performance of HAR tasks, their complicated architectures lead to
high computational overhead and make them challenging to be deployed on mobile and wearable
devices. Islam & Iqbal (2021; 2022).

To address the challenges above, we propose a novel and efficient HAR multimodal network for
vision and imu sensors called MMTSA. Our method includes three contributions:

• We design MMTSA, a novel multi-modal neural architecture based on RGB videos and
IMU sensor data for end-to-end human activity recognition application. MMTSA effi-
ciently explores information from heterogeneous multi-modal data through an isomorphism
mechanism and enables extensions for new modalities. Moreover, MMTSA leverages a
segment-based sparse co-sampling scheme to enable a long-lasting activity recognition at
low computational resources.

• MMTSA first applies Gramian Augular Field (GAF) methods to encode the imu sensor
data into multi-channel grayscale images in the multi-modal human activity recognition.
The transformation arrows the structural gap among the RGB data and imu sensor data
and enhances the resuability of the model’s sub-networks, which bring the computation
improvement.

• To better mine the complementary information between synchronized data of different
modalities and the correlation between different temporal stages, we design inter-segment
modality attention mechanisms for spatiotemporal feature fusion. We compared the perfor-
mance of our method to several state-of-the-art HAR algorithms and traditional algorithms
on three multi-modal activity datasets. MMTSA achieved an improvement of 11.13% and
2.59% (F1-score) on the MMAct dataset for the cross-subject and cross-session evalua-
tions.

2 RELATED WORK

2.1 UNI-MODAL HUMAN ACTIVITY RECOGNITION

Single modality-based Human Activity Recognition (HAR) has been extensively investigated in the
past decades. Currently, many researchers are utilizing the deep neural network-based approaches
to learn single modality feature representations for HAR.

With the success of CNN He et al. (2016); Zhang et al. (2018) in image tasks, researchers put great
efforts on visual modality. The accuracy of video-based HAR methods is highly related to video rep-
resentation learning. Early works try to use 2D based methods Karpathy et al. (2014a) to learn video
representations. Later, 3D convolutional networks Tran et al. (2015); Xie et al. (2018) are explored
and achieve excellent performance. However, 3D based methods always take several consecutive
frames as input, so that huge complexity and computational costs make these methods expensive to
be used. Recently, 2D convolutional networks with temporal aggregation Wang et al. (2016); Lin
et al. (2019) achieve significant improvements, which have much lower computational and memory
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costs than 3D based methods. Although, the video-based HAR methods have good performance in
most scenarios, it raises privacy concerns since visual modality contains rich appearance information
of captured scene context.

Additionally, the robustness to lighting, occlusion, and subject angle are also key areas for im-
provement in HAR. Researchers pay attention to other single modality data, such as audio, and imu
wearable sensors. However, in recent years, compared to other single modalities, using audio is not
a very popular scheme for HAR. Only a few deep learning methods are proposed for HAR from
audio alone Liang & Thomaz (2019). Moreover, wearable sensor data is a good choice for HAR,
due to their robustness against viewpoint, occlusion and background variations, etc. Many works
of literature Wang et al. (2019a) have proposed wearable sensor-based solutions for HAR. How-
ever, the accuracy of wearable sensor-based methods is sensitive to the placement on the human
body Mukhopadhyay (2014). Furthermore, most of current wearable sensor-based methods perform
poorly in complex HAR scenarios.

Although these single modality methods have shown promising performances in many cases, these
approaches have a significant weakness, which rely on high-quality sensor data. If the single modal-
ity data is noisy and missing, the uni-modal learning methods cannot extract robust features and
have poor performance in human activity recognition.

2.2 MULTI-MODAL HUMAN ACTIVITY RECOGNITION

In order to overcome the shortcoming of single modality missing and occlusion, multimodal learning
has been used HAR. By aggregating the advantages and capabilities of various data modalities, mul-
timodal learning can provide more robust and accurate HAR. Moreover, most existing algorithms
Islam & Iqbal (2022) use each modality sensor data independently and fuse all modalities learning
representations at the end of their framework for classification. Therefore, the final performance is
highly related to salient feature representations of single modality. However, these architectures ne-
glect the intrinsic synchronous property among all modalities and assume all modalities contribute
to final performance equally.

