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ABSTRACT

Vision-language models (VLMs) have shown remarkable abilities by integrating
large language models with visual inputs. However, they often fail to utilize vi-
sual evidence adequately, either depending on linguistic priors in vision-centric
tasks or resorting to textual shortcuts during reasoning. Although reinforcement
learning (RL) can align models with desired behaviors, its application to VLMs
has been hindered by the lack of scalable and reliable reward mechanisms. To
overcome this challenge, we propose SSL4RL, a novel framework that leverages
self-supervised learning (SSL) tasks as a source of verifiable rewards for RL-
based fine-tuning. Our approach reformulates SSL objectives—such as predicting
image rotation or reconstructing masked patches—into dense, automatic reward
signals, eliminating the need for human preference data or unreliable AI evalua-
tors. Experiments show that SSL4RL substantially improves performance on both
vision-centric and vision-language reasoning benchmarks. Furthermore, through
systematic ablations, we identify key factors—such as task difficulty, model scale,
and semantic alignment with the target domain—that influence the effectiveness
of SSL4RL tasks, offering new design principles for future work. We also demon-
strate the framework’s generality by applying it to graph learning, where it yields
significant gains. SSL4RL establishes a versatile and effective paradigm for align-
ing multimodal models using verifiable, self-supervised objectives.

1 INTRODUCTION

Vision–Language Models (VLMs) have rapidly advanced multimodal understanding by leveraging
the expert-level reasoning capabilities of Large Language Models (LLMs). This synergy has en-
abled broad applications, from visual question answering to interactive dialogue. Yet the reliance on
linguistic priors introduces systematic weaknesses. For vision-centric tasks—where answers must
be derived solely from image content, such as classification—VLMs often lag behind specialist vi-
sion models (Fu et al., 2025; Tong et al., 2024; Fu et al., 2024). Conversely, in vision–language
reasoning tasks, VLMs tend to exploit textual knowledge rather than grounding their reasoning in
visual evidence, a tendency amplified in long-form generation (Jian et al., 2025). These limita-
tions underscore the need for training methods that reinforce visual grounding and robust reasoning
simultaneously.

Reinforcement learning (RL) has emerged as the dominant paradigm for post-training large mod-
els, demonstrating that preference-based signals—collected from humans or distilled from AI feed-
back—can substantially improve helpfulness and alignment (Ouyang et al., 2022; Rafailov et al.,
2023; Bai et al., 2022). More recently, verifier-driven RL has shown particular promise: models
trained with automatically checkable rewards achieve striking gains in domains such as mathematics
and programming (Le et al., 2022; Shao et al., 2024). However, these successes expose a fundamen-
tal bottleneck: outside domains with explicit programmatic verifiers, scalable and reliable rewards
are scarce. In such cases, training pipelines often revert to LLM-as-a-judge heuristics, which are
biased, noisy, and prone to adversarial manipulation (Raina et al., 2024; Chen et al., 2024b). This
raises a key question: how can we obtain abundant, verifiable reinforcement signals for VLMs in
domains where external verifiers are absent?
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Figure 1: Overview of the SSL4RL framework. A corruption function transforms an input into
a context–target pair. The model conditions on the context, generates predictions, and receives a
verifiable reward by comparing against the target. The reward is then used to optimize the model via
Reinforcement Learning (RL).

Self-supervised learning (SSL) offers a natural but underexplored answer. SSL has been central to
representation learning across modalities: masked language modeling and next-token prediction for
text (Devlin et al., 2019; Lewis et al., 2020; Raffel et al., 2020), contrastive learning and masked
autoencoders for vision (Gidaris et al., 2018; Noroozi & Favaro, 2016; Doersch et al., 2015; Chen
et al., 2020; He et al., 2020; Grill et al., 2020; Caron et al., 2021; He et al., 2022). The principle is
simple yet powerful: perturb data, and require the model to reconstruct or discriminate. Crucially,
SSL tasks define intrinsically verifiable targets. Given an image and its rotated variant, the ground-
truth angle is unambiguous. Unlike preference-based signals, these targets are properties of the data
itself, providing dense, reliable supervision at scale.

In this paper, we propose SSL4RL, a general framework that repurposes SSL tasks as verifiable
reward functions for RL-based post-training. Instead of treating SSL solely as a pre-training tool
(Tong et al., 2024), we reinterpret it through the lens of RL: corrupted inputs define trajectories,
correctness defines rewards, and policy optimization drives updates. SSL4RL requires no human
labels, external verifiers, or heuristic judges, yet produces dense and scalable reinforcement signals.
Importantly, unlike conventional SSL, SSL4RL emphasizes generating natural language reasoning
paths to solve vision tasks, thereby bridging perceptual learning and reasoning alignment.

We systematically evaluate SSL4RL on both vision-centric and multimodal reasoning benchmarks.
On ImageNet-1K, SSL4RL significantly improves classification accuracy over the base model. For
vision–language reasoning tasks, it delivers consistent gains, with average improvements of 9%
on MMBench and 8% on SEED-Bench. A key finding is that the effectiveness of SSL tasks in
SSL4RL differs from their role in traditional SSL: contrastive objectives, while dominant in pre-
training, show limited benefit unless paired with stronger data augmentation, whereas position pre-
diction—often deemed too trivial for SSL—emerges as highly effective in the SSL4RL setting. The
ablation study reveals that the efficacy of an SSL4RL task is strongly influenced by model capacity,
its semantic alignment with downstream tasks, and the inherent difficulty of the task itself. These
findings offer initial insights into what makes a good SSL4RL task.

We demonstrate that the SSL4RL paradigm generalizes beyond vision by extending it to the graph
domain. Through three graph-related SSL tasks—attribute masking, neighbor prediction, and link
prediction (Hou et al., 2022; Hu et al., 2020)—we achieve marked improvements on node classifi-
cation and link prediction benchmarks. These findings highlight SSL4RL as a versatile recipe for
extracting verifiable rewards with self-supervised tasks.

Contributions. Our work makes two key contributions: (1) we introduce SSL4RL, a unified frame-
work bridging self-supervised learning and RL-based post-training through verifiable rewards; (2)
we provide a comprehensive cross-domain study identifying which SSL tasks best transfer to rea-
soning and which do not. Together, these results challenge the assumption that all self-supervision
is equally useful, and emphasize that the abundance of verifiable signals in SSL can be harnessed
not only for representation learning, but also to drive alignment and reasoning in VLMs.

2 RELATED WORK

RL training with external verifiers. Reinforcement learning has become a dominant paradigm
for aligning large models. RLHF aligns LLMs with human intent through preference data (Ouyang
et al., 2022), while Direct Preference Optimization (DPO) reframes preference learning as a con-
trastive loss without explicit reward models (Rafailov et al., 2023). Constitutional AI replaces human

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

raters with rule-based AI feedback (Bai et al., 2022). More recently, verifier-driven RL has achieved
notable success in domains such as code and math, where correctness can be mechanically checked
(Le et al., 2022; Shao et al., 2024). However, in domains lacking such verifiers, many systems
fall back on LLM-as-a-judge signals. While convenient, these rewards are biased, noisy, and ad-
versarially manipulable (Raina et al., 2024; Chen et al., 2024b), undermining their reliability. This
limitation motivates the search for scalable alternatives where correctness is intrinsic to the data.

