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ABSTRACT

Continual learning in large language models (LLMs) is prone to catastrophic for-
getting, where adapting to new tasks significantly degrades performance on pre-
viously learned ones. Existing parameter-efficient methods often limit model
expressivity or introduce new parameters per task, creating scalability issues.
To address these limitations, we introduce Orthogonal Subspace Fine-Tuning
(OSFT), a novel parameter-efficient approach for continual learning. OSFT lever-
ages adaptive singular value decomposition (SVD) to dynamically identify and
preserve critical, high-rank parameter subspaces that encode prior knowledge. All
updates for new tasks are constrained to be strictly orthogonal to these preserved
subspaces, which minimizes interference while maintaining a fixed parameter
count and avoiding the need to store task-specific gradients. We extensively evalu-
ate OSFT on standard continual learning benchmarks using both encoder-decoder
(T5-Large) and decoder-only (LLaMA-2 7B, Mistral-7B) models across diverse
tasks. Empirically, our method achieves a state-of-the-art trade-off between learn-
ability and knowledge retention, dominating the Pareto frontier, with up to 7%
higher average accuracy than recent baselines like O-LoRA, and reduces forget-
ting to near-negligible levels. It notably maintains the model’s general linguis-
tic capabilities, instruction-following, and safety throughout the learning process.
OSFT provides a practical, theoretically grounded, and scalable solution that ef-
fectively balances model plasticity and knowledge retention for continual learning
in LLMs.

1 INTRODUCTION

Large language models (LLMs), such as GPT-3 (Brown et al [2020), PaLM (Chowdhery et al.,
2023), and LLaMA-2 (Touvron et al., 2023)), have achieved remarkable successes across a broad
range of natural language tasks. However, deploying these models in dynamic, real-world scenarios
presents a fundamental challenge: how can we efficiently adapt them to new tasks and evolving data
distributions without losing their valuable pre-trained knowledge?

Consider an enterprise LLM that must continuously learn new product information, regulatory up-
dates, and domain-specific terminology. Traditional full fine-tuning—updating all billions of pa-
rameters—not only incurs prohibitive computational costs but also leads to carastrophic forgetting
(McCloskey & Cohenl (1989; |Kirkpatrick et al., |2017), where the model’s performance on previ-
ously learned tasks deteriorates dramatically. This creates an impossible choice: maintain separate
models for each task (multiplying infrastructure costs) or accept degraded performance on earlier
capabilities.

Parameter-Efficient Fine-Tuning (PEFT) methods like Adapters (Houlsby et al.,2019) and LoRA
(Hu et al.} 2022) reduce computational costs by freezing the pre-trained model and introducing small
trainable modules. However, their restricted parameter budget limits adaptation capacity, and they
struggle in continual learning—either accumulating new modules per task or requiring complex
merging strategies. Continual Learning approaches like EWC (Kirkpatrick et al., 2017) and O-
LoRA (Wang et al.,|2023a)) attempt to address forgetting but either provide only soft constraints that
slow rather than prevent forgetting, or operate within fixed low-rank subspaces that may not align
with the model’s natural capacity distribution.
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Figure 1: Pareto frontier on TRACE Benchmark. Each curve shows the trade-off between average
immediate task accuracy and average backward transfer (BT, our forgetting metric; more negative
BT means more forgetting) for a given method; higher values indicate better performance on
both axes. Our approach dominates the frontier achieving the best overall performance (learnability
— forgetting) while being parameter efficient. Legend entries report the average fraction of trainable
parameters used (approximate). For this figure, all methods are run on LLaMA-2-7B-Chat with
the same training schedule; we sweep a small grid over key hyper-parameters per method: learning
rate € {1073,107%,10~°} for FFT, replay buffer size € {5%, 10%, 15%} of previous-task data
for Replay, LoRA rank =~ {2%,3%,4%} of the matrix dimension for SeqLoRA, LoRA rank =
{0.5%,1.0%, 1.5%} for O-LoRA (all with orthogonality regularization A = 0.5) and two additional
O-LoRA points at fixed rank 1.0% with A € {0.2,1.0}, and average effective trainable rank ~
{50%, 56%, 62%} across the 8 tasks for Ours. PerTaskFT and MTL serve as upper bounds, obtained
by training a separate model per task and by joint multi-task training on the full data, respectively.

The key insight missing from these approaches is that not all parameter directions are created equal.
Recent work (Sharma et all, [2023) reveals that neural network weight matrices contain substantial
redundancy—many parameter directions, particularly those with small singular values, contribute
minimally to model behavior. This suggests we could identify and repurpose these “dormant” direc-
tions for new tasks while preserving critical knowledge-encoding directions.

Building on this insight, we propose Orthogonal Subspace Fine-Tuning, a novel parameter-
efficient method that fundamentally rethinks how models adapt to new tasks. As illustrated in
Figure[2] our approach operates through three synergistic mechanisms:

1. Adaptive Subspace Identification: We decompose each layer via SVD to separate criti-
cal knowledge-bearing directions (high singular values) from underutilized capacity (low
singular values) that can be safely repurposed.

2. Importance-Guided Allocation: We measure each layer’s importance via input-output
cosine similarity. High-similarity layers that primarily preserve features (e.g., early atten-
tion layers) receive more protected singular directions to maintain stability. Low-similarity
layers that transform representations (e.g., final MLPs) are allocated more adaptable ca-
pacity for learning new tasks. This adaptive allocation automatically balances stability and
plasticity across the network according to each layer’s functional role.

3. Orthogonal Gradient Projection: We constrain all gradient updates to remain strictly
orthogonal to preserved subspaces, creating an impenetrable barrier against forgetting.

Unlike existing methods that either waste parameters (full fine-tuning), sacrifice expressivity (fixed
adapters), or accumulate modules (progressive approaches), our design achieves all desired prop-
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Figure 2: Overview of our Adaptive SVD-based Continual Fine-tuning Method. For each pa-
rameter matrix in the network, we perform SVD decomposition to identify high-rank components
(associated with larger singular values) that encode crucial knowledge from previous tasks, and
low-rank components (associated with smaller singular values) that contribute minimally to model
performance. When learning a new task, gradient updates are projected onto the low-rank subspace
orthogonal to previous task representations, allowing full parameter updates while minimizing catas-
trophic forgetting.

erties simultaneously. Figure [T]empirically validates this claim—our method dominates the Pareto
frontier, achieving superior learning with minimal forgetting while minimizing the parameter usage.

1.1 OUR CONTRIBUTIONS

1. An orthogonal subspace approach to parameter-efficient fine-tuning: We propose a theo-
retically grounded method that partitions weight matrices via adaptive SVD to identify and reuse
low-importance parameter subspaces with minimal interference. This effectively balances the plas-
ticity needed for new tasks with stability to retain prior knowledge.

2. Adaptive capacity allocation without extra memory: Our method dynamically allocates pa-
rameter budgets across layers based on their functional role while maintaining a fixed footprint,
avoiding new modules or stored gradients for each task and thus scaling gracefully to many tasks.

3. State-of-the-art performance on diverse tasks: We demonstrate consistent gains across classifi-
cation, generation, math, and reasoning benchmarks using T5-Large, LLaMA-2 7B, and Mistral-7B
models. Our approach achieves better accuracy, stronger knowledge retention, and nearly negligible
forgetting—while preserving general linguistic capabilities, instruction-following, and safety.

4. Thorough empirical and theoretical validation: We provide in-depth analyses verifying the
effective repurposability of low-rank subspaces, showing that these directions can be used for new
tasks without degrading old ones. Our experiments confirm practical robustness while theoretical
analysis proves tighter bounds on catastrophic forgetting.

The remainder of this paper is structured as follows. Section 2]reviews relevant literature. Section 3]
presents our algorithm in detail. Section [ provides experimental validation. Section [5] concludes
with key insights and future directions.
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2 RELATED WORK

Continual learning in large language models aims to acquire new knowledge without catastrophi-
cally forgetting the old. Existing methods typically achieve this by either restricting which parame-
ters are updated or by constraining how full-parameter updates are performed.

Parameter-restricted approaches isolate task knowledge by modifying only a small subset of
weights. Parameter-Efficient Fine-Tuning (PEFT) methods like Adapters (Houlsby et al.l 2019) and
LoRA (Wang et al.,|2023a} [Liang & Lil [2024) freeze the base model and train a few new parameters
per task. While this isolates updates, it can limit expressiveness and adds parameter overhead that
scales with the number of tasks. Recent SVD-based variants such as MiLoRA (Wang et al.| [2025)
and PiSSA (Meng et al.| [2024) further factor weight matrices and interpret low- or high-singular-
value components as LoRA-style adapters: MiLoRA freezes the high-singular-value components
and updates only the low-singular-value components, while PiSSA freezes the low-singular-value
components and updates the high-singular-value components instead. OSFT is structurally closest
to MiLoRA in that it also fine-tunes only low-singular-value components, but differs in two key
ways: (i) we constrain updates via an orthogonal subspace projection so that gradients remain in the
complement of the preserved subspace, and (ii) we select ranks adaptively on a per-layer basis using
an input—output cosine similarity importance score rather than fixing a global rank for all layers.
Similarly, sparse fine-tuning methods (Panda et al., 2024; |Bhardwaj et al., 2025)) update a small
fraction of the original weights, but their selection often relies on heuristics like gradient magnitude.
Our approach differs by using Singular Value Decomposition (SVD) to identify critical subspaces,
a choice theoretically grounded in the connection between singular values and the loss landscape’s
curvature, offering a more principled selection method.

