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ABSTRACT

Vision-language models (VLMs) have shown remarkable abilities by integrating
large language models with visual inputs. However, they often fail to utilize vi-
sual evidence adequately, either depending on linguistic priors in vision-centric
tasks or resorting to textual shortcuts during reasoning. Although reinforcement
learning (RL) can align models with desired behaviors, its application to VLMs
has been hindered by the lack of scalable and reliable reward mechanisms. To
overcome this challenge, we propose SSL4RL, a novel framework that leverages
self-supervised learning (SSL) tasks as a source of verifiable rewards for RL-based
fine-tuning. Our approach reformulates SSL objectives—such as predicting image
rotation or reconstructing masked patches—into dense, automatic reward signals,
eliminating the need for human preference data or unreliable AI evaluators. Ex-
periments show that SSL4RL substantially improves performance on both vision-
centric and vision-language reasoning benchmarks, with encouraging potentials
on open-ended image-captioning tasks.. Through systematic ablations, we iden-
tify key factors—such as data volume, model scale, model choice, task difficulty,
and semantic alignment with the target domain—that influence the effectiveness
of SSL4RL tasks, offering new design principles for future work. We also demon-
strate the framework’s generality by applying it to graph learning, where it yields
significant gains. SSL4RL establishes a versatile and effective paradigm for align-
ing multimodal models using verifiable, self-supervised objectives.

1 INTRODUCTION

Vision–Language Models (VLMs) have rapidly advanced multimodal understanding by leveraging
the expert-level reasoning capabilities of Large Language Models (LLMs). This synergy has en-
abled broad applications, from visual question answering to interactive dialogue. Yet the reliance on
linguistic priors introduces systematic weaknesses. For vision-centric tasks—where answers must
be derived solely from image content, such as classification—VLMs often lag behind specialist vi-
sion models (Fu et al., 2025; Tong et al., 2024; Fu et al., 2024). Conversely, in vision–language
reasoning tasks, VLMs tend to exploit textual knowledge rather than grounding their reasoning in
visual evidence, a tendency amplified in long-form generation (Jian et al., 2025). These limita-
tions underscore the need for training methods that reinforce visual grounding and robust reasoning
simultaneously.

Reinforcement learning (RL) has emerged as the dominant paradigm for post-training large mod-
els, demonstrating that preference-based signals—collected from humans or distilled from AI feed-
back—can substantially improve helpfulness and alignment (Ouyang et al., 2022; Rafailov et al.,
2023; Bai et al., 2022). More recently, verifier-driven RL has shown particular promise: models
trained with automatically checkable rewards achieve striking gains in domains such as mathematics
and programming (Le et al., 2022; Shao et al., 2024). However, these successes expose a fundamen-
tal bottleneck: outside domains with explicit programmatic verifiers, scalable and reliable rewards
are scarce. In such cases, training pipelines often revert to LLM-as-a-judge heuristics, which are
biased, noisy, and prone to adversarial manipulation (Raina et al., 2024; Chen et al., 2024b). This
raises a key question: how can we obtain abundant, verifiable reinforcement signals for VLMs in
domains where external verifiers are absent?
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Figure 1: Overview of the SSL4RL framework. A corruption function transforms an input into
a context–target pair. The model conditions on the context, generates predictions, and receives a
verifiable reward by comparing against the target. The reward is then used to optimize the model via
Reinforcement Learning (RL).

Self-supervised learning (SSL) offers a natural but underexplored answer. SSL has been central to
representation learning across modalities: masked language modeling and next-token prediction for
text (Devlin et al., 2019; Lewis et al., 2020; Raffel et al., 2020), contrastive learning and masked
autoencoders for vision (Gidaris et al., 2018; Noroozi & Favaro, 2016; Doersch et al., 2015; Chen
et al., 2020; He et al., 2020; Grill et al., 2020; Caron et al., 2021; He et al., 2022). The principle is
simple yet powerful: perturb data, and require the model to reconstruct or discriminate. Crucially,
SSL tasks define intrinsically verifiable targets. Given an image and its rotated variant, the ground-
truth angle is unambiguous. Unlike preference-based signals, these targets are properties of the data
itself, providing dense, reliable supervision at scale.

In this paper, we propose SSL4RL, a general framework that repurposes SSL tasks as verifiable
reward functions for RL-based post-training. Instead of treating SSL solely as a pre-training tool
(Tong et al., 2024), we reinterpret it through the lens of RL: corrupted inputs define trajectories,
correctness defines rewards, and policy optimization drives updates. SSL4RL requires no human
labels, external verifiers, or heuristic judges, yet produces dense and scalable reinforcement signals.
Importantly, unlike conventional SSL, SSL4RL emphasizes generating natural language reasoning
paths to solve vision tasks, thereby bridging perceptual learning and reasoning alignment.

We systematically evaluate SSL4RL on both vision-centric and multimodal reasoning benchmarks.
On ImageNet-1K, SSL4RL significantly improves classification accuracy over the base model. For
vision–language reasoning tasks, it delivers consistent gains, with average improvements of 9% on
MMBench and 8% on SEED-Bench. On open-ended image-captioning platform CapArena (Cheng
et al., 2025), SSL4RL consistently improves over the base model, with the largest performance
gain of 8.14 points. A key finding is that the effectiveness of SSL tasks in SSL4RL differs from
their role in traditional SSL: contrastive objectives, while dominant in pre-training, show limited
benefit unless paired with stronger data augmentation, whereas position prediction—often deemed
too trivial for SSL—emerges as highly effective in the SSL4RL setting. The ablation study reveals
that the efficacy of an SSL4RL task is influenced by model capacity, its semantic alignment with
downstream tasks, and the inherent difficulty of the task itself. These findings offer initial insights
into what makes a good SSL4RL task.

We demonstrate that the SSL4RL paradigm generalizes beyond vision by extending it to the graph
domain. Through three graph-related SSL tasks—attribute masking, neighbor prediction, and link
prediction (Hou et al., 2022; Hu et al., 2020)—we achieve marked improvements on node classifi-
cation and link prediction benchmarks. These findings highlight SSL4RL as a versatile recipe for
extracting verifiable rewards with self-supervised tasks.

Contributions. Our work makes two key contributions: (1) we introduce SSL4RL, a unified frame-
work bridging self-supervised learning and RL-based post-training through verifiable rewards; (2)
we provide a comprehensive cross-domain study identifying which SSL tasks best transfer to rea-
soning and which do not. Together, these results challenge the assumption that all self-supervision
is equally useful, and emphasize that the abundance of verifiable signals in SSL can be harnessed
not only for representation learning, but also to drive alignment and reasoning in VLMs.

2 RELATED WORK

RL training with external verifiers. Reinforcement learning has become a dominant paradigm
for aligning large models. RLHF aligns LLMs with human intent through preference data (Ouyang
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et al., 2022), while Direct Preference Optimization (DPO) reframes preference learning as a con-
trastive loss without explicit reward models (Rafailov et al., 2023). Constitutional AI replaces human
raters with rule-based AI feedback (Bai et al., 2022). More recently, verifier-driven RL has achieved
notable success in domains such as code and math, where correctness can be mechanically checked
(Le et al., 2022; Shao et al., 2024). However, in domains lacking such verifiers, many systems
fall back on LLM-as-a-judge signals. While convenient, these rewards are biased, noisy, and ad-
versarially manipulable (Raina et al., 2024; Chen et al., 2024b), undermining their reliability. This
limitation motivates the search for scalable alternatives where correctness is intrinsic to the data.

RL training with self-reward. Several methods attempt to reduce dependence on external labels or
verifiers by enabling models to generate their own training signals. Self-Instruct (Wang et al., 2023b)
bootstraps fine-tuning data through synthetic instructions, while STaR (Zelikman et al., 2022) and
Reflexion (Shinn et al., 2023) improve reasoning via self-generated rationales and feedback. Self-
Consistency (Wang et al., 2023a) aggregates multiple sampled rationales to increase reliability. Re-
inforced Pre-Training (RPT) scales this idea by using RL objectives such as next-token prediction at
the pretraining stage (Liu et al., 2025a). While these methods reduce the need for human labels, they
still optimize toward approximating original task accuracy, often requiring correctness evaluation or
model-judging heuristics. In contrast, our approach seeks verifiable, abundant signals outside the
original task by reinterpreting SSL tasks as reinforcement rewards.

Self-supervised learning across modalities. Self-supervision has been the foundation of repre-
sentation learning across domains. In language, pretext tasks include masked language modeling
(Devlin et al., 2019; Lewis et al., 2020; Raffel et al., 2020) and next-token prediction. Variants that
mask reasoning steps show promise in enhancing mathematical reasoning (Chen et al., 2024a). In
vision, early tasks include rotation (Gidaris et al., 2018), jigsaw (Noroozi & Favaro, 2016), and
context prediction (Doersch et al., 2015), while modern SSL emphasizes contrastive learning (Chen
et al., 2020; He et al., 2020; Grill et al., 2020; Caron et al., 2021) and generative masking (He et al.,
2022). In multimodal learning, CLIP (Radford et al., 2021) and ALBEF (Li et al., 2021) demon-
strate the power of contrastive and distillation objectives for aligning vision and language. Graph
SSL extends these principles to structural data, with node/edge masking (Hu et al., 2020; Hou et al.,
2022) and contrastive augmentations (You et al., 2020). A unifying property of all these objectives is
their intrinsically verifiable targets, making them natural candidates for repurposing as RL rewards.
The most relevant work is Jigsaw-R1 (Wang et al., 2025), which first establishes jigsaw puzzles as
an effective pretext task for MLLM reinforcement learning. We generalize this concept into a uni-
fied SSL4RL framework beyond one specific task and can be applied to other domains like graphs.
Through comprehensive studies, we systematically investigate the scaling of data volume, model
size, task difficulty, and task combinations, offering broader insights into this learning paradigm.

Building on these threads, our work unifies SSL and RL post-training. By treating SSL objectives
as reinforcement rewards, SSL4RL supplies dense, scalable, and verifiable signals without human
annotations, model-judging heuristics, or handcrafted verifiers. This perspective highlights that the
supervision already embedded in SSL tasks can be harnessed to drive reasoning improvements.

3 SSL4RL FRAMEWORK

We formalize SSL4RL as a general recipe for converting self-supervised learning (SSL) objectives
into reinforcement learning (RL) rewards for post-training large language models and related archi-
tectures. This section introduces the notation, shows how SSL tasks are reinterpreted under the RL
formalism, and describes the optimization strategy. A high-level illustration of the framework is
shown in Figure 1.

Problem Setup. Let πθ denote a parametric model with parameters θ, defined over sequences of
actions. In vision–language tasks, actions may include discrete classification labels (e.g., rotations,
patch indices) or text tokens. We assume access to a data distribution D of inputs x ∈ X , which
can be text and images. In the standard RL formalism, a trajectory τ is generated by rolling out πθ

in an environment E , and receives a scalar reward R(τ). In SSL4RL, the “environment” is defined
by a corruption function c(x) = (x̃, y), which maps an input x into a corrupted context x̃ and a
ground-truth target y. The policy πθ conditions on x̃ to produce an output ŷ, and a reward r(ŷ, y)
is computed based on agreement with the ground truth. Thus, every SSL task induces an RL task:
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Figure 2: Four SSL4RL tasks considered in our study. Rotation: An image is rotated by a predefined
angle, and the task is to predict this angle. Jigsaw: After dividing an image into a grid and permuting
the patches, the goal is to predict the correct permutation index. Contrastive: Two augmented views
are generated from an image, and the objective is to identify whether two given views originate from
the same source image. Position: Given an image and a single patch cropped from it, the task is to
predict the patch’s original spatial position.

the corruption defines the environment, the target defines the verifiable ground truth, and the reward
function provides supervision.