RL training with self-reward. Several methods attempt to reduce dependence on external labels or
verifiers by enabling models to generate their own training signals. Self-Instruct (Wang et al., 2023b)
bootstraps fine-tuning data through synthetic instructions, while STaR (Zelikman et al., 2022) and
Reflexion (Shinn et al., 2023) improve reasoning via self-generated rationales and feedback. Self-
Consistency (Wang et al., 2023a) aggregates multiple sampled rationales to increase reliability. Re-
inforced Pre-Training (RPT) scales this idea by using RL objectives such as next-token prediction at
the pretraining stage (Liu et al., 2025). While these methods reduce the need for human labels, they
still optimize toward approximating original task accuracy, often requiring correctness evaluation
or model-judging heuristics. In contrast, our approach seeks verifiable, abundant signals outside the
original task by reinterpreting SSL tasks as reinforcement rewards.

Self-supervised learning across modalities. Self-supervision has been the foundation of repre-
sentation learning across domains. In language, pretext tasks include masked language modeling
(Devlin et al., 2019; Lewis et al., 2020; Raffel et al., 2020) and next-token prediction. Variants that
mask reasoning steps show promise in enhancing mathematical reasoning (Chen et al., 2024a). In
vision, early tasks include rotation (Gidaris et al., 2018), jigsaw (Noroozi & Favaro, 2016), and
context prediction (Doersch et al., 2015), while modern SSL emphasizes contrastive learning (Chen
et al., 2020; He et al., 2020; Grill et al., 2020; Caron et al., 2021) and generative masking (He et al.,
2022). In multimodal learning, CLIP (Radford et al., 2021) and ALBEF (Li et al., 2021) demon-
strate the power of contrastive and distillation objectives for aligning vision and language. Graph
SSL extends these principles to structural data, with node/edge masking (Hu et al., 2020; Hou et al.,
2022) and contrastive augmentations (You et al., 2020). A unifying property of all these objectives is
their intrinsically verifiable targets, making them natural candidates for repurposing as RL rewards.

Building on these threads, our work unifies SSL and RL post-training. By treating SSL objectives
as reinforcement rewards, SSL4RL supplies dense, scalable, and verifiable signals without human
annotations, model-judging heuristics, or handcrafted verifiers. This perspective highlights that the
supervision already embedded in SSL tasks can be harnessed to drive reasoning improvements.

3 SSL4RL FRAMEWORK

We formalize SSL4RL as a general recipe for converting self-supervised learning (SSL) objectives
into reinforcement learning (RL) rewards for post-training large language models and related archi-
tectures. This section introduces the notation, shows how SSL tasks are reinterpreted under the RL
formalism, and describes the optimization strategy. A high-level illustration of the framework is
shown in Figure 1.

Problem Setup. Let πθ denote a parametric model with parameters θ, defined over sequences of
actions. In vision–language tasks, actions may include discrete classification labels (e.g., rotations,
patch indices) or text tokens. We assume access to a data distribution D of inputs x ∈ X , which
can be text and images. In the standard RL formalism, a trajectory τ is generated by rolling out πθ

in an environment E , and receives a scalar reward R(τ). In SSL4RL, the “environment” is defined
by a corruption function c(x) = (x̃, y), which maps an input x into a corrupted context x̃ and a
ground-truth target y. The policy πθ conditions on x̃ to produce an output ŷ, and a reward r(ŷ, y)
is computed based on agreement with the ground truth. Thus, every SSL task induces an RL task:
the corruption defines the environment, the target defines the verifiable ground truth, and the reward
function provides supervision.

From SSL to RL Rewards. Our work revisits four representative SSL pretext tasks, depicted in
Figure 2. Each SSL task is defined by a tuple (c, y, r), where c is a corruption function applied
to the inputs x (specifically referring to images), y is the self-supervised target derived from the
corruption, and r is the reward signal computed based on the model’s prediction ŷ. Specifically,
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Figure 2: Four SSL4RL tasks considered in our study. Rotation: An image is rotated by a predefined
angle, and the task is to predict this angle. Jigsaw: After dividing an image into a grid and permuting
the patches, the goal is to predict the correct permutation index. Contrastive: Two augmented views
are generated from an image, and the objective is to identify whether two given views originate from
the same source image. Position: Given an image and a single patch cropped from it, the task is to
predict the patch’s original spatial position.

• Rotation Prediction (Gidaris et al., 2018): c(x, y) rotates x by an angle y. The reward is
r = 1[ŷ = y], where ŷ is the predicted angle.

• Jigsaw Puzzles (Noroozi & Favaro, 2016): c(x, y) partitions x into a grid and permutes
patches by index y. The reward is r = 1[ŷ = y], where ŷ is the predicted permutation.

• Contrastive Learning (Chen et al., 2020; Radford et al., 2021): c(x) generates augmented
views. The reward r is a binary classification, imitating the InfoNCE similarity score that
encourages high similarity for positive pairs and low similarity for negatives.

• Patch Position Prediction (Doersch et al., 2015): c(x, y) extracts a patch from location y.
The reward is r = 1[ŷ = y], where ŷ is the predicted location.

These rewards are verifiable as they are computed against unambiguous ground-truth targets y.

Optimization via GRPO. We adopt Grouped Reinforcement Policy Optimization (GRPO) (Shao
et al., 2024), an efficient policy-gradient method designed for large-scale LLM training. Given
a reference policy π0 (e.g., the supervised fine-tuned model before RL), GRPO optimizes πθ by
maximizing the following regularized objective:

J (θ) = Eτ∼πθ
[R(τ)− βKL(πθ(·|τ) ∥π0(·|τ))] , (1)

where R(τ) is the SSL-derived reward, and β controls the strength of KL regularization. The KL
penalty prevents divergence from the reference distribution and stabilizes training. GRPO performs
updates by sampling rollouts, normalizing rewards across groups, and applying clipped policy-
gradient updates similar to PPO (Schulman et al., 2017), but in a manner more compute-efficient
for large batch LLM training. All experiments in this work apply the same GRPO configuration
across tasks, ensuring that differences in outcomes are attributable to the choice of SSL reward.

4 WHAT MAKES A GOOD SSL4RL TASK?

In this section, we examine the core principles for designing effective SSL4RL tasks through com-
prehensive experiments on vision-language reasoning (Section 4.1) and vision-centric benchmarks
(Section 4.3). Our results indicate that standard SSL strategies do not directly transfer to the SSL4RL
setting. In Section 4.2, we present ablation studies on task difficulty scaling, model size, and task
combinations to elucidate these design principles further.