Update-constraining approaches modify all parameters but impose constraints to protect prior
knowledge. Regularization methods such as EWC (Kirkpatrick et al.| |2017) penalize changes to
important weights but cannot fully prevent interference, leading to gradual performance decay. A
closer line of work, gradient projection, constrains updates to be orthogonal to subspaces learned
from past tasks. However, leading methods like GPM (Saha et al., [2021)) and SGP (Saha & Roy,
2023)) derive these subspaces from task activations. This creates a critical bottleneck, as their mem-
ory requirements grow linearly with the number of tasks, rendering them impractical for billion-
parameter models. Other full-parameter strategies like standard fine-tuning (Luo et al., 2025) and
model merging (Jang et al.| 2024} |Yadav et al., 2023) represent extremes of catastrophic forgetting
or prohibitive computational cost, respectively.

OSFT’s design is motivated by the limitations of the following existing strategies.

Fixed-Rank and Regularization Methods. A simpler approach might be a fixed-rank projection
(e.g., freezing the top k singular vectors in all layers), but this ignores layer heterogeneity and
can either over-preserve (hurting plasticity) or under-preserve (causing forgetting). Regularization
methods like EWC are often insufficient for LLMs, as their diagonal Hessian approximations fail
to capture the complex, non-diagonal curvature of the loss landscape, leading to subpar knowledge
retention (Ritter et al.| 2018} [Heckell [2022; [Kruengkrai & Yamagishil [2022)).

Activation-Based Projection (GPM/SGP). A related line of work uses gradient projection but dif-
fers fundamentally. Methods like Gradient Projection Memory (GPM) (Saha et al.,|2021) and Scaled
Gradient Projection (SGP) (Saha & Royl [2023) perform SVD on task activations to build a basis for
important subspaces. Our approach differs in four key ways:

1. Object of SVD: We perform SVD directly on model weights to approximate high-
curvature directions, whereas GPM/SGP operate on activations.

2. Memory Scalability: Our memory overhead is constant, as we only store the singular
vectors of the current weights. In contrast, GPM/SGP accumulate activation-derived bases,
causing memory to grow linearly with the number of tasks. This makes them impractical
for billion-parameter LLMs.

3. Adaptive Ranks: Our method uses a layer-wise importance score to adaptively allocate
rank, offering a more flexible balance of stability and plasticity.

4. Target Scale: OSFT is the first weight-SVD projection method validated on billion-
parameter LLMs, whereas prior methods were demonstrated on smaller-scale models.
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Our work introduces a method that combines the expressive capacity of full-model updates with
a scalable and theoretically grounded constraint mechanism. Unlike methods that limit updates to
small parameter subsets, we leverage the entire model, and unlike prior projection methods, our
weight-based SVD approach maintains constant memory overhead, making it practical for continual
learning in state-of-the-art language models.

3 METHODOLOGY

Our approach, Orthogonal Subspace Fine-Tuning (OSFT), addresses continual learning in large lan-
guage models by leveraging adaptive low-rank updates guided by Singular Value Decomposition
(SVD). We strategically preserve critical knowledge from previous tasks by constraining parame-
ter updates away from dominant (high-rank) singular directions, while enabling model adaptation
within complementary (low-rank) directions.

3.1 PROBLEM SETUP AND NOTATION

Let the parameters of an LLM be denoted as:
0={wh w®  wEh

My g» . . . .
where each W) € R%o %41 represents the weight matrix of layer [. Practical deployments involve
matrices with millions or billions of parameters, underscoring the necessity of efficient continual
updates.

Given sequential tasks {D;, Ds, ..., Dr}, each defined by data pairs {(z!,y!)}",, our goal is to
sequentially adapt parameters 6 to task D; without significant performance degradation on previ-
ously learned tasks Dy, ..., D;_1. Training repeatedly from scratch is computationally prohibitive,

necessitating efficient incremental updates.

3.2 Low-RANK AND HIGH-RANK SUBSPACES VIA SVD

Extensive empirical evidence shows neural network parameters possess substantial redun-
dancy (Sharma et al., [2023}; |Hartford et al., [2024), where directions associated with small singular
values minimally impact critical model knowledge. Conversely, larger singular values typically en-
capsulate vital knowledge. Empirical verification of this low-rank assumption is in Appendix [A.4]
Leveraging this observation, we propose:

Projecting parameter updates away from high singular-value directions, preserv-
ing previously acquired knowledge, and utilizing low singular-value directions for
adaptation to new tasks.

Formally, we perform Singular Value Decomposition (SVD) on each weight matrix W) at layer [:
w = gOxOvOyT, (1)

where singular values in ©() are sorted in descending order. We compute this decomposition once
per task, adding minimal overhead compared to full model training.

3.3 DETERMINING LAYER IMPORTANCE VIA INPUT-OUTPUT SIMILARITY

Inspired by AdaSVD (Li et al.,|2025)), we quantify layer importance using cosine similarity between
a layer’s input activations X (9 and its linear outputs Y ) = WX ") Specifically, when evaluat-
ing layer importance for task ¢ + 1, we compute the similarity using data samples from the previous
task ¢ as follows:

N
1
0 = v Z cosine,similarity(Xgl), Yl(l)) (2)
=1

where N denotes the number of data samples from task ¢. Higher similarity indicates minimal di-
rectional change, signifying that the layer predominantly preserves rather than transforms activation
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representations. Such layers are essential for retaining features and ensuring stable propagation of
information across tasks. Importance scores are also normalized to have an average of one across
layers: % Elel IV = 1. While empirically we observe I(*) is consistently positive, for robustness,
we clip any negative raw cosine similarity values to zero before normalization.

We explored alternative rank-approximation strategies, including LASER (Sharma et al. 2023),
SPECTRUM’s Marchenko—Pastur thresholding (Hartford et al] [2024), and entropy-based effec-
tive rank (Roy & Vetterli, 2007). In a continual learning setting, these approaches either fail to
capture layer-wise variability under sequential tasks or do not yield stable thresholds across hetero-
geneous datasets. An alternative notion of representational similarity is centered kernel alignment
(CKA) (Kornblith et al} [2019), which compares activations across models or layers. CKA empha-
sizes a different aspect of representation geometry focusing on cross-representation similarity, while
cosine similarity is designed to capture how tightly a layer’s outputs are aligned with its inputs. A
CKA-based variant of our importance measure is a natural extension.

3.4 ADAPTIVE RANK SELECTION

Given the importance of the layer ("), we introduce two hyperparameters controlling the retention
of singular vectors:

e Minimum Retention Ratio (mrr), ensuring minimal essential retention even for the least
critical layers.

» Target Retention Ratio (trr), defining the upper retention bound for highly critical layers.
The fraction of singular vectors preserved at each layer is computed as:

Tf(l) = mrr + IO (trr — mrr). 3)

The number of singular vectors to retain is k() = er(rld)c . min(d(ol), d(Il))J. The singular vectors

are then partitioned into high-rank (U}(lgh, V}(j;h) and low-rank subspaces. In practice, we found
that setting mrr = 0.1 and trr = 0.8 yields robust performance across our benchmarks. Our
method is not overly sensitive to these values; ablation studies show that while performance degrades
significantly if retention is too aggressive, mild perturbations (+0.05) result in minimal (<1%)
accuracy changes. For new applications, we recommend starting with these defaults and performing
a small grid search on the first task. See Appendix [A.9]for the complete ablation study.

3.5 ORTHOGONAL GRADIENT UPDATES IN LOW-RANK SUBSPACE

To minimize catastrophic forgetting, we enforce updates to lie within the low-rank subspace orthog-
onal to the high-rank directions. This is achieved by projecting the gradients:

1 1 l l l

vwl(pr)oj =vwi — U}(n;h ((Ul(qiéh)—rvw(l)vl(li;h) (Vl(qiéh)—r' 4
Here, U}(,gh € Rioxk" gnd V}Egh € R4*k" are the dense matrices containing the top k() singu-
lar vectors. This operation computes the component of the gradient that lies within the high-rank
subspace and subtracts it, ensuring the final update is strictly orthogonal to the preserved directions.

3.6 ORTHOGONAL UPDATES VIA REPARAMETERIZATION AND GRADIENT HOOKS

Our goal is to confine all updates to the low-rank subspace, making them orthogonal to the frozen
high-rank directions. While one can achieve this by projecting the full weight gradient, a more
computationally efficient and elegant solution is implemented by reparameterizing the weights and
using gradient hooks. This process involves two main steps:

1. Reparameterization and Freezing: After performing SVD on a weight matrix W) we
replace it with its underlying SVD components.