From SSL to RL Rewards. Our work revisits four representative SSL pretext tasks, depicted in
Figure 2. Each SSL task is defined by a tuple (c, y, r), where c is a corruption function applied
to the inputs x (specifically referring to images), y is the self-supervised target derived from the
corruption, and r is the reward signal computed based on the model’s prediction ŷ. Specifically,

• Rotation Prediction (Gidaris et al., 2018): c(x, y) rotates x by an angle y. The reward is
r = 1[ŷ = y], where ŷ is the predicted angle.

• Jigsaw Puzzles (Noroozi & Favaro, 2016): c(x, y) partitions x into a grid and permutes
patches by index y. The reward is r = 1[ŷ = y], where ŷ is the predicted permutation.

• Contrastive Learning (Chen et al., 2020; Radford et al., 2021): c(x) generates augmented
views. The reward r is a binary classification, imitating the InfoNCE similarity score that
encourages high similarity for positive pairs and low similarity for negatives.

• Patch Position Prediction (Doersch et al., 2015): c(x, y) extracts a patch from location y.
The reward is r = 1[ŷ = y], where ŷ is the predicted location.

These rewards are verifiable as they are computed against unambiguous ground-truth targets y.

Optimization via GRPO. We adopt Grouped Reinforcement Policy Optimization (GRPO) (Shao
et al., 2024), an efficient policy-gradient method designed for large-scale LLM training. Given
a reference policy π0 (e.g., the supervised fine-tuned model before RL), GRPO optimizes πθ by
maximizing the following regularized objective:

J (θ) = Eτ∼πθ
[R(τ)− βKL(πθ(·|τ) ∥π0(·|τ))] , (1)

where R(τ) is the SSL-derived reward, and β controls the strength of KL regularization. The KL
penalty prevents divergence from the reference distribution and stabilizes training. GRPO performs
updates by sampling rollouts, normalizing rewards across groups, and applying clipped policy-
gradient updates similar to PPO (Schulman et al., 2017), but in a manner more compute-efficient
for large batch LLM training. All experiments in this work apply the same GRPO configuration
across tasks, ensuring that differences in outcomes are attributable to the choice of SSL reward.

4 WHAT MAKES A GOOD SSL4RL TASK?

In this section, we examine the core principles for designing effective SSL4RL tasks through com-
prehensive experiments on vision-language reasoning (Section 4.1), open-ended image-captioning
(Section 4.2), and vision-centric benchmarks (Section 4.3). Our results indicate that standard SSL
strategies do not directly transfer to the SSL4RL setting. We provide a robustness analysis in Section
4.4. In Section 4.5, we present ablation studies on data volume, model size, base model choice, task
difficulty scaling, and task combinations to elucidate these design principles further.
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4.1 VISION-LANGUAGE REASONING TASKS

SSL Task Settings. For each SSL pretext task, we implement the following configurations. In
Rotation, images are rotated counterclockwise by a randomly selected angle from 0°, 90°, 180°,
270°. In Jigsaw, each image is partitioned into a 2×2 grid, and the patches are randomly shuffled. In
Contrastive, we apply the standard augmentation pipeline from Chen et al. (2020), including color
jittering, grayscale conversion, Gaussian blur, horizontal flipping, and random resized cropping,
each with an application probability of 0.2. In Position, the image is divided into four equal quad-
rants, and the target is to identify which quadrant (upper-left, upper-right, lower-left, lower-right)
contains a specified patch.

Training and Evaluation Settings. Our experiments primarily adopt Qwen-2.5-VL-3B/7B-Instruct
(Bai et al., 2025) for their moderate sizes and strong reasoning performance. For GRPO training,
we set the group size to be 5, the KL loss coefficient to be 0.01, the entropy loss coefficient to be 0,
and the context length to be 2048. We train the models on 8xA800 GPUs with a batch size of 512.
For evaluation, we adopt the third-party evaluation tool VLMEvalKit (Duan et al., 2024), with the
default sampling configured with a temperature of 0.01, top-p of 0.001, and top-k of 1. We visualize
the rewards, entropy, and response length trajectories during RL training in Appendix K.

Benchmarks. We assess our approach on six prominent Vision Questioning Answer (VQA) bench-
marks: MMBench (Liu et al., 2024), SEED-Bench (Li et al., 2023), V* (Wu & Xie, 2024), Real-
WorldQA (xAI, 2024), BLINK (Fu et al., 2024), and MME-RealWorld-Lite (Zhang et al., 2024),
featuring challenging VLMs’ ability on visual perception, spatial understanding, detail capturing,
real-world applications, and so on. Detailed datasets descriptions are provided in Appendix I.

Results. Overall, the proposed SSL4RL paradigm leads to substantial performance gains on vision
questioning answer tasks. Shown in Table 1 and Appendix Table 23, on average, SSL4RL models
outperform the base model by 7.39% on MMBench and 8.94% on SEED-Bench. Notably, SSL4RL
achieves a remarkable improvement of 39.00 percentage points (80.54% vs. 41.54%) on the Rela-
tion Reasoning task in MMBench. On the Visual Reasoning task of SEED-Bench, the improvement
reaches up to 19.63 percentage points (73.41% vs. 53.78%). Results of other benchmarks are
presented in Appendix Table 24, where the SSL4RL strategy brings significant improvements, espe-
cially on V* (+8.90%) and RealWorldQA (+9.55%). These consistent improvements validate the
effectiveness of SSL4RL in enhancing vision-language reasoning. To contextualize the performance
of our SSL4RL method, we include a strong baseline VLM-R1 (Shen et al., 2025). We fine-tune the
base model on 60% of the benchmark and evaluate on the held-out test set. The RL reward is com-
puted directly based on the golden answer. We denote the tuned model as Golden-3B (see more
details in Appendix G). As shown in Appendix Table 20 and 21, the performance gap between our
SSL4RL variants and the Golden-3B oracle is relatively small (e.g., 81.35% vs. 84.93% on MM-
Bench, and 69.80% vs 73.21% on SEED-Bench), compared to our improvements over base models.
This demonstrates that our self-supervised objectives, which require no labeled downstream data,
can effectively close the gap to the performance driven by idealized, task-specific reward signals.

Table 1: Test performance (%) on MMBench downstream tasks. Logical: Logical Reasoning, Re-
lation: Relation Reasoning, Attribute: Attribute Reasoning, Coarse: Coarse Perception, Cross Inst.:
Cross-Instance Fine-grained Perception, Single-Inst.: Single-Instance Fine-grained Perception.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base Qwen2.5-VL-3B 61.77 41.54 76.62 73.55 64.32 82.06 72.99

SSL4RL

Rotation 65.84 80.54 83.89 80.21 71.53 84.76 80.38
Jigsaw 62.86 74.51 80.35 77.92 67.82 84.31 77.82

Contrastive 61.12 73.42 71.81 65.38 58.39 78.50 69.27

Position 67.65 77.19 82.22 82.15 66.51 85.39 80.08

Maximal Improvement ↑ 5.88 ↑ 39.00 ↑ 6.77 ↑ 8.60 ↑ 7.21 ↑ 3.33 ↑ 7.39

Analysis. Our experimental analysis reveals that the Rotation and Position pretext tasks consistently
yield the strongest performance gains. The success of the Position task is intuitive, as localizing a
patch within the global image compels the model to integrate fine-grained local details with the
overall scene layout, fostering integrated spatial understanding. In contrast, the remarkable effec-
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tiveness of the Rotation task presents a more nuanced insight. Despite its perceptual simplicity
for humans, we find the task poses a considerable challenge to VLMs, as evidenced by the base
model’s near-chance accuracy. We interpret this as evidence that rotation prediction facilitates “anti-
commonsense” learning. The model’s pre-training instills a strong prior for canonical orientations,
e.g., people are typically depicted upright. Rotated images violate this prior, forcing the model to
reconcile anomalous inputs with its existing knowledge, thereby sharpening its relational reasoning
and visual comprehension. Conversely, the standard Contrastive task leads to performance degra-
dation on some downstream tasks. We hypothesize that its default augmentations are insufficiently
challenging, causing the model to overfit to superficial invariances without learning semantically
meaningful structures. Subsequent ablation studies confirm this: employing a more aggressive aug-
mentation strategy recovers significant performance. This finding highlights the critical need to
align SSL task difficulty with model capacity to elicit generalizable feature learning, as explored in
Section 4.5.2. Through a sub-task specific analysis, we find that Rotation exhibits superior perfor-
mance in Relation Reasoning and Cross-Instance Perception, which can be attributed to its inherent
requirement for a structural comprehension of object orientation and spatial relationships. Position
demonstrates leading results in Logical Reasoning and holistic Scene Understanding, as its objective
of reconstructing a coherent scene from disparate patches fosters robust integrative scene modeling.
Jigsaw shows consistent utility in domains reliant on contextual reasoning. Limited by the insuffi-
cient augmentations, Contrastive’s optimization for global image similarity appears to inadequately
cultivate the fine-grained and relational reasoning capabilities.

Figure 3: Cross-Attention Heatmap
Comparison. More instances are shown
in Appendix L.

Observations. Through a qualitative analysis of model
responses, we observe two key improvements attributable
to SSL4RL training. (1) Sharper Attention: The trained
models exhibit more precise attention alignment with text
queries. For instance, when queried about “hair” (Fig-
ure 3), the base model’s attention is diffuse, whereas our
model accurately focuses on the relevant region. This is
not merely an effect of sparsity, as evidenced by the “sky”
query (Appendix Figure 13): our model attends to the
entire sky, while the base model activates only scattered
pixels. (2) Reduced Language Bias: SSL4RL mitigates
over-reliance on linguistic priors, fostering greater depen-
dence on visual evidence. For example, when asked about
a chandelier’s color (Appendix Figure 12), the base model
defaults to a common-sense response (e.g., a typical dec-
orative color), while our model localizes the object and
answers based on the actual appearance.

� Takeaway
SSL as Intrinsic Reward Sharpens VLM Reasoning. The SSL4RL paradigm demonstrably enhances
vision-language reasoning by repurposing SSL tasks as intrinsic rewards. It deepens the perception and
understanding of the image itself, leading towards more precise visual attention and less language bias.

Task Choice is Critical. SSL tasks show effectiveness when their inherent semantic aligns with core
reasoning skills (e.g, Position and Rotation), while an inappropriate task may induce negative transfer and
hinder downstream performance.

4.2 OPEN-ENDED VISION-LANGUAGE TASK: IMAGE CAPTIONING

SSL4RL requires no human labels, external verifiers, or heuristic judges, yet produces dense and
scalable reinforcement signals. Intuitively, it has potential for open-ended tasks where ground truth
is ill-defined and human annotations are expensive. To evaluate SSL4RL’s potential on open-ended
tasks, we leverage a recent image captioning platform, CapArena (Cheng et al., 2025), where cap-
tions from a test model are compared against those from strong baseline models using GPT-4o as a
judge, with human references provided for context. See Appendix I.2 for more details. As shown
in Table 2. SSL4RL consistently improves over the base model, with the largest performance
gain of 8.14 points (56.45 vs. 48.31). This clearly shows that the self-supervised rewards provide a
meaningful learning signal even in the absence of a verifiable ground truth.
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Qualitative Insights. We conduct a qualitative comparison with examples in Appendix Table
26, shed light on how SSL4RL enhances open-ended generation: (1) Enhanced Detail Capture.
SSL4RL models correctly capture more details in the image. For instance, our SSL4RL model cor-
rectly identifies a ”scoreboard” displaying ”1 0 0” and a ”disabled persons’ sign,” which the base
model either misinterprets or omits. (2) Improved Spatial Reasoning. SSL4RL models tend to use
more precise spatial descriptors like ”behind the fence,” ”to the left of,” and ”the center of the court”,
aligning well with the spatial reasoning ability required by SSL pretext tasks. In summary, by pro-
viding a dense, automated learning signal derived from the data’s intrinsic structure, our method
successfully improves model performance on the complex, open-ended task of image captioning.