To address these challenges, several works introduce new multi-modal HAR algorithms. Firstly, in-
stead of aggregating different modalities at a late stage, TBN architecture Kazakos et al. (2019) com-
bined three modalities (RGB, flow and audio) with mid-level fusion at each time-step and showed
that visual-audio modality fusion in egocentric action recognition tasks improved the performance
of both the action and accompany object. However, the mid-level fusion method is only explored
in video and audio modalities and has not been extended to other sensor data (e.g. imu sensors).
Secondly, attention-based approaches have recently been applied in feature learning for HAR as at-
tention mechanism allows the feature encoder to focus on specific parts of the representation while
extracting the salient features of different modalities. For example, Long et al. (2018) proposed a
new kind of attention method called keyless to extract salient uni-modal features, which were com-
bined to produce multi-modal features for video recognition. Moreover, Multi-GAT Islam & Iqbal
(2021) explored the possibilities of using graphical attention methods for multi-modal representation
learning in HAR.

Although these multi-modal HAR methods have achieved good performance in various scenarios,
several challenges still remain in multi-modal HAR. For example, many of these methods encode the
whole sensor data, which is redundant and highly computational. Therefore, a sparse and efficient
sampling strategy would be more favorable and need to be designed. Furthermore, many existing
frameworks do not allow inter-modality interaction and may not learn complementary multi-modal
features. Thus, we explore the inter-modality and inter-segment attention mechanism and demon-
strate that it improves the final result. Finally, we propose a novel multimodal temporal segment
attention network MMTSA, as described in detail in the next section.

3 METHOD

In this section, we present our proposed method: MMTSA, a multi-modal temporal segment at-
tention network as shown in Fig. 1. MMTSA consists of three sequential learning modules: 1)
Multimodal data isomorphism mechanism based on imu data imaging: The module is respon-
sible for transforming imu sensor data into multi-channel grayscale images via Gramian Angular
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Field (GAF), making visual-sensor data and imu sensor data representations to be isomorphic. 2)
Segment-based multimodal sparse sampling: We propose a novel multimodal sparse sampling
strategy in this module. It performs segmentation and random sampling on RGB frame sequences
and GAF images of IMU data, preserving the modal timing correlation while effectively reduc-
ing data redundancy 3) Inter-segment attention for multimodal fusing: To better mine the spa-
tiotemporal correlation and complementary information between modalities, we propose an efficient
inter-segment attention method to fuse multimodal features, which improve HAR performance.We
discuss how MMTSA works in greater detail.

Figure 1: The architecture of MMTSA: 1) Multimodal data isomorphism mechanism. 2) Segment-
based multimodal sparse sampling. 3)Inter-segment attention modality fusing.

3.1 MULTIMODAL DATA ISOMORPHISM MECHANISM

Although deep learning has achieved great success in CV and NLP, techniques of it fail to have
many comparable developments for time series. Most traditional deep learning methods for time
series build models based on RNN, LSTM, or 1D-CNN. However, these approaches have been
proved to have limitations Pascanu et al. (2013); Wu et al. (2018).

To leverage the advanced 2D-CNNs and related techniques in computer vision, Wang & Oates
(2015) first proposed a novel representation for encoding time series data as images via the Gramian
Angular Fields (GAF) and hence used 2D-CNNs to improve classification and imputation perfor-
mance. Since then, time series imaging methods have caught much attention. Inspired by the method
proposed in Wang & Oates (2015), we note that GAF based methods have great potential to reduce
structural differences in data from multiple modalities (e.g. RGB video and accelerometers). There-
fore, we propose a multimodal data isomorphism mechanism based on GAF, which can enhance the
representation ability of the temporal correlation of imu sensor data and improve the reusability of
different modal feature extraction networks. We will now briefly describe how our multimodal data
isomorphism mechanism works.