* The high-rank components (Uﬁféh, Z](qgh, V}(ngh) are registered as frozen buffers in the

model (i.e., non-trainable).
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* The low-rank components (U(l) »®O O

low> S1ow> Viow) are registered as new trainable parame-
ters.

During the forward pass, the full weight is reconstructed on-the-fly (W = Wy, + Wigy).
During backpropagation, gradients are only computed for the trainable low-rank SVD com-
ponents.

2. Maintaining Orthogonality with Gradient Hooks: Simply training the low-rank com-
ponents could cause their basis vectors (the columns of U}y, and Vo) to ”drift” and lose
their perfect orthogonality with the frozen high-rank basis vectors. To prevent this, we
attach a gradient hook to the trainable parameters. After the gradients (e.g., VUl(é\)V) are
computed, this hook projects them to be orthogonal to the high-rank basis vectors (e.g.,

Ul(]i;h). This acts as a maintenance step, guaranteeing the mathematical integrity of the

subspaces throughout training.

Our OSFT procedure is summarized in Algorithm|[I]

3.7 COMPUTATIONAL AND MEMORY ANALYSIS

Our method is designed to be computationally efficient and scalable. The primary additional cost is
the SVD, which is performed once per layer per task before training begins. Refer to Appendix
for detailed computational cost and memory efficiency analysis.

3.8 THEORETICAL JUSTIFICATION OF ADAPTIVE RANK SELECTION

We rigorously justify our adaptive rank selection method through a formal theoretical analysis using
a second-order Taylor expansion of the task-specific loss landscape, detailed in Appendix[A.3] This
analysis explicitly demonstrates that preserving parameter directions associated with the highest
Hessian eigenvalues—representing directions of greatest curvature—effectively minimizes catas-
trophic forgetting.

However, explicitly computing and decomposing the Hessian is computationally prohibitive for
large-scale language models. Therefore, we employ an efficient approximation inspired by em-
pirical evidence from [Haink| (2023), who show a robust correlation between the Hessian’s largest
eigenvalues and the largest singular values of the model’s weight matrices. By retaining the top
singular vectors—corresponding to critical knowledge from previous tasks—we effectively approx-
imate freezing the high-curvature Hessian directions while allowing updates within the subspace
defined by lower singular values.

Further supporting our approach, empirical findings (Sharma et al.| 2023} |L1 et al., [2025) highlight
that layers with higher input-output similarity exhibit significantly greater Hessian curvature. Our
adaptive layer-wise rank allocation strategically exploits this property: layers identified as crucial
(high input-output similarity) receive greater singular vector retention, thereby preserving essential
knowledge.

4 EXPERIMENTAL RESULTS

We comprehensively evaluate our adaptive SVD-based continual learning method on established
continual learning benchmarks, comparing it extensively with recent state-of-the-art (SOTA) base-
lines, notably O-LoRA Wang et al.|(2023a). Our experiments aim to demonstrate the effectiveness,
scalability, and practicality of our approach in realistic continual learning scenarios. For all bench-
marks, we use fixed task sequences from prior work and report results averaged across multiple
orders. To provide deeper insight into learning and forgetting, we include per-task accuracies (both
immediately after training and at the end of the sequence) in Appendix We compare against
recent SVD baselines MiLoRA and PiSSA; results are reported in Appendix [A.6] We also compare
against the SOTA sparse fine-tuning method LoTA (Panda et al., [2024), which uses sparsity masks
to preserve task-specific information; results and analysis are provided in Appendix
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4.1 BENCHMARKS AND EVALUATION PROTOCOL

We adopt two widely-used benchmarks reflecting varying levels of complexity and task diversity:

Standard Continual Learning Benchmark (5 Tasks) introduced by|Zhang et al.|(2015)), consisting
of classification tasks: AG News, Amazon Reviews, Yelp Reviews, DBpedia, and Yahoo Answers.

Extended Continual Learning Benchmark (15 Tasks), introduced by Razdaibiedina et al.| (2023),
combining tasks from multiple sources, including GLUE (Wang et al 2019) (MNLI, QQP, RTE,
SST-2), SuperGLUE (Wang et al., [2020) (WiC, CB, COPA, MultiRC, BoolQ), and IMDB, along
with the original 5-task benchmark.

TRACE Benchmark (8 Tasks). In addition, we evaluate on TRACE (Wang et al|[2023b)), an 8-task
instruction-tuning continual learning benchmark covering domain-specific tasks, multilingual capa-
bilities, code generation, and mathematical reasoning. Following TRACE, we report two metrics:
Average Accuracy (AA) and Average Backward Transfer (BT). Let A; ; denote the accuracy on task
J after training on task 7 in a sequence of 7" tasks. We define:

1T | Il
j=1 j=1
We interpret forgetting as —BT: more negative BT corresponds to more forgetting, while values
closer to zero indicate better retention of earlier tasks.

We evaluate two popular large language model architectures, T5-Large (encoder-decoder) and
LLaMA-2 7B (decoder-only), using the widely-adopted metric of Average Accuracy (AA), com-
puted across all tasks after training on the final task. To ensure robustness, we follow standard
protocols, averaging results over three independent runs with randomly permuted task sequences.
Implementation details, hardware configurations, and training hyperparameters for both T5-Large
and LLaMA-2 7B models are provided in Appendix [A.10]

4.2 BASELINE METHODS
We position our method clearly against representative continual learning paradigms:

* Sequential full-model fine-tuning (SeqFT): serves as a lower-bound baseline, prone to
catastrophic forgetting.

* Parameter-efficient LoRA variants including SeqLoRA, IncLoRA, and the recent SOTA,
O-LoRA [Wang et al | (20234), which utilize low-rank adapters.
* Replay-based approaches, such as standard replay buffers.

* Regularization methods, including Elastic Weight Consolidation (EWC) Kirkpatrick et al.
and Learning without Forgetting (LwF)|Li & Hoiem| (2017).

* Prompt-based techniques, including L2PWang et al.|(2022) and ProgPromptRazdaibied-
(2023).

* Model-merging methods: we include SLERP (Jang et al}|2024) and TIES (Yadav et al.
2023)). Both methods operate by combining separate per-task models rather than maintain-

ing a single continually updated model.

* PerTaskFT: trains a separate model per task, offering strong performance but requiring
extensive computational resources and storage.

* Multi-task Learning (MTL): trains a single model simultaneously on all tasks, represent-
ing an ideal upper bound by relaxing continual learning constraints.

4.3 MAIN RESULTS

Table [T] shows that OSFT outperforms or matches all baselines on both 5-task and 15-task bench-
marks. Importantly, compared to O-LoRA—the current SOTA parameter-efficient baseline—our
method achieves superior accuracy, particularly in the more challenging 15-task scenario (71.3% vs.
69.6%), highlighting its effectiveness in maintaining task knowledge over extended task sequences.
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Table 1: Comparison of Average Accuracy (%) across standard continual learning benchmarks using
the T5-Large model.

5-Task CL Benchmark 15-Task CL Benchmark
Method Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg
SeqFT 18.9 24.9 41.7 28.5 74 74 7.5 7.4
SeqLoRA 44.6 32.7 53.7 43.7 2.3 0.6 1.9 1.6
IncLoRA 66.0 64.9 68.3 66.4 63.3 58.5 61.7 61.2
Replay 55.2 56.9 61.3 57.8 55.0 54.6 53.1 54.2
EWC 48.7 47.7 54.5 50.3 453 44.5 45.6 45.1
LwF 54.4 53.1 49.6 52.3 50.1 43.1 47.4 46.9
L2P 60.3 61.7 61.1 60.7 57.5 53.8 56.9 56.1
LFPT5 67.6 72.6 77.9 72.7 70.4 68.2 69.1 69.2
O-LoRA 754 75.7 76.3 75.8 72.3 64.8 71.6 69.6
OSFT (ours) 75.3 74.0 78.4 75.9 71.6 69.6 72.7 71.3
SLERP 40.5 43.0 45.8 43.1 24 1.5 2.7 22
TIES 35.0 38.5 37.8 37.1 7.8 7.1 5.8 6.9
ProgPrompt 75.2 75.0 75.1 75.1 78.0 77.7 77.9 77.9
PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL (Upper Bound) 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5

Table 2: TRACE benchmark performance using LLaMA-2-7B-Chat. Average Accuracy (AA) and
Backward Transfer (BT) percentages are reported.

Method AA (%) BT (%)
SeqFT 23.0 -8.3
LoraSeqFT 9.2 -24.6
O-LoRA 41.3 -6.2
OSFT (ours) 48.4 -7.1
PerTaskFT 57.6 NA
MTL 52.3 NA

Notably, while PerTaskFT achieves high performance, it requires training separate models per task,
making it computationally impractical. MTL represents an idealized scenario, training on all tasks
simultaneously, thus serving as an upper-bound performance indicator. A comparison with model
merging methods, SLERP and TIES, is provided in Appendix [A-8] with corresponding results in-
cluded in Table[T} Ablation results for rank selection and gradient projection are in Appendix [A.9]

4.4 PERFORMANCE ON THE TRACE BENCHMARK

To further illustrate our method’s capability in more realistic continual learning environments, we
evaluate it on TRACE Wang et al.| (2023b), which includes diverse and challenging instruction-
tuning tasks.