Table 2: Scores on CapArena Platform. GPT-Score: the score against GPT-4o. Cog-Score: the score
against CogVLM-19B. CPM-Score: the score against MiniCPM-8B.

Category Model GPT-Score Cog-Score CPM-Score Average
Base Qwen2.5-VL-3B 0.00 6.48 92.96 48.31

SSL4RL-3B

Rotation 19.15 49.30 96.48 55.28

Jigsaw 8.87 54.93 98.59 55.64

Contrastive 4.96 57.95 100.00 56.45

Position 0.00 59.15 92.25 51.04

4.3 VISION-CENTRIC TASKS: IMAGENET CLASSIFICATION

Benchmarks. We further evaluate the SSL4RL paradigm on vision-centric tasks using the
ImageNet-1K dataset (Deng et al., 2009), which comprises approximately 1.3 million images across
1,000 categories. From this dataset, we construct a balanced subset of 100,000 training and 10,000
test images. To probe reasoning capabilities at varying difficulty levels, we design three question
types: (1) Completion: directly answer with the species name; (2) Choice-20: select the correct
species from 20 candidates; (3) Choice-200: select the correct species from 200 candidates.

Results. As shown in Table 3, models fine-tuned with SSL4RL consistently outperform the base
model across all question types on the ImageNet-1K classification task. Consistent with findings
on reasoning benchmarks, the Position task leads to the largest performance gains, e.g., 67.14% vs.
57.20% on Choice-200. However, a key divergence emerges with the Contrastive task. While it
underperformed on vision-language reasoning, it shows competitive results on ImageNet classifica-
tion. We attribute this result to the nature of the downstream benchmark. As an instance discrim-
ination task, ImageNet benefits from learning strong semantic representations through invariance
to augmentations—precisely the strength of contrastive learning. This result also verifies that task
selection for SSL4RL must consider the specific capabilities required by the target application.

Table 3: Test performance (%) on ImageNet downstream tasks.

Category Model Completion Choice-20 Choice-200
Base Model Qwen2.5-VL-3B 24.93 85.22 57.10

SSL4RL

Rotation 29.19 87.26 58.48
Jigsaw 28.75 87.55 60.80
Contrastive 26.84 89.51 61.78
Position 28.76 92.35 67.14

4.4 ROBUSTNESS ANALYSIS

Settings. To evaluate our model’s robustness, we conducte a comprehensive evaluation under vari-
ous image perturbations. We designed two levels of perturbation—weak and strong—to assess the
models’ resilience to visual corruptions. The weak perturbation applies a series of common im-
age transformations, each with a probability of 0.5, including color jittering, random conversion to
grayscale, Gaussian blur, and horizontal flipping. The strong perturbation builds upon the weak one
by incorporating an additional multi-crop strategy. This strategy generates two 224×224 pixel crops
per image via randomly resized cropping (scale range [0.08, 1.0]), presenting a more significant
challenge to the model’s perception. Examples of these perturbed images are provided in Figure 6.
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Results. As shown in Table 18 and Table 19, our method consistently demonstrates superior robust-
ness across both perturbation levels. For instance, under weak perturbation, our SSL4RL-Rotation
model achieves an average score of 72.11%, outperforming the base model at 66.80%. This per-
formance gap is maintained under strong perturbation, where our SSL4RL-Position model scores
64.37% compared to the base model’s 59.62%. These results confirm that our SSL4RL strategy
effectively enhances the model’s robustness to photometric variations.

4.5 ABLATION STUDY

4.5.1 DATA VOLUME SCALING

A key question for data-driven methods is the ability to leverage increasing amounts of data. To
characterize the relationship between performance and data scaling for SSL4RL, we progressively
expand our training dataset, obtaining three regimes of increasing data volumes: (1) Base Set:
∼4,000 samples from MMBench. (2) Extended Set: ∼18,000 samples from a mixture of MMBench
and SEED-Bench. (3) Full Set: ∼118,000 samples from MMBench, SEED-Bench, and ImageNet.

We select the representative Position for evaluation. The results, detailed in Table 4, demonstrate
a clear positive scaling relationship across almost all subtasks. When scaling from Base Set to Ex-
tended Set, the average performance on MMBench improved from 80.08% to 81.38%, a gain of
+1.30%. A further expansion to the Full Set yielded an additional +1.04% improvement, reaching
82.42%. This consistent, monotonic improvement suggests that the effectiveness of SSL4RL con-
tinues to benefit from larger, more diverse datasets. We provide more discussions in Appendix E.

Table 4: Performance (%) on MMBench with increasing training data volumes.

Model Training Volumes Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Qwen2.5-VL-3B − 61.77 41.54 76.62 73.55 64.32 82.06 72.99

SSL4RL-Position

4,000 67.65 77.19 82.22 82.15 66.51 85.39 80.08

18,000 68.71 79.26 85.03 81.65 70.16 86.47 81.38

118,000 68.77 79.29 84.26 83.66 72.87 88.31 82.42

4.5.2 MODEL SIZE SCALING

To investigate the scalability of the SSL4RL paradigm, we apply it to the larger Qwen2.5-VL-
7B-Instruct model. The results (Table 5 and Appendix Table 9) confirm that SSL4RL still yields
improvements over the base model, notably enhancing Logical Reasoning on MMBench by 3.70%
and Text Understanding on SEED-Bench by 3.57%. However, the gains are less pronounced than
those observed with the 3B model. Even after increasing the task difficulty to a 5×5 grid for Jigsaw
and Position tasks, no significant improvement was observed (see Appendix C).

We attribute these diminishing returns to a fundamental ceiling effect imposed by the predefined
SSL tasks. The absolute difficulty of the four SSL tasks is fixed, presenting a suitable challenge for
the 3B model but potentially failing to engage the full capabilities of a 7B model. The larger model’s
enhanced abilities could render the tasks trivial, thereby weakening their effectiveness as a learning
signal. This underscores a key insight: the efficacy of an SSL task is contingent on its ability to
present a non-trivial challenge commensurate with the model’s capacity. Consequently, a primary
challenge for future work is the design of adaptive or inherently more complex SSL objectives
that can continue to provide a learning signal for large-scale models. In Appendix J, we provide a
preliminary exploration of harder SSL4RL tasks on 7B models.

Table 5: Test performance (%) of 7B models on MMBench downstream tasks.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base Qwen2.5-VL-7B 76.49 84.68 85.69 84.66 84.49 89.15 86.37

SSL4RL-7B

Rotation 78.70 86.16 87.13 85.91 88.47 88.92 87.50
Jigsaw 80.19 84.64 88.02 85.70 84.53 90.93 87.73
Contrastive 77.73 83.19 84.58 85.89 85.29 87.74 86.25
Position 79.06 82.13 85.29 85.02 85.42 88.95 86.25

Maximal Improvement ↑ 3.70 ↑ 1.48 ↑ 2.33 ↑ 1.25 ↑ 3.98 ↑ 0.98 ↑ 1.36
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4.5.3 BASE MODEL CHOICE

To evaluate whether the benefits of SSL4RL extend to architectures beyond the Qwen2.5-VL series,
we select Gemma3-4B (Team et al., 2025), a recent and powerful model from Google with a distinct
architecture. To ensure a fair comparison under computational constraints, we adapted our training
setup by halving the batch size to 256 while meticulously preserving all other hyperparameters and
training procedures. Results presented in Appendix Table 22 provide strong evidence for the general
applicability of our method. On the Gemma3 base model, our SSL4RL models yield a consistent
and notable average performance improvement of 2.88% on MMBench. The gain is particularly
pronounced in Cross-instance Perception (5.76%), Logical Reasoning (4.35%), and Attribute
Reasoning (4.13%). Moreover, the relative efficacy of the individual SSL4RL tasks is remarkably
consistent with our prior findings. As with Qwen2.5-VL, tasks like Rotation and Position confer
the most significant benefits, while the simpler Contrastive task shows more modest gains. The
consistent results validate that SSL4RL is a general-purpose principle for VLMs, not an artifact of a
particular model family.

4.5.4 TASK DIFFICULTY SCALING

To investigate the role of task difficulty, we design more challenging self-supervised learning (SSL)
tasks by intensifying their corruption strategies. Specifically, for the Position and Jigsaw tasks, we
increase the crop granularity from 2 to 3, resulting in a finer 3×3 grid of patches. For the Contrastive
task, we enhance the augmentation strength by raising the application probability from 0.2 to 0.8
and reducing the maximum crop scale from 1.0 to 0.3, thereby generating positive samples that
differ more substantially from the anchor image. For the Rotation task, we refine the rotation angle
interval from 90° to 45°, increasing the complexity of the angle prediction.

Rotation
(90° vs 45°)

Jigsaw
(2x2 vs 3x3)

Contrastive
(Weak vs Strong)

Position
(2x2 vs 3x3)
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Figure 4: Test accuracy (%) on MM-
Bench, varying the SSL task difficulty.

The impact of task difficulty varies considerably across
different SSL tasks, as evidenced by the results in Figure
4 (full results in Appendix C). The performances for the
Contrastive task shows a marked improvement upon in-
creasing its difficulty, elevated from 69.27% to 77.89% on
MMBench and from 61.90% to 65.00% on SEED-Bench.
Conversely, the benefits are marginal for the Position task
and even detrimental for Rotation and Jigsaw. A plausible
explanation is that the Contrastive task’s inherent simplic-
ity as a binary discrimination problem means that raising
the difficulty compels the model to learn more robust and
informative features. On the other hand, exacerbating the
difficulty of already challenging tasks like Jigsaw might
induce over-specialization to the SSL objective, resulting in a negative transfer where the learned
representations are less transferable or even counterproductive for downstream reasoning.

4.5.5 TASK COMBINATION

Rotation Jigsaw Contrastive PositionCombination
Models
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Figure 5: Test accuracy of SSL tasks.

The preceding sections primarily investigate the effect of
individual SSL rewards. A natural subsequent question
is whether combining them during training can yield bet-
ter performance compared to any single reward. To ex-
plore this, we train the Qwen2.5-VL-3B-Instruct model us-
ing a combination of all four SSL rewards. As illustrated
in Figure 5, the combined approach, somewhat counterin-
tuitively, does not yield significant improvements over the
best single-reward setups. We hypothesize that this lack of
additive improvement stems from several potential factors.
First, different SSL tasks may encourage the model to learn
complementary yet potentially conflicting feature represen-
tations. Simultaneously optimizing for multiple, distinct objectives could create a difficult optimiza-
tion landscape where the model struggles to find a unified representation that satisfies all constraints
at once, leading to interference rather than synergy. Second, the individual reward signals might
vary in scale and dynamics, making it non-trivial to balance their contributions effectively without
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careful reward shaping or weighting. A simple averaging of rewards might drown out the most use-
ful learning signals. This finding suggests that a naive combination of SSL rewards is insufficient
for achieving cumulative gains. It points to the need for more sophisticated integration strategies,
such as dynamic reward weighting, curriculum learning that schedules different tasks, or even a
meta-learner that selects the most beneficial task at different training stages.