1) IMU sensor series rescaling : Let S = {st1 , st2 , . . . , stn} be a time series collected by a imu
sensor, where sti ∈ R represents the sampled value at time ti. T = tn − t1 represents the sampling
time duration of this time series. We rescale S onto [−1, 1] by:

s̃ti =
(sti −max(S) + (sti −min(S))

max(S)−min(S)
(1)

The max-min normalization step makes all values of S fall in the definition domain of the arccos
function, which satisfies the conditions for the coordinate system transformation.
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2) Polar coordinate system transformation: In this step, we transform the normalized Cartesian imu
sensor series into a polar coordinate system. For the time series S, the timestamp and the value of
each sampled data point need to be considered during the coordinate transformation. Then we use
an inverse cosine function to encode each data point s̃ti into polar coordinate by:{

ϕti = arccos (s̃ti) ,−1 ≤ s̃ti ≤ 1, s̃ti ∈ S̃
rti =

ti
T , ti ∈ T (2)

where ϕti and rti represent the angle and the radius of s̃ti in the polar coordinate, respectively. The
encoding in equation2 has the following advantages. First, it is a composition of bijective functions
as cos (ϕ) is monotonic function when ϕ ∈ [0, π], which allows this transformation to preserve the
integrity of the original data. Second, it preserves absolute temporal relations, as the area of ϕti and
ϕtj in polar coordinates is dependent on not only the time interval of ti and tj , but also the absolute
value of them Wang & Oates (2015). The coordinate transformation above maps the 1D time series
into a 2D space, which is imperative for calculating the Gramian Angular Field latter.

Figure 2: IMU sensor data imaging via Gramian Angular Field in MMTSA

3) Image generation via Gramian Angular Field (GAF): The Gram Matrix G is the matrix of all
inner products of X = {x1, x2, . . . , xn}, where xi is a vector. A dot product in a Gram Matrix
can be seen calculating similarity between two vectors. However, in the polar coordinate mentioned
above, the norm of each vector causes a bias in the calculation of the inner product. Therefore,
we exploit the angular perspective by considering the trigonometric sum between each point in the
polar coordinate to identify the temporal correlation within different time intervals, which is an inner
product-like operation solely depending on the angle. The GAF is defined as follows:

G(S̃) =


cos (ϕt1 + ϕt1) · · · cos (ϕt1 + ϕtn)
cos (ϕt2 + ϕt1) · · · cos (ϕt2 + ϕtn)

...
. . .

...
cos (ϕtn + ϕt1) · · · cos (ϕtn + ϕtn)

 (3)

where
cos

(
ϕti + ϕtj

)
=cos(arccos(s̃ti) + arccos(s̃tj ))

=s̃ti · s̃tj −
√
1− s̃ti

2 ·
√
1− s̃tj

2, 1 ≤ i, j ≤ n
(4)

The GAF representation in a polar coordinate maintains the relationship with the original time-
series data via exact inverse operations. Moreover, the time dimension is encoded into GAF since
time increases as position moves from top-left to bottom right, preserving temporal dependencies.

Then we map each element in the GAF representation to a pixel of a grayscale image by:

G̃i,j =
cos(ϕti + ϕtj )−min(G̃)

max(G̃)−min(G̃)
× 256, 1 ≤ i, j ≤ n (5)
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where G̃ is a grayscale image of size n× n.

Most wearable sensors (accelerometers, gyroscopes, magnetometers, etc.) are triaxial. Suppose
given a time series data {S(x), S(y), S(z)} sampled by a 3-axis accelerometer, we can generate three
grayscale images {G̃(x), G̃(y), G̃(z)} for the x, y, and z axes according to the above steps. After
concatenating these three images, the time series sampled by each three-axis imu sensor can be
uniquely converted to a multi-channel grayscale image of size 3× n× n.