Results in Table[2lemphasize our method’s ability to effectively retain and transfer knowledge across
tasks. Our approach achieves notably higher average accuracy, with slightly lower backward trans-
fer compared to O-LoRA, demonstrating a strong balance between robustness to forgetting and
adaptability to new tasks, both critical for practical deployments. In settings where tasks are re-
lated, we also observe positive transfer effects. For example, in TRACE when fine-tuning on the
NumGLUE-cm and NumGLUE-ds tasks, the accuracy on NumGLUE-cm increases after training
on NumGLUE-ds, indicating that adaptation on the later task can improve performance on the ear-
lier, related task rather than degrade it.

Retention of General Capabilities and Safety. We explicitly evaluate the preservation of general
abilities, instruction-following, and safety after continual learning using benchmarks proposed by
TRACE. Table 3] illustrates our method’s effectiveness in preserving or enhancing core language
capabilities including factual knowledge, commonsense reasoning, and multilinguality compared to
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Table 3: Comparison of general ability scores across six diverse evaluation tasks between the base
LLaMA-2-7B chat model and our adaptive SVD-based continual learner.

Model MMLU GSM BBH TydiQA BoolQA PIQA
Base Instruct Model 46.6 26.1 40.2 23.5 70.5 76.2
OSFT (ours) 47.7 7.7 34.2 35.8 76.6 77.6

Table 4: Win / Tie / Lose (%) for instruction-following and safety evaluations against the LLaMA-
2-7B-Chat base model.

Instruction (Helpfulness) Safety
Method Win Tie Lose Win Tie Lose
Replay 10 18 72 0 88 12
LoRASeqFT 3 4 94 0 86 14
SeqFT 14 34 53 0 98 2
OSFT (ours) 24 56 20 18 78 4

the original instruction-tuned model. Reasoning tasks like GSM8K suffer post-training degradation,
a known issue across methods and reported in TRACE |Wang et al.| (2023b). Prior work highlights
that continual learning without explicit reasoning supervision (e.g., chain-of-thought augmentation)
is insufficient to preserve these capabilities; however, our method can be augmented with such tech-
niques to mitigate this degradation. Table ] demonstrates that our method also retains instruction-
following ability and safety performance compared to baselines.

5 CONCLUSION

As large language models (LLMs) become increasingly central to real-world applications, contin-
ually adapting them without erasing prior knowledge is essential. We presented a novel continual
learning framework that uses adaptive singular value decomposition (SVD) to isolate low-rank sub-
spaces for new tasks while preserving critical directions for previously acquired knowledge. Un-
like parameter-efficient techniques that freeze most weights or add modules per task, our method
operates on all model parameters with fixed memory, preventing catastrophic forgetting through or-
thogonal subspace updates. Extensive empirical evaluations demonstrate our method’s effectiveness
across diverse benchmarks: (1) On the 5-task benchmark with LLaMA-2 7B, we achieved 79.6 %
accuracy, surpassing the current SOTA by over 3 percentage points; (2) or the challenging 15-
task sequence with T5-Large, we reached 71.3% accuracy, outperforming all parameter-efficient
competitors; (3) On the realistic TRACE benchmark with LLaMA-2 7B-Chat, our method attained
48.4% average accuracy without requiring simultaneous multi-task access or multiple specialized
models. Crucially, our approach preserved general capabilities, instruction-following behavior, and
safety throughout continual learning—essential properties for deployment in production environ-
ments. Our method OSFT provides a mathematically principled solution to the fundamental tension
between stability and plasticity in neural networks, offering a scalable path toward continuously
evolving language models that efficiently accumulate knowledge without forgetting. Our work es-
tablishes a practical approach for real-world deployment of continually adapting language models.
Limitations and future directions are discussed in Appendix [A.2]

10
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REPRODUCIBILITY STATEMENT

We provide all details needed to reproduce our results. The algorithm is specified in Section [3| with
the training procedure summarized in Algorithm [I] Benchmarks, metrics, and evaluation protocol
are described in Section[d] Theoretical assumptions and full proofs are provided in Appendix
Computational cost and memory analysis are in Appendix with ablations in Appendix @
Per-task results and task orders are reported in Appendix ﬁplementation and hyperparameters
are given in Appendix [A-T0] An anonymized code repository with scripts and configs is linked in
Appendix [A:T3] Our disclosure of LLM usage is in Appendix [A.14]
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A APPENDIX

A.1 ALGORITHM SUMMARY

Algorithm 1 Orthogonal Subspace Fine-Tuning (OSFT) - Practical Implementation

1: Require: Initial parameters § = {W "L tasks {D;}7_,, hyperparameters mrr, trr.
2: Ensure: Parameters are updated continually while preserving high-rank subspaces.
3: fortaskt =1,...,7T do

4:  Compute layer importance I(*) and determine retention count k().
5. forlayerl=1,...,Ldo
6: Decompose W) via SVD.
7: Reparameterize Layer:
8: Store high-rank components (U}(lgh, ...) as frozen buffers.
9: Store low-rank components (Ul((i‘)y, ...) as new trainable parameters.
10: Register a gradient hook on the trainable SVD components to enforce orthogonality.
11:  end for
12 while not converged on task D, do
13: Sample mini-batch.
14: In the forward pass, reconstruct effective weight Wgt) = Wk(lgh + Wl((f\))V
15: Backward pass computes gradients for trainable SVD components (e.g., VU]((QV).
16: The gradient hook automatically projects these gradients.
17: The optimizer updates only the (projected) trainable SVD components.
18:  end while
19: end for

A.2 LIMITATIONS AND FUTURE WORK

While our approach achieves strong performance across a range of benchmarks, few directions re-
main open for further refinement. (1) Rank Estimation Heuristics: Although our current rank
selection method performs robustly in practice, future work could explore more principled, data-
driven heuristics to fine-tune retention ratios with even greater precision. (2) Layer-Specific Opti-
mization: Our method currently applies SVD to all weight matrices; selectively targeting specific
layer types (e.g., attention matrices) may offer further efficiency gains with minimal trade-offs. (3)
Long-Horizon Adaptation: In scenarios with very large numbers of tasks, more adaptive capacity
management or online adjustment of subspace budgets may further enhance scalability. (4) Samples
from Previous Task: When we use the cosine-similarity based rank selection to set the effective
rank, OSFT requires a small fixed-size buffer of task (¢ — 1) data when starting task ¢; this is a fixed
memory requirement and does not increase with the number of tasks in the sequence. The alter-
native predetermined-threshold schedule for effective rank does not require any old-task data and
also performs well in practice. These are natural extensions to our core framework, which remains
effective and practical in current continual learning settings.

A.3 THEORETICAL ANALYSIS: TIGHTER FORGETTING BOUNDS VIA ADAPTIVE SVD

We now formally derive a hierarchy of catastrophic forgetting bounds that rigorously demonstrate
the advantage of our adaptive rank selection approach compared to both naive full fine-tuning and
uniform low-rank projection methods. In essence, this section shows how protecting high-curvature
directions (i.e., large Hessian eigenvalues) minimizes forgetting—motivating our subsequent use of
weight-matrix SVD as a tractable approximation.

Lemma 1 (Second-Order Approximation of Catastrophic Forgetting). Consider a model with pa-
rameters 0%) after training on task k, and subsequent parameters 01 = 0 1 A@ after learning
task k + 1. Assuming VLk(H(k)) ~ 0 (i.e., task k’s loss is near-optimal at 0)), the catastrophic
forgetting on task k can be approximated by:

1
AL 2 Lip(0%HY) — L. (6%) = §A9THI€A9, (6)
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where Hy, = V2L, (%)) is the Hessian of the loss function at ).

Proof. Step 1: Taylor Expansion. Expanding L;, at #t1) = 9(®) ;- A via Taylor’s theorem:
X 1
Li(0% D)) = L(0") + VL (6%) T Al +§A0THkA9 +0(]|A8]?). (7)
———
~0
Step 2: First-Order Term Vanishes. Since §(*) represents a (local) optimum for task &, we have
VL (%) ~ 0, thereby eliminating the first-order term.

Step 3: Dominant Quadratic Term. The remaining quadratic term % AT H;, A dominates for-
getting. O

Lemma 2 (Block-Diagonal Approximation of the Hessian). Consider a Transformer model with
parameters partitioned into layers such that:

-
0 = Vec(W(l))T, vec(W(Q))T, . ,vec(W(L))T} .