� Takeaway
Goldilocks Principle of Task Difficulty. The effectiveness of an SSL task is contingent on its difficulty
being appropriately matched to the model’s capacity. Insufficient challenge provides a weak learning
signal, while excessive difficulty leads to negative transfer.

Diminishing Returns with Model Size. The performance gains from the four SSL tasks diminish as
model size increases (from 3B to 7B), suggesting designing SSL tasks with inherently higher complexity
for large-scale models.

Non-additivity of Rewards. A naive combination of multiple SSL rewards does not yield cumulative
improvements, indicating potential optimization conflicts and underscoring the need for sophisticated
integration strategies rather than simple averaging.

5 EXTENSION TO OTHER DOMAINS: AN EXAMPLE ON GRAPH

Having established SSL4RL for vision-language reasoning, we now explore its broader applicability.
The paradigm’s core principle—generating rewards from data transformations—naturally extends to
any domain with rich structural information. Beyond images, graph-structured data presents a com-
pelling candidate, given its explicit relational semantics that are amenable to various pretext tasks.
In this section, we empirically validate this potential by adapting SSL4RL to the graph domain. We
provide details of tasks, reward definitions, and benchmarks in Appendix D. The results in Table
6 and Appendix Table 16 demonstrate the successful application of SSL4RL to graph-structured
data. The 3B model shows substantial improvements, with gains up to 13.79% on average, while
the 7B model exhibits diminishing returns, mirroring our observations in the visual domain and re-
inforcing the “difficulty-capacity matching” principle. Furthermore, the relative effectiveness of the
self-supervised tasks is contingent upon the nature of the downstream objective. Tasks emphasiz-
ing structural reasoning (Link and Neighbor Prediction) yield better performance on relation-centric
tasks such as link prediction. Conversely, tasks focused on feature reconstruction (Attribute Mask)
demonstrate a comparative advantage on node classification benchmarks. These findings not only
validate the generalizability of the SSL4RL framework beyond the visual modality but also highlight
the critical importance of aligning the pretext task’s inductive bias with the target application.

Table 6: Test performance (%) of 3B models on downstream graph tasks.

Category Model Cora PubMed WikiCS Products fb15k237 wn18rr Average
Base model Qwen2.5-VL-3B 21.80 64.26 30.50 7.93 26.30 29.80 30.09

SSL4RL-3B
Attribute 55.80 73.27 57.62 8.03 32.50 36.10 43.88
Neighbor 39.00 74.37 50.84 12.65 36.10 36.60 41.59
Link 31.30 71.97 55.93 4.91 46.50 41.10 41.95

Maximal Improvement ↑ 34.00 ↑ 10.11 ↑ 27.12 ↑ 4.42 ↑ 20.20 ↑ 11.30 ↑ 13.79

6 CONCLUSIONS

We have introduced SSL4RL, a framework that repurposes self-supervised tasks as verifiable re-
inforcement learning rewards for post-training vision–language models. Our study shows that
SSL4RL not only improves performance on vision-centric benchmarks such as ImageNet-1K, but
also enhances multimodal reasoning, achieving substantial gains on MMBench and SEED-Bench.
These findings suggest a broader principle: verifiable and scalable supervision signals are already
embedded in self-supervision, and with proper task selection they can drive alignment and reasoning
in VLMs without reliance on external verifiers, judges, or costly human labels. Looking forward,
SSL4RL opens a path toward safer and more capable multimodal foundation models by unifying the
strengths of self-supervision and reinforcement learning.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are primarily employed for polishing the language of the manuscript to ensure
grammatical correctness and coherence. Importantly, all conceptual development, theoretical analy-
sis, experimental design, and result interpretation are conducted independently by the authors. The
use of LLMs is strictly limited to auxiliary tasks, ensuring that the scientific contributions of this
paper remain entirely unaffected by such tools.

A DETAILED RESULTS OF MMBENCH

In this section, we present the detailed leaf task results of MMBench in Tables 7 and 8.

Table 7: Test performance (%) of 3B models on MMBench downstream tasks. IR: Identity Rea-
soning, PPR: Physical Property Reasoning, FR: Function Reasoning, OL: Object Localization, SIU:
Structuralized Imagetext Understanding, AtR: Attribute Recognition, FP: Future Prediction, SR:
Spatial Relationship, IS: Image Scene, IQ: Image Quality, Ace: Action Recognition, AC: Attribute
Comparison, IT: Image Topic, NR: Nature Relation, PR: Physical Relation, SR: Social Relation,
CR: Celebrity Recognition, IS: Image Style, OCR: OCR, IE: Image Emotion.

Category Model IR PPR FR OL SIU AtR FP SR IS IQ Ace AC IT NR PR SR CR IS OCR IE Average
Base Qwen2.5-VL-3B 86.36 60.27 83.22 63.17 71.99 81.44 51.54 45.20 91.15 46.67 84.65 63.12 82.86 64.25 47.87 38.37 89.39 82.55 94.23 64.50 72.99

SSL4RL-3B

Rotation 97.16 66.67 87.83 63.49 75.53 85.23 56.15 56.50 95.82 55.33 89.30 68.79 87.14 70.39 64.89 88.37 95.45 87.26 94.87 75.50 80.38
Jigsaw 91.48 64.38 85.20 61.59 73.40 89.02 52.31 53.11 93.86 56.00 86.51 63.83 87.86 64.25 59.57 81.98 94.95 85.38 91.67 66.50 77.82

Contrastive 90.34 52.05 73.03 60.32 69.15 78.03 53.08 32.77 88.45 42.00 81.40 60.99 82.14 36.87 57.45 81.40 90.40 61.79 85.26 52.50 69.27

Position 95.45 64.38 86.84 66.03 78.37 86.36 56.92 42.37 96.31 58.00 89.77 67.38 86.43 68.16 60.64 85.47 94.95 91.51 94.23 78.50 80.08

Combination 95.45 61.64 82.24 68.25 77.66 89.77 54.62 45.76 94.10 55.33 90.23 63.83 87.86 61.45 54.26 90.12 94.19 89.15 94.87 67.50 78.77

Table 8: Test performance (%) of 7B models on MMBench downstream tasks. IR: Identity Rea-
soning, PPR: Physical Property Reasoning, FR: Function Reasoning, OL: Object Localization, SIU:
Structuralized Imagetext Understanding, AtR: Attribute Recognition, FP: Future Prediction, SR:
Spatial Relationship, IS: Image Scene, IQ: Image Quality, Ace: Action Recognition, AC: Attribute
Comparison, IT: Image Topic, NR: Nature Relation, PR: Physical Relation, SR: Social Relation,
CR: Celebrity Recognition, IS: Image Style, OCR: OCR, IE: Image Emotion.

Category Model IR PPR FR OL SIU AtR FP SR IS IQ Ace AC IT NR PR SR CR IS OCR IE Average
Base Qwen2.5-VL-7B 98.30 66.67 92.11 74.60 82.98 88.64 70.00 76.27 97.05 58.00 92.09 85.11 91.43 88.83 69.15 92.44 97.22 94.81 96.15 82.00 86.37

SSL4RL-7B

Rotation 97.73 71.23 92.43 71.11 89.72 90.15 67.69 78.53 97.79 61.33 92.56 94.33 90.71 85.47 71.28 93.60 96.97 96.23 97.44 83.50 87.50

Jigsaw 97.73 74.89 91.45 75.24 86.52 93.56 73.85 74.01 97.54 60.67 91.63 87.94 90.00 89.39 70.21 91.86 97.47 94.81 97.44 85.50 87.73
Contrastive 98.30 63.01 92.43 74.29 85.46 85.61 70.00 77.97 97.30 63.33 93.49 84.40 88.57 85.47 67.02 91.28 97.47 95.75 93.59 84.50 86.25

Position 98.30 63.01 92.43 74.29 85.46 85.61 70.00 77.97 97.30 63.33 93.49 84.40 88.57 85.47 67.02 91.28 97.47 95.75 93.59 84.50 86.25

Combination 97.73 73.97 92.11 71.43 90.43 95.08 70.77 74.58 97.79 61.33 93.49 81.56 92.14 89.39 68.09 93.02 97.47 93.87 96.79 84.50 85.78

B RESULTS OF SSL4RL 7B-MODEL ON SEED-BENCH

In Table 9, we present the SEED-Bench results for the SSL4RL 7B-models.

Table 9: Test performance (%) of 7B models on SEED-Bench downstream tasks. TU: Text Under-
standing, VR: Visual Reasoning, SU: Scene Understanding, IId: Instance Identity, IIn: Instance In-
teraction, IA: Instance Attributes, IL: Instance Location, SR: Spatial Relation, IC: Instances Count-
ing.

Category Model TU VR SU IId IIn IA IL SR IC Average
Base Qwen2.5-VL-7B 72.62 77.95 77.99 77.44 75.26 76.19 71.98 62.56 69.55 74.70

SSL4RL-7B

Rotation 76.19 78.25 78.59 77.94 73.20 76.90 73.11 64.23 69.76 75.33

Jigsaw 70.24 79.15 78.44 77.66 76.29 76.58 73.01 63.77 69.27 75.05

Contrastive 71.43 78.85 78.28 78.32 76.29 76.47 72.70 64.69 70.33 75.27

Position 70.24 80.66 78.82 77.44 71.13 77.97 72.19 64.38 69.39 75.56
Maximal Improvement ↑ 3.57 ↑ 2.71 ↑ 0.83 ↑ 0.88 ↑ 1.03 ↑ 1.78 ↑ 1.13 ↑ 2.13 ↑ 0.78 ↑ 0.86
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C DETAILED RESULTS OF THE ABLATION STUDY ABOUT DIFFICULTY

From Table 10 to Table 13, we provide detailed experimental results for the ablation study on task
difficulty of MMBench, SEED-Bench, and ImageNet1k.

Table 10: Test performance (%) of 3B models trained with different task difficulties on MM-
Bench downstream tasks. IR: Identity Reasoning, PPR: Physical Property Reasoning, FR: Function
Reasoning, OL: Object Localization, SIU: Structuralized Imagetext Understanding, AtR: Attribute
Recognition, FP: Future Prediction, SR: Spatial Relationship, IS: Image Scene, IQ: Image Quality,
Ace: Action Recognition, AC: Attribute Comparison, IT: Image Topic, NR: Nature Relation, PR:
Physical Relation, SR: Social Relation, CR: Celebrity Recognition, IS: Image Style, OCR: OCR,
IE: Image Emotion.