4.1 EXPERIMENTS ON VISION-LANGUAGE REASONING TASKS

SSL Task Settings. For each SSL pretext task, we implement the following configurations. In
Rotation, images are rotated counterclockwise by a randomly selected angle from 0°, 90°, 180°,
270°. In Jigsaw, each image is partitioned into a 2×2 grid, and the patches are randomly shuffled. In
Contrastive, we apply the standard augmentation pipeline from Chen et al. (2020), including color
jittering, grayscale conversion, Gaussian blur, horizontal flipping, and random resized cropping,
each with an application probability of 0.2. In Position, the image is divided into four equal quad-
rants, and the target is to identify which quadrant (upper-left, upper-right, lower-left, lower-right)
contains a specified patch.
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Training and Evaluation Settings. Our experiments primarily adopt Qwen-2.5-VL-3B/7B-Instruct
(Bai et al., 2025) for their moderate sizes and strong reasoning performance. For GRPO training,
we set the group size to be 5, the KL loss coefficient to be 0.01, the entropy loss coefficient to be
0, and context length to be 2048. We train the models on 8xA800 GPUs with batch size of 512.
For evaluation, we adopt the third-party evaluation tool VLMEvalKit (Duan et al., 2024), with the
default sampling configured with a temperature of 0.01, top-p of 0.001, and top-k of 1.

Benchmarks. We assess our approach on two prominent multi-modal benchmarks designed for
evaluating vision-language reasoning capabilities: MMBench (Liu et al., 2024) and SEED-Bench
(Li et al., 2023). MMBench provides a diverse testbed with over 3,000 multiple-choice questions
spanning 20 distinct ability dimensions. All results on MMBench are reported for the DEV-EN split,
showing the average performance per category (detailed per-dimension results are in Appendix A).
SEED-Bench is a comprehensive benchmark with human annotations for image and video modal-
ities. For evaluation, we select the 9 core dimensions pertaining to image understanding, which
comprise 14,232 examples in total.

Results. The evaluation results on MMBench and SEED-Bench are presented in Table 1 and Ta-
ble 2, respectively. Overall, the proposed SSL4RL paradigm leads to substantial performance gains
on both MMBench and SEED-Bench benchmarks. On average, SSL4RL-tuned models outperform
the base model by 7.39% on MMBench and 8.94% on SEED-Bench. Notably, SSL4RL achieves
a remarkable improvement of 39.00 percentage points (80.54% vs. 41.54%) on the Relation Rea-
soning task in MMBench. On the Visual Reasoning task of SEED-Bench, the improvement reaches
up to 19.63 percentage points (73.41% vs. 53.78%). These consistent improvements validate the
effectiveness of SSL4RL in enhancing vision-language reasoning.

Table 1: Test performance (%) on MMBench downstream tasks. Logical: Logical Reasoning, Re-
lation: Relation Reasoning, Attribute: Attribute Reasoning, Coarse: Coarse Perception, Cross Inst.:
Cross-Instance Fine-grained Perception, Single-Inst.: Single-Instance Fine-grained Perception.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base Qwen2.5-VL-3B 61.77 41.54 76.62 73.55 64.32 82.06 72.99

SSL4RL

Rotation 65.84 80.54 83.89 80.21 71.53 84.76 80.38
Jigsaw 62.86 74.51 80.35 77.92 67.82 84.31 77.82

Contrastive 61.12 73.42 71.81 65.38 58.39 78.50 69.27

Position 67.65 77.19 82.22 82.15 66.51 85.39 80.08

Maximal Improvement ↑ 5.88 ↑ 39.00 ↑ 6.77 ↑ 8.60 ↑ 7.21 ↑ 3.33 ↑ 7.39

Table 2: Test performance (%) on SEED-Bench downstream tasks. TU: Text Understanding, VR:
Visual Reasoning, SU: Scene Understanding, IId: Instance Identity, IIn: Instance Interaction, IA:
Instance Attributes, IL: Instance Location, SR: Spatial Relation, IC: Instances Counting.

Category Model TU VR SU IId IIn IA IL SR IC Average
Base Qwen2.5-VL-3B 41.67 53.78 60.35 63.24 64.95 62.87 58.79 51.60 60.52 60.83

SSL4RL

Rotation 45.24 73.41 73.65 72.80 67.01 71.03 61.76 54.03 64.12 69.10

Jigsaw 48.81 69.79 70.30 71.65 63.92 70.19 62.68 53.12 62.93 67.67

Contrastive 28.57 67.07 67.10 68.38 64.95 61.22 63.70 51.75 54.03 61.90

Position 52.38 70.69 73.56 72.75 62.89 72.51 64.62 55.25 64.20 69.77
Maximal Improvement ↑ 10.71 ↑ 19.63 ↑ 13.30 ↑ 9.56 ↑ 2.06 ↑ 9.64 ↑ 5.83 ↑ 3.65 ↑ 3.68 ↑ 8.94

Analysis. Our experimental analysis reveals that the Rotation and Position pretext tasks consistently
yield the strongest performance gains. The success of the Position task is intuitive, as localizing a
patch within the global image compels the model to integrate fine-grained local details with the
overall scene layout, fostering integrated spatial understanding. In contrast, the remarkable effec-
tiveness of the Rotation task presents a more nuanced insight. Despite its perceptual simplicity
for humans, we find the task poses a considerable challenge to VLMs, as evidenced by the base
model’s near-chance accuracy. We interpret this as evidence that rotation prediction facilitates “anti-
commonsense” learning. The model’s pre-training instills a strong prior for canonical orientations,
e.g., people are typically depicted upright. Rotated images violate this prior, forcing the model to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Cross-Attention Heatmap Comparison. More instances are shown in Appendix D.

reconcile anomalous inputs with its existing knowledge, thereby sharpening its relational reasoning
and visual comprehension.

Conversely, the standard Contrastive task leads to performance degradation on some downstream
tasks. We hypothesize that its default augmentations are insufficiently challenging, causing the
model to overfit to superficial invariances without learning semantically meaningful structures. Sub-
sequent ablation studies confirm this: employing a more aggressive augmentation strategy recovers
significant performance. This finding highlights the critical need to align SSL task difficulty with
model capacity to elicit generalizable feature learning, as explored in Section 4.2.2.

Observations. Through a qualitative analysis of model responses, we observe two key improve-
ments attributable to SSL4RL training. (1) Sharper Attention: The trained models exhibit more
precise attention alignment with text queries. For instance, when queried about “hair” (Figure 3,
Left), the base model’s attention is diffuse, whereas our model accurately focuses on the relevant
region. This is not merely an effect of sparsity, as evidenced by the “sky” query (Figure 3, Right):
our model attends to the entire sky area, while the base model activates only sparse, scattered pixels.
(2) Reduced Language Bias: SSL4RL mitigates over-reliance on linguistic priors, fostering greater
dependence on visual evidence. For example, when asked about a chandelier’s color (Appendix
Figure 6), the base model defaults to a common-sense response (e.g., a typical decorative color),
while our model first localizes the object and then answers based on the actual appearance.

� Takeaway

SSL as Intrinsic Reward Sharpens VLM Reasoning. The SSL4RL paradigm demonstrably
enhances vision-language reasoning by repurposing SSL tasks as intrinsic rewards. It deepens
the perception and understanding of the image itself, leading towards more precise visual
attention and less language bias.