The Hessian matrix Hy, at the optimum 0%) can be approximated as block-diagonal with respect to
layers:

7Y o .. 0
o H? .. 0
Hy~ | | . , o )]
0 o - HP

where each H ,gé) represents the intra-layer Hessian for layer {. Under this approximation, the
quadratic form decomposes as:
L
AOTHAD ~ Y vee(AW ) TH vee(AW®). 9)
(=1

Proof. The block-diagonal approximation is theoretically justified by analyses showing the Hes-
sian of neural networks, especially Transformers, is dominated by intra-layer terms with negligible
cross-layer interactions (Singh et al. [2021; Martens & Grosse, [2015). Empirical evidence from
Transformer models further supports this structure: Hessian spectrum analyses reveal minimal mag-
nitude in off-diagonal inter-layer Hessian blocks compared to the intra-layer blocks (Zhang et al.,
2024).

Empirical Validation: As shown inZhang et al.|(2024), inter-layer Hessian blocks in Transformers
exhibit ~ 10x smaller Frobenius norms than intra-layer blocks, with cross-layer correlations below
0.1 in pretrained models. This justifies treating layers independently for curvature analysis.

Norm Equivalence: Note that vec(AW®)TH  vec(AW®) is  equivalent to

<AW(5),H,(€€)AW(Z)> r, where (-,-)p is the Frobenius inner product. Thus, the quadratic
form directly ties to layer-wise Frobenius norms.

In practice, optimization and continual learning algorithms that assume a block-diagonal Hessian,
such as Kronecker-Factored Approximate Curvature (K-FAC) (Martens & Grosse, |2015)) and struc-
tured Laplace approximations (Ritter et al., 2018]), consistently demonstrate effectiveness in lever-
aging layer-wise curvature without significant loss of accuracy. Thus, the approximation is both
theoretically sound and empirically validated. O

Lemma 3 (Relationship Between Layer Importance and Curvature). The layer importance measure
IO defined as:
1N
710 = N Zl cosineJimilariZy(Xi(Z), Yi(e)) (10)

where Xi(e) are layer inputs and Yi“) = W(Z)Xi(o are layer outputs, positively correlates with the

spectral properties of the layer-wise Hessian H ,gé).
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Proof. Layers with high importance scores (high similarity between inputs and outputs) tend to
preserve activation patterns rather than significantly transform them. These layers typically serve as
information conduits in the network, maintaining critical features learned for task k.

Empirically, these high-importance layers exhibit higher sensitivity to parameter perturbations.
When a layer primarily passes information forward with minimal transformation (high 1(©)), per-
turbations to its parameters directly interfere with this information flow, causing large changes in
the loss function. Mathematically, this translates to larger eigenvalues in H (/Z), indicating steeper
curvature.

Conversely, layers with lower I() values significantly transform their inputs, suggesting these layers
are more adaptable. Perturbations to these layers’ parameters cause smaller changes in the loss

landscape, resulting in smaller eigenvalues in H ,g).

This relationship has been verified empirically in multiple studies (Sharma et al., |2023} [Li et al.,
2023)), consistently showing a positive correlation between measures of layer importance and the
magnitude of Hessian eigenvalues.

Intuition: Consider a layer that merely passes input features (high 1(©)). Perturbing its weights
W) directly distorts critical task-k features, causing large loss changes (high curvature). In con-
trast, layers transforming inputs (low I(V)) allow parameter changes without catastrophic feature
distortion, corresponding to flatter curvature. O

Preserving Large Hessian Eigenvalues Minimizes Forgetting. Combining these lemmas, we see
that directions with large Hessian eigenvalues impose the greatest risk for catastrophic forgetting:
even small updates along those directions yield substantial loss increases for old tasks.

Theorem 1 (Hierarchy of Forgetting Bounds). Assuming equal parameter update magnitudes
|AG||2 = c across different fine-tuning strategies, the forgetting bounds satisfy:

Adaptive SVD < Fixed-Rank < Full Fine-tuning 1n
Specifically:
Full Fine-tuning: AL, < %)\max(Hk) -c, (12)
Fixed-rank: ALy < %m?X{AEQJ ‘¢, (13)
Adaptive (Ours): ALy < %mlgx{/\%)[) e (14)

where () = mrr + IO (trr — mrr) is our adaptive rank allocation based on layer importance.

Moreover, under the condition that layer importance I'9) positively correlates with Hessian curva-
ture (Lemma E]), we have:

mgx{)\%)g)+1} < m?x{)\g,ﬂ)_l} < Amax (Hg), (15)

ensuring our adaptive approach provides strictly tighter forgetting bounds.

Proof. We establish the hierarchy of bounds by proving each inequality separately.

Part 1: maxe{Aggl} < Amax(Hp). By the block-diagonal approximation (Lemma , Amax (Hg) =
maxz{)\gz)}. From Lemma high-7(¥) layers have larger Aﬁ“. Since )\ﬂl < Aﬁ” for all £ by the
ordering of eigenvalues, we have:

m?X{/\E.Ql} < m?x{)\ge)} = Amax (Hg)-

Rayleigh Quotient Proof for Full Fine-tuning Bound: For the full fine-tuning case, we need to
bound AT H;,Af. By the Rayleigh quotient property, for any symmetric matrix Hj, and non-zero
vector Af:

AOTHAO

< max H/ Y
U
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where A\pax(Hj) is the largest eigenvalue of Hy. This holds because the maximum value of the
Rayleigh quotient equals the largest eigenvalue.

Rearranging, we get:
AOTHRAO < Apax(Hi) - |A0]? = Amax(Hy) - c.
Hence the forgetting bound for full fine-tuning is:

ALk =~ %AGTH]C AO < %Amax(Hk) ||A9||2

Part 2: man{)\i?z)H} < maxlg{/\gﬁl}.

Let ¢* = argmax, )\7(21 be the layer with the largest post-projection eigenvalue in the fixed-rank

approach. By Lemma [3| this layer typically has high curvature and thus high importance 1(").
Under our adaptive allocation strategy, that high-importance layer obtains a larger rank allocation
(r(¢*) > ), ensuring:

A ) = mlgx{)\(z)

r(€*)+1 r+1 r+1J-
For any other layer ¢ £ £*,
¢ o ‘
)‘i()é)Jrl < )‘£+i = mgx{)\ill )

either because r(¢) > r (for other high-importance layers) or because )\5,21 < )\y:i (for low-
importance layers). Hence man{/\(r?g) n

fixed-rank.

< man{)\,(ﬁl}, implying a strictly tighter bound than

Combining Parts 1 and 2 completes the proof of the bound hierarchy. O

() (") )
Areypr < A1 S A ; (16)
N —r’ N~ N~
Adaptive (Ours) Fixed-Rank Full Fine-Tuning

where {* = arg maxy )\fﬁl is the highest-curvature layer.

On the Equal-Norm Assumption The assumption || Af||? = ¢ across different fine-tuning strate-
gies isolates the impact of update directions but does not imply optimality. In practice:

* Adaptive SVD may achieve lower forgetting even with smaller norms by avoiding high-
curvature directions.

* Full fine-tuning could offset poor directional alignment with larger updates, but this risks
catastrophic forgetting.

* Future work should analyze the Pareto frontier of the accuracy—forgetting trade-off under
variable norms.

This assumption is purely a theoretical device, not a claim about how hyperparameters are tuned in
practice.

Key Theoretical Insights

Under equal parameter update budgets:
* Full fine-tuning suffers worst-case forgetting bounded by Apax(Hy).

* Fixed-rank projection improves on this by capping directions via a uniform low-
rank selection, but misallocates rank to some layers.

* Adaptive SVD aligns per-layer rank 7(¢) with curvature (via 1\©)), giving strictly
tighter forgetting bounds.
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Corollary 1 (Forgetting Reduction with Adaptive SVD). Under the equal parameter update mag-
nitude assumption, our adaptive SVD achieves strictly less forgetting than fixed-rank or naive full
fine-tuning. This gap widens when:

* Layer importance I'Y) varies significantly across layers,

* The Hessian spectrum shows heavy tails (a few large eigenvalues dominate).

Proof. Follows directly from Theorem|l|and the established bound hierarchy:
A L:daptive < A Lllzixed—rank < A Lgull'

O

Practical Approximation via Weight-Matrix SVD. While the above results show that retaining
large Hessian-eigenvalue directions is essential to minimize forgetting, computing Hessian eigen-
vectors is intractable for large language models. Recent empirical findings (Haink, 2023) indicate
that these high-curvature directions often overlap significantly with top singular vectors of the weight
matrices. Hence, our method uses SVD-based rank selection—preserving large singular values—as
a pragmatic surrogate for preserving large Hessian eigenvalues. By focusing on lower singular-
value directions for new-task updates, we effectively contain catastrophic forgetting without the
prohibitive overhead of Hessian decomposition. This aligns with the theoretical ideal of limiting
updates where curvature is highest, but in a computationally feasible manner.

This theoretical framework underpins our adaptive SVD strategy: high-importance layers (with
higher curvature) get more singular directions retained, while less critical layers can be more aggres-
sively pruned. As shown in Section[d} this approach consistently outperforms naive full fine-tuning
and uniform low-rank baselines in mitigating forgetting and stabilizing knowledge across tasks.