Model Difficulty IR PPR FR OL SIU AtR FP SR IS IQ Ace AC IT NR PR SR CR IS OCR IE Average
Qwen2.5-VL-3B − 86.36 60.27 83.22 63.17 71.99 81.44 51.54 45.20 91.15 46.67 84.65 63.12 82.86 64.25 47.87 38.37 89.39 82.55 94.23 64.50 72.99

Rotation 90-degree 97.16 66.67 87.83 63.49 75.53 85.23 56.15 56.50 95.82 55.33 89.30 68.79 87.14 70.39 64.89 88.37 95.45 87.26 94.87 75.50 80.38

45-degree 93.75 64.84 87.83 66.67 74.11 90.15 58.46 46.33 95.33 53.33 88.84 65.25 87.14 65.92 54.26 90.12 93.94 86.79 92.31 70.50 79.16

Jigsaw 2x2 91.48 64.38 85.20 61.59 73.40 89.02 52.31 53.11 93.86 56.00 86.51 63.83 87.86 64.25 59.57 81.98 94.95 85.38 91.67 66.50 77.82

3x3 93.75 60.27 82.57 60.95 65.60 84.47 49.23 51.41 91.89 56.67 83.26 65.25 82.86 66.48 50.00 78.49 85.35 85.85 88.46 72.00 75.12

Contrastive Weak 90.34 52.05 73.03 60.32 69.15 78.03 53.08 32.77 88.45 42.00 81.40 60.99 82.14 36.87 57.45 81.40 90.40 61.79 85.26 52.50 69.27

Strong 94.89 64.84 82.24 63.49 77.30 86.36 51.54 44.07 95.82 47.33 89.30 70.21 85.71 59.78 52.13 86.63 94.44 87.74 92.31 70.50 77.89

Position 2x2 95.45 64.38 86.84 66.03 78.37 86.36 56.92 42.37 96.31 58.00 89.77 67.38 86.43 68.16 60.64 85.47 94.95 91.51 94.23 78.50 80.08

3x3 97.16 63.47 87.50 66.35 75.53 88.64 60.00 52.54 95.33 58.67 86.51 76.60 88.57 70.39 58.51 88.95 95.96 92.45 93.59 77.50 81.03

Table 11: Test performance (%) of 3B models trained with different task difficulties on SEED-Bench
downstream tasks. IC: Instances Counting, IA: Instance Attributes, SU: Scene Understanding, IId:
Instance Identity, IIn: Instance Interaction, VR: Visual Reasoning, IL: Instance Location, SR: Spatial
Relation, TU: Text Understanding.

Model Difficulty IC IA SU IId IIn VR IL SR TU Average
Qwen2.5-VL-3B − 60.52 62.87 60.35 63.24 64.95 53.78 58.79 51.60 41.67 60.83

Rotation 90-degree 64.12 71.03 73.65 72.80 67.01 73.41 61.76 54.03 45.24 69.10

45-degree 60.60 69.26 72.70 72.53 68.04 72.81 63.60 55.25 38.10 67.81

Jigsaw 2x2 62.93 70.19 70.30 71.65 63.92 69.79 62.68 53.12 48.81 67.67

3x3 61.22 67.58 69.28 68.87 69.07 64.35 61.35 51.14 48.81 65.66

Contrastive Weak 54.03 61.22 67.10 68.38 64.95 67.07 63.70 51.75 28.57 61.90

Strong 57.54 64.75 70.68 70.56 67.01 70.39 63.39 55.86 29.76 65.00

Position 2x2 64.20 72.51 73.56 72.75 62.89 70.69 64.62 55.25 52.38 69.77

3x3 61.87 72.53 73.84 73.89 69.07 74.02 64.62 58.30 44.05 69.80

Table 12: Test performance (%) of 7B models trained with different task difficulties on MM-
Bench downstream tasks. IR: Identity Reasoning, PPR: Physical Property Reasoning, FR: Function
Reasoning, OL: Object Localization, SIU: Structuralized Imagetext Understanding, AtR: Attribute
Recognition, FP: Future Prediction, SpR: Spatial Relationship, ISc: Image Scene, IQ: Image Qual-
ity, Ace: Action Recognition, AC: Attribute Comparison, IT: Image Topic, NR: Nature Relation,
PR: Physical Relation, SoR: Social Relation, CR: Celebrity Recognition, ISt: Image Style, OCR:
OCR, IE: Image Emotion.

Model Difficulty IR PPR FR OL SIU AtR FP SpR ISc IQ Ace AC IT NR PR SoR CR ISt OCR IE Average
Base Qwen2.5-VL-7B 98.30 66.67 92.11 74.60 82.98 88.64 70.00 76.27 97.05 58.00 92.09 85.11 91.43 88.83 69.15 92.44 97.22 94.81 96.15 82.00 86.37

Jigsaw
3x3 98.30 69.41 92.11 76.83 86.88 90.91 70.77 79.10 97.54 62.00 92.56 87.94 90.00 89.94 70.21 93.02 97.47 95.28 98.72 84.50 86.17

4x4 97.73 66.21 92.43 75.24 86.17 92.80 73.08 76.27 97.79 62.67 92.09 87.94 90.71 87.71 69.15 91.86 97.47 94.81 97.44 85.00 85.73

5x5 97.73 67.58 92.76 74.29 85.46 90.15 73.08 79.10 97.05 61.33 93.02 87.94 90.71 89.94 70.21 91.28 97.98 95.75 95.51 84.00 85.74

Position
3x3 95.45 68.49 93.09 77.46 88.30 94.70 73.08 77.40 97.79 62.67 94.42 89.36 90.71 87.15 67.02 89.53 97.47 94.34 97.44 81.50 85.87

4x4 97.73 64.84 94.74 74.92 88.65 95.45 73.08 72.32 97.79 58.00 94.42 82.98 89.29 88.83 69.15 90.12 98.23 94.34 98.08 82.50 85.27

5x5 97.73 72.15 93.75 75.24 90.07 95.83 70.00 67.80 98.53 63.33 95.81 90.07 90.71 91.62 67.02 91.86 98.23 95.28 95.51 81.00 86.08
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Table 13: Test performance (%) of models trained with different task difficulties on ImageNet-1K.

Model Difficulty Completion Choice10 Choice200
Qwen2.5-VL-3B − 24.93 85.22 57.10

Position 2x2 28.76 92.35 67.14
3x3 27.37 88.99 59.93

Contrastive Weak 26.84 89.51 61.78

Strong 26.93 89.44 61.31

Rotation 90-degree 29.19 87.26 58.48

45-degree 29.91 89.94 60.52

Table 14: Test performance (%) of 7B models trained with different task difficulties on SEED-Bench
downstream tasks. IC: Instances Counting, IA: Instance Attributes, SU: Scene Understanding, IId:
Instance Identity, IIn: Instance Interaction, VR: Visual Reasoning, IL: Instance Location, SR: Spatial
Relation, TU: Text Understanding.

Category Model TU VR SU IId IIn IA IL SR IC Average
Base Qwen2.5-VL-7B 72.62 77.95 77.99 77.44 75.26 76.19 71.98 62.56 69.55 74.70

Jigsaw
3x3 69.88 77.01 78.78 77.88 76.29 79.46 71.57 64.69 73.81 74.37

4x4 69.72 76.98 77.83 78.15 71.13 78.85 72.29 62.10 72.62 73.30

5x5 69.84 76.43 78.34 78.15 71.13 78.85 73.21 63.17 70.24 73.26

Position
3x3 68.82 77.93 78.53 78.75 74.23 78.55 73.01 64.08 76.19 74.45

4x4 68.98 77.41 77.58 77.33 76.29 78.55 71.47 61.64 76.19 73.94

5x5 69.27 77.39 78.59 77.72 73.20 79.15 73.21 63.47 77.38 74.38

D EXTENSION TO OTHER DOMAINS: AN EXAMPLE ON GRAPH

Having established SSL4RL for vision-language reasoning, we now explore its broader applicability.
The paradigm’s core principle—generating rewards from data transformations—naturally extends to
any domain with rich structural information. Beyond images, graph-structured data presents a com-
pelling candidate, given its explicit relational semantics that are amenable to various pretext tasks.
In this section, we empirically validate this potential by adapting SSL4RL to the graph domain.

Tasks and Reward Definitions. We introduce three graph-based SSL tasks, defined as follows: (1)
Attribute Mask (Jin et al., 2020; Hu et al., 2019): A subset of node descriptions is randomly masked.
The reward is quantified by the model’s accuracy in reconstructing the original masked features. (2)
Neighbor Prediction (Kipf & Welling, 2016): For a target node within a partially observed graph,
the model is rewarded for correctly identifying its adjacent nodes. (3) Link Prediction (Hu et al.,
2020; Hou et al., 2022): Given a pair of nodes and a partial graph structure, the model receives a
reward for accurately classifying the presence or absence of an edge connecting them.

Benchmarks. We evaluate our method on benchmark datasets curated from TAGLAS (Feng et al.,
2024), a comprehensive collection of text-attributed graphs. The evaluation encompasses two key
tasks: (1) Node-level classification on the Cora and PubMed co-citation graphs and the WikiCS page
relation graph; (2) Link-level prediction on the Products co-purchase graph and the fb15k237 and
wn18rr knowledge graphs.

Results and Observations. The results in Table 15 and Table 16 demonstrate the successful appli-
cation of SSL4RL to graph-structured data. The 3B model shows substantial improvements, with
gains up to 13.79% on average, while the 7B model exhibits diminishing returns, mirroring our
observations in the visual domain and reinforcing the “difficulty-capacity matching” principle. Fur-
thermore, the relative effectiveness of the self-supervised tasks is contingent upon the nature of the
downstream objective. Tasks emphasizing structural reasoning (Link and Neighbor Prediction) yield
better performance on relation-centric tasks such as link prediction. Conversely, tasks focused on
feature reconstruction (Attribute Mask) demonstrate a comparative advantage on node classification
benchmarks. These findings not only validate the generalizability of the SSL4RL framework beyond
the visual modality but also highlight the critical importance of aligning the pretext task’s inductive
bias with the target application.
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Table 15: Test performance (%) of 3B models on downstream graph tasks.

Category Model Cora PubMed WikiCS Products fb15k237 wn18rr Average
Base model Qwen2.5-3B 21.80 64.26 30.50 7.93 26.30 29.80 30.09

SSL4RL-3B

Attribute 55.80 73.27 57.62 8.03 32.50 36.10 43.88
Neighbor 39.00 74.37 50.84 12.65 36.10 36.60 41.59

Link 31.30 71.97 55.93 4.91 46.50 41.10 41.95

Maximal Improvement ↑ 34.00 ↑ 10.11 ↑ 27.12 ↑ 4.42 ↑ 20.20 ↑ 11.30 ↑ 13.79

Table 16: Test performance (%) of 7B models on downstream graph tasks.

Category Model Cora PubMed WikiCS Products fb15k237 wn18rr Average
Base model Qwen2.5-7B 64.80 69.86 49.15 50.50 30.10 32.50 57.73

SSL4RL-7B

Attribute 63.80 59.55 54.23 51.30 37.00 32.70 49.76

Neighbor 63.10 70.87 52.54 43.47 33.00 34.00 49.49

Link 67.70 72.27 55.93 48.89 21.30 39.50 50.93
Maximal Improvement ↑ 2.90 ↑ 2.41 ↑ 6.78 ↑ 0.80 ↑ 6.90 ↑ 7.00 ↑ 1.45

E THE IMPACT OF TRAINING DATA VOLUME

A key question for data-driven methods is the ability to leverage increasing amounts of data. To
characterize the relationship between performance and data scaling for SSL4RL, we progressively
expand our training dataset and evaluate the resulting models on the MMBench benchmark. We
design three training regimes with increasing data volume:

• Base Set: ∼4,000 samples from MMBench.
• Extended Set: ∼18,000 samples from a mixture of MMBench and SEED-Bench.
• Full Set: ∼118,000 samples from MMBench, SEED-Bench, and ImageNet.