Task Choice is Critical. SSL tasks show effectiveness when their inherent semantic aligns
with core reasoning skills (e.g, Position and Rotation), while an inappropriate task may induce
negative transfer and hinder downstream performance.

4.2 ABLATION STUDY

4.2.1 TASK DIFFICULTY SCALING

To investigate the role of task difficulty, we design more challenging self-supervised learning (SSL)
tasks by intensifying their corruption strategies. Specifically, for the Position and Jigsaw tasks, we
increase the crop granularity from 2 to 3, resulting in a finer 3×3 grid of patches. For the Contrastive
task, we enhance the augmentation strength by raising the application probability from 0.2 to 0.8
and reducing the maximum crop scale from 1.0 to 0.3, thereby generating positive samples that
differ more substantially from the anchor image. For the Rotation task, we refine the rotation angle
interval from 90° to 45°, increasing the complexity of the angle prediction.
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Figure 4: Test accuracy (%) on MMBench,
varying the SSL task difficulty.

The impact of task difficulty varies considerably
across different SSL tasks, as evidenced by the
results in Figure 4 (full results in Appendix C).
The performances for the Contrastive task shows a
marked improvement upon increasing its difficulty,
elevated from 69.27% to 77.89% on MMBench and
from 61.90% to 65.00% on SEED-Bench. Con-
versely, the benefits are marginal for the Position
task and even detrimental for Rotation and Jigsaw.
A plausible explanation is that the Contrastive task’s
inherent simplicity as a binary discrimination prob-
lem means that raising the difficulty compels the
model to learn more robust and informative features. On the other hand, exacerbating the diffi-
culty of already challenging tasks like Jigsaw might induce over-specialization to the SSL objective,
resulting in a negative transfer where the learned representations are less transferable or even coun-
terproductive for downstream vision-language reasoning.

4.2.2 MODEL SIZE SCALING

To investigate the scalability of the SSL4RL paradigm, we apply it to the larger Qwen2.5-VL-
7B-Instruct model. The results (Table 3 and Appendix Table 8) confirm that SSL4RL still yields
improvements over the base model, notably enhancing Logical Reasoning on MMBench by 3.70%
and Text Understanding on SEED-Bench by 3.57%. However, the gains are less pronounced than
those observed with the 3B model. Even after increasing the task difficulty to a 5×5 grid for Jigsaw
and Position tasks, no significant improvement was observed (see Appendix C).

We attribute these diminishing returns to a fundamental ceiling effect imposed by the predefined
SSL tasks. The absolute difficulty of the four SSL tasks is fixed, presenting a suitable challenge for
the 3B model but potentially failing to engage the full capabilities of a 7B model. The larger model’s
enhanced abilities could render the tasks trivial, thereby weakening their effectiveness as a learning
signal. This underscores a key insight: the efficacy of an SSL task is contingent on its ability to
present a non-trivial challenge commensurate with the model’s capacity. Consequently, a primary
challenge for future work is the design of adaptive or inherently more complex SSL objectives that
can continue to provide a learning signal for large-scale models.

Table 3: Test performance (%) of 7B models on MMBench downstream tasks.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base Qwen2.5-VL-7B 76.49 84.68 85.69 84.66 84.49 89.15 86.37

SSL4RL-7B

Rotation 78.70 86.16 87.13 85.91 88.47 88.92 87.50
Jigsaw 80.19 84.64 88.02 85.70 84.53 90.93 87.73
Contrastive 77.73 83.19 84.58 85.89 85.29 87.74 86.25
Position 79.06 82.13 85.29 85.02 85.42 88.95 86.25

Maximal Improvement ↑ 3.70 ↑ 1.48 ↑ 2.33 ↑ 1.25 ↑ 3.98 ↑ 0.98 ↑ 1.36

4.2.3 TASK COMBINATION

Rotation Jigsaw Contrastive PositionCombination
Models
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Figure 5: Test accuracy of SSL tasks.

The preceding sections primarily investigate the effect of
individual SSL rewards. A natural subsequent question
is whether combining them during training can yield bet-
ter performance compared to any single reward. To ex-
plore this, we train the Qwen2.5-VL-3B-Instruct model us-
ing a combination of all four SSL rewards. As illustrated
in Figure 5, the combined approach, somewhat counterin-
tuitively, does not yield significant improvements over the
best single-reward setups. We hypothesize that this lack of
additive improvement stems from several potential factors.
First, different SSL tasks may encourage the model to learn
complementary yet potentially conflicting feature represen-
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tations. Simultaneously optimizing for multiple, distinct objectives could create a difficult optimiza-
tion landscape where the model struggles to find a unified representation that satisfies all constraints
at once, leading to interference rather than synergy. Second, the individual reward signals might
vary in scale and dynamics, making it non-trivial to balance their contributions effectively without
careful reward shaping or weighting. A simple averaging of rewards might drown out the most use-
ful learning signals. This finding suggests that a naive combination of SSL rewards is insufficient
for achieving cumulative gains. It points to the need for more sophisticated integration strategies,
such as dynamic reward weighting, curriculum learning that schedules different tasks, or even a
meta-learner that selects the most beneficial task at different training stages.

� Takeaway

Goldilocks Principle of Task Difficulty. The effectiveness of an SSL task is contingent on its
difficulty being appropriately matched to the model’s capacity. Insufficient challenge provides
a weak learning signal, while excessive difficulty leads to negative transfer.

Diminishing Returns with Model Size. The performance gains from the four SSL tasks
diminish as model size increases (from 3B to 7B), suggesting designing SSL tasks with
inherently higher complexity for large-scale models.

Non-additivity of Rewards. A naive combination of multiple SSL rewards does not yield
cumulative improvements, indicating potential optimization conflicts and underscoring the
need for sophisticated integration strategies rather than simple averaging.

4.3 EXPERIMENTS ON VISION-CENTRIC TASKS

Benchmarks. We further evaluate the SSL4RL paradigm on vision-centric tasks using the
ImageNet-1K dataset (Deng et al., 2009), which comprises approximately 1.3 million images across
1,000 categories. From this dataset, we construct a balanced subset of 100,000 training and 10,000
test images. To probe reasoning capabilities at varying difficulty levels, we design three question
types: (1) Completion: directly answer with the species name; (2) Choice-20: select the correct
species from 20 candidates; (3) Choice-200: select the correct species from 200 candidates.

Results. As shown in Table 4, models fine-tuned with SSL4RL consistently outperform the base
model across all question types on the ImageNet-1K classification task. Consistent with findings
on reasoning benchmarks, the Position task leads to the largest performance gains, e.g., 67.14% vs.
57.20% on Choice-200. However, a key divergence emerges with the Contrastive task. While it
underperformed on vision-language reasoning, it shows competitive results on ImageNet classifica-
tion. We attribute this result to the nature of the downstream benchmark. As an instance discrim-
ination task, ImageNet benefits from learning strong semantic representations through invariance
to augmentations—precisely the strength of contrastive learning. This result also verifies that task
selection for SSL4RL must consider the specific capabilities required by the target application.