A.4 EMPIRICAL VALIDATION OF LOW RANK APPROXIMATION

We conducted an in-depth analysis of the Granite 8B model architecture to validate findings
from prior literature suggesting that the weight matrices in transformer layers are effectively low-
rank (Sharma et al.| 2023} |[Hartford et al., |2024). This implies that these matrices can be accurately
approximated using low-rank Singular Value Decomposition (SVD), revealing unused capacity that
can potentially be leveraged to learn additional tasks or improve performance on existing ones. Since
Granite shares a similar architecture with LLaMA, our findings are directly applicable to LLaMA
and offer broader insights into decoder-only transformer architectures and large language models in
general.

Table 5: Leaderboard average results for attn.k_proj.weight across varying low-rank reduc-
tion levels. Middle layers showed slightly better robustness than early layers. The baseline here
refers to the original Granite 8B model without any low-rank approximation.

Reduction % Above Baseline Below Baseline

10% 3 9
50% 4 8
90% 2 10
99% 2 10
99.75% 0 11

We examined all attention and feedforward projection matrices across all layers of Granite 8B, and
report results for four key matrices: the attention value and key projections, and the two feedforward
projection matrices that follow attention. Based on prior observations from LASER |[Sharma et al.
(2023)) suggesting that later layers benefit most from rank reduction—often leading to improved
downstream performance when high-frequency components are removed—we report findings from
layers 28, 29, 34, and 39 out of the model’s 40 layers. We performed SVD-based low-rank approx-
imations at varying reduction levels (e.g., retaining only 1%, 50%, or 90% of the original singular
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Figure 3: Effect of low-rank approximation on the attn.v_proj.weight (value projection ma-
trix) across selected layers in Granite 8B, evaluated on the Leaderboard benchmark.
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Figure 4: Effect of low-rank approximation on the mlp.gate_proj.weight (first feedforward
projection) across selected layers in Granite 8B, evaluated on the Leaderboard benchmark.
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Figure 5: Effect of low-rank approximation on the m1p.down_proj.weight (third feedforward
projection) across selected layers in Granite 8B, evaluated on the Leaderboard benchmark.

vectors), and evaluated the impact of each intervention on performance on the Open LLM Leader-
board v2 benchmar consisting of six tasks — MMLU-Pro, GPQA, MuSR, MATH, IFEval, and
BBH. Consistent with prior work, we observed that some low-rank approximations maintained or
even improved performance, highlighting the redundancy and compressibility of these matrices (see
Figures [3| [4] and [5]and Table[5). Each experiment involved a single intervention defined by a tuple
specifying the layer number, matrix type, and reduction percentage.

Our approach assumes that lower singular vectors can safely accommodate new knowledge without
significant forgetting. Specifically, our method relies on the premise that fine-tuning in the directions
of low singular vectors will not interfere with previously learned tasks. This assumption holds only
if the data from earlier tasks lie predominantly in the subspace spanned by the high singular vectors.
If task-specific information from earlier tasks resides in the span of the low singular vectors, mod-
ifying these directions could lead to interference—especially if the associated singular values were
previously small (effectively suppressing higher-frequency components or noise), but are increased
during learning on new tasks, thereby reactivating those suppressed directions. Formally, we expand
the weight matrix via SVD as:

W=> oiuv, 17)
i=1

To empirically verify this, we investigate whether the output components of previous tasks in the
hidden layer, when projected onto the low singular vector subspace, are negligible. In particular, we
compute the L2 norm of the matrix-vector product between the outer product of each singular vector
pair u;v;" and the input vector (from a previously learned task) without scaling by the corresponding
singular value. This helps determine whether the old task input lies in the null space of the low
singular vectors or merely yield small outputs due to low singular values. If the L2 norms of the
matrix-vector products corresponding to low singular vectors are near zero, we can safely update
these directions for new tasks without affecting the prior task.

We perform this analysis on the mlp.down_proj.weight matrix in layer 34 of Granite 8B
using data from a previously learned task. The results are presented in Figure[6} As expected, the
output norm steadily decreases from left to right, where the x-axis corresponds to singular vector
indices sorted in descending order of singular values. The three highest singular directions yield

'"https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about
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L2 Norms of Matrix-Vector Product Across Singular Vectors
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Figure 6: L2 norms of matrix-vector products for each singular vector component in the
mlp.down_proj.weight matrix (layer 34, Granite 8B), using inputs from a previously learned
task. The clear downward trend confirms that low singular directions have minimal activation for
the learned task.

norms of 55.5, 18.1 and 1.8, respectively, indicating a sharp drop in signal strength after the top
components. This supports the theoretical redundancy hypotheses (Chen et al.||2020; Sharma et al.,
2023)), validating our adaptive low-rank continual learning strategy. In particular, this layer retained
performance even after a 99% rank reduction, matching the performance of the unmodified Granite
8B model on the Leaderboard benchmark.

These diagnostic experiments laid the groundwork for our final approach, which leverages projected
gradient descent restricted to low-rank subspaces. Importantly, these subspaces are adaptively se-
lected to minimize interference with previously learned tasks while preserving expressive capacity
for learning new ones. Detailed analysis of singular value statistics across all layers and matrix types
is provided in Appendix [A.3]

A.5 SINGULAR VALUE STATISTICS AND RANK ANALYSIS OF THE GRANITE 8B MODEL

To better understand how to select which singular vectors to fine-tune within model weight ma-
trices, we analyzed the singular value statistics of each matrix using tools from Random Matrix
Theory (RMT). Specifically, we examined the use of the lower bound of the Marchenko—Pastur
distribution—following the approach in SPECTRUM (Hartford et al.| |2024)—to distinguish signal
from noise. Singular values that fell below this bound were treated as noise, allowing us to estimate
the effective rank of each matrix. However, we observed that, under this criterion, all weight matri-
ces in the Granite 8B model appear to be full-rank. This outcome is attributed to the violation of the
core assumptions of the Marchenko—Pastur law—namely, that matrix entries are independently and
identically distributed—which clearly does not hold in trained language models where parameters
are highly structured and correlated. Consequently, we adopted a scaled thresholding approach, in-
formed by descriptive statistics such as the minimum, mean, median, and maximum singular values
within each layer.

To support the adaptive rank selection strategy introduced in the main paper, we performed a
comprehensive analysis of the singular value spectra across all weight matrices in the Granite 8B
model. For each matrix type (e.g., g_proj, k_proj, v.proj, oproj, gate proj, up_proj,
down_pro j), we compute and visualize the distribution of minimum, maximum, mean, and median
singular values across all transformer layers (Figures[7HI3). We also construct a heatmap illustrating
the variation of mean singular values throughout the network (Figure [I4). These statistics provide

22



Under review as a conference paper at ICLR 2026

useful insights into which low singular vectors and corresponding subspaces are suitable for fine-
tuning during continual learning.
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Figure 7: Singular value statistics for the attn.g_proj.weight matrix across Granite 8B layers.
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Figure 8: Singular value statistics for the attn.k_proj.weight matrix across layers.

A.6 COMPARISON WITH SVD BASELINES: MILORA AND PISSA

MiLoRA and PiSSA are closely related to our setting, as they also use SVD to decompose weight
matrices and then update only a subset of singular directions using LoRA-style adapters. MiLoRA
performs SVD of the weight matrix, freezes the high-singular-value components (interpreted as the
“pretrained base”), and updates the low-singular-value components as trainable adapters. PiSSA ap-
plies the opposite split: it freezes the low-singular-value components and updates the high-singular-
value components as adapters.

For a direct comparison, we follow the math reasoning setup from the MiLoRA paper and fine-tune
LLaMA-2-7B on the MetaMathQA dataset (395K samples combining GSM8K and MATH). We
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Figure 9: Singular value statistics for the attn.v_proj.weight matrix across layers.
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Figure 10: Singular value statistics for the attn.o_proj.weight matrix across layers.

evaluate on the GSM8K and MATH test sets and report Exact Match (EM) on the final checkpoint.
Table [6] summarizes the results.

Table 6: Comparison with MiLoRA and PiSSA on the MetaMathQA setup using LLaMA-2-7B. We
report Exact Match (EM) on GSM8K and MATH, along with the average.

Method GSMSK MATH Avg.
Full FT 66.5 19.8 43.2
LoRA 60.6 16.9 38.7
PiSSA 58.2 15.8 37.0
MiLoRA 63.5 17.8 40.7
OSFT (ours) 69.7 18.2 43.95
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Figure 11: Singular value statistics for the mlp.gate_proj.weight matrix across layers.

Singular Value Statistics for up_proj
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Figure 12: Singular value statistics for the mlp.up_proj.weight matrix across layers.

OSFT slightly improves on the full fine-tuning average and outperforms both MiLoRA and PiSSA
on this math reasoning setup, indicating that constraining updates to an orthogonal low-singular-
value subspace can match or exceed strong SVD-based PEFT baselines while maintaining the con-
tinual learning benefits studied in the main paper.