We select the Position task as the representative SSL4RL method for evaluation. The results, detailed
in Table 17 across almost all subtasks, demonstrate a clear positive scaling relationship. When scal-
ing from the Base Set to the Extended Set, the average performance on MMBench improved from
80.08% to 81.38%, a gain of +1.30%. A further expansion to the Full Set yielded an additional
+1.04% improvement, reaching 82.42%. This consistent, monotonic improvement suggests that the
effectiveness of SSL4RL continues to benefit from larger, more diverse datasets. The perfor-
mance gains are not uniform across all sub-categories, which provides deeper insight. For instance,
the most significant improvements are observed in Cross-Instance Fine-grained Perception, which
saw a substantial jump of 6.36 percentage points from the smallest to the largest dataset. This indi-
cates that tasks requiring nuanced comparisons across different images benefit from exposure to a
broader visual world. Conversely, capabilities like Relation and Attribute Reasoning showed more
modest gains, potentially plateauing earlier or requiring more targeted data.

In summary, our analysis confirms that SSL4RL effectively translates increased data volume into en-
hanced performance. The experiments indicate the potential for further gains through even more ex-
tensive pre-training, establishing SSL4RL as a promising and scalable strategy for vision-language
model alignment.

Table 17: Performance (%) on MMBench benchmark with increasing training volumes. Logical:
Logical Reasoning, Relation: Relation Reasoning, Attribute: Attribute Reasoning, Coarse: Coarse
Perception, Cross Inst.: Cross-Instance Fine-grained Perception, Single-Inst.: Single-Instance Fine-
grained Perception.

Model Training Volumes Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Qwen2.5-VL-3B − 61.77 41.54 76.62 73.55 64.32 82.06 72.99

SSL4RL-Position

4000 67.65 77.19 82.22 82.15 66.51 85.39 80.08

18,000 68.71 79.26 85.03 81.65 70.16 86.47 81.38

118,000 68.77 79.29 84.26 83.66 72.87 88.31 82.42
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Figure 6: Perturbation examples on MMBench.

F ROBUSTNESS ANALYSIS

To evaluate our model’s robustness, we conduct a comprehensive evaluation under various image
perturbations. We design two levels of perturbation—weak and strong—to assess the models’ re-
silience to visual corruptions. The weak perturbation applies a series of common image transfor-
mations, each with a probability of 0.5, including color jittering, random conversion to grayscale,
Gaussian blur, and horizontal flipping. The strong perturbation builds upon the weak one by incorpo-
rating an additional multi-crop strategy. This strategy generates two 224×224 pixel crops per image
via randomly resized cropping (scale range [0.08, 1.0]), presenting a more significant challenge to
the model’s perception. Examples of these perturbed images are provided in Figure 6.

We evaluate our SSL4RL models and the base model on the perturbed MMBench benchmarks.
As shown in Table 18 and Table 19, our method consistently demonstrates superior robustness
across both perturbation levels. For instance, under weak perturbation, our SSL4RL-Rotation
model achieves an average score of 72.11%, outperforming the base model at 66.80%. This per-
formance gap is maintained under strong perturbation, where our SSL4RL-Position model scores
64.37% compared to the base model’s 59.62%. These results confirm that our SSL4RL strategy
effectively enhances the model’s robustness to photometric variations.

Table 18: Performance (%) on weakly perturbed MMBench. Logical: Logical Reasoning, Relation:
Relation Reasoning, Attribute: Attribute Reasoning, Coarse: Coarse Perception, Cross Inst.: Cross-
Instance Fine-grained Perception, Single-Inst.: Single-Instance Fine-grained Perception.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base model Qwen2.5-VL-3B 49.58 45.06 76.94 67.80 59.33 68.46 66.80

SSL4RL-3B

Rotation 61.00 72.87 78.66 70.18 62.57 72.89 72.11
Jigsaw 55.47 70.80 79.38 71.23 56.28 71.84 70.84

Contrastive 54.46 62.05 67.33 55.80 47.64 64.02 59.94

Position 57.97 72.77 79.01 70.40 57.55 73.39 71.70

Table 19: Performance (%) on strongly perturbed MMBench. Logical: Logical Reasoning, Relation:
Relation Reasoning, Attribute: Attribute Reasoning, Coarse: Coarse Perception, Cross Inst.: Cross-
Instance Fine-grained Perception, Single-Inst.: Single-Instance Fine-grained Perception.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base model Qwen2.5-VL-3B 45.08 44.99 71.65 59.88 53.89 58.62 59.62

SSL4RL-3B

Rotation 52.69 60.47 70.96 64.33 55.04 62.51 63.38

Jigsaw 46.45 59.62 72.86 63.90 52.40 62.47 62.00

Contrastive 45.56 46.36 60.86 49.50 42.14 53.20 51.25

Position 53.43 61.37 72.95 65.85 53.68 65.12 64.37
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G COMPARISON WITH VERIFIER-DRIVEN RL USING DOWNSTREAM
GOLDEN REWARDS

To contextualize the performance of our SSL4RL method, we include a strong, task-specific baseline
VLM-R1 (Shen et al., 2025). It extends R1-style reinforcement learning to VLMs with rule-based
reward formulation. Specifically, we randomly split downstream datasets into 60% for training and
40% for held-out testing. Then we fine-tune Qwen2.5-VL-3B using the GRPO algorithm, where the
reward is computed by comparing it directly to the golden answer. We denote the tuned model as
Golden-3B. Notably, the model is trained with oracle reward signals, and the setup simulates an
ideal scenario where the reward model is perfectly aligned with the evaluation metric. The results
are presented in Table 20 and Table 21, where we draw two key conclusions:

• The Oracle Baseline has a high but finite ceiling. Even with direct supervision from
golden answers, the Golden-3B model achieves 84.93% on MMBench and 73.21% on
SEED-Bench. This indicates inherent challenges in these benchmarks that are not fully
solved even with ideal, verifiable rewards.

• Our SSL4RL method is highly competitive. The performance gap between our best
SSL4RL variants and the Golden-3B oracle is relatively small (e.g., 81.35% vs. 84.93%
on MMBench, and 69.80% vs. 73.21% on SEED-Bench), compared to our improvements
over the base model. This demonstrates that our self-supervised objectives, which require
no labeled downstream data, can effectively close the gap to the performance driven by
idealized, task-specific reward signals.

This comparison paints an encouraging picture for SSL4RL. Our method, which deliberately avoids
using any downstream labels, can close much of the gap to a model trained with direct oracle signals.
It suggests that the reinforcement learning process can be steered effectively by self-supervised
objectives. While perfect verifiable rewards remain a powerful tool, our work shows that highly
competitive performance can be achieved through a more scalable and generalizable pathway.

Table 20: Performance (%) of on the MMBench test set. Logical: Logical Reasoning, Relation:
Relation Reasoning, Attribute: Attribute Reasoning, Coarse: Coarse Perception, Cross Inst.: Cross-
Instance Fine-grained Perception, Single-Inst.: Single-Instance Fine-grained Perception.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base model Qwen2.5-VL-3B 53.03 46.19 77.10 74.56 67.94 81.41 72.63

RL with golden rewards Golden-3B 71.82 86.70 88.34 83.74 79.57 89.39 84.93

SSL4RL-3B

Rotation 66.06 82.97 87.38 80.07 75.07 85.93 81.35
Jigsaw 62.53 79.06 85.84 77.39 66.43 84.14 78.46

Contrastive 60.50 71.50 73.75 66.31 56.17 77.72 68.82

Position 67.58 78.37 85.16 81.22 70.70 87.87 81.12

Table 21: Performance (%) on the SEED-Bench test set. TU: Text Understanding, VR: Visual
Reasoning, SU: Scene Understanding, IId: Instance Identity, IIn: Instance Interaction, IA: Instance
Attributes, IL: Instance Location, SR: Spatial Relation, IC: Instances Counting.

Category Model TU VR SU IId IIn IA IL SR IC Average
Base model Qwen2.5-VL-3B 59.04 60.44 67.17 63.83 61.80 51.28 57.20 59.09 59.54 62.00

RL with golden rewards Golden-3B 67.68 68.41 74.76 77.03 74.69 82.05 63.84 77.27 77.10 73.21

SSL4RL-3B

Rotation 62.60 62.64 72.28 73.69 71.28 58.46 55.35 68.18 77.10 69.01

Jigsaw 60.16 60.99 71.31 74.01 69.53 58.46 59.78 63.64 74.81 67.97

Contrastive 55.08 64.01 69.79 68.76 61.59 30.77 56.09 56.82 74.05 63.02

Position 63.21 62.36 72.83 74.17 72.40 58.97 57.93 65.91 73.28 69.80

H ABLATION STUDY ON BASE MODELS

In this section, we evaluate whether the benefits of SSL4RL extend to architectures beyond the
Qwen2.5-VL series. For this purpose, we select Gemma3-4B (Team et al., 2025), a recent and
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powerful model from Google with a distinct architecture. To ensure a fair comparison under com-
putational constraints, we adapted our training setup by halving the batch size to 256 while meticu-
lously preserving all other hyperparameters and training procedures. Results presented in Table 22
provide strong evidence for the general applicability of our method. On the Gemma3 base model,
our SSL4RL models yield a consistent and notable average performance improvement of 2.88% on
MMBench. The gain is particularly pronounced in Cross-instance Perception (5.76%), Logi-
cal Reasoning (4.35%), and Attribute Reasoning (4.13%). Moreover, the relative efficacy of the
individual SSL4RL tasks is remarkably consistent with our prior findings. As with Qwen2.5-VL,
tasks like Rotation and Position confer the most significant benefits, while the simpler Contrastive
task shows more modest gains. The consistent results validate that SSL4RL is a general-purpose
principle for VLMs, not an artifact of a particular model family.

Table 22: Test performance (%) on MMBench downstream tasks. The base model is Gemma3-
4B. Logical: Logical Reasoning, Relation: Relation Reasoning, Attribute: Attribute Reason-
ing, Coarse: Coarse Perception, Cross Inst.: Cross-Instance Fine-grained Perception, Single-Inst.:
Single-Instance Fine-grained Perception.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base Gemma3-4B 63.12 80.56 83.24 80.43 68.65 78.85 78.30

SSL4RL

Rotation 67.47 81.16 86.12 83.27 72.35 82.09 81.38
Jigsaw 63.77 84.39 86.69 82.99 73.72 80.67 81.10

Contrastive 63.89 81.94 87.37 82.30 71.79 81.70 80.75

Position 64.81 82.26 86.54 83.08 74.41 80.89 81.15

I EVALUATION ON VISION-LANGUAGE BENCHMARKS

In this section, we evaluate the SSL4RL strategy on broader vision-language benchmarks, including
Vision Questioning Answer (VQA) tasks and the open-ended image-caption task.

I.1 VISUAL QUESTION ANSWERING (VQA) TASKS

Besides MMBench and SEED-Bench, we further consider four representative VQA benchmarks,
V*(Wu & Xie, 2024), RealWorldQA (xAI, 2024), BLINK (Fu et al., 2024), MME-RealWorld-Lite
(Zhang et al., 2024), featuring challenging current VLMs’ ability of visual perception, spatial under-
standing, detail capturing, real-world applications, and so on. The detailed descriptions of bench-
marks are as follows:

• MMBench (Liu et al., 2024): A diverse benchmark with over 3,000 multiple-choice ques-
tions spanning 20 distinct ability dimensions. All results on MMBench are reported for
the DEV-EN split, showing the average performance per category (detailed per-dimension
results are in Appendix A).