Table 4: Test performance (%) on ImageNet downstream tasks.

Category Model Completion Choice-20 Choice-200
Base Model Qwen2.5-VL-3B 24.93 85.22 57.10

SSL4RL

Rotation 29.19 87.26 58.48
Jigsaw 28.75 87.55 60.80
Contrastive 26.84 89.51 61.78
Position 28.76 92.35 67.14

5 EXTENSION TO OTHER DOMAINS: AN EXAMPLE ON GRAPH

Having established SSL4RL for vision-language reasoning, we now explore its broader applicability.
The paradigm’s core principle—generating rewards from data transformations—naturally extends to

8
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any domain with rich structural information. Beyond images, graph-structured data presents a com-
pelling candidate, given its explicit relational semantics that are amenable to various pretext tasks.
In this section, we empirically validate this potential by adapting SSL4RL to the graph domain.

Tasks and Reward Definitions. We introduce three graph-based SSL tasks, defined as follows: (1)
Attribute Mask (Jin et al., 2020; Hu et al., 2019): A subset of node descriptions is randomly masked.
The reward is quantified by the model’s accuracy in reconstructing the original masked features. (2)
Neighbor Prediction (Kipf & Welling, 2016): For a target node within a partially observed graph,
the model is rewarded for correctly identifying its adjacent nodes. (3) Link Prediction (Hu et al.,
2020; Hou et al., 2022): Given a pair of nodes and a partial graph structure, the model receives a
reward for accurately classifying the presence or absence of an edge connecting them.

Benchmarks. We evaluate our method on benchmark datasets curated from TAGLAS (Feng et al.,
2024), a comprehensive collection of text-attributed graphs. The evaluation encompasses two key
tasks: (1) Node-level classification on the Cora and PubMed co-citation graphs and the WikiCS page
relation graph; (2) Link-level prediction on the Products co-purchase graph and the fb15k237 and
wn18rr knowledge graphs.

Results and Observations. The results in Table 5 demonstrate the successful application of
SSL4RL to graph-structured data. The 3B model shows substantial improvements, with gains up
to 13.79% on average, while the 7B model exhibits diminishing returns, mirroring our observations
in the visual domain and reinforcing the “difficulty-capacity matching” principle. Furthermore, the
relative effectiveness of the self-supervised tasks is contingent upon the nature of the downstream
objective. Tasks emphasizing structural reasoning (Link and Neighbor Prediction) yield better per-
formance on relation-centric tasks such as link prediction. Conversely, tasks focused on feature
reconstruction (Attribute Mask) demonstrate a comparative advantage on node classification bench-
marks. These findings not only validate the generalizability of the SSL4RL framework beyond the
visual modality but also highlight the critical importance of aligning the pretext task’s inductive bias
with the target application.

Table 5: Test performance (%) on downstream graph tasks.

Category Model Cora PubMed WikiCS Products fb15k237 wn18rr Average
Base model Qwen2.5-VL-3B 21.80 64.26 30.50 7.93 26.30 29.80 30.09

SSL4RL-3B
Attribute 55.80 73.27 57.62 8.03 32.50 36.10 43.88
Neighbor 39.00 74.37 50.84 12.65 36.10 36.60 41.59
Link 31.30 71.97 55.93 4.91 46.50 41.10 41.95

Maximal Improvement ↑ 34.00 ↑ 10.11 ↑ 27.12 ↑ 4.42 ↑ 20.20 ↑ 11.30 ↑ 13.79
Base model Qwen2.5-7B-Instruct 64.80 69.86 49.15 50.50 30.10 32.50 57.73

SSL4RL-7B
Attribute 63.80 59.55 54.23 51.30 37.00 32.70 49.76
Neighbor 63.10 70.87 52.54 43.47 33.00 34.00 49.49
Link 67.70 72.27 55.93 48.89 21.30 39.50 50.93

Maximal Improvement ↑ 2.90 ↑ 2.41 ↑ 6.78 ↑ 0.80 ↑ 6.90 ↑ 7.00 ↑ 1.45

6 CONCLUSIONS

We have introduced SSL4RL, a framework that repurposes self-supervised tasks as verifiable re-
inforcement learning rewards for post-training vision–language models. Our study shows that
SSL4RL not only improves performance on vision-centric benchmarks such as ImageNet-1K, but
also enhances multimodal reasoning, achieving substantial gains on MMBench and SEED-Bench.
These findings suggest a broader principle: verifiable and scalable supervision signals are already
embedded in self-supervision, and with proper task selection they can drive alignment and reasoning
in VLMs without reliance on external verifiers, judges, or costly human labels. Looking forward,
SSL4RL opens a path toward safer and more capable multimodal foundation models by unifying the
strengths of self-supervision and reinforcement learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We are not aware of any specific ethical concerns related to this work. All experiments are conducted
on publicly available or synthetic datasets, without the use of sensitive or proprietary information.

REPRODUCIBILITY STATEMENT

We provide complete details of our methods, hyperparameters, datasets, and evaluation metrics in
both the main paper and the appendix. To further support transparency and reproducibility, we will
release our code upon acceptance.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jason Kernion, Jackson Jones,
Andy Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai:
Harmlessness from ai feedback. arXiv:2212.08073, 2022. URL https://arxiv.org/abs/
2212.08073.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are primarily employed for polishing the language of the manuscript to ensure
grammatical correctness and coherence. Importantly, all conceptual development, theoretical analy-
sis, experimental design, and result interpretation are conducted independently by the authors. The
use of LLMs is strictly limited to auxiliary tasks, ensuring that the scientific contributions of this
paper remain entirely unaffected by such tools.

A DETAILED RESULTS OF MMBENCH

In this section, we present the detailed leaf task results of MMBench in Tables 6 and 7.

Table 6: Test performance (%) of 3B models on MMBench downstream tasks. IR: Identity Rea-
soning, PPR: Physical Property Reasoning, FR: Function Reasoning, OL: Object Localization, SIU:
Structuralized Imagetext Understanding, AtR: Attribute Recognition, FP: Future Prediction, SR:
Spatial Relationship, IS: Image Scene, IQ: Image Quality, Ace: Action Recognition, AC: Attribute
Comparison, IT: Image Topic, NR: Nature Relation, PR: Physical Relation, SR: Social Relation,
CR: Celebrity Recognition, IS: Image Style, OCR: OCR, IE: Image Emotion.