A.7 COMPARISON WITH SPARSE FINE-TUNING

Sparse fine-tuning approaches aim to mitigate forgetting by selectively freezing or reactivating im-
portant parameters. We compare our method against Lottery Ticket Adaptation (LoTA)
[2024), which uses sparsity masks to preserve critical weights from a source task while adapting to a
new task. We reproduce the task transfer setup from Table 5 of their paper using the Mistral-7B-v0.1
model. Each experiment begins with an instruction-following task (Task A), followed by transfer to
a downstream task (Task B). The goal is to preserve performance on Task A while adapting effec-
tively to Task B.
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Figure 13: Singular value statistics for the mlp.down_proj.weight matrix across layers.
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Figure 14: Heatmap of mean singular values across all matrices and transformer layers in Granite
8B.

As shown in Table[7} our method OSFT consistently matches or outperforms LoTA in mitigating for-
getting (Task A) while achieving comparable or higher downstream task performance (Task B). For
example, on GSM8K and MathInstruct, our method achieves stronger retention and higher accuracy
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Table 7: Comparison between LoTA and our method on sequence of two tasks. Each row corre-
sponds to a setup where the model is first trained on the instruction-following task (Task A) and then
fine-tuned on a downstream task (Task B). We report the utility (accuracy or task-specific metric)
on both Task A and Task B after training on the second task. Values in parentheses indicate the
drop in Task A or Task B performance compared to the Baseline, where the model is trained on that
task alone. Lower drop in Task A utility indicates better forgetting mitigation; higher Task B utility
indicates better learning and adaptation.

Task B Task A Method Task B Method Task A Utility (|) Task B Utility (|)
Instruction Follow Baseline - 19.0 (-) -
- Baseline - 59.8 (-)
GSMS8K FFT OSFT (ours) 18.6 (0.4) 60.1 (-)
LoTA LoTTO 17.8 (1.2) 59.1 (0.7)
- Baseline - 56.7 (-)
Mathlnstruct FFT OSFT (ours) 17.8 (1.2) 60.1 (-)
LoTA LoTA 16.0 (3.0) 55.5(1.2)
- Baseline - 83.5(-)
Reasoning FFT OSFT (ours) 18.3 (0.7) 82.1(1.4)
LoTA LoTTO 16.5 (2.5) 83.7 (-)
- Baseline - 77.0 (-)
GSM8K+Arc+SQL  FFT OSFT (ours) 14.7 (4.3) 76.2 (0.8)
LoTA LoTTO 15.9 (3.1) 73.8 (3.2)
Baseline - 93.1(-) -
Safety FFT OSFT (ours) 71.8 (21.3) -
LoTA LoTTO 63.4 (29.7) -

on the new task. On Reasoning, we maintain near-zero drop in Task A utility, while LoTA suffers a
larger decline. These results demonstrate the effectiveness of the full-parameter constrained update
approach relative to sparse masking.

A.8 COMPARISON WITH MODEL MERGING TECHNIQUES

We compare against two model merging techniques—SLERP (Spherical Linear Interpolation) and
TIES (Task-Informed Ensemble Synthesis)—to assess their applicability in the continual learning
setting. SLERP was applied by merging full model weights sequentially: after each task, the model
was interpolated with the next task’s model on the unit hypersphere. TIES was applied to linearly
combine task-specific LORA adapters using weights tuned on a held-out validation set. Our method
OSFT significantly outperforms both (see Table [T). In continual learning benchmarks involving
many tasks, such as the 5-task and 15-task settings examined here, finding effective merge strategies
becomes increasingly challenging. Moreover, even after identifying an optimal strategy, extensive
hyperparameter tuning, experimentation, and expert knowledge are typically required to merge mod-
els effectively without compromising task performance over long task sequences. This complexity
makes such merging approaches less practical compared to our proposed method.

A.9 ABLATION STUDIES

To better understand the contribution of key components in our method, we conduct two ablation
studies using the LLaMA-2 7B model on the standard continual learning benchmark comprising 5
classification tasks (AG News, Amazon, Yelp, DBpedia, Yahoo). These ablations are designed to
evaluate: (1) the importance of accurate effective rank estimation for singular vector selection, and
(2) the necessity of constraining updates to remain within the low-rank subspace via projection.

(1) Impact of Inaccurate Effective Rank Estimation: Our method relies on computing an ef-
fective rank per matrix based on input-output activation similarity, which informs the threshold for
partitioning singular vectors into high- and low-rank subspaces. To test the importance of this esti-
mation, we reduce both the minimum and target retention ratios (mrr and trr) to half their original
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values. This results in more aggressive fine-tuning by retaining fewer high singular vectors, thus
allocating more of the matrix capacity to learning new tasks. However, this also increases the risk of
overwriting components important for previous tasks. As shown in Table [0} this ablation leads to a
substantial performance drop of just over 28 percentage points (from 79.6% to 51.5%), emphasizing
the importance of accurately estimating the effective rank to ensure that task-relevant subspaces are
preserved.

Ablation results over mrr and trr are shown in Table@ The default setting (0.10, 0.80) gives the best
average accuracy. Nearby values such as (0.05,0.70) and (0.20,0.90) perform similarly (within
~4-8 points), showing that OSFT is reasonably robust to moderate changes. Very low retention
(0.05,0.40) and “flat” schedules where mrr = trr (e.g., (0.50,0.50)) hurt performance, and the
extreme retention (0.70, 1.00) case performs worst, confirming that overly weak retention or overly
high retention both degrade results.

Table 8: Sensitivity of OSFT to mrr and trr on the 5-task standard continual learning benchmark
with LLaMA-2 7B. Average accuracy (%) over all tasks is reported.

mrr trr  Avg. accuracy (%)

0.10 0.80 79.6
0.05 0.40 51.5
0.05 0.70 75.9
0.20 0.90 71.1
0.50 0.50 55.8
0.70 1.00 48.0

(2) Unconstrained Fine-Tuning of Low Singular Vectors: In our method, gradient updates are
projected back into the low-rank subspace to prevent interference with high-rank directions. This
ablation removes that constraint: we freeze the high singular vectors but allow unconstrained updates
to the low singular vectors, meaning that during optimization, updates are not restricted to stay
within the initially identified low-rank subspace. This allows the low singular vectors to drift into
the space previously occupied by high singular vectors, leading to potential interference and loss of
previously acquired knowledge. As expected, this results in catastrophic forgetting, with accuracy
dropping from 79.6% to 31.2%. In addition, since only the low singular vectors are updated while
the high ones are frozen, each new task is forced to be learned in a restricted subspace, limiting
the model’s overall expressiveness. Together, these factors result in a ~ 50-point accuracy drop,
highlighting the necessity of maintaining orthogonality between new task updates and previously
learned subspaces.

Table 9: Ablation results on the LLaMA-2 7B model using the standard 5-task continual learning
benchmark

Method Average Accuracy (%)
OSFT (ours) 79.6
(1) Halved mrr/trr (aggressive effective rank approximation) 51.5
(2) No projection (unconstrained low-rank updates) 31.2

A.10 IMPLEMENTATION DETAILS

We detail the implementation of all experiments presented in this work. Our study utilizes
both encoder-decoder and decoder-only language models. For all continual learning experi-
ments—including the 5-task and 15-task benchmarks, as well as the TRACE benchmark—we repli-
cate the task sequences, prompts, and dataset configurations as established in O-LoRA |Wang et al.
(2023a)) and TRACE |Wang et al.| (2023b)).

T5-Large. Experiments with the T5-Large model were conducted on a single NVIDIA H100 GPU
using standard PyTorch training in full precision. We used a constant learning rate of 5 x 10~°
with the AdamW optimizer and a total batch size of 8, training for one epoch per task. For each
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classification dataset, we sampled 1,000 examples per class (where available) to construct balanced
training sets, following the protocol established in|Wang et al.|(2023a). All runs were performed with
a fixed random seed, and checkpoints were saved after each task for evaluation and reproducibility.

LLaMA-2 7B and Mistral-7B. All experiments with the LLaMA-2 7B and Mistral-7B models
were conducted on a server equipped with 8 NVIDIA H100 GPUs, using the DeepSpeed library
with Stage 2 optimization. Gradient checkpointing was enabled, and training was performed with a
per-GPU batch size of 1 (resulting in an effective batch size of 8). We used the AdamW optimizer
with a learning rate of 1 x 107°, weight decay of 0.01, 5; = 0.9, B2 = 0.999, and ¢ = 1 x 1073,
All continual learning runs were trained for one epoch per task. After backpropagation, projection
steps were applied to the gradients to constrain updates within the designated low-rank subspaces.

Our SVD configuration was automatically generated by analyzing specific matrices in each
transformer block—namely, g-proj, k_proj, v_.proj, o_proj, gate_proj, up-proj, and
down_proj. Among the various strategies we explored for determining which singular vectors to

retain, we found empirically that two approaches consistently performed best. The first allocates
i—1

a fixed budget by freezing the top fraction of singular vectors for task ¢ in an n-task se-

quence. The second uses adaptive ranl?selection based on layer importance scores, as described in
Section where the number of retained singular vectors per layer is computed using the normal-
ized importance ") from Section The remaining components were fine-tuned using projected
gradient descent within the low-rank subspace.