3.2 SEGMENT-BASED MULTIMODAL SPARSE SAMPLING

Figure 3: Multimodal sparse sampling strategy in MMTSA

The two mainstream methods of traditional human activity recognition based on video understanding
are 3D-CNN and two-stream CNN networks, but the limitations of these two schemes are that they
only can capture short-range temporal dependencies in the video. In order to capture long-distance
temporal dependencies, these methods usually require densely sampled video clips. A video clip
is m consecutive frames sampled by a sliding window of size m in a period, and the whole video
is divided into several clips. However, the content changes relatively slowly between two adjacent
frames in a clip, which means the sampled consecutive frames are highly redundant.

Similar to visual data, we observe redundancy in imu sensor data. As shown in Fig.2, the imu sensor
data collected from the 3-axis accelerometer located on the smartwatch has obvious periodicity
while the user was waving hands. We reasoned that this phenomenon should be common in imu
sensor data. In most daily activities, human limb movements are regular and repetitive, so there is a
corresponding periodicity in the data collected by wearable sensors. It means that local data features
can represent the characteristics of the entire activity, thus the complete time series is redundant.
However, traditional deep learning activity recognition models based on imu sensor data and newly
proposed ones ignored this issue. In previous work, a common input method is to feed the complete
collected data series into deep models Xu et al. (2021); Wang et al. (2019b), such as CNN, RNN,
LSTM, or Bert. Another widely-used method is dense sampling in fixed-width sliding windows and
overlap Bianchi et al. (2019). These unnecessary dense sampling methods lead to larger memory
overhead and longer inference time. In addition, the above dense sampling strategy will consume
too much energy when deployed on the device.

Wang et al. (2016) proposed TSN framework to deal with the frame redundancy in video understand-
ing by applying a sparse and global temporal sampling strategy. This strategy divides the video into
a fixed number of segments and one snippet is randomly sampled from each segment. To overcome
the aforementioned challenges of data redundancy in multimodal tasks, we leverage the segmenta-
tion idea of Wang et al. (2016) and propose a sparse sampling method for multi-wearable sensor
time series, as shown in Fig.3.

We find that the multi-channel grayscale images generated by GAF based on imu sensor data have
some excellent properties. First, the diagonal of each grayscale image is made of the original value
of the scaled time series (Gi,i = 2s̃ti

2 − 1). Second, the sampling along the diagonal direction
has local temporal independence. Given two timestamps ti and tj (i ≤ j), we sample a square
area in the grayscale image with a diagonal extending from G̃i,i to G̃j,j . The data in this square
matrix only depends on the timestamps between ti and tj , and represents the temporal correlation
of the original series in this period. Our proposed method firstly divides the entire imu sensor data
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into N segments of equal duration according to timestamps. The dividing points of these segments
correspond to equidistant points on the diagonal of the grayscale image generated based on GAF:
{G̃(S0,S0), G̃(S1,S1), · · · , G̃(SN ,SN )}. In each segment, we use a square window of size K for ran-
dom multi-channel sampling:

G̃(Si) =

 G̃(i,i) · · · G̃(i,i+K−1)

...
. . .

...
G̃(i+K−1,i) · · · G̃(i+K−1,i+K−1)

 (6)

where Si−1 ≤ i <i+K − 1 ≤ Si. For multi-axis sensors, random sampling of each segment is
performed simultaneously on multiple channels.

3.3 INTER-SEGMENT AND MODALITY ATTENTION MECHANISM

To fuse features of different modal data in each segment and extract more spatiotemporal informa-
tion in multimodal training, we propose an additive attention-based inter-segment modality fusion
mechanism in MMTSA, which is effective and efficient. We first concatenate the features of differ-
ent modalities in each segment by:

YSi
= Concat{F

(
X1

Si
;W1

)
,F

(
X2

Si
;W2

)
, · · · ,F

(
Xm

Si
;Wm

)
} (7)

Where YSi
is the output of the i-th segment, F

(
Xj

Si
;Wj

)
represents a ConvNet with parameters

Wj that operates on Xj
Si

and j indicates the j-th modality. Xj
Si

and Wj represent the sampled data
of the j-th modality in segment i and the shared parameters of modality j, respectively. Then we get
an output sequence of each segments: Y out = (YS1

, YS2
, · · · , YSN

) where YSi
∈ RM ·d and d is the

feature dimension of each modality.