Category Model IR PPR FR OL SIU AtR FP SR IS IQ Ace AC IT NR PR SR CR IS OCR IE Average
Base Qwen2.5-VL-3B 86.36 60.27 83.22 63.17 71.99 81.44 51.54 45.20 91.15 46.67 84.65 63.12 82.86 64.25 47.87 38.37 89.39 82.55 94.23 64.50 72.99

SSL4RL-3B

Rotation 97.16 66.67 87.83 63.49 75.53 85.23 56.15 56.50 95.82 55.33 89.30 68.79 87.14 70.39 64.89 88.37 95.45 87.26 94.87 75.50 80.38
Jigsaw 91.48 64.38 85.20 61.59 73.40 89.02 52.31 53.11 93.86 56.00 86.51 63.83 87.86 64.25 59.57 81.98 94.95 85.38 91.67 66.50 77.82

Contrastive 90.34 52.05 73.03 60.32 69.15 78.03 53.08 32.77 88.45 42.00 81.40 60.99 82.14 36.87 57.45 81.40 90.40 61.79 85.26 52.50 69.27

Position 95.45 64.38 86.84 66.03 78.37 86.36 56.92 42.37 96.31 58.00 89.77 67.38 86.43 68.16 60.64 85.47 94.95 91.51 94.23 78.50 80.08

Combination 95.45 61.64 82.24 68.25 77.66 89.77 54.62 45.76 94.10 55.33 90.23 63.83 87.86 61.45 54.26 90.12 94.19 89.15 94.87 67.50 78.77

Table 7: Test performance (%) of 7B models on MMBench downstream tasks. IR: Identity Rea-
soning, PPR: Physical Property Reasoning, FR: Function Reasoning, OL: Object Localization, SIU:
Structuralized Imagetext Understanding, AtR: Attribute Recognition, FP: Future Prediction, SR:
Spatial Relationship, IS: Image Scene, IQ: Image Quality, Ace: Action Recognition, AC: Attribute
Comparison, IT: Image Topic, NR: Nature Relation, PR: Physical Relation, SR: Social Relation,
CR: Celebrity Recognition, IS: Image Style, OCR: OCR, IE: Image Emotion.

Category Model IR PPR FR OL SIU AtR FP SR IS IQ Ace AC IT NR PR SR CR IS OCR IE Average
Base Qwen2.5-VL-7B 98.30 66.67 92.11 74.60 82.98 88.64 70.00 76.27 97.05 58.00 92.09 85.11 91.43 88.83 69.15 92.44 97.22 94.81 96.15 82.00 86.37

SSL4RL-7B

Rotation 97.73 71.23 92.43 71.11 89.72 90.15 67.69 78.53 97.79 61.33 92.56 94.33 90.71 85.47 71.28 93.60 96.97 96.23 97.44 83.50 87.50

Jigsaw 97.73 74.89 91.45 75.24 86.52 93.56 73.85 74.01 97.54 60.67 91.63 87.94 90.00 89.39 70.21 91.86 97.47 94.81 97.44 85.50 87.73
Contrastive 98.30 63.01 92.43 74.29 85.46 85.61 70.00 77.97 97.30 63.33 93.49 84.40 88.57 85.47 67.02 91.28 97.47 95.75 93.59 84.50 86.25

Position 98.30 63.01 92.43 74.29 85.46 85.61 70.00 77.97 97.30 63.33 93.49 84.40 88.57 85.47 67.02 91.28 97.47 95.75 93.59 84.50 86.25

Combination 97.73 73.97 92.11 71.43 90.43 95.08 70.77 74.58 97.79 61.33 93.49 81.56 92.14 89.39 68.09 93.02 97.47 93.87 96.79 84.50 85.78

B RESULTS OF SSL4RL 7B-MODEL ON SEED-BENCH

In Table 8, we present the SEED-Bench results for the SSL4RL 7B-models.

Table 8: Test performance (%) of 7B models on SEED-Bench downstream tasks. TU: Text Under-
standing, VR: Visual Reasoning, SU: Scene Understanding, IId: Instance Identity, IIn: Instance In-
teraction, IA: Instance Attributes, IL: Instance Location, SR: Spatial Relation, IC: Instances Count-
ing.

Category Model TU VR SU IId IIn IA IL SR IC Average
Base Qwen2.5-VL-7B 72.62 77.95 77.99 77.44 75.26 76.19 71.98 62.56 69.55 74.70

SSL4RL-7B

Rotation 76.19 78.25 78.59 77.94 73.20 76.90 73.11 64.23 69.76 75.33

Jigsaw 70.24 79.15 78.44 77.66 76.29 76.58 73.01 63.77 69.27 75.05

Contrastive 71.43 78.85 78.28 78.32 76.29 76.47 72.70 64.69 70.33 75.27

Position 70.24 80.66 78.82 77.44 71.13 77.97 72.19 64.38 69.39 75.56
Maximal Improvement ↑ 3.57 ↑ 2.71 ↑ 0.83 ↑ 0.88 ↑ 1.03 ↑ 1.78 ↑ 1.13 ↑ 2.13 ↑ 0.78 ↑ 0.86
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C DETAILED RESULTS OF THE ABLATION STUDY ABOUT DIFFICULTY

From Table 9 to Table 12, we provide detailed experimental results for the ablation study on task
difficulty of MMBench, SEED-Bench, and ImageNet1k.

Table 9: Test performance (%) of 3B models trained with different task difficulties on MMBench
downstream tasks. IR: Identity Reasoning, PPR: Physical Property Reasoning, FR: Function Rea-
soning, OL: Object Localization, SIU: Structuralized Imagetext Understanding, AtR: Attribute
Recognition, FP: Future Prediction, SR: Spatial Relationship, IS: Image Scene, IQ: Image Quality,
Ace: Action Recognition, AC: Attribute Comparison, IT: Image Topic, NR: Nature Relation, PR:
Physical Relation, SR: Social Relation, CR: Celebrity Recognition, IS: Image Style, OCR: OCR,
IE: Image Emotion.

Model Difficulty IR PPR FR OL SIU AtR FP SR IS IQ Ace AC IT NR PR SR CR IS OCR IE Average
Qwen2.5-VL-3B − 86.36 60.27 83.22 63.17 71.99 81.44 51.54 45.20 91.15 46.67 84.65 63.12 82.86 64.25 47.87 38.37 89.39 82.55 94.23 64.50 72.99

Rotation 90-degree 97.16 66.67 87.83 63.49 75.53 85.23 56.15 56.50 95.82 55.33 89.30 68.79 87.14 70.39 64.89 88.37 95.45 87.26 94.87 75.50 80.38

45-degree 93.75 64.84 87.83 66.67 74.11 90.15 58.46 46.33 95.33 53.33 88.84 65.25 87.14 65.92 54.26 90.12 93.94 86.79 92.31 70.50 79.16

Jigsaw 2x2 91.48 64.38 85.20 61.59 73.40 89.02 52.31 53.11 93.86 56.00 86.51 63.83 87.86 64.25 59.57 81.98 94.95 85.38 91.67 66.50 77.82

3x3 93.75 60.27 82.57 60.95 65.60 84.47 49.23 51.41 91.89 56.67 83.26 65.25 82.86 66.48 50.00 78.49 85.35 85.85 88.46 72.00 75.12

Contrastive Weak 90.34 52.05 73.03 60.32 69.15 78.03 53.08 32.77 88.45 42.00 81.40 60.99 82.14 36.87 57.45 81.40 90.40 61.79 85.26 52.50 69.27

Strong 94.89 64.84 82.24 63.49 77.30 86.36 51.54 44.07 95.82 47.33 89.30 70.21 85.71 59.78 52.13 86.63 94.44 87.74 92.31 70.50 77.89

Position 2x2 95.45 64.38 86.84 66.03 78.37 86.36 56.92 42.37 96.31 58.00 89.77 67.38 86.43 68.16 60.64 85.47 94.95 91.51 94.23 78.50 80.08

3x3 97.16 63.47 87.50 66.35 75.53 88.64 60.00 52.54 95.33 58.67 86.51 76.60 88.57 70.39 58.51 88.95 95.96 92.45 93.59 77.50 81.03

Table 10: Test performance (%) of 3B models trained with different task difficulties on SEED-Bench
downstream tasks. IC: Instances Counting, IA: Instance Attributes, SU: Scene Understanding, IId:
Instance Identity, IIn: Instance Interaction, VR: Visual Reasoning, IL: Instance Location, SR: Spatial
Relation, TU: Text Understanding.