• SEED-Bench (Li et al., 2023): A comprehensive benchmark with human annotations for
image and video modalities. For evaluation, we select the 9 core dimensions pertaining to
image understanding, which comprise 14,232 examples in total.

• V* (Wu & Xie, 2024): A benchmark based on 191 high-resolution images with an aver-
age image resolution of 2246×1582. It is specifically designed to quantitatively evaluate
VLMs’ ability in challenging scenarios where the image contains abundant and complex
information, and the visual information needed might not be easily found.

• RealWorldQA (xAI, 2024): A benchmark designed to evaluate the real-world visual un-
derstanding capabilities of VLMs. It assesses how well these models comprehend physical
environments. The benchmark consists of 700+ images drawn from real-world scenarios,
including those captured from vehicles.

• BLINK (Fu et al., 2024): A benchmark for VLMs that focuses on core visual perception
abilities, including relative depth estimation, visual correspondence, forensics detection,
and multi-view reasoning, etc. BLINK contains visual commonsense problems that hu-
mans can answer within seconds, rarely requiring domain knowledge.
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• MME-RealWorld-Lite (Zhang et al., 2024): A benchmark contains 13K high-quality im-
ages annotated humans, resulting in 29K question-answer pairs that cover 43 subtasks
across 5 real-world scenarios, featuring the highest resolution and a targeted focus on real-
world applications. For inference acceleration, we utilize its public lite version MME-
RealWorld-Lite with 50 samples per task.

We consider the four SSL4RL strategies: Rotation, Jigsaw, Contrastive, and Position, under the
same training and evaluation settings in Section 4. We report the general performances in Ta-
ble 24 and Table 28. The results consistently demonstrate the effectiveness of SSL4RL. For the
3B models (Table 24), our method provides a substantial average performance gain of 7.27%
over the base model. The improvements are particularly pronounced on V* (+8.90%) and Real-
WorldQA (+9.55%), underscoring that SSL4RL significantly enhances the model’s ability to process
fine-grained details in complex, real-world images. These consistent results across a diverse set of
benchmarks verify the effectiveness of the proposed SSL4RL framework.

Table 23: Test performance (%) on SEED-Bench downstream tasks. TU: Text Understanding, VR:
Visual Reasoning, SU: Scene Understanding, IId: Instance Identity, IIn: Instance Interaction, IA:
Instance Attributes, IL: Instance Location, SR: Spatial Relation, IC: Instances Counting.

Category Model TU VR SU IId IIn IA IL SR IC Average
Base Qwen2.5-VL-3B 41.67 53.78 60.35 63.24 64.95 62.87 58.79 51.60 60.52 60.83

SSL4RL

Rotation 45.24 73.41 73.65 72.80 67.01 71.03 61.76 54.03 64.12 69.10

Jigsaw 48.81 69.79 70.30 71.65 63.92 70.19 62.68 53.12 62.93 67.67

Contrastive 28.57 67.07 67.10 68.38 64.95 61.22 63.70 51.75 54.03 61.90

Position 52.38 70.69 73.56 72.75 62.89 72.51 64.62 55.25 64.20 69.77
Maximal Improvement ↑ 10.71 ↑ 19.63 ↑ 13.30 ↑ 9.56 ↑ 2.06 ↑ 9.64 ↑ 5.83 ↑ 3.65 ↑ 3.68 ↑ 8.94

Table 24: Test performance (%) on extended VQA benchmarks.

Category Model V* RealWorldQA BLINK MME-RealWorld-Lite Average
Base Qwen2.5-VL-3B 59.16 52.67 42.13 32.41 45.85

SSL4RL-3B

Rotation 62.30 62.09 48.18 34.18 51.68

Jigsaw 63.35 62.22 45.18 35.12 51.46

Contrastive 60.20 58.03 45.13 30.17 48.38

Position 68.06 59.86 46.39 38.19 53.12
Maximal Improvement ↑ 8.90 ↑ 9.55 ↑ 6.05 ↑ 5.78 ↑ 7.27

I.2 OPEN-ENDED VISION-LANGUAGE TASK: IMAGE CAPTIONING

Relying solely on the data itself, SSL4RL requires no human labels, external verifiers, or heuris-
tic judges, yet produces dense and scalable reinforcement signals. Intuitively, it has potential for
open-ended tasks where ground truth is ill-defined and human annotations are expensive. To eval-
uate SSL4RL’s potential on open-ended tasks, we leverage a recent image captioning platform,
CapArena (Cheng et al., 2025), which contains over 6,000 human-annotated pairwise preference
battles. In CapArena, captions from a test model are compared against those from strong baseline
models (GPT-4o, CogVLM-19B, or MiniCPM-8B) using a LLM (GPT-4o) as a judge, with human
references provided for context. The winner is assigned +1, the loser with -1, and 0 for a draw in
each pairwise comparison. This challenging task mirrors the real-world challenge of improving a
model without a single clear and correct answer.

We evaluate our four SSL4RL strategies on CapArena against the base Qwen2.5-VL-3B model. For
easier comparison, we present the final scores after min-max normalization in Table 25. SSL4RL
consistently improves over the base model, with the largest performance gain of 8.14 points
(56.45 vs. 48.31). This clearly shows that the self-supervised rewards provide a meaningful learning
signal even in the absence of a verifiable ground truth.

Qualitative Insights. We conduct a qualitative comparison in Table 26, shed light on how SSL4RL
enhances open-ended generation:
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• Enhanced Detail Capture. SSL4RL models correctly capture more details in the image.
For instance, our SSL4RL model correctly identifies a ”scoreboard” displaying ”1 0 0” and
a ”disabled persons’ sign,” which the base model either misinterprets or omits.

• Improved Spatial Reasoning. SSL4RL models tend to use more precise spatial descrip-
tors like ”behind the fence,” ”to the left of,” and ”the center of the court”, aligning well with
the spatial reasoning ability required by SSL pretext tasks.

In summary, this experiment demonstrates that SSL4RL is not limited to tasks with easily verifiable
rewards. By providing a dense, automated learning signal derived from the data’s intrinsic structure,
our method successfully improves model performance on the complex, open-ended task of image
captioning.

Table 25: Performance of 3B-models on CapArena Platform. GPT-Score: the score compared with
GPT-4o. Cog-Score: the score compared with CogVLM-19B. CPM-Score: the score compared with
MiniCPM-8B. Average: the average score. Avg-Length: the average response length.

Category Model GPT-Score Cog-Score CPM-Score Average Avg-Length

Base Qwen2.5-VL-3B 0.00 6.48 92.96 48.31 89.71

SSL4RL-3B

Rotation 19.15 49.30 96.48 55.28 92.91

Jigsaw 8.87 54.93 98.59 55.64 87.48

Contrastive 4.96 57.95 100.00 56.45 93.14

Position 0.00 59.15 92.25 51.04 90.48

Figure 7: Illustrations of Harder SSL4RL Task: Mask and Hard-Negative

J TRAILS ON HARDER SSL4RL TASKS

Beyond the four SSL4RL tasks, we further explore two more challenging tasks on 7B models:

• Mask. Guided by the insights from Masked AutoEncoders (MAEs) (He et al., 2022; Chen
et al., 2023; 2024c), we adopt the self-supervised strategy of mask-and-reconstruct. We
randomly sample four patches from an image and mask one of them in the original view.
The model must then identify which of the four patches is missing, a concurrent idea ex-
plored in Liu et al. (2025b).

• Hard-Negative Contrastive. Moving beyond the simple binary task Contrastive in Section
4, we increase the discrimination difficulty by introducing hard negatives (Xuan et al., 2020;
Kalantidis et al., 2020; Ge et al., 2021). For a given image, we use a pretrained DINOv2
(Oquab et al., 2023) encoder to find its most semantically similar images from the dataset.
The model’s task is to identify the positive augmented view from two hard negative views,
forcing it to learn finer-grained visual distinctions.

As shown in Table 27, on MMBench, our SSL4RL-7B models surpass the base model by an aver-
age of 1.41% (87.78% vs. 86.37%), and the Hard-Negative task drives a 5.23% improvement on
the Logical Reasoning sub-task. Crucially, extending our evaluation to four additional bench-
marks reveals even larger improvements for the SSL4RL-7B models. As shown in Table 28, our
SSL4RL models outperform the base model by a significant margin of 5.05% on average (62.61%
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Table 26: Examples: Image-Captioning Comparison on CapArena.

Image Caption

Qwen2.5-VL-3B: A view of a tennis court through a chain-link fence.
The court features a red and blue surface with white boundary lines. The
fence has a sign indicating ”100” and ”WON” on the top right side. The
background includes a fence and greenery, suggesting an outdoor setting.

SSL4RL-Rotation: The image depicts a tennis court viewed through a
black chain-link fence. The court features a red and blue surface with white
lines marking the boundaries and service boxes. A net is stretched across
the center of the court, supported by black posts. Behind the fence ,
a scoreboard displays the score ”1 0 0” indicating that one player has

won all three sets. The background includes a chain-link fence enclos-
ing the tennis court and some greenery beyond it. The sky appears clear,
suggesting a sunny day.

Qwen2.5-VL-3B: A white Porsche sports car is parked on the side of a
road in a desert-like environment. The car is positioned near a ”Reserved
Parking” sign, which is mounted on a pole and partially obscured by a
large fallen tree trunk. The surrounding area is rocky and barren , with
sparse vegetation in the background. The sky is clear and blue, indicating
a sunny day. The car’s sleek design and modern features are prominently
displayed, emphasizing its status as a high-performance vehicle.

SSL4RL-Rotation: A white Porsche sports car is parked in a reserved
parking spot on a rocky, barren landscape with sparse vegetation and a
clear blue sky above. The car’s sleek design and modern features are
prominently displayed, contrasting with the rugged surroundings. A ”Re-
served Parking” sign is visible to the left of the car, indicating designated
parking for individuals with disabilities . The overall scene suggests a lo-
cation that could be part of a natural reserve or an eco-friendly area.

vs. 57.56%), particularly on complex VQA benchmarks like BLINK (+6.73%) and V* (+5.76%).
These results are consistent with the positive findings on 7B models in concurrent works Liu et al.
(2025b); Wang et al. (2025), verifying that the SSL4RL strategy is effective and has potential when
scaled to larger models.

Table 27: Test performance (%) of 7B models on MMBench. Logical: Logical Reasoning, Relation:
Relation Reasoning, Attribute: Attribute Reasoning, Coarse: Coarse Perception, Cross Inst.: Cross-
Instance Fine-grained Perception, Single-Inst.: Single-Instance Fine-grained Perception.

Category Model Logical Relation Attribute Coarse Cross-Inst. Single-Inst. Average
Base Qwen2.5-VL-7B 76.49 84.68 85.69 84.66 84.49 89.15 86.37

SSL4RL-7B Mask 80.16 83.52 86.94 84.50 84.89 89.81 86.85

Hard-Contrastive 81.72 85.71 86.21 85.43 86.17 90.98 87.78

Table 28: Test performance (%) of 7B-models on extended VQA benchmarks.