We utilize additive attention to calculate the attention weight of each segment,

αSi =
exp

(
(W att)

T
YSi

)
∑

i∈N exp
(
(W att)

T
YSi

) (8)

where W att ∈ RM ·d is a learnable parameter and (W att)
T
YSi

is a score to evaluate the importance
of each segment. The softmax function is used to regularize the scores so that the sum of the scores
of all segments is 1. Here, the parameter W att will weight the features of different modalities to
compensate for the inter-modal information.

Next, the attention weights αS = {αS1 , αS2 , · · · , αSN
} will be used to fuse the outputs of each

segment and get a weighted global representation,

ỸSi
=

∑
i∈N

αSi
YSi

(9)

Finally, the global representation ỸSi is fed into a Feed Forward Neural Network with two fully-
connected layers and a softmax to compute the probabilities for each class of human activities.

4 EXPERIMENT

4.1 DATASET

We evaluate our proposed model multimodal temporal segment attention network MMTSA for the
human activity recognition task on three public datasets: Multimodal Egocentric Activity Song et al.
(2014), DataEgo Possas et al. (2018), and MMAct Kong et al. (2019).

4.2 EXPERIMENT SETTINGS

We compare our proposed model multimodal temporal segment attention network with the follow-
ing state-of-the-art multimodal HAR training algorithms for comparison, such as TSN Wang et al.
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Table 1: cross-subject and cross-session performance comparison on MMAct dataset
Cross-Suject F1-Score (%) Cross-Session F1-Score (%)

SMD Hinton et al. (2015) 63.89 SVM+HOG Ofli et al. (2013) 46.52
Multi-Teachers Kong et al. (2019) 62.27 TSN (Fusion) Wang et al. (2016) 77.09

Student Kong et al. (2019) 64.44 MMAD Kong et al. (2019) 78.82
MMAD Kong et al. (2019) 66.45 Keyless Long et al. (2018) 81.11
Keyless Long et al. (2018) 71.83 HAMLET Islam & Iqbal (2020) 83.89

Multi-GAT Islam & Iqbal (2021) 75.24 MuMu Islam & Iqbal (2022) 87.50
MuMu Islam & Iqbal (2022) 76.28 Multi-GAT Islam & Iqbal (2021) 91.48

MMTSA (our method) 87.41 MMTSA (our method) 94.07

(2016), Keyless Long et al. (2018), HAMLET Islam & Iqbal (2020), MuMu Islam & Iqbal (2022).
We use the mirco F1 score to evaluate the performance of all methods.

Data preprocessing: The imu data of each sensor is imaged based on the method in Sec.3.1. To
achieve the efficiency of our method, we directly segment the imu series and randomly select a
timestamp within each segment. The window containing the timestamp is used to sample the orig-
inal series, which is equivalent to strategies in Sec.3.2. The RGB video and its synchronous imu
data series is divided into the same number of segments, and a frame is randomly sampled in each
segment.

Training Details: We implemented our proposed method in Pytorch. We utilized Inception with
Batch Normalization (BN-Inception) as a sub CNN to extract the unimodal features learning rep-
resentations. Moreover, in the proposed model, we trained all the modalities simultaneously with
N = 3 segments, SGD with momentum optimizer, and a learning rate of 0.001. The convolutional
weights for each modality are shared over the N segments, and hence reduce the model-size and
memory cost.