Clarification on mrr, trr choice and () handling. We introduced two key hyperparameters,
minimum retention ratio (mrr) and target retention ratio (trr) in Eq. equation[3] Empirically, we set
these values as mrr = 0.1 and trr = 0.8, which consistently yielded strong results across bench-
marks with T5-Large, LLaMA-2 7B, and Mistral-7B. As shown in Appendix[A.9](Table[9), halving
these parameters (more aggressive fine-tuning on the new task) significantly reduced performance
(from 79.6% down to 51.5%), demonstrating the importance of appropriately balancing stability
and plasticity. Conversely, mild perturbations around the defaults (e.g., £0.02 or +0.05) produced
less than a 1% change in accuracy, confirming robustness. Thus, starting from our recommended
default (0.1, 0.8) and performing a modest grid search around these values on early tasks is a simple
and effective strategy for practical tuning. Additionally, if prior knowledge about task difficulty is
available, the retention rates can be adjusted accordingly.

Regarding negative layer importance scores I(“): By definition, we compute 7() as the cosine sim-
ilarity between the input activations X () and output activations Y(*). Empirically, we observed
these values were consistently positive (ranging roughly between 0.5-0.8) across all layers and
tasks. Nevertheless, for robustness, if any raw cosine similarity were negative, we explicitly clip
it to zero before normalization, ensuring:

I =1L

4

This guarantees that the retention ratio

O > mrr x (full rank).

A.11 RUNTIME AND RESOURCE ANALYSIS

To assess the deployment practicality of our method, we analyze both theoretical and empirical
resource overheads compared to full fine-tuning (FFT).

Memory Efficiency during Training. The key efficiency gain comes during training. By freezing
the high-rank components, we avoid storing their gradients and optimizer states. For an n X n
matrix, the memory for parameters, gradients, and Adam optimizer states is roughly 4n? for full
fine-tuning, whereas our method requires approximately 2n? + 6nr (for storing U/V factors and
low-rank optimizer states, where r is the trainable rank). OSFT is therefore more memory-efficient
whenever r < n/3, which typically holds in continual learning. In practice, r < n/3 is sufficient
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because starting from an instruction-tuned model, most prior capabilities must be retained, and one-
third of the subspace capacity is generally adequate to learn new tasks. This constant memory
footprint is a significant advantage over methods that store past gradients or activation bases.

SVD Time Complexity. The time complexity of computing the SVD of an n x n weight matrix is
O(n?). We perform SVD once per matrix at the start of each task. For LLaMA-2 7B, where typical
weight matrices have dimensions 4096 x 4096 and the input sequence length is L = 512, this cost
is on par with ~4 forward passes through a transformer block, since the cost of a single forward
pass is O(Ln?+ L?n). Empirically, performing SVD on all relevant matrices of LLaMA-2 7B takes
approximately 2 minutes on a single H100 GPU. This is less than 4% of the total training time for
a typical 7k-sample dataset, becoming negligible for larger datasets.

Empirical Runtime. We profiled the wall-clock runtime of performing SVD on all relevant ma-
trices in LLaMA-2 7B. Using a single H100 GPU:

¢ Time for SVD (all matrices): ~2 minutes

 Time for fine-tuning on a 7k-sample dataset for 3 epochs: ~25 minutes

Thus, the SVD overhead is <10% of total training time on small datasets, and becomes negligible
on larger datasets. Moreover, the SVD cost scales linearly with the number of tasks and matrices,
making it practical even in long-horizon continual learning.

Rank Estimation Cost. Rank selection based on capacity heuristics (e.g., dividing total budget by
number of tasks) adds no computational cost. When using adaptive rank selection via input-output
similarity, we only require a single forward pass over ~500 samples from the previous task—an
overhead of under 30 seconds on modern GPUs.

Comparison with Gradient Storage. Many existing continual learning methods store task-
specific gradients or importance weights. For each task, this requires storing an additional n? tensor
per matrix, leading to O(kn?) total memory for k tasks. Our method avoids this entirely, making it
significantly more scalable.

Our method incurs only a small one-time per-task cost for SVD computation and requires no addi-
tional memory for gradient storage. Theoretical and empirical results confirm that it is both scalable
and suitable for deployment in resource-constrained environments.

A.12 TASK SEQUENCES AND PER-TASK PERFORMANCE

Across all three experimental settings—the 5-task standard CL benchmark, the 15-task longer se-
quence benchmark, and the 8-task TRACE benchmark—we strictly adhered to the original config-
urations of O-LoRA [Wang et al.| (2023a) and TRACE [Wang et al.| (2023b)). This included using
the same datasets, task instructions for prompting models during classification and generation, and
identical training and validation sample counts and label distributions per task. Task sequences were
replicated exactly to ensure consistency across evaluations and facilitate fair comparisons.

To better assess forgetting and learning dynamics, we report per-task performance for one repre-
sentative task sequence from the 5-task (Table[IT)) and 15-task (Table[I2) continual learning bench-
marks, and the task sequence in the TRACE benchmark (Table [T3). Each task reports two metrics:
the accuracy immediately after the task is learned (reflecting plasticity), and the final accuracy after
all tasks are trained (reflecting stability and forgetting).

These breakdowns provide a more granular view of both adaptation (learning) and forgetting across
tasks. The final results in the main paper (e.g., Table [T) are averaged across multiple such task
orders. The same orders were used for both T5-Large and LLaMA-2 7B experiments.

A.13 CODE AND REPRODUCIBILITY
To facilitate reproducibility we provide an anonymized code repository containing implementations,

training scripts, and experiment configurations used in this work. The repository also includes in-
structions for reproducing the results across the benchmarks.
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Table 10: Task orders for all six sequences used in the Standard Continual Learning benchmark
experiments.

Order Task Sequence

1 dbpedia — amazon — yahoo — ag
2 dbpedia — amazon — ag — yahoo
3 yahoo — amazon — ag — dbpedia
4

mnli — ¢b — wic — copa — qqp — boolga — rte — imdb
— yelp — amazon — sst—2 — dbpedia — ag — multirc — yahoo

5 multirc — boolga — wic — mnli — cb — copa — qqp — rte — imdb
— sst—2 — dbpedia — ag — yelp — amazon — yahoo

6 yelp — amazon — mnli — cb — copa — qqp — rte — imdb
— sst—2 — dbpedia — ag — yahoo — multirc — boolgqa — wic

Table 11: Per-task performance on the 5-task benchmark (Order 1, T5-Large Model). Task order:
dbpedia — amazon — yahoo — ag. Average Accuracy: 75.3, Backward Transfer: -3.7.

Task Accuracy (After Task) Accuracy (Final)

dbpedia 98.9 97.2
amazon 53.5 46.1
yahoo 74.3 68.7
ag 89.1 89.1

https://anonymous.4open.science/r/OSFT-964C/

A.14 USE OF LARGE LANGUAGE MODELS

Consistent with the ICLR 2026 disclosure policy, we used large language models (LLMs) only to
aid or polish writing (grammar and English fluency) and for minor assistance in editing experimental
code (e.g., debugging or syntax corrections). LLMs were not used for research ideation, theoretical
analysis, methodology design, data analysis, or result generation. All scientific contributions, theo-
retical derivations, core code development, and experiments were implemented and validated solely
by the authors.

31


https://anonymous.4open.science/r/OSFT-964C/

Under review as a conference paper at ICLR 2026

Table 12: Per-task performance on the 15-task benchmark (Order 4, T5-Large Model). Task order:
mnli — ¢b — wic — copa — qqp — boolga — rte — imdb — yelp — amazon — sst-2 — dbpedia
— ag — multirc — yahoo. Average Accuracy: 71.6, Backward Transfer: -5.5.

Task Accuracy (After Task) Accuracy (Final)

mnli 74.9 62.3
cb 83.6 75.0
wic 57.2 51.2
copa 54.4 47.0
qqp 85.8 82.4
boolga 83.2 77.3
rte 83.4 80.5
imdb 96.1 94.5
yelp 59.7 48.6
amazon 54.2 49.1
sst-2 92.3 93.3
dbpedia 98.5 94.6
ag 84.8 72.1
multirc 78.1 75.8
yahoo 69.8 69.8

Table 13: Per-task performance on the TRACE benchmark (LLaMA-2-7B-Chat). Task order: C-
STANCE — FOMC — MeetingBank — Py150 — ScienceQA — NumGLUE-cm — NumGLUE-
ds — 20Minuten. Average Accuracy: 48.4, Backward Transfer: -7.1.

Task Accuracy (After Task) Accuracy (Final)
C-STANCE 0.48 0.42
FOMC 0.65 0.58
MeetingBank 0.56 0.49
Py150 0.60 0.48
ScienceQA 0.73 0.67
NumGLUE-cm 0.37 0.28
NumGLUE-ds 0.54 0.51
20Minuten 0.44 0.44
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