Model Difficulty IC IA SU IId IIn VR IL SR TU Average
Qwen2.5-VL-3B − 60.52 62.87 60.35 63.24 64.95 53.78 58.79 51.60 41.67 60.83

Rotation 90-degree 64.12 71.03 73.65 72.80 67.01 73.41 61.76 54.03 45.24 69.10

45-degree 60.60 69.26 72.70 72.53 68.04 72.81 63.60 55.25 38.10 67.81

Jigsaw 2x2 62.93 70.19 70.30 71.65 63.92 69.79 62.68 53.12 48.81 67.67

3x3 61.22 67.58 69.28 68.87 69.07 64.35 61.35 51.14 48.81 65.66

Contrastive Weak 54.03 61.22 67.10 68.38 64.95 67.07 63.70 51.75 28.57 61.90

Strong 57.54 64.75 70.68 70.56 67.01 70.39 63.39 55.86 29.76 65.00

Position 2x2 64.20 72.51 73.56 72.75 62.89 70.69 64.62 55.25 52.38 69.77

3x3 61.87 72.53 73.84 73.89 69.07 74.02 64.62 58.30 44.05 69.80

Table 11: Test performance (%) of 7B models trained with different task difficulties on MM-
Bench downstream tasks. IR: Identity Reasoning, PPR: Physical Property Reasoning, FR: Function
Reasoning, OL: Object Localization, SIU: Structuralized Imagetext Understanding, AtR: Attribute
Recognition, FP: Future Prediction, SpR: Spatial Relationship, ISc: Image Scene, IQ: Image Qual-
ity, Ace: Action Recognition, AC: Attribute Comparison, IT: Image Topic, NR: Nature Relation,
PR: Physical Relation, SoR: Social Relation, CR: Celebrity Recognition, ISt: Image Style, OCR:
OCR, IE: Image Emotion.

Model Difficulty IR PPR FR OL SIU AtR FP SpR ISc IQ Ace AC IT NR PR SoR CR ISt OCR IE Average
Base Qwen2.5-VL-7B 98.30 66.67 92.11 74.60 82.98 88.64 70.00 76.27 97.05 58.00 92.09 85.11 91.43 88.83 69.15 92.44 97.22 94.81 96.15 82.00 86.37

Jigsaw
3x3 98.30 69.41 92.11 76.83 86.88 90.91 70.77 79.10 97.54 62.00 92.56 87.94 90.00 89.94 70.21 93.02 97.47 95.28 98.72 84.50 86.17

4x4 97.73 66.21 92.43 75.24 86.17 92.80 73.08 76.27 97.79 62.67 92.09 87.94 90.71 87.71 69.15 91.86 97.47 94.81 97.44 85.00 85.73

5x5 97.73 67.58 92.76 74.29 85.46 90.15 73.08 79.10 97.05 61.33 93.02 87.94 90.71 89.94 70.21 91.28 97.98 95.75 95.51 84.00 85.74

Position
3x3 95.45 68.49 93.09 77.46 88.30 94.70 73.08 77.40 97.79 62.67 94.42 89.36 90.71 87.15 67.02 89.53 97.47 94.34 97.44 81.50 85.87

4x4 97.73 64.84 94.74 74.92 88.65 95.45 73.08 72.32 97.79 58.00 94.42 82.98 89.29 88.83 69.15 90.12 98.23 94.34 98.08 82.50 85.27

5x5 97.73 72.15 93.75 75.24 90.07 95.83 70.00 67.80 98.53 63.33 95.81 90.07 90.71 91.62 67.02 91.86 98.23 95.28 95.51 81.00 86.08
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Table 12: Test performance (%) of models trained with different task difficulties on ImageNet-1K.

Model Difficulty Completion Choice10 Choice200
Qwen2.5-VL-3B − 24.93 85.22 57.10

Position 2x2 28.76 92.35 67.14
3x3 27.37 88.99 59.93

Contrastive Weak 26.84 89.51 61.78

Strong 26.93 89.44 61.31

Rotation 90-degree 29.19 87.26 58.48

45-degree 29.91 89.94 60.52

Table 13: Test performance (%) of 7B models trained with different task difficulties on SEED-Bench
downstream tasks. IC: Instances Counting, IA: Instance Attributes, SU: Scene Understanding, IId:
Instance Identity, IIn: Instance Interaction, VR: Visual Reasoning, IL: Instance Location, SR: Spatial
Relation, TU: Text Understanding.

Category Model TU VR SU IId IIn IA IL SR IC Average
Base Qwen2.5-VL-7B 72.62 77.95 77.99 77.44 75.26 76.19 71.98 62.56 69.55 74.70

Jigsaw
3x3 69.88 77.01 78.78 77.88 76.29 79.46 71.57 64.69 73.81 74.37

4x4 69.72 76.98 77.83 78.15 71.13 78.85 72.29 62.10 72.62 73.30

5x5 69.84 76.43 78.34 78.15 71.13 78.85 73.21 63.17 70.24 73.26

Position
3x3 68.82 77.93 78.53 78.75 74.23 78.55 73.01 64.08 76.19 74.45

4x4 68.98 77.41 77.58 77.33 76.29 78.55 71.47 61.64 76.19 73.94

5x5 69.27 77.39 78.59 77.72 73.20 79.15 73.21 63.47 77.38 74.38
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D CASE ANALYSIS AND VISUALIZATION

In Figure 6, we show that SSL4RL mitigates over-reliance on linguistic priors, fostering greater
dependence on visual evidence. For example, when asked about a chandelier’s color, the base model
defaults to a common-sense response (e.g., a typical decorative color), while our model first localizes
the object and then answers based on the actual appearance.

Question: What color is the chandelier hanging from the ceiling?
A: black    B: brown    C: white     D: gold

Response: Given that chandeliers 
are typically made of materials 
like glass, metal, or crystal, and 
considering the options provided, 
the most likely color for a 
chandelier would be gold. The 
chandelier is likely to be gold 
because it is a common color for 
decorative lighting fixtures, and 
gold is often used in 
chandeliers.