5 RESULT

5.1 RESULTS COMPARISON

We evaluate our proposed model MMTSA performance and summarize all the results. For MMAct
dataset, we follow originally proposed cross-subject and cross-session evaluation settings and report
the results in Table 1. The results show that MMTSA improves 11.13% and 2.59% in cross-subject
and cross-session evaluation settings Kong et al. (2019). For Multimodal Egocentric Activity, we
follow leave-one-subject-out cross validation. MMTSA outperforms all of the traditional methods
and is close to the performance of MFV as shown in Table 2. Compared to MFV that uses four types
of sensor data, MMTSA only uses two types (accelerometer, gyroscope) as input to make the model
lightweight. Thus, a small loss of precision is acceptable. For DataEgo, we divide each 5-minute
original data into 15 seconds clips with 5-second overlapping. We keep the train and test split size of
each activity balance. We show the cross-subject performance in Table 3, which outperforms TSN
by 17.45%.

Table 2: cross-subject performance comparison on Multimodal Egocentric Activity
Method F1-Score (%)

SVM Kwapisz et al. (2011) 47.75
Decision Tree Kwapisz et al. (2011) 51.80

FVS Song et al. (2016b) 65.60
TFVS Song et al. (2016b) 69.00

Multi-Stream with average pooling Song et al. (2016a) 76.50
FVV Song et al. (2016b) 78.44

FVV+FVS Song et al. (2016b) 80.45
Multi-Stream with maximum pooling Song et al. (2016a) 80.50

MMTSA (our method) 81.00
MFV Song et al. (2016b) 83.71
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Table 3: cross-subject performance comparison on DataEgo
Method F1-Score (%)

TSN (RGB) Wang et al. (2016) 65.77
MMTSA (our method) 83.22

5.2 ABLATION STUDY

This section is organized as follows. First, we show and discuss the performance of single modal-
ities, and compare them with our proposed model MMTSA. Second, we compare direct feature
concatenation and our additive inter-segment attention in feature fusion stage. Specifically, in this
section, all the experiments are done on the MMact dataset and followed the original proposed
cross-subject evaluation settings.

Single Modality vs Multi-Modality fusion: We compare the performance of a single modality
and different combinations of modalities in Table 4. The fusion of all modalities obtains the best
results, which indicates that the multimodal isomorphism and fusion mechanism in MMTSA mines
the complementary information among modalities more comprehensively.

Effectiveness of inter-segment attention modality fusion: We compare the simple concatenation
method and our proposed inter-segment attention fusion method. The results shown in 5 suggest
that our proposed method outperforms the concatenation method. It shows that the inter-segment
attention modality fusion method has a significant effect on the fusion of spatiotemporal features
between modalities. Moreover, during training, we also find that the use of inter-segment attention
leads to a faster convergence speed.

Table 4: modality ablation experiment on MMAct (cross-subject)
Modality F1-Score (%)

RGB 66.95
AccWatch+AccPhone+Gyro+Orie 82.13

RGB+AccWatch+AccPhone 84.47
RGB+AccWatch+AccPhone+Gyro+Orie 87.41

Table 5: fusion method experiment on MMAct (cross-subject)
Fusion method F1-Score (%)

Concat 84.02
Inter-segment attention 87.41

6 CONCLUSION

In this work, we presented MMTSA, a new novel multi-modal neural architecture based on RGB and
IMU wearable sensors for human activity recognition. MMTSA employs a multimodal data isomor-
phism mechanism by encoding the IMU sensor series into GAF images, which potentially reduces
the structure differences of multiple modalities and enhances the reusability of the model’s sub-
networks. Additionally, our proposed segment-based sparse sampling method on multimodal input
data is efficient and reduce data redundancy. Moreover, by adding the additive inter-segment atten-
tion mechanism, our model enabled features interactions among different modalities and achieved
better final results. As demonstrated on three public datasets, Multimodal Egocentric Activity,
DataEgo, and MMAct, our method significantly improved state-of-the-art performance. Further-
more, in the future, we plan to deploy our proposed model MMTSA on device to enable safe and
accurate human activity recognition in real-world setting.
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