Category Model V* RealWorldQA BLINK MME-RealWorld-Lite Average
Base Qwen2.5-VL-7B 73.29 65.88 45.50 45.59 57.56

SSL4RL-7B Mask 78.01 68.88 49.28 49.03 61.30

Hard-Contrastive 79.05 70.58 52.23 48.61 62.61
Maximal Improvement ↑ 5.76 ↑ 4.70 ↑ 6.73 ↑ 3.44 ↑ 5.05
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K RL TRAINING CURVES

K.1 RL REWARD CURVES

Figure 8 illustrates the evolving reward signals of different SSL tasks during reinforcement learn-
ing training. Despite being intuitive for humans, these SSL tasks pose significant challenges for
the base VLM. For instance, Qwen2.5-VL-3B initially achieves only about 20% accuracy on the
Rotation task and nearly zero on the Jigsaw task, highlighting its limited low-level perceptual capa-
bility regarding spatial and structural image properties. Position and Rotation tasks exhibit gradual
learning curves, plateauing at a reward of about 0.8 after approximately 200 epochs. For the harder
Jigsaw task, the reward surges and plateaus within 20 epochs for 3B models, while 7B models
present more smooth reward curves, indicating a stronger learning capability of large-scale models.
For the Contrastive task, models rapidly surge to 1.0 within 50 epochs due to the task’s easy com-
plexity. Figure 9 presents the reward curves of tasks with different difficulties. For the same task,
increasing the difficulty slows down the learning process and lowers the final converging rewards,
showing the sensitivity of the models to tasks’ difficulty.
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Figure 8: Reward curves of SSR4RL models during reinforcement learning.
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Figure 9: Rewards of SSL4RL 3B-models on MMBench, comparing different difficulties.

K.2 RL ENTROPY CURVES

Figure 10 presents the entropy trajectory of SSL4RL models during reinforcement training. In gen-
eral, the entropy shows a decrease-then-increase trend. This is an emergent signature of a successful
optimization process balancing two competing objectives: specialization and generalization. At the
first stage, the learning rewards incentivize a lower-entropy, specialized policy for high performance
on the target task, resulting in a sharpening of the probability distribution. For a given prompt,
the model becomes more confident in a subset of the vocabulary, directly leading to a reduction in
entropy. At the second stage, to reduce the costly KL penalty and prevent mode collapse, the pol-
icy model slightly broadens probability distributions. This incentivizes a higher-entropy policy to
maintain linguistic diversity and prevent catastrophic forgetting of the pre-training distribution. The
two-stage entropy curves reflect a sustainable compromise between maximizing reward and preserv-
ing the foundational knowledge and generative diversity, supporting our experimental findings that
SSL4RL models can generalize well to downstream vision-language tasks. S

K.3 RESPONSE LENGTH CURVES

As illustrated in Figure 11, reinforcement learning induced no substantial change in model response
length, with variations remaining within a 50-token margin. This is different from DeepSeek-R1

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Training Steps

0.8

1.0

1.2

1.4

1.6

En
tro

py

Jigsaw
Rotation
Contrastive
Position

(a) MMBench (3B)

0 50 100 150 200 250 300
Training Steps

0.8

1.0

1.2

1.4

1.6

1.8

En
tro

py

Jigsaw
Rotation
Contrastive
Position

(b) SEED-Bench (3B)

0 50 100 150 200 250 300
Training Steps

0.8

1.0

1.2

1.4

1.6

En
tro

py

Jigsaw
Rotation
Contrastive
Position

(c) MMBench (7B)

0 50 100 150 200 250 300
Training Steps

0.8

1.0

1.2

1.4

1.6

En
tro

py

Jigsaw
Rotation
Contrastive
Position

(d) SEED-Bench (7B)

Figure 10: Entropy of SSR4RL models during reinforcement learning.

(DeepSeek-AI et al., 2025), which reports longer responses featuring complex chains of thought
after RL on complex mathematical and coding problems. The disparity is attributable to the nature
of our SSL4RL tasks, which are perception-centric and necessitate less extensive reasoning. The
second observation is that the harder Jigsaw task requires longer responses than other tasks, a corre-
lation between task difficulty and response length that aligns with findings from Wang et al. (2025).
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Figure 11: Response Lengths of SSR4RL models during reinforcement learning.
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L CASE ANALYSIS AND VISUALIZATION

In Figure 12, we show that SSL4RL mitigates over-reliance on linguistic priors, fostering greater
dependence on visual evidence. For example, when asked about a chandelier’s color, the base model
defaults to a common-sense response (e.g., a typical decorative color), while our model first localizes
the object and then answers based on the actual appearance.

Question: What color is the chandelier hanging from the ceiling?
A: black    B: brown    C: white     D: gold

Response: Given that chandeliers 
are typically made of materials 
like glass, metal, or crystal, and 
considering the options provided, 
the most likely color for a 
chandelier would be gold. The 
chandelier is likely to be gold 
because it is a common color for 
decorative lighting fixtures, and 
gold is often used in 
chandeliers.

Response: Step 1: Identify the 
type of lighting fixture in the 
image.The image shows a 
chandelier hanging from the 
ceiling.Step 2: Determine the 
color of the chandelier.The 
chandelier is described as being 
white.Step 3: Match the color of 
the chandelier with the given 
options. The correct option is 
C.white.

Base Model Our Model

Question: What object is being held by one of the men in 
Mexican outfits, and what is he doing with it?

A: Holding a chain and swinging it
B: Holding a flower and smelling it

C: Holding a flag and waving it
D: Holding hands with another man

Response: B. Holding a flower and 
smelling it - This option implies 
that the man is holding a flower 
and smelling it, which is a common 
gesture in many cultures… D. 
Holding hands with another man -
This option implies that the man 
is holding hands with another man, 
which is a common gesture in 
many cultures. Considering the 
options, the most appropriate 
action for a man in a Mexican 
outfit would be to hold a flower 
and smell it, as this is a common 
gesture in many cultures. 
<answer>B</answer>

Response: Step 1: Analyze the 
image description. The image 
shows three men in Mexican 
outfits, standing in a line and 
holding hands. Step 2: Identify 
the specific object being held... 
Step 3: Determine the action 
being performed… Step 4: Match 
the action with the given 
options… Option D: Holding hands 
with another man… 
<answer>D</answer>

Base Model Our Model

Question: Which trait did Ursus spelaeus have? Select the 
trait you can observe on the fossil.

A: rounded ears
B: brown fur covering most of its body

C: long legs

Response: Ursus spelaeus, also 
known as the cave bear, is a 
species of bear that lived during 
the Pleistocene epoch. Based on 
the fossil image provided, we can 
observe the following traits: 1. 
Rounded ears: The fossil shows 
rounded ears, which is a 
characteristic of Ursus spelaeus. 
2. Brown fur covering most of its 
body: … the overall appearance 
suggests it had brown fur. 3. Long 
legs: The fossil shows long legs... 
Given these observations, the 
trait that can be clearly 
observed on the fossil is the 
rounded ears.

Response: To determine which 
trait Ursus spelaeus had based 
on the fossil, let's analyze the 
given options: A. Rounded ears -
This trait is not directly 
observable on the fossil 
provided. The fossil shows a 
skull and skeleton, but not the 
ears. B. Brown fur covering most 
of its body - This trait is also not 
directly observable on the 
fossil… C. Long legs - This trait 
can be observed on the fossil.… 
The correct trait that Ursus 
spelaeus had, as observable on 
the fossil, is: C, long legs.

Base Model Our Model

Figure 12: Instances of VLMs’ loss on image information. After receiving textual instructions,
VLMs may be more inclined to rely on the encoded textual knowledge for reasoning rather than
carefully observing the content of the image.

Besides, we visualize the attention maps of the baseline model, i.e., Qwen2.5-VL-3B and our models
on several examples from the SEED-Bench dataset(Li et al., 2023). We pick a dominant token from
the questions of each example, calculate the attention map of the first generated token to that input
token, and average the attention matrices of all heads and all layers of the language model. The
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results in Figure 13 illustrate that our models consistently display more focused attention towards
the regions in the images corresponding to the selected token, which indirectly proves the superior
performance of our models.

(a) (b)

(c) (d)

(e)

Figure 13: Comparisons of Attention Maps.
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M SSL TASK EXAMPLES

In this section, we show a specific instance of Rotation, Jigsaw, Contrastive, and Position tasks to
illustrate the SSL task design.

Rotation Example

Query: These are two images. The second image is a rotated version of the first image.
Please determine how many degrees the second image has been rotated counter-clockwise
relative to the first image.
You must reason step-by-step and then provide the final answer. The
output must strictly follow this format: <think>your reasoning here
</think><answer>number of degrees</answer>.

Answer: 270

Jigsaw Example

Query: <image><image><image><image>
<image><image><image><image><image>
The provided images represent 9 parts of an original im-
age, divided into a 3x3 grid.
Your task is to determine the correct order of these parts
to reconstruct the original image. Starting from the top-
left corner, proceed row by row, from left to right and top
to bottom, to arrange the parts.
The output should be a string of numbers, separated by
a comma, where each number corresponds to the orig-
inal position of the patches in the restored image. For
instance, “3,1,9,2,8,5,4,6,7” would indicate the positions
of the patches in the correct order.
Before providing the final result, you must reason
through the puzzle step by step. Consider the relative
placement of each part and how they fit together.
Your answer should strictly follow this format:
<think>your step-by-step reasoning
here</think><answer>order</answer>

Answer: 2,7,6,1,3,5,9,8,4
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Contrastive Example

Query: <image><image>
The provided images are augmentations of the same original image or two different images.
The augmentations may include random cropping, color adjustments, grayscale conversion,
blurring, and flipping. Please think step-by-step and determine if these two images are
possibly derived from the same original image. If the provided images are from the same
original image, respond with “positive”; if they correspond to different original images,
respond with “negative”.
Your answer should strictly follow this format:
<think>your step-by-step reasoning here</think><answer>positive/negative</answer>

Answer: positive

Position Example

Query: <image><image>
The second image in an augmented version of a crop in the first image. The augmentations
may include grayscale, color jitter, solarization, etc. Please determine which part of the first
image the second image is from. The second image is partitioned into 3x3 parts, and the first
image can be only from one of the parts, but cannot be across two parts. The answer should
be in the format of x/y, where x is the row number (from top to bottom) and y is the column
number (from left to right). For example, 1/1 indicates the top-left part, and 1/3 indicates
the top-right part. Both x and y may take values from 1 to 3.
Your answer should strictly follow this format:
<think>your step-by-step reasoning here</think><answer>x/y</answer>

Answer: 3/3

N DOWNSTREAM BENCHMARK EXAMPLE

In this section, we show a specific instance of Rotation, Jigsaw, Contrastive, and Position tasks to
illustrate the SSL task design.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Imagenet-Completion Example

Query: <image>This is an image containing
an object. Please identify the species of the
object based on the image. The output an-
swer format should be as follows: <think>...
</think><answer>species name</answer>.
Please strictly follow the format.
Answer: tench, Tinca, tinca

Imagenet-Choice10 Example

Query: <image>This is an image containing
an object. Please identify the species of the
object based on the image. The output an-
swer format should be as follows: <think>...
</think><answer>species name</answer>
Please strictly follow the format.

Please select the correct species name from the
following options: Ursus americanus, shoe shop,
brush wolf, essence, malemute, scoreboard, tench,
ruddy turnstone, Salamandra salamandra, koala.

Answer: tench

MMBench Example

Query: <image>Identify the question that Made-
lyn and Tucker’s experiment can best answer.

A. Does Madelyn’s snowboard slide down a hill in
less time when it has a thin layer of wax or a thick
layer of wax?
B. Does Madelyn’s snowboard slide down a hill
in less time when it has a layer of wax or when it
does not have a layer of wax?
C. NaN.
D. NaN.

Answer: B

SEED-Bench Example

Query: <image>How many towels are in the
image?

A. One.
B. Two.
C. Three.
D. Four.

Answer: A
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