Response: Step 1: Identify the 
type of lighting fixture in the 
image.The image shows a 
chandelier hanging from the 
ceiling.Step 2: Determine the 
color of the chandelier.The 
chandelier is described as being 
white.Step 3: Match the color of 
the chandelier with the given 
options. The correct option is 
C.white.

Base Model Our Model

Question: What object is being held by one of the men in 
Mexican outfits, and what is he doing with it?

A: Holding a chain and swinging it
B: Holding a flower and smelling it

C: Holding a flag and waving it
D: Holding hands with another man

Response: B. Holding a flower and 
smelling it - This option implies 
that the man is holding a flower 
and smelling it, which is a common 
gesture in many cultures… D. 
Holding hands with another man -
This option implies that the man 
is holding hands with another man, 
which is a common gesture in 
many cultures. Considering the 
options, the most appropriate 
action for a man in a Mexican 
outfit would be to hold a flower 
and smell it, as this is a common 
gesture in many cultures. 
<answer>B</answer>

Response: Step 1: Analyze the 
image description. The image 
shows three men in Mexican 
outfits, standing in a line and 
holding hands. Step 2: Identify 
the specific object being held... 
Step 3: Determine the action 
being performed… Step 4: Match 
the action with the given 
options… Option D: Holding hands 
with another man… 
<answer>D</answer>

Base Model Our Model

Question: Which trait did Ursus spelaeus have? Select the 
trait you can observe on the fossil.

A: rounded ears
B: brown fur covering most of its body

C: long legs

Response: Ursus spelaeus, also 
known as the cave bear, is a 
species of bear that lived during 
the Pleistocene epoch. Based on 
the fossil image provided, we can 
observe the following traits: 1. 
Rounded ears: The fossil shows 
rounded ears, which is a 
characteristic of Ursus spelaeus. 
2. Brown fur covering most of its 
body: … the overall appearance 
suggests it had brown fur. 3. Long 
legs: The fossil shows long legs... 
Given these observations, the 
trait that can be clearly 
observed on the fossil is the 
rounded ears.

Response: To determine which 
trait Ursus spelaeus had based 
on the fossil, let's analyze the 
given options: A. Rounded ears -
This trait is not directly 
observable on the fossil 
provided. The fossil shows a 
skull and skeleton, but not the 
ears. B. Brown fur covering most 
of its body - This trait is also not 
directly observable on the 
fossil… C. Long legs - This trait 
can be observed on the fossil.… 
The correct trait that Ursus 
spelaeus had, as observable on 
the fossil, is: C, long legs.

Base Model Our Model

Figure 6: Instances of VLMs’ loss on image information. After receiving textual instructions, VLMs
may be more inclined to rely on the encoded textual knowledge for reasoning rather than carefully
observing the content of the image.

Besides, we visualize the attention maps of the baseline model, i.e., Qwen2.5-VL-3B and our models
on several examples from the SEED-Bench dataset(Li et al., 2023). We pick a dominant token from
the questions of each example, calculate the attention map of the first generated token to that input
token, and average the attention matrices of all heads and all layers of the language model. The
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results in Figure 7 illustrate that our models consistently display more focused attention towards
the regions in the images corresponding to the selected token, which indirectly proves the superior
performance of our models.

(a) (b)

(c) (d)

(e)

Figure 7: Comparisons of Attention Maps.
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E SSL TASK EXAMPLES

In this section, we show a specific instance of Rotation, Jigsaw, Contrastive, and Position tasks to
illustrate the SSL task design.

Rotation Example

Query: These are two images. The second image is a rotated version of the first image.
Please determine how many degrees the second image has been rotated counter-clockwise
relative to the first image.
You must reason step-by-step and then provide the final answer. The
output must strictly follow this format: <think>your reasoning here
</think><answer>number of degrees</answer>.

Answer: 270

Jigsaw Example

Query: <image><image><image><image>
<image><image><image><image><image>
The provided images represent 9 parts of an original im-
age, divided into a 3x3 grid.
Your task is to determine the correct order of these parts
to reconstruct the original image. Starting from the top-
left corner, proceed row by row, from left to right and top
to bottom, to arrange the parts.
The output should be a string of numbers, separated by
a comma, where each number corresponds to the orig-
inal position of the patches in the restored image. For
instance, “3,1,9,2,8,5,4,6,7” would indicate the positions
of the patches in the correct order.
Before providing the final result, you must reason
through the puzzle step by step. Consider the relative
placement of each part and how they fit together.
Your answer should strictly follow this format:
<think>your step-by-step reasoning
here</think><answer>order</answer>

Answer: 2,7,6,1,3,5,9,8,4
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Contrastive Example

Query: <image><image>
The provided images are augmentations of the same original image or two different images.
The augmentations may include random cropping, color adjustments, grayscale conversion,
blurring, and flipping. Please think step-by-step and determine if these two images are
possibly derived from the same original image. If the provided images are from the same
original image, respond with “positive”; if they correspond to different original images,
respond with “negative”.
Your answer should strictly follow this format:
<think>your step-by-step reasoning here</think><answer>positive/negative</answer>

Answer: positive

Position Example

Query: <image><image>
The second image in an augmented version of a crop in the first image. The augmentations
may include grayscale, color jitter, solarization, etc. Please determine which part of the first
image the second image is from. The second image is partitioned into 3x3 parts, and the first
image can be only from one of the parts, but cannot be across two parts. The answer should
be in the format of x/y, where x is the row number (from top to bottom) and y is the column
number (from left to right). For example, 1/1 indicates the top-left part, and 1/3 indicates
the top-right part. Both x and y may take values from 1 to 3.
Your answer should strictly follow this format:
<think>your step-by-step reasoning here</think><answer>x/y</answer>

Answer: 3/3

F DOWNSTREAM BENCHMARK EXAMPLE

In this section, we show a specific instance of Rotation, Jigsaw, Contrastive, and Position tasks to
illustrate the SSL task design.
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Imagenet-Completion Example

Query: <image>This is an image containing
an object. Please identify the species of the
object based on the image. The output an-
swer format should be as follows: <think>...
</think><answer>species name</answer>.
Please strictly follow the format.
Answer: tench, Tinca, tinca

Imagenet-Choice10 Example

Query: <image>This is an image containing
an object. Please identify the species of the
object based on the image. The output an-
swer format should be as follows: <think>...
</think><answer>species name</answer>
Please strictly follow the format.

Please select the correct species name from the
following options: Ursus americanus, shoe shop,
brush wolf, essence, malemute, scoreboard, tench,
ruddy turnstone, Salamandra salamandra, koala.

Answer: tench

MMBench Example

Query: <image>Identify the question that Made-
lyn and Tucker’s experiment can best answer.

A. Does Madelyn’s snowboard slide down a hill in
less time when it has a thin layer of wax or a thick
layer of wax?
B. Does Madelyn’s snowboard slide down a hill
in less time when it has a layer of wax or when it
does not have a layer of wax?
C. NaN.
D. NaN.

Answer: B

SEED-Bench Example

Query: <image>How many towels are in the
image?

A. One.
B. Two.
C. Three.
D. Four.

Answer: